

#### Jun 9, 2025 – 09:36 PM JST

| PDB ID       | : | $8ZY6 / pdb_{00008zy6}$                                   |
|--------------|---|-----------------------------------------------------------|
| EMDB ID      | : | EMD-60557                                                 |
| Title        | : | Sarbecovirus GX2013 Spike Trimer in a Locked Conformation |
| Authors      | : | Wang, J.; Xiong, X.                                       |
| Deposited on | : | 2024-06-16                                                |
| Resolution   | : | 3.30  Å(reported)                                         |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| : | FAILED                                                             |
|---|--------------------------------------------------------------------|
| : | 1.8.5 (274361), CSD as541be (2020)                                 |
| : | 4-5-2 with Phenix2.0rc1                                            |
| : | 1.1.7 (2018)                                                       |
| : | 20231227.v01 (using entries in the PDB archive December 27th 2023) |
| : | FAILED                                                             |
| : | Engh & Huber $(2001)$                                              |
| : | Parkinson et al. (1996)                                            |
| : | 2.43.1                                                             |
|   | :::::::::::::::::::::::::::::::::::::::                            |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f EM} {f structures} \ (\#{f Entries})$ |
|-----------------------|----------------------------------------------------------------------|-------------------------------------------|
| Clashscore            | 210492                                                               | 15764                                     |
| Ramachandran outliers | 207382                                                               | 16835                                     |
| Sidechain outliers    | 206894                                                               | 16415                                     |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |     |     |  |  |  |
|-----|-------|--------|------------------|-----|-----|--|--|--|
| 1   | А     | 1256   | 73%              | 10% | 17% |  |  |  |
| 1   | В     | 1256   | 74%              | 9%  | 17% |  |  |  |
| 1   | С     | 1256   | 74%              | 9%  | 17% |  |  |  |
| 2   | D     | 2      | 100%             |     |     |  |  |  |
| 2   | Е     | 2      | 100%             |     |     |  |  |  |
| 2   | F     | 2      | 50%              | 50% |     |  |  |  |
| 2   | G     | 2      | 100%             |     |     |  |  |  |
| 2   | Н     | 2      | 100%             |     |     |  |  |  |
| 2   | Ι     | 2      | 100%             |     |     |  |  |  |



| $\alpha \cdot \cdot \cdot \cdot$ | ſ    | · · · · · · · · · · · · · · · · · · · |      |
|----------------------------------|------|---------------------------------------|------|
| Continued                        | from | previous                              | page |

| Mol | Chain | Length | Quality of chain |     |  |  |  |
|-----|-------|--------|------------------|-----|--|--|--|
| 2   | J     | 2      | 50%              | 50% |  |  |  |
| 2   | K     | 2      | 100%             |     |  |  |  |
| 2   | L     | 2      | 100%             |     |  |  |  |
| 2   | М     | 2      | 100%             |     |  |  |  |
| 2   | Ν     | 2      | 50%              | 50% |  |  |  |
| 2   | 0     | 2      | 100%             |     |  |  |  |



# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 25275 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |      |      |              |    | AltConf | Trace |
|-----|-------|----------|-------|------|------|--------------|----|---------|-------|
| 1 0 | 1041  | Total    | С     | Ν    | Ο    | $\mathbf{S}$ | 0  | 0       |       |
| 1   |       | 1041     | 8131  | 5168 | 1357 | 1563         | 43 | 0       | 0     |
| 1   | Δ     | 1041     | Total | С    | Ν    | Ο            | S  | 0       | 0     |
|     | 1041  | 8131     | 5168  | 1357 | 1563 | 43           | 0  | 0       |       |
| 1   | D     | D 10/1   | Total | С    | Ν    | Ο            | S  | 0       | 0     |
| 1 В | 1041  | 8131     | 5168  | 1357 | 1563 | 43           | 0  | 0       |       |

• Molecule 1 is a protein called Spike glycoprotein.

| There are $237$ | discrepancies | between | the | modelled | and | reference | sequences: |
|-----------------|---------------|---------|-----|----------|-----|-----------|------------|
| Increate 201    | unscrepancies | Detween | one | moucheu  | and | reference | sequences. |

| Chain | Residue | Modelled | Actual | Comment        | Reference      |
|-------|---------|----------|--------|----------------|----------------|
| С     | 1178    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1179    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1180    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1181    | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1182    | ILE      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1183    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1184    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1185    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1186    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1187    | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1188    | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1189    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1190    | GLN      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1191    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1192    | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1193    | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1194    | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1195    | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1196    | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1197    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1198    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1199    | TRP      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1200    | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1201    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |



| Chain | Residue | Modelled   | Actual | Comment        | Reference      |
|-------|---------|------------|--------|----------------|----------------|
| С     | 1202    | LEU        | _      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1203    | SER        | _      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1204    | THR        | _      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1205    | PHE        | _      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1206    | LEU        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1207    | LEU        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1208    | GLU        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1209    | VAL        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1210    | LEU        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1211    | PHE        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1212    | GLN        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1213    | GLY        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1214    | PRO        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1215    | GLY        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1216    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1217    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1218    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1219    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1220    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1221    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1222    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1223    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| С     | 1224    | SER        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1225    | ALA        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1226    | TRP        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1227    | SER        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1228    | HIS        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1229    | PRO        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1230    | GLN        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1231    | PHE        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1232    | GLU        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1233    | LYS        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1234    | GLY        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1235    | GLY        | -      | expression tag | UNP A0A0U1WHJ8 |
| C     | 1236    | GLY        | -      | expression tag | UNP A0A0U1WHJ8 |
|       | 1237    | SER        | -      | expression tag | UNP A0A0U1WHJ8 |
|       | 1238    | GLY        | -      | expression tag | UNP AUAUUIWHJ8 |
|       | 1239    | GLY        | -      | expression tag | UNP AUAUUIWHJ8 |
|       | 1240    | GLY        | -      | expression tag | UNP AUAUUIWHJ8 |
|       | 1241    | GLY        | -      | expression tag | UNP AUAUUIWHJ8 |
|       | 1242    | SEK<br>CIV | -      | expression tag | UNP AUAUUIWHJ8 |
| I U   | 1243    | GLY        | -      | expression tag | UNP AUAUUIWHJ8 |



|   | <b>Besidue</b> | Modelled | Actual | Comment        | Reference      |
|---|----------------|----------|--------|----------------|----------------|
| С | 1244           | GLY      | -      | expression tag |                |
|   | 1244           | SEB      | _      | expression tag | UNP A0A0U1WHJ8 |
|   | 1246           | ALA      | _      | expression tag | UNP A0A0U1WHJ8 |
|   | 1247           | TRP      | _      | expression tag | UNP A0A0U1WHJ8 |
|   | 1248           | SEB      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1249           | HIS      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1250           | PRO      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1251           | GLN      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1252           | PHE      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1253           | GLU      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1254           | LYS      | _      | expression tag | UNP A0A0U1WHJ8 |
| C | 1255           | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| C | 1256           | ALA      | _      | expression tag | UNP A0A0U1WHJ8 |
| A | 1178           | GLY      | _      | expression tag | UNP A0A0U1WHJ8 |
| A | 1179           | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1180           | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1181           | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1182           | ILE      | _      | expression tag | UNP A0A0U1WHJ8 |
| A | 1183           | PRO      | _      | expression tag | UNP A0A0U1WHJ8 |
| A | 1184           | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1185           | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1186           | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1187           | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1188           | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1189           | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1190           | GLN      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1191           | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1192           | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1193           | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1194           | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1195           | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1196           | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1197           | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1198           | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1199           | TRP      | -      | expression tag | UNP A0A0U1WHJ8 |
| А | 1200           | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1201           | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1202           | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1203           | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1204           | THR      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1205           | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |
| A | 1206           | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |



| Chain | Residue | Modelled | Actual | Comment        | Reference      |
|-------|---------|----------|--------|----------------|----------------|
| A     | 1207    | LEU      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1208    | GLU      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1209    | VAL      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1210    | LEU      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1211    | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1212    | GLN      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1213    | GLY      | _      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1214    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1215    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1216    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1217    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1218    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1219    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1220    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1221    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1222    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1223    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1224    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1225    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1226    | TRP      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1227    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1228    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А     | 1229    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1230    | GLN      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1231    | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1232    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1233    | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1234    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1235    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1236    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1237    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1238    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1239    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1240    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1241    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1242    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1243    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1244    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1245    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1246    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| A     | 1247    |          | -      | expression tag | UNP AUAUUIWHJ8 |
| A     | 1248    | SER      | -      | expression tag | UNP AUAUUIWHJ8 |



| Continuea from previous page |         |          |        |                |                |
|------------------------------|---------|----------|--------|----------------|----------------|
| Chain                        | Residue | Modelled | Actual | Comment        | Reference      |
| А                            | 1249    | HIS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1250    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| A                            | 1251    | GLN      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1252    | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1253    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1254    | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1255    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| А                            | 1256    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1178    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1179    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1180    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1181    | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1182    | ILE      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1183    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1184    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1185    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1186    | PRO      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1187    | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1188    | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1189    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1190    | GLN      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1191    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1192    | TYR      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1193    | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1194    | ARG      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1195    | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1196    | ASP      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1197    | GLY      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1198    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1199    | TRP      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1200    | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1201    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1202    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1203    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1204    | THR      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1205    | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1206    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1207    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1208    | GLU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1209    | VAL      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1210    | LEU      | -      | expression tag | UNP A0A0U1WHJ8 |
| В                            | 1211    | PHE      | -      | expression tag | UNP A0A0U1WHJ8 |



