Integrative Structure Validation Report January 08, 2025 - 06:47 PM PST

The following software was used in the production of this report:

Python-IHM Version 1.3 Integrative Modeling Validation Version 1.2.1

PDB ID	9A8W
Structure Title	Integrative structure of human SNAPc-DNA
Structure Authors	Shah, S.Z.; Perry, T.N.; Graziadei, A.; Cecatiello, V.; Kaliyappan, T.; Misiaszek, A.D.; Mueller, C.W.; Ramsay, E.P.; Vannini, A.

This is a PDB-IHM IM Structure Validation Report for a publicly released PDB-IHM entry.

We welcome your comments at helpdesk@pdb-ihm.org

A user guide is available at https://pdb-ihm.org/validation_help.html with specific help available everywhere you see the ? symbol.


List of references used to build this report is available here.

Overall quality

This validation report contains model quality assessments for all structures, data quality assessment for SAS datasets and fit to model assessments for SAS datasets. Data quality and fit to model assessments for other datasets and model uncertainty are under development. Number of plots is limited to 256.

Model Quality: Excluded Volume Analysis

2 of 5

Ensemble information @

This entry consists of 1 distinct ensemble(s).

Summary 7

This entry consists of 1 unique models, with 7 subunits in each model. A total of 8 datasets or restraints were used to build this entry. Each model is represented by 16 rigid bodies and 16 flexible or non-rigid units.

Entry composition

There is 1 unique type of models in this entry. This model is titled Cluster 0/None.

Model ID	Subunit number	Subunit ID	Subunit name	Chain ID	Chain ID [auth]	Total residues
1	1	1	snRNA-activating protein complex subunit 2	A	A	334
1	2	2	snRNA-activating protein complex subunit 3	В	В	411
1	3	3	snRNA-activating protein complex subunit 5	С	С	98
1	4	4	snRNA-activating protein complex subunit 1	D	D	368
1	5	5	snRNA-activating protein complex subunit 4	E	E	1519
1	6	6	T strand	F	F	20
1	7	7	NT strand	G	G	20

D	Dataset type	Database name	Data access code
5	Crosslinking-MS data	PRIDE	PXD053341
7	3DEM volume	File	10.5281/zenodo.14009872
12	3DEM volume	File	10.5281/zenodo.14009872
8	De Novo model	MODEL ARCHIVE	ma-pgtjz
9	Experimental model	PDB	9FS0
LO	Experimental model	PDB	7ZX8
1	Experimental model	PDB	7XUR
6	3DEM volume	EMDB	EMD-50730

Representation ?

This entry has only one representation and includes 16 rigid bodies and 16 flexible units.

Chain ID	Rigid bodies	Non-rigid segments
В	27-411	1-26
E	122-163, 182-416, 424-541, 706-799, 806-859, 1304-1434	41-121, 164-181, 417-423, 542-705, 800-805, 860-1303, 1435-1519
С	3-52	1-2, 53-98
D	1-141, 162-234	142-161, 235-368
А	29-87, 97-160, 201-271, 304-334	1-28, 88-96, 161-200, 272-303
F	1-20	-
G	1-20	-

4 of 5

Methodology and software

This entry is a result of 1 distinct protocol(s).

Step numb		Method name	Method type	Method description	Number of computed models	Multi state modeling	Multi scale modeling
1	1	Replica exchange monte carlo	Sampling	None	320000	False	True

There are 4 software packages reported in this entry.

ID	Software name	Software version	Software classification	Software location
1	IMP PMI module	2.20.0	integrative model building	https://integrativemodeling.org
2	Integrative Modeling Platform (IMP)	2.20.0	integrative model building	https://integrativemodeling.org
3	AlphaPulldown	0.30.7	structure prediction	https://github.com/KosinskiLab/AlphaPulldown
4	AlphaFold2	2.3.2	structure prediction	https://github.com/google- deepmind/alphafold

Data quality

3DEM volume

Validation for this section is under development.

Crosslinking-MS

Validation for this section is under development.

Model quality 7

For models with atomic structures, molprobity analysis is performed. For models with coarse-grained or multi-scale structures, excluded volume analysis is performed.

Excluded volume satisfaction (?)

Excluded volume satisfaction for the models in the entry are listed below.

1 99	71	3973.0

Fit of model to data used for modeling () 3DEM volume

Validation for this section is under development.

Crosslinking-MS

Validation for this section is under development.

Fit of model to data used for validation @

Validation for this section is under development.

Acknowledgements

Development of integrative model validation metrics, implementation of a model validation pipeline, and creation of a validation report for integrative structures, are funded by NSF ABI awards (DBI-1756248, DBI-2112966, DBI-2112967, DBI-2112968, and DBI-1756250). The PDB-IHM team and members of Sali labcontributed model validation metrics and software packages.

Implementation of validation methods for SAS data and SAS-based models are funded by RCSB PDB (grant number DBI-1832184). Dr. Stephen Burley, Dr. John Westbrook, and Dr. Jasmine Young from RCSB PDB, Dr. Jill Trewhella, Dr. Dina Schneidman, and members of the SASBDB repository are acknowledged for their advice and support in implementing SAS validation methods.

Members of the wwPDB Integrative/Hybrid Methods Task Force provided recommendations and community support for the project.