| Continu | ieu from pre | totous page |        |                | -              |
|---------|--------------|-------------|--------|----------------|----------------|
| Chain   | Residue      | Modelled    | Actual | Comment        | Reference      |
| B       | 1212         | GLN         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1213         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| B       | 1214         | PRO         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1215         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1216         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1217         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1218         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1219         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1220         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1221         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1222         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1223         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1224         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1225         | ALA         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1226         | TRP         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1227         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1228         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1229         | PRO         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1230         | GLN         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1231         | PHE         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1232         | GLU         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1233         | LYS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1234         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1235         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1236         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1237         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1238         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1239         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1240         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1241         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1242         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1243         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1244         | GLY         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1245         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1246         | ALA         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1247         | TRP         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1248         | SER         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1249         | HIS         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1250         | PRO         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1251         | GLN         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1252         | PHE         | -      | expression tag | UNP A0A0U1WHJ8 |
| В       | 1253         | GLU         | -      | expression tag | UNP A0A0U1WHJ8 |



| Chain | Residue | Modelled | Actual | Comment        | Reference      |
|-------|---------|----------|--------|----------------|----------------|
| В     | 1254    | LYS      | -      | expression tag | UNP A0A0U1WHJ8 |
| В     | 1255    | SER      | -      | expression tag | UNP A0A0U1WHJ8 |
| В     | 1256    | ALA      | -      | expression tag | UNP A0A0U1WHJ8 |

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | I     | Atoms        |   |    | AltConf | Trace |
|-----|-------|----------|-------|--------------|---|----|---------|-------|
| 0   | л     | ე        | Total | С            | Ν | 0  | 0       | 0     |
|     | D     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 0   | F     | ე        | Total | С            | Ν | 0  | 0       | 0     |
|     | Ľ     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | F     | 9        | Total | С            | Ν | 0  | 0       | 0     |
|     | Г     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | С     | 9        | Total | С            | Ν | 0  | 0       | 0     |
|     | G     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | Ц     | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 2   | 11    | 2        | 28    | 16           | 2 | 10 | 0       | U     |
| 2   | Т     | n        | Total | С            | Ν | 0  | 0       | 0     |
| 2   | 1     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | T     | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 2   | 5     |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | K     | 9        | Total | С            | Ν | Ο  | 0       | 0     |
|     | 17    |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | T.    | 9        | Total | С            | Ν | Ο  | 0       | 0     |
|     | Ц     |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | М     | 9        | Total | $\mathbf{C}$ | Ν | Ο  | 0       | 0     |
|     | 111   |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | Ν     | 2        | Total | $\mathbf{C}$ | Ν | Ο  | 0       | 0     |
|     | 11    |          | 28    | 16           | 2 | 10 | U       | 0     |
| 2   | 0     | 9        | Total | $\mathbf{C}$ | Ν | Ο  | 0       | 0     |
|     |       | 2        | 28    | 16           | 2 | 10 | U       | U     |

• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (CCD ID: NAG) (formula:  $C_8H_{15}NO_6$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | A      | ton | ns |              | AltConf |
|-----|-------|----------|--------|-----|----|--------------|---------|
| 9   | C     | 1        | Total  | С   | Ν  | 0            | 0       |
| 5   | C     | 1        | 14     | 8   | 1  | 5            | 0       |
| 3   | С     | 1        | Total  | С   | Ν  | Ο            | 0       |
| 0   | U     | 1        | 14     | 8   | 1  | 5            | 0       |
| 3   | С     | 1        | Total  | С   | Ν  | Ο            | 0       |
| 0   | 0     | 1        | 14     | 8   | 1  | 5            | 0       |
| 3   | С     | 1        | Total  | С   | Ν  | Ο            | 0       |
|     | 0     | 1        | 14     | 8   | 1  | 5            | 0       |
| 3   | С     | 1        | Total  | С   | Ν  | Ο            | 0       |
|     |       | 1        | 14     | 8   | 1  | 5            | Ŭ       |
| 3   | С     | 1        | Total  | С   | Ν  | Ο            | 0       |
|     |       | -        | 14     | 8   | 1  | 5            |         |
| 3   | C     | 1        | Total  | С   | Ν  | Ο            | 0       |
|     |       | -        | 14     | 8   | 1  | 5            |         |
| 3   | С     | 1        | Total  | С   | Ν  | 0            | 0       |
|     |       | _        | 14     | 8   | 1  | 5            |         |
| 3   | С     | 1        | Total  | С   | Ν  | Ō            | 0       |
|     | _     |          | 14     | 8   | 1  | 5            | _       |
| 3   | С     | 1        | Total  | С   | Ν  | 0            | 0       |
|     |       | _        | 14     | 8   | 1  | 5            |         |
| 3   | С     | 1        | Total  | С   | Ν  | Ō            | 0       |
|     |       | _        | 14     | 8   | 1  | 5            |         |
| 3   | С     | 1        | Total  | С   | Ν  | Ō            | 0       |
|     | _     |          | 14     | 8   | 1  | 5            | _       |
| 3   | С     | 1        | Total  | C   | N  | Õ            | 0       |
|     |       |          | 14     | 8   | 1  | 5            |         |
| 3   | С     | 1        | 'Total | C   | N  | Õ            | 0       |
|     |       |          | 14     | 8   | 1  | $\mathbf{b}$ |         |



Continued from previous page...

| Mol | Chain | Residues | Atoms |   |   |   | AltConf |
|-----|-------|----------|-------|---|---|---|---------|
| 2   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| 0   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| 0   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
|     | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| 0   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| -   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| -   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| 0   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| -   | ٨     | 1        | Total | С | Ν | Ο | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| -   |       | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
|     | ٨     | 1        | Total | С | Ν | Ο | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
|     | ٨     | 1        | Total | С | Ν | Ο | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
| 0   | ٨     | 1        | Total | С | Ν | 0 | 0       |
| 3   | А     | 1        | 14    | 8 | 1 | 5 | 0       |
|     | р     | 1        | Total | С | Ν | 0 | 0       |
| 3   | В     | 1        | 14    | 8 | 1 | 5 | 0       |
| 2   | р     | 1        | Total | С | Ν | 0 | 0       |
| 3   | В     | 1        | 14    | 8 | 1 | 5 | 0       |
| 2   | р     | 1        | Total | С | Ν | Ο | 0       |
| 3   | D     | 1        | 14    | 8 | 1 | 5 | 0       |
| 2   | р     | 1        | Total | С | Ν | 0 | 0       |
| 3   | D     | 1        | 14    | 8 | 1 | 5 | 0       |
| 9   | D     | 1        | Total | С | Ν | 0 | 0       |
| 3   | D     | 1        | 14    | 8 | 1 | 5 |         |
| 9   | D     | 1        | Total | С | Ν | 0 | 0       |
| 3   | Б     |          | 14    | 8 | 1 | 5 |         |
| 2   | р     | 1        | Total | С | Ν | 0 | 0       |
| 3   | В     | 1        | 14    | 8 | 1 | 5 |         |
| 9   | Б     | 1        | Total | С | Ν | 0 | 0       |
| 3   | В     | 1        | 14    | 8 | 1 | 5 | U       |



Continued from previous page...

| Mol | Chain | Residues | Atoms       | AltConf |
|-----|-------|----------|-------------|---------|
| 2   | В     | 1        | Total C N O | 0       |
| 5   | D     | 1        | 14  8  1  5 | 0       |
| 2   | В     | 1        | Total C N O | 0       |
| 5   | D     | 1        | 14  8  1  5 | 0       |
| 2   | В     | 1        | Total C N O | 0       |
| 5   | D     | 1        | 14  8  1  5 | 0       |
| 2   | В     | 1        | Total C N O | 0       |
| 0   | D     | 1        | 14 8 1 5    | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Spike glycoprotein



| GLN<br>SER<br>THR<br>SER<br>ASN<br>PHE<br>FRO<br>FRO<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D278<br>1290<br>1290<br>1290<br>1290<br>1290<br>1326<br>1326<br>1326<br>1326<br>1326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 131<br>1331<br>1331<br>1367<br>1367<br>1367<br>1367<br>1367<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S396<br>T406<br>P417<br>F420<br>F420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N428<br>7429<br>R443<br>7444<br>7445<br>A477<br><b>4</b> 475<br><b>4</b> 478<br><b>4</b> 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A480<br>1481<br>1482<br>1488<br>1496<br>1496<br>1496<br>1496<br>1496<br>1496<br>1496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F532<br>9536<br>9547<br>1571<br>1571<br>7573<br>7573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D600<br>D600<br>D600<br>D601<br>D602<br>D602<br>D602<br>D602<br>D602<br>D602<br>D602<br>D602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LEU<br>LEU<br>SER<br>SER<br>THR<br>GLY<br>GLY<br>8690<br>V691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S704<br>M709<br>Y710<br>C712<br>G713<br>G713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| q731<br>L732<br>N734<br>K734<br>A735<br>L736<br>L736<br>Q753<br>M757<br>M757<br>T760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F771<br>L775<br>D777<br>D812<br>D812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1823<br>1828<br>1828<br>1828<br>1843<br>1843<br>1843<br>1843<br>1843<br>1845<br>1845<br>1845<br>1845<br>1845<br>1845<br>1845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L950<br>D954<br>K955<br>A958<br>R969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R9 1<br>1911<br>1922<br>1999<br>1906<br>11012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L1018<br>L1018<br>H1033<br>V1034<br>T1035<br>T1035<br>C1051<br>C1051<br>K1055<br>A1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V1057<br>11073<br>N1088<br>C1095<br>C1095<br>V1098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRO<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>ASP<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIS<br>THR<br>SER<br>PRO<br>ASP<br>VAL<br>LEU<br>GLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ILE<br>SER<br>GLY<br>ALA<br>ALA<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ILE<br>GLN<br>GLU<br>GLU<br>ILE<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASV<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LYS<br>ASN<br>ASN<br>ASN<br>ASN<br>GLU<br>CEU<br>CEU<br>GLU<br>GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEU<br>LEU<br>LYS<br>LYS<br>CLY<br>GLV<br>GLV<br>GLV<br>GLV<br>FILE<br>FILE<br>FILE<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASP<br>GLY<br>GLN<br>TYR<br>VAL<br>ASP<br>ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLU<br>TRP<br>VAL<br>LEU<br>LEU<br>SER<br>PHE<br>LEU<br>LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GLU<br>VAL<br>VAL<br>CLEU<br>PHE<br>GLN<br>GLY<br>GLY<br>HIS<br>HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIS<br>HIS<br>HIS<br>HIS<br>SER<br>SER<br>TRP<br>TRP<br>TRP<br>FIS<br>GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GILY<br>GILY<br>LYS<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>ALA<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SER<br>HIS<br>PRO<br>GLN<br>CLN<br>CLU<br>LYS<br>SER<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 1: Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ike glycoproteir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MET<br>LYS<br>LYS<br>LYS<br>LEU<br>LEU<br>ALA<br>PHE<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALA<br>LYS<br>ALA<br>GLV<br>GLY<br>GLY<br>CYS<br>CYS<br>SER<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LYS<br>PRO<br>GLN<br>FRO<br>FRO<br>FRO<br>M30<br>M33<br>M33<br>M37<br>T55<br>T55<br>T55<br>T55<br>T55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VAL<br>VAL<br>ASP<br>B77<br>D77<br>R78<br>Y79<br>T30<br>T30<br>T30<br>T30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N84<br>N84<br>D91<br>194<br>1108<br>V121<br>V121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V123<br>N124<br>N124<br>N126<br>N126<br>N126<br>N126<br>N127<br>N127<br>N12<br>N12<br>N12<br>N12<br>N12<br>N12<br>N12<br>N12<br>N12<br>N12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARG ALA<br>ARG ALA<br>GLY ALA<br>CLM CLN<br>CLN CLN<br>CLN CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEU<br>LEU<br>ASP<br>THR LIVS<br>PRO<br>ALA PRO<br>LYS<br>CLY<br>CLY<br>HRO<br>CLY<br>HRO<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q202         VAL           7203         VAL           7204         SSP           7204         STF           7204         TSF           7204         TSF           7204         TSF           7204         TSF           7205         TSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.25<br>23.7<br>23.7<br>24.0<br>24.0<br>24.1<br>79.4<br>79.4<br>52.4<br>6<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>10.8<br>5.4<br>5.4<br>5.5<br>10.8<br>10.8<br>10.8<br>10.8<br>10.8<br>10.8<br>10.8<br>10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SER         V123         MET           ASN         N124         LYS           ASN         N124         LYS           PRO         N126         LLU           PRO         T127         LLU           PRO         T131         PHE           D278         T131         PHE           L290         T146         SER           VAL         LLU         LLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V299         SER         ALA           N300         GLY         ALA           N301         GLY         ALA           K301         GLN         GLN           K301         GLN         GLN           F309         GLN         GLN           F309         GLN         GLY           F309         GLN         GLY           B326         K170         GLY           B351         FHE         GLY           PHE         FHE         SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COL         COL           1.369         ASP         LEU         LYS           1.366         THR         LUN         LUN           F365         ALA         PRO         PRO           F365         ALA         PRO         THR         CLN           F365         ALA         PRO         FRO         FRO           F366         ALA         PRO         FRO         FRO           F376         PRO         LYS         M37         M37           F375         PHE         M43         M43         M43           F375         PHE         M43         F18         F18           P416         F183         F17         F18         F17           E409         V701         M37         M7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.20         1.001         V.L.           C423         1203         V.L.           C423         T203         V.L.           C423         T203         KF           1426         1213         K78           M428         P214         T78           Q479         L213         K78           M428         P214         T80           P214         T80         T80           P214         T80         T80           P116         1220         T81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-30         1.23         103           T496         V237         104           K508         A240         191           K508         A240         194           F242         108         5243           F522         GLN         1108           F532         GLN         1112           G536         THR         1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SER         V123         MET           D547         ASN         N124         LVS           T571         ASN         N124         LVS           T572         PHD         T127         LEU           F73         GU         T127         LEU           F73         SS3         1127         LEU           F73         SS3         1131         PHE           T595         T33         1131         PHE           ALA         T53         SS3         ALA           L602         L290         VAL         LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R607         V299         ARA         ALA           V615         K301         CIY         ALA           V615         K301         CIY         ALA           1524         F309         CIN         CLU           1639         R326         CIN         CIV           1639         R326         NIS3         CYS           CIS1         CIN         CILU         CILU           CIS3         R15         NIS3         CYS           CIS4         CIS5         KTO         LILE           CIS4         CIS5         CIN         CIN           RIA         CIS5         CIN         CIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V.L. 0.11 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G713         F=0         0.02         VAL           G713         Q423         T203         VAL           Q724         U424         Y204         SFF           Q731         1425         Y204         SFF           Q731         1425         Y204         SFF           1732         M428         Y204         SFF           1733         1425         P214         P77           N734         Q479         L200         P31           N734         Q479         L200         P31           S77         P14         P16         P16           N734         Q479         L200         P31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F11         F40         1.223         103           1774         1496         V237         104           1775         1496         V237         104           1776         1         1496         1496           1777         1         1         1494           1777         1         1         1494           1777         1         1         1494           1777         1         1         194           1778         1         108         108           1783         1         5         243         1108           1806         1         1         108         1           1913         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R816         SER         V123         MET           1         0647         ASN         N124         LVS           1         1571         ASN         N124         LVS           1         1571         LEU         S106         LEU           1         1571         LEU         S126         LEU           1         1573         GLU         H128         LEU           1         1         127         LEU         N126         LEU           1         1         1         1         N128         LEU           1         1         1         1         1         N126         LEU           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                     | 1038         R607         V999         SER         ALA           D954         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | With<br>M992         V.L.         Model<br>LEU         LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11050         6713         1         202         VAL           11050         6713         1         223         7203         VAL           11050         7724         V424         7204         SSP         VAL           11057         7724         V424         7204         SSP         VAL           11073         1131         1425         142         SSP         SSP           11073         1732         N428         7204         STF         STF           11073         1732         N428         7214         T80         N78           N1088         N734         9479         1220         T80         180           N1088         N734         9479         1220         T81         180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image         Image <th< td=""></th<> |
| ASP         R816         SER         V123         MET           GUU         US3         DE47         ASN         V123         MET           LUU         K823         DE47         ASN         N124         LVS           ASP         T823         T571         LEU         N126         LEU           LYS         T826         T571         LEU         N126         LEU           TYR         P573         GLU         H126         LEU         LEU           TYR         P573         GLU         H126         LEU         LEU           T18         T573         GLU         H127         LEU         H12           LYR         A840         T573         GLU         H128         ALA           T18         T184         T186         LEU         H13         H1           K         A840         L602         L6 | PR0         N933         Re07         V393         SER         ALA           VAL         D954         Re07         V399         ARO         LYS           VAL         D954         Woits         R4007         V399         ARO         LYS           LEU         ASP         K955         Voits         K301         THR         CLM         CLM           CIX         A958         T624         F309         CLM         CLM         CLU           CIX         A958         T624         F309         CLM         CLU         CLU           CIX         A958         T624         F309         CLM         CLU         CLU         CLU           CIX         A958         T624         F309         CLM         CLU         CLU         CLU           CIX         A959         T624         F309         CLM         CLU         CLU         CLU           CIX         A959         T649         CLM         CLM         CLU         CLU           CIX         V977         T649         CLM         CLM         CLU         CLU           CIX         V977         T649         CLM         CLM         CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A.M.         MODE         V.M.         MODE         MODE <th< td=""><td>ANN         ANN         ANN</td></th<> <td>LEV 1.00 F.1 F.00 1.22 1.00 1.00 C.1 C.1 1.0 1.774 7.496 V.237 10.4 C.1 C.1 C.1 C.1 F.0 1.774 7.496 V.237 10.4 C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1 C.1</td>                                                                                                                                                                                                         | ANN         ANN | LEV 1.00 F.1 F.00 1.22 1.00 1.00 C.1 C.1 1.0 1.774 7.496 V.237 10.4 C.1 C.1 C.1 C.1 F.0 1.774 7.496 V.237 10.4 C.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SER         ASP         R816         SER         V123         MET           GLY         GU         GU         D547         ASN         N124         LVS           TYR         LEU         K823         D547         ASN         N124         LVS           TYR         LEU         K823         D547         ASN         N124         LVS           TYR         LEU         K823         T571         LEU         S126         LEU           CUU         TYR         T872         D40         T27         LEU         N126         LEU           PR0         TYR         P573         GLU         H128         ALA         LEU           ALA         PHE         A840         T573         GLU         H128         ALA           ARC         T843         T595         D278         L131         PHE           ARC         ASN         T843         T595         T44         LEU           ARC         ASN         T843         T456         LEU         LEU           ARC         ASN         T843         T465         SER         LEU         LEU           ARC         ASN         T843         L6                          | AIA         PR0         N933         Re07         V239         SER         AIA           YR         ASP         N934         Re07         V299         ARA         YS         AIA           VAL         VAL         VAL         D954         N300         GLY         ALA           VAL         VAL         VAL         N300         GLY         ALA           ARG         ASP         K955         V015         K301         THR         GLN           ARP         GLY         A958         TS24         F309         GLN         GLN         GLU           ASP         GLY         A958         TS24         F309         GLN         GLN         GLU           GLY         ASP         TR         P309         GLN         GLN </td <td>Mix         Mix         Mix<td>HIS A.A 1050 0713 150 020 VAL<br/>HIS A.N 11050 0713 150 023 17003 VAL<br/>HIS LEV Y1057 023 17003 A.SP<br/>HIS LEV Y1057 073 1425 1213 A.SP<br/>HIS A.SN 077 0731 1425 1213 A.SP<br/>A.LA S.R. 0731 1425 1213 A.7<br/>A.LA S.R. 11073 1732 0429 1213 779<br/>S.R. 11073 1733 0479 1220 791<br/>T.P. LEU N1088 A.734 0479 1220 791<br/>T.P. LEU N108 7734 0479 1220 791</td><td>HIJ         ANF         VU00         F/1         F/10         F/</td></td> | Mix         Mix <td>HIS A.A 1050 0713 150 020 VAL<br/>HIS A.N 11050 0713 150 023 17003 VAL<br/>HIS LEV Y1057 023 17003 A.SP<br/>HIS LEV Y1057 073 1425 1213 A.SP<br/>HIS A.SN 077 0731 1425 1213 A.SP<br/>A.LA S.R. 0731 1425 1213 A.7<br/>A.LA S.R. 11073 1732 0429 1213 779<br/>S.R. 11073 1733 0479 1220 791<br/>T.P. LEU N1088 A.734 0479 1220 791<br/>T.P. LEU N108 7734 0479 1220 791</td> <td>HIJ         ANF         VU00         F/1         F/10         F/</td> | HIS A.A 1050 0713 150 020 VAL<br>HIS A.N 11050 0713 150 023 17003 VAL<br>HIS LEV Y1057 023 17003 A.SP<br>HIS LEV Y1057 073 1425 1213 A.SP<br>HIS A.SN 077 0731 1425 1213 A.SP<br>A.LA S.R. 0731 1425 1213 A.7<br>A.LA S.R. 11073 1732 0429 1213 779<br>S.R. 11073 1733 0479 1220 791<br>T.P. LEU N1088 A.734 0479 1220 791<br>T.P. LEU N108 7734 0479 1220 791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIJ         ANF         VU00         F/1         F/10         F/                                               |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain D:

100%



#### NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain E:                   |                       | 100%            |                 |               |                  |
|----------------------------|-----------------------|-----------------|-----------------|---------------|------------------|
| NAG1<br>NAG2               |                       |                 |                 |               |                  |
| • Molecule 2:<br>opyranose | 2-acetamido-2-deoxy-b | oeta-D-glucopyr | anose-(1-4)-2-a | cetamido-2-de | eoxy-beta-D-gluc |
| Chain F:                   | 50%                   |                 | 50%             |               |                  |
| NAG1<br>NAG2               |                       |                 |                 |               |                  |
| • Molecule 2:<br>opyranose | 2-acetamido-2-deoxy-b | oeta-D-glucopyr | anose-(1-4)-2-a | cetamido-2-de | eoxy-beta-D-gluc |
| Chain G:                   |                       | 100%            |                 |               |                  |
| NAG1<br>NAG2               |                       |                 |                 |               |                  |
| • Molecule 2:<br>opyranose | 2-acetamido-2-deoxy-b | oeta-D-glucopyr | anose-(1-4)-2-a | cetamido-2-de | eoxy-beta-D-gluc |
| Chain H:                   |                       | 100%            |                 |               |                  |
| NAG1<br>NAG2               |                       |                 |                 |               |                  |
| • Molecule 2:<br>opyranose | 2-acetamido-2-deoxy-b | oeta-D-glucopyr | anose-(1-4)-2-a | cetamido-2-de | eoxy-beta-D-gluc |
| Chain I:                   |                       | 100%            |                 |               |                  |
| NAG1<br>NAG2               |                       |                 |                 |               |                  |
| • Molecule 2:<br>opyranose | 2-acetamido-2-deoxy-b | oeta-D-glucopyr | anose-(1-4)-2-a | cetamido-2-de | eoxy-beta-D-gluc |
| Chain J:                   | 50%                   |                 | 50%             |               |                  |





• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

100%

#### NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain L:                  | 100%                                                        |                        |
|---------------------------|-------------------------------------------------------------|------------------------|
| NAG1<br>NAG2              |                                                             |                        |
| • Molecule 2<br>opyranose | : 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid | .o-2-deoxy-beta-D-gluc |
| Chain M:                  | 100%                                                        | •                      |
| NAG1<br>NAG2              |                                                             |                        |
|                           |                                                             |                        |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain N. |     |     |
|----------|-----|-----|
| Chain N: | 50% | 50% |
|          |     |     |

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain O:

100%





# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 122098                       | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TALOS ARCTICA            | Depositor |
| Voltage (kV)                       | 200                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 60                           | Depositor |
| Minimum defocus (nm)               | 800                          | Depositor |
| Maximum defocus (nm)               | 2500                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K3 (6k x 4k)           | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Chain | Bond lengths |          | Bond angles |                |  |
|-------|-------|--------------|----------|-------------|----------------|--|
| IVIOI |       | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5       |  |
| 1     | А     | 0.17         | 0/8305   | 0.42        | 0/11293        |  |
| 1     | В     | 0.19         | 0/8305   | 0.48        | 6/11293~(0.1%) |  |
| 1     | С     | 0.16         | 0/8305   | 0.42        | 1/11293~(0.0%) |  |
| All   | All   | 0.17         | 0/24915  | 0.44        | 7/33879~(0.0%) |  |

There are no bond length outliers.

All (7) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|---------|-------|------------------|---------------|
| 1   | В     | 127 | THR  | N-CA-C  | -9.22 | 99.94            | 112.94        |
| 1   | С     | 595 | THR  | N-CA-C  | -6.78 | 106.20           | 114.75        |
| 1   | В     | 420 | PHE  | CA-C-N  | -6.71 | 111.56           | 120.95        |
| 1   | В     | 420 | PHE  | C-N-CA  | -6.71 | 111.56           | 120.95        |
| 1   | В     | 123 | VAL  | N-CA-CB | -5.61 | 106.17           | 112.45        |
| 1   | В     | 595 | THR  | N-CA-C  | -5.52 | 108.33           | 114.62        |
| 1   | В     | 126 | SER  | CB-CA-C | -5.40 | 110.37           | 116.63        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 8131  | 0        | 7921     | 78      | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | В     | 8131  | 0        | 7921     | 75      | 0            |
| 1   | С     | 8131  | 0        | 7921     | 71      | 0            |
| 2   | D     | 28    | 0        | 25       | 0       | 0            |
| 2   | Е     | 28    | 0        | 25       | 0       | 0            |
| 2   | F     | 28    | 0        | 25       | 0       | 0            |
| 2   | G     | 28    | 0        | 25       | 0       | 0            |
| 2   | Н     | 28    | 0        | 25       | 0       | 0            |
| 2   | Ι     | 28    | 0        | 25       | 0       | 0            |
| 2   | J     | 28    | 0        | 25       | 0       | 0            |
| 2   | K     | 28    | 0        | 25       | 0       | 0            |
| 2   | L     | 28    | 0        | 25       | 0       | 0            |
| 2   | М     | 28    | 0        | 25       | 0       | 0            |
| 2   | Ν     | 28    | 0        | 25       | 0       | 0            |
| 2   | 0     | 28    | 0        | 25       | 0       | 0            |
| 3   | А     | 182   | 0        | 169      | 0       | 0            |
| 3   | В     | 168   | 0        | 156      | 0       | 0            |
| 3   | С     | 196   | 0        | 182      | 0       | 0            |
| All | All   | 25275 | 0        | 24570    | 211     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (211) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2            | Interatomic  | Clash       |  |
|------------------|-------------------|--------------|-------------|--|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:B:126:SER:CB   | 1:B:128:HIS:HD2   | 1.25         | 1.45        |  |
| 1:B:126:SER:HB3  | 1:B:128:HIS:CD2   | 1.52         | 1.40        |  |
| 1:B:126:SER:CB   | 1:B:128:HIS:CD2   | 2.08         | 1.33        |  |
| 1:B:126:SER:OG   | 1:B:128:HIS:CD2   | 2.18         | 0.95        |  |
| 1:B:126:SER:HB3  | 1:B:128:HIS:HD2   | 0.61         | 0.77        |  |
| 1:B:128:HIS:HA   | 1:B:170:LYS:C     | 2.16         | 0.71        |  |
| 1:B:126:SER:HG   | 1:B:128:HIS:CD2   | 2.08         | 0.71        |  |
| 1:A:1006:SER:H   | 1:A:1018:LEU:HD23 | 1.57         | 0.69        |  |
| 1:A:955:LYS:HA   | 1:A:958:ALA:HB3   | 1.74         | 0.69        |  |
| 1:C:200:VAL:HB   | 1:C:224:LEU:HB2   | 1.74         | 0.69        |  |
| 1:A:200:VAL:HB   | 1:A:224:LEU:HB2   | 1.75         | 0.68        |  |
| 1:A:84:ASN:ND2   | 1:A:237:VAL:O     | 2.31         | 0.64        |  |
| 1:A:351:ASP:H    | 1:A:496:THR:HB    | 1.64         | 0.63        |  |
| 1:C:351:ASP:H    | 1:C:496:THR:HB    | 1.63         | 0.63        |  |
| 1:C:695:VAL:HG12 | 1:C:1030:VAL:HG22 | 1.79         | 0.63        |  |
| 1:B:351:ASP:H    | 1:B:496:THR:HB    | 1.63         | 0.63        |  |



|                  |                   | Interatomic  | Clash       |  |
|------------------|-------------------|--------------|-------------|--|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:B:1006:SER:H   | 1:B:1018:LEU:HD23 | 1.64         | 0.63        |  |
| 1:B:955:LYS:HA   | 1:B:958:ALA:HB3   | 1.82         | 0.61        |  |
| 1:B:326:ARG:NH1  | 1:B:327:CYS:O     | 2.34         | 0.60        |  |
| 1:C:78:ARG:HG2   | 1:C:82:PHE:HB2    | 1.84         | 0.60        |  |
| 1:C:1042:ARG:NH1 | 1:C:1043:ASN:OD1  | 2.35         | 0.60        |  |
| 1:A:806:TYR:HD1  | 1:A:823:LYS:HD3   | 1.68         | 0.59        |  |
| 1:B:428:ASN:ND2  | 1:B:479:GLN:OE1   | 2.35         | 0.59        |  |
| 1:A:886:TYR:HB3  | 1:B:1098:VAL:HG12 | 1.84         | 0.58        |  |
| 1:C:886:TYR:HB3  | 1:A:1098:VAL:HG12 | 1.85         | 0.58        |  |
| 1:A:326:ARG:NH1  | 1:A:327:CYS:O     | 2.36         | 0.58        |  |
| 1:B:988:ARG:NH1  | 1:B:992:ASN:OD1   | 2.37         | 0.58        |  |
| 1:C:988:ARG:NH1  | 1:C:992:ASN:OD1   | 2.37         | 0.57        |  |
| 1:A:132:ARG:NH1  | 1:A:166:ASP:OD2   | 2.38         | 0.56        |  |
| 1:A:872:ALA:HB2  | 1:A:885:LEU:HD22  | 1.86         | 0.56        |  |
| 1:B:145:THR:OG1  | 1:B:241:MET:SD    | 2.63         | 0.56        |  |
| 1:C:132:ARG:NH1  | 1:C:166:ASP:OD2   | 2.39         | 0.56        |  |
| 1:B:711:ILE:O    | 1:B:969:ARG:NH1   | 2.38         | 0.56        |  |
| 1:C:871:MET:HE1  | 1:C:1019:MET:HE1  | 1.87         | 0.56        |  |
| 1:A:428:ASN:ND2  | 1:A:479:GLN:OE1   | 2.39         | 0.55        |  |
| 1:C:599:ALA:HA   | 1:C:602:LEU:HD12  | 1.89         | 0.55        |  |
| 1:A:988:ARG:NH1  | 1:A:992:ASN:OD1   | 2.40         | 0.55        |  |
| 1:C:301:LYS:HG3  | 1:C:573:PRO:HA    | 1.89         | 0.55        |  |
| 1:B:30:MET:SD    | 1:B:30:MET:N      | 2.81         | 0.55        |  |
| 1:B:998:MET:HE1  | 1:B:1022:PRO:HG3  | 1.89         | 0.55        |  |
| 1:C:711:ILE:O    | 1:C:969:ARG:NH1   | 2.37         | 0.54        |  |
| 1:A:76:SER:N     | 1:A:242:PHE:O     | 2.40         | 0.54        |  |
| 1:A:711:ILE:O    | 1:A:969:ARG:NH1   | 2.37         | 0.54        |  |
| 1:C:326:ARG:NH1  | 1:C:327:CYS:O     | 2.40         | 0.53        |  |
| 1:B:301:LYS:HG3  | 1:B:573:PRO:HA    | 1.90         | 0.53        |  |
| 1:C:955:LYS:HA   | 1:C:958:ALA:HB3   | 1.90         | 0.53        |  |
| 1:C:38:ARG:NH1   | 1:C:188:GLU:OE2   | 2.41         | 0.53        |  |
| 1:C:1042:ARG:NH1 | 1:C:1043:ASN:O    | 2.41         | 0.53        |  |
| 1:A:443:ARG:NH1  | 1:A:445:THR:O     | 2.41         | 0.53        |  |
| 1:C:704:SER:OG   | 1:C:828:THR:OG1   | 2.27         | 0.53        |  |
| 1:A:532:PHE:HB3  | 1:A:536:GLN:HB3   | 1.91         | 0.52        |  |
| 1:B:599:ALA:HA   | 1:B:602:LEU:HD12  | 1.91         | 0.52        |  |
| 1:B:704:SER:OG   | 1:B:828:THR:OG1   | 2.27         | 0.52        |  |
| 1:B:126:SER:OG   | 1:B:127:THR:N     | 2.43         | 0.52        |  |
| 1:C:571:ILE:HD13 | 1:C:639:ILE:HD12  | 1.91         | 0.52        |  |
| 1:A:600:ASP:OD1  | 1:A:600:ASP:N     | 2.42         | 0.52        |  |
| 1:A:38:ARG:NH1   | 1:A:188:GLU:OE2   | 2.43         | 0.52        |  |



|                  |                  | Interatomic             | Clash<br>overlap (Å) |  |
|------------------|------------------|-------------------------|----------------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ |                      |  |
| 1:A:396:SER:HB3  | 1:A:477:ALA:HB1  | 1.92                    | 0.51                 |  |
| 1:A:704:SER:OG   | 1:A:828:THR:OG1  | 2.28                    | 0.51                 |  |
| 1:A:99:GLU:OE2   | 1:A:187:ARG:NH1  | 2.41                    | 0.51                 |  |
| 1:A:108:ILE:HG21 | 1:A:138:LEU:HD11 | 1.93                    | 0.51                 |  |
| 1:C:108:ILE:HG12 | 1:C:121:VAL:HG12 | 1.93                    | 0.51                 |  |
| 1:B:731:GLN:OE1  | 1:B:734:ARG:NH1  | 2.39                    | 0.51                 |  |
| 1:A:301:LYS:HG3  | 1:A:573:PRO:HA   | 1.92                    | 0.50                 |  |
| 1:C:532:PHE:HB3  | 1:C:536:GLN:HB3  | 1.93                    | 0.50                 |  |
| 1:A:760:THR:HG23 | 1:A:775:LEU:HD23 | 1.94                    | 0.50                 |  |
| 1:B:369:LYS:NZ   | 1:B:371:TYR:OH   | 2.39                    | 0.50                 |  |
| 1:B:122:ILE:HG23 | 1:B:131:ILE:HG12 | 1.94                    | 0.50                 |  |
| 1:C:369:LYS:NZ   | 1:C:371:TYR:OH   | 2.39                    | 0.50                 |  |
| 1:C:396:SER:HB3  | 1:C:477:ALA:HB1  | 1.94                    | 0.50                 |  |
| 1:C:731:GLN:OE1  | 1:C:734:ARG:NH1  | 2.40                    | 0.50                 |  |
| 1:A:71:SER:HA    | 1:A:82:PHE:HB3   | 1.94                    | 0.49                 |  |
| 1:A:114:ASP:HB2  | 1:A:116:THR:HG22 | 1.93                    | 0.49                 |  |
| 1:B:777:ASP:OD1  | 1:B:777:ASP:N    | 2.45                    | 0.49                 |  |
| 1:C:760:THR:HG23 | 1:C:775:LEU:HD23 | 1.95                    | 0.49                 |  |
| 1:A:816:ARG:NH2  | 1:B:547:ASP:OD2  | 2.44                    | 0.49                 |  |
| 1:A:571:ILE:HD13 | 1:A:639:ILE:HD12 | 1.95                    | 0.49                 |  |
| 1:B:806:TYR:HD1  | 1:B:823:LYS:HD3  | 1.77                    | 0.49                 |  |
| 1:B:213:LEU:HD12 | 1:B:214:PRO:HD2  | 1.95                    | 0.49                 |  |
| 1:C:508:LYS:HD3  | 1:C:527:PRO:HD3  | 1.95                    | 0.49                 |  |
| 1:B:571:ILE:HD13 | 1:B:639:ILE:HD12 | 1.95                    | 0.48                 |  |
| 1:C:806:TYR:HD1  | 1:C:823:LYS:HD3  | 1.78                    | 0.48                 |  |
| 1:C:428:ASN:ND2  | 1:C:479:GLN:OE1  | 2.40                    | 0.48                 |  |
| 1:C:99:GLU:OE2   | 1:C:187:ARG:NH1  | 2.46                    | 0.48                 |  |
| 1:A:111:SER:HA   | 1:A:233:THR:HG22 | 1.95                    | 0.48                 |  |
| 1:A:731:GLN:OE1  | 1:A:734:ARG:NH1  | 2.39                    | 0.48                 |  |
| 1:C:674:ILE:HD11 | 1:B:864:GLN:HB3  | 1.94                    | 0.47                 |  |
| 1:C:774:ILE:HG13 | 1:C:775:LEU:HD12 | 1.97                    | 0.47                 |  |
| 1:A:599:ALA:HA   | 1:A:602:LEU:HD12 | 1.96                    | 0.47                 |  |
| 1:B:202:GLN:HE22 | 1:B:223:ILE:HG21 | 1.78                    | 0.47                 |  |
| 1:B:732:LEU:HD22 | 1:B:977:VAL:HG21 | 1.96                    | 0.47                 |  |
| 1:C:38:ARG:HH21  | 1:C:214:PRO:HB2  | 1.79                    | 0.47                 |  |
| 1:B:290:LEU:HD21 | 1:B:299:VAL:HG11 | 1.94                    | 0.47                 |  |
| 1:A:91:ASP:OD1   | 1:A:91:ASP:N     | 2.46                    | 0.47                 |  |
| 1:B:690:SER:OG   | 1:B:1035:THR:OG1 | 2.33                    | 0.47                 |  |
| 1:B:94:TYR:OH    | 1:B:188:GLU:OE1  | 2.25                    | 0.47                 |  |
| 1:A:732:LEU:HD22 | 1:A:977:VAL:HG21 | 1.97                    | 0.47                 |  |
| 1:B:108:ILE:HG12 | 1:B:121:VAL:HG12 | 1.97                    | 0.47                 |  |



| Atom-1            | Atom_2            | Interatomic  | Clash       |  |
|-------------------|-------------------|--------------|-------------|--|
|                   | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:C:202:GLN:O     | 1:C:221:ARG:NH1   | 2.48         | 0.46        |  |
| 1:A:691:VAL:HG22  | 1:A:1034:VAL:HG22 | 1.97         | 0.46        |  |
| 1:C:289:GLU:HG3   | 1:C:309:PHE:HB2   | 1.96         | 0.46        |  |
| 1:A:328:PRO:HB2   | 1:A:331:LYS:HB2   | 1.97         | 0.46        |  |
| 1:C:326:ARG:HH22  | 1:C:329:PHE:HD1   | 1.63         | 0.46        |  |
| 1:B:532:PHE:HB3   | 1:B:536:GLN:HB3   | 1.97         | 0.46        |  |
| 1:B:709:MET:HA    | 1:B:713:GLY:HA2   | 1.97         | 0.46        |  |
| 1:C:777:ASP:OD1   | 1:C:777:ASP:N     | 2.48         | 0.46        |  |
| 1:B:43:ASN:HD21   | 1:B:55:THR:HG21   | 1.81         | 0.46        |  |
| 1:C:956:VAL:CG2   | 1:B:418:ASP:HB3   | 2.46         | 0.46        |  |
| 1:B:187:ARG:HG2   | 1:B:204:TYR:HD1   | 1.79         | 0.46        |  |
| 1:C:709:MET:HA    | 1:C:713:GLY:HA2   | 1.98         | 0.46        |  |
| 1:B:289:GLU:HG3   | 1:B:309:PHE:HB2   | 1.98         | 0.46        |  |
| 1:C:406:THR:HG22  | 1:B:375:PRO:HB2   | 1.97         | 0.46        |  |
| 1:A:38:ARG:HH21   | 1:A:214:PRO:HB2   | 1.81         | 0.46        |  |
| 1:A:417:PRO:HG2   | 1:A:420:PHE:HB2   | 1.98         | 0.45        |  |
| 1:B:615:VAL:HG23  | 1:B:624:ILE:HG12  | 1.98         | 0.45        |  |
| 1:C:111:SER:HA    | 1:C:233:THR:HG22  | 1.98         | 0.45        |  |
| 1:A:43:ASN:HD21   | 1:A:55:THR:HG21   | 1.82         | 0.45        |  |
| 1:A:1073:ILE:HD13 | 1:A:1088:ASN:HB3  | 1.98         | 0.45        |  |
| 1:B:1012:CYS:HB3  | 1:B:1033:HIS:CE1  | 2.51         | 0.45        |  |
| 1:A:384:THR:OG1   | 1:A:489:GLU:O     | 2.30         | 0.45        |  |
| 1:C:816:ARG:NH2   | 1:A:547:ASP:OD2   | 2.50         | 0.45        |  |
| 1:B:37:ARG:NH2    | 1:B:278:ASP:OD1   | 2.49         | 0.45        |  |
| 1:C:800:ALA:HB3   | 1:C:819:ILE:HG21  | 1.98         | 0.45        |  |
| 1:C:615:VAL:HG23  | 1:C:624:ILE:HG12  | 1.99         | 0.45        |  |
| 1:A:1012:CYS:HB3  | 1:A:1033:HIS:CE1  | 2.52         | 0.45        |  |
| 1:C:954:ASP:N     | 1:C:954:ASP:OD1   | 2.48         | 0.45        |  |
| 1:C:108:ILE:HG21  | 1:C:138:LEU:HD11  | 1.98         | 0.44        |  |
| 1:A:508:LYS:HD3   | 1:A:527:PRO:HD3   | 1.99         | 0.44        |  |
| 1:A:709:MET:HA    | 1:A:713:GLY:HA2   | 1.98         | 0.44        |  |
| 1:C:300:ASN:OD1   | 1:C:301:LYS:N     | 2.50         | 0.44        |  |
| 1:A:429:THR:HG21  | 1:A:482:ARG:HD2   | 1.98         | 0.44        |  |
| 1:C:83:ASP:N      | 1:C:83:ASP:OD1    | 2.50         | 0.44        |  |
| 1:B:78:ARG:NH2    | 1:B:240:ALA:O     | 2.50         | 0.44        |  |
| 1:B:201:TYR:HB3   | 1:B:220:LEU:HB3   | 1.99         | 0.44        |  |
| 1:B:954:ASP:OD1   | 1:B:954:ASP:N     | 2.46         | 0.44        |  |
| 1:A:386:VAL:HG22  | 1:A:488:PHE:HB3   | 1.98         | 0.44        |  |
| 1:A:202:GLN:O     | 1:A:221:ARG:NH1   | 2.50         | 0.44        |  |
| 1:C:647:TYR:O     | 1:C:659:LYS:NZ    | 2.50         | 0.44        |  |
| 1:A:771:PHE:HB3   | 1:A:775:LEU:HD13  | 1.98         | 0.44        |  |



| Atom 1           | Atom 2           | Interatomic             | Clash<br>overlap (Å) |  |
|------------------|------------------|-------------------------|----------------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ |                      |  |
| 1:A:954:ASP:N    | 1:A:954:ASP:OD1  | 2.49                    | 0.44                 |  |
| 1:A:367:THR:O    | 1:A:425:ILE:HD12 | 2.18                    | 0.44                 |  |
| 1:B:300:ASN:OD1  | 1:B:301:LYS:N    | 2.50                    | 0.44                 |  |
| 1:B:71:SER:HA    | 1:B:82:PHE:HB3   | 2.00                    | 0.44                 |  |
| 1:A:615:VAL:HG23 | 1:A:624:ILE:HG12 | 1.99                    | 0.43                 |  |
| 1:B:125:ASN:O    | 1:B:128:HIS:N    | 2.50                    | 0.43                 |  |
| 1:C:938:ASN:OD1  | 1:B:724:GLN:NE2  | 2.52                    | 0.43                 |  |
| 1:B:365:PHE:CG   | 1:B:425:ILE:HD11 | 2.54                    | 0.43                 |  |
| 1:C:188:GLU:HB2  | 1:C:203:THR:HG22 | 2.00                    | 0.43                 |  |
| 1:C:771:PHE:HB3  | 1:C:775:LEU:HD13 | 2.01                    | 0.43                 |  |
| 1:A:690:SER:OG   | 1:A:1035:THR:OG1 | 2.34                    | 0.43                 |  |
| 1:A:724:GLN:NE2  | 1:B:938:ASN:OD1  | 2.51                    | 0.43                 |  |
| 1:A:1051:CYS:HB2 | 1:A:1095:CYS:HB2 | 1.90                    | 0.43                 |  |
| 1:C:716:LEU:HD12 | 1:A:263:TYR:HE2  | 1.82                    | 0.43                 |  |
| 1:B:124:ASN:O    | 1:B:144:TYR:HE2  | 2.01                    | 0.43                 |  |
| 1:A:121:VAL:HG12 | 1:A:123:VAL:HG22 | 2.00                    | 0.43                 |  |
| 1:A:365:PHE:HB3  | 1:A:425:ILE:HD11 | 1.99                    | 0.43                 |  |
| 1:B:386:VAL:HG22 | 1:B:488:PHE:HB3  | 2.01                    | 0.43                 |  |
| 1:A:188:GLU:HB2  | 1:A:203:THR:HG22 | 2.00                    | 0.43                 |  |
| 1:B:125:ASN:O    | 1:B:126:SER:HB3  | 2.18                    | 0.43                 |  |
| 1:C:547:ASP:OD2  | 1:B:816:ARG:NH2  | 2.52                    | 0.42                 |  |
| 1:C:578:SER:OG   | 1:C:579:SER:N    | 2.52                    | 0.42                 |  |
| 1:C:945:VAL:HG22 | 1:C:947:ASN:H    | 1.83                    | 0.42                 |  |
| 1:A:777:ASP:OD1  | 1:A:777:ASP:N    | 2.49                    | 0.42                 |  |
| 1:B:327:CYS:HB3  | 1:B:352:CYS:HB3  | 1.75                    | 0.42                 |  |
| 1:C:375:PRO:HB2  | 1:A:406:THR:HG22 | 2.00                    | 0.42                 |  |
| 1:B:78:ARG:HH22  | 1:B:241:MET:HA   | 1.84                    | 0.42                 |  |
| 1:C:121:VAL:O    | 1:C:131:ILE:HA   | 2.19                    | 0.42                 |  |
| 1:B:840:ALA:HA   | 1:B:843:THR:HG22 | 2.02                    | 0.42                 |  |
| 1:C:114:ASP:HB2  | 1:C:116:THR:HG22 | 2.01                    | 0.42                 |  |
| 1:A:812:ASP:OD1  | 1:A:812:ASP:N    | 2.47                    | 0.42                 |  |
| 1:B:774:ILE:HG13 | 1:B:775:LEU:HD12 | 2.02                    | 0.42                 |  |
| 1:C:520:LYS:HB3  | 1:C:520:LYS:HE2  | 1.84                    | 0.42                 |  |
| 1:C:418:ASP:OD2  | 1:A:955:LYS:HE3  | 2.18                    | 0.42                 |  |
| 1:A:290:LEU:HD21 | 1:A:299:VAL:HG11 | 2.01                    | 0.42                 |  |
| 1:A:757:MET:HE3  | 1:A:757:MET:HB3  | 1.95                    | 0.42                 |  |
| 1:A:928:LEU:HD23 | 1:A:928:LEU:HA   | 1.89                    | 0.42                 |  |
| 1:C:732:LEU:HD22 | 1:C:977:VAL:HG21 | 2.02                    | 0.42                 |  |
| 1:A:840:ALA:HA   | 1:A:843:THR:HG22 | 2.02                    | 0.42                 |  |
| 1:B:84:ASN:ND2   | 1:B:237:VAL:O    | 2.53                    | 0.42                 |  |
| 1:C:219:VAL:HG11 | 1:C:276:ILE:HB   | 2.02                    | 0.41                 |  |



|                   |                  | Interatomic  | Clash       |
|-------------------|------------------|--------------|-------------|
| Atom-1            | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:690:SER:OG    | 1:C:1035:THR:OG1 | 2.37         | 0.41        |
| 1:C:783:LYS:HA    | 1:C:783:LYS:HD2  | 1.86         | 0.41        |
| 1:B:359:LEU:HD13  | 1:B:365:PHE:HZ   | 1.85         | 0.41        |
| 1:B:508:LYS:HD3   | 1:B:527:PRO:HD3  | 2.02         | 0.41        |
| 1:C:37:ARG:NH2    | 1:C:278:ASP:OD1  | 2.51         | 0.41        |
| 1:B:91:ASP:OD1    | 1:B:91:ASP:N     | 2.48         | 0.41        |
| 1:B:124:ASN:C     | 1:B:144:TYR:HE2  | 2.28         | 0.41        |
| 1:A:368:PHE:CD1   | 1:A:425:ILE:HD13 | 2.55         | 0.41        |
| 1:A:1055:LYS:HB2  | 1:A:1055:LYS:HE3 | 1.86         | 0.41        |
| 1:A:37:ARG:NH2    | 1:A:278:ASP:OD1  | 2.52         | 0.41        |
| 1:C:1051:CYS:HB2  | 1:C:1095:CYS:HB2 | 1.85         | 0.41        |
| 1:A:129:ILE:HD11  | 1:A:169:GLU:HB3  | 2.03         | 0.41        |
| 1:A:392:LEU:HD11  | 1:A:480:ALA:HB1  | 2.02         | 0.41        |
| 1:B:602:LEU:O     | 1:B:607:ARG:NH2  | 2.48         | 0.41        |
| 1:B:1073:ILE:HD13 | 1:B:1088:ASN:HB3 | 2.01         | 0.41        |
| 1:A:950:LEU:HD23  | 1:A:950:LEU:HA   | 1.92         | 0.41        |
| 1:A:1050:ILE:HG13 | 1:A:1057:TYR:HB2 | 2.02         | 0.41        |
| 1:B:771:PHE:HB3   | 1:B:775:LEU:HD13 | 2.01         | 0.41        |
| 1:C:1055:LYS:HB2  | 1:C:1055:LYS:HE3 | 1.86         | 0.41        |
| 1:B:1050:ILE:HG13 | 1:B:1057:TYR:HB2 | 2.02         | 0.41        |
| 1:C:386:VAL:HG22  | 1:C:488:PHE:HB3  | 2.02         | 0.41        |
| 1:A:753:GLN:OE1   | 1:A:999:SER:OG   | 2.35         | 0.41        |
| 1:C:602:LEU:O     | 1:C:607:ARG:NH2  | 2.47         | 0.40        |
| 1:A:736:LEU:HD23  | 1:A:736:LEU:HA   | 1.92         | 0.40        |
| 1:B:783:LYS:HA    | 1:B:783:LYS:HD2  | 1.90         | 0.40        |
| 1:C:1073:ILE:HD13 | 1:C:1088:ASN:HB3 | 2.02         | 0.40        |
| 1:A:602:LEU:O     | 1:A:607:ARG:NH2  | 2.47         | 0.40        |
| 1:C:295:LYS:HB3   | 1:C:295:LYS:HE2  | 1.89         | 0.40        |
| 1:A:184:LYS:HD3   | 1:A:184:LYS:HA   | 1.97         | 0.40        |
| 1:B:370:CYS:HA    | 1:B:423:CYS:HA   | 2.02         | 0.40        |
| 1:C:370:CYS:HA    | 1:C:423:CYS:HA   | 2.02         | 0.40        |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 1029/1256~(82%) | 987~(96%)  | 42 (4%)  | 0        | 100   | 100    |
| 1   | В     | 1029/1256~(82%) | 993~(96%)  | 35 (3%)  | 1 (0%)   | 48    | 76     |
| 1   | С     | 1029/1256~(82%) | 990~(96%)  | 39 (4%)  | 0        | 100   | 100    |
| All | All   | 3087/3768~(82%) | 2970 (96%) | 116 (4%) | 1 (0%)   | 100   | 100    |

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 80  | THR  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric   | otameric Outliers |         |  |
|-----|-------|-----------------|-------------|-------------------|---------|--|
| 1   | А     | 905/1084~(84%)  | 905 (100%)  | 0                 | 100 100 |  |
| 1   | В     | 905/1084 (84%)  | 905 (100%)  | 0                 | 100 100 |  |
| 1   | С     | 905/1084 (84%)  | 905 (100%)  | 0                 | 100 100 |  |
| All | All   | 2715/3252 (84%) | 2715 (100%) | 0                 | 100 100 |  |

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (27) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 515 | ASN  |
| 1   | С     | 628 | HIS  |
| 1   | С     | 748 | GLN  |
| 1   | С     | 773 | GLN  |
| 1   | С     | 870 | GLN  |
| 1   | С     | 902 | GLN  |
| 1   | С     | 961 | GLN  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | С     | 1040 | GLN  |
| 1   | А     | 208  | ASN  |
| 1   | А     | 471  | ASN  |
| 1   | А     | 473  | ASN  |
| 1   | А     | 724  | GLN  |
| 1   | А     | 934  | GLN  |
| 1   | А     | 961  | GLN  |
| 1   | А     | 974  | GLN  |
| 1   | А     | 1005 | GLN  |
| 1   | А     | 1077 | ASN  |
| 1   | В     | 128  | HIS  |
| 1   | В     | 162  | ASN  |
| 1   | В     | 471  | ASN  |
| 1   | В     | 473  | ASN  |
| 1   | В     | 882  | GLN  |
| 1   | В     | 918  | GLN  |
| 1   | В     | 922  | ASN  |
| 1   | В     | 961  | GLN  |
| 1   | В     | 974  | GLN  |
| 1   | В     | 1017 | HIS  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

24 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



| Mal | Tuno | Chain | Dec | Tiple | Bo       | ond leng | ths      | Bond angles |      |          |
|-----|------|-------|-----|-------|----------|----------|----------|-------------|------|----------|
|     | Type | Unain | nes |       | Counts   | RMSZ     | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 2   | NAG  | D     | 1   | 2     | 14,14,15 | 0.20     | 0        | 17,19,21    | 0.42 | 0        |
| 2   | NAG  | D     | 2   | 2     | 14,14,15 | 0.37     | 0        | 17,19,21    | 0.49 | 0        |
| 2   | NAG  | Е     | 1   | 2,1   | 14,14,15 | 0.21     | 0        | 17,19,21    | 0.43 | 0        |
| 2   | NAG  | Е     | 2   | 2     | 14,14,15 | 0.26     | 0        | 17,19,21    | 0.45 | 0        |
| 2   | NAG  | F     | 1   | 2,1   | 14,14,15 | 0.35     | 0        | 17,19,21    | 0.66 | 1 (5%)   |
| 2   | NAG  | F     | 2   | 2     | 14,14,15 | 0.27     | 0        | 17,19,21    | 0.46 | 0        |
| 2   | NAG  | G     | 1   | 2     | 14,14,15 | 0.22     | 0        | 17,19,21    | 0.43 | 0        |
| 2   | NAG  | G     | 2   | 2     | 14,14,15 | 0.25     | 0        | 17,19,21    | 0.43 | 0        |
| 2   | NAG  | Н     | 1   | 2     | 14,14,15 | 0.22     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | Н     | 2   | 2     | 14,14,15 | 0.37     | 0        | 17,19,21    | 0.49 | 0        |
| 2   | NAG  | Ι     | 1   | 2,1   | 14,14,15 | 0.22     | 0        | 17,19,21    | 0.43 | 0        |
| 2   | NAG  | Ι     | 2   | 2     | 14,14,15 | 0.26     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | J     | 1   | 2,1   | 14,14,15 | 0.37     | 0        | 17,19,21    | 0.68 | 1 (5%)   |
| 2   | NAG  | J     | 2   | 2     | 14,14,15 | 0.29     | 0        | 17,19,21    | 0.48 | 0        |
| 2   | NAG  | K     | 1   | 2     | 14,14,15 | 0.22     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | K     | 2   | 2     | 14,14,15 | 0.26     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | L     | 1   | 2     | 14,14,15 | 0.23     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | L     | 2   | 2     | 14,14,15 | 0.39     | 0        | 17,19,21    | 0.48 | 0        |
| 2   | NAG  | М     | 1   | 2,1   | 14,14,15 | 0.22     | 0        | 17,19,21    | 0.44 | 0        |
| 2   | NAG  | М     | 2   | 2     | 14,14,15 | 0.26     | 0        | 17,19,21    | 0.45 | 0        |
| 2   | NAG  | N     | 1   | 2,1   | 14,14,15 | 0.33     | 0        | 17,19,21    | 0.67 | 1 (5%)   |
| 2   | NAG  | N     | 2   | 2     | 14,14,15 | 0.26     | 0        | 17,19,21    | 0.47 | 0        |
| 2   | NAG  | 0     | 1   | 2     | 14,14,15 | 0.24     | 0        | 17,19,21    | 0.43 | 0        |
| 2   | NAG  | 0     | 2   | 2     | 14,14,15 | 0.25     | 0        | 17,19,21    | 0.44 | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | D     | 1   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | D     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Е     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Е     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | F     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | F     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | G     | 1   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | G     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Н     | 1   | 2    | -       | 1/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | Н     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Ι     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Ι     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | J     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | J     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | К     | 1   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Κ     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | L     | 1   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | L     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | М     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | М     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | N     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | N     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 1   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z    | $Observed(^{o})$ | $\operatorname{Ideal}(^{o})$ |
|-----|-------|-----|------|----------|------|------------------|------------------------------|
| 2   | J     | 1   | NAG  | C1-O5-C5 | 2.28 | 115.28           | 112.19                       |
| 2   | Ν     | 1   | NAG  | C1-O5-C5 | 2.27 | 115.26           | 112.19                       |
| 2   | F     | 1   | NAG  | C1-O5-C5 | 2.20 | 115.17           | 112.19                       |

There are no chirality outliers.

All (35) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | D     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | G     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 0     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Κ     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | М     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | М     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Е     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | 0     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | G     | 2   | NAG  | C4-C5-C6-O6 |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | K     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | М     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ι     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | D     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | D     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | Н     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | Н     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | L     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | L     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | F     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Е     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | М     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Е     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | F     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | J     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | N     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Е     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Н     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | J     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Н     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | N     | 2   | NAG  | C4-C5-C6-O6 |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

















































#### 5.6 Ligand geometry (i)

39 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type Chain | Turne | Chain | Dog    | Tiple | Bo       | Bond lengths |      |          | Bond angles |        |  |
|----------------|-------|-------|--------|-------|----------|--------------|------|----------|-------------|--------|--|
|                | nes   | LIIIK | Counts | RMSZ  | # Z  > 2 | Counts       | RMSZ | # Z  > 2 |             |        |  |
| 3              | NAG   | С     | 1303   | 1     | 14,14,15 | 0.39         | 0    | 17,19,21 | 0.87        | 1 (5%) |  |
| 3              | NAG   | А     | 1302   | -     | 14,14,15 | 0.21         | 0    | 17,19,21 | 0.48        | 0      |  |
| 3              | NAG   | А     | 1305   | -     | 14,14,15 | 0.23         | 0    | 17,19,21 | 0.44        | 0      |  |



| Mal   | <b>T</b> a | Chain | Dag  | T : 1- | Bo             | ond leng | ths      | Bond angles    |      |          |
|-------|------------|-------|------|--------|----------------|----------|----------|----------------|------|----------|
| IVIOI | Type       | Chain | Res  | Link   | Counts         | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |
| 3     | NAG        | А     | 1308 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.44 | 0        |
| 3     | NAG        | В     | 1309 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | С     | 1301 | 1      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.47 | 0        |
| 3     | NAG        | А     | 1313 | 1      | 14,14,15       | 0.42     | 0        | 17,19,21       | 0.75 | 1 (5%)   |
| 3     | NAG        | С     | 1304 | 1      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.43 | 0        |
| 3     | NAG        | В     | 1301 | 1      | 14,14,15       | 0.26     | 0        | 17,19,21       | 0.48 | 0        |
| 3     | NAG        | В     | 1304 | 1      | 14,14,15       | 0.24     | 0        | 17,19,21       | 0.44 | 0        |
| 3     | NAG        | В     | 1303 | 1      | 14,14,15       | 0.38     | 0        | 17,19,21       | 0.82 | 1 (5%)   |
| 3     | NAG        | А     | 1303 | 1      | 14,14,15       | 0.37     | 0        | 17,19,21       | 0.87 | 1 (5%)   |
| 3     | NAG        | В     | 1306 | 1      | 14,14,15       | 0.24     | 0        | 17,19,21       | 0.46 | 0        |
| 3     | NAG        | А     | 1306 | 1      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | А     | 1309 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | В     | 1305 | -      | 14,14,15       | 0.23     | 0        | 17,19,21       | 0.44 | 0        |
| 3     | NAG        | С     | 1312 | 1      | 14,14,15       | 0.27     | 0        | 17,19,21       | 0.39 | 0        |
| 3     | NAG        | С     | 1313 | 1      | 14,14,15       | 0.41     | 0        | 17,19,21       | 0.76 | 1 (5%)   |
| 3     | NAG        | В     | 1308 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | А     | 1312 | 1      | 14,14,15       | 0.28     | 0        | 17,19,21       | 0.39 | 0        |
| 3     | NAG        | С     | 1302 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.49 | 0        |
| 3     | NAG        | С     | 1310 | 1      | 14,14,15       | 0.23     | 0        | 17,19,21       | 0.46 | 0        |
| 3     | NAG        | С     | 1314 | -      | 14,14,15       | 0.27     | 0        | $17,\!19,\!21$ | 0.43 | 0        |
| 3     | NAG        | А     | 1304 | 1      | $14,\!14,\!15$ | 0.24     | 0        | $17,\!19,\!21$ | 0.43 | 0        |
| 3     | NAG        | С     | 1311 | -      | 14,14,15       | 0.27     | 0        | 17,19,21       | 0.43 | 0        |
| 3     | NAG        | C     | 1306 | 1      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.48 | 0        |
| 3     | NAG        | A     | 1310 | 1      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | В     | 1312 | 1      | 14,14,15       | 0.33     | 0        | $17,\!19,\!21$ | 0.77 | 1 (5%)   |
| 3     | NAG        | С     | 1305 | -      | 14,14,15       | 0.22     | 0        | $17,\!19,\!21$ | 0.44 | 0        |
| 3     | NAG        | С     | 1307 | 1      | 14,14,15       | 0.28     | 0        | $17,\!19,\!21$ | 0.56 | 0        |
| 3     | NAG        | C     | 1308 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.45 | 0        |
| 3     | NAG        | В     | 1307 | 1      | $14,\!14,\!15$ | 0.28     | 0        | $17,\!19,\!21$ | 0.56 | 0        |
| 3     | NAG        | В     | 1302 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.47 | 0        |
| 3     | NAG        | A     | 1301 | 1      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.47 | 0        |
| 3     | NAG        | В     | 1311 | 1      | 14,14,15       | 0.28     | 0        | 17,19,21       | 0.39 | 0        |
| 3     | NAG        | A     | 1311 | -      | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.42 | 0        |
| 3     | NAG        | С     | 1309 | -      | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.44 | 0        |
| 3     | NAG        | A     | 1307 | 1      | 14,14,15       | 0.30     | 0        | 17,19,21       | 0.55 | 0        |
| 3     | NAG        | B     | 1310 | 1      | 14,14,15       | 0.27     | 0        | $17,\!19,\!21$ | 0.44 | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res  | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|------|------|---------|-----------|---------|
| 3   | NAG  | С     | 1303 | 1    | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1302 | -    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1305 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1308 | _    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1309 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1301 | 1    | _       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1313 | 1    | _       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1304 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1301 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1304 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1303 | 1    | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1303 | 1    | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1306 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1306 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1309 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1305 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1312 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1313 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1308 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1312 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1302 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1310 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1314 | -    | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1304 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1311 | -    | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1306 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1310 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1312 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1305 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1307 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 1308 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1307 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1302 | -    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1301 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1311 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1311 | -    | -       | 1/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res  | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|------|------|---------|-----------|---------|
| 3   | NAG  | С     | 1309 | -    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1307 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 1310 | 1    | -       | 2/6/23/26 | 0/1/1/1 |

There are no bond length outliers.

All (6) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|------|------------------|---------------|
| 3   | В     | 1312 | NAG  | C2-N2-C7 | 2.52 | 126.49           | 122.90        |
| 3   | С     | 1313 | NAG  | C2-N2-C7 | 2.48 | 126.43           | 122.90        |
| 3   | А     | 1313 | NAG  | C2-N2-C7 | 2.46 | 126.41           | 122.90        |
| 3   | В     | 1303 | NAG  | C2-N2-C7 | 2.44 | 126.38           | 122.90        |
| 3   | С     | 1303 | NAG  | C2-N2-C7 | 2.41 | 126.33           | 122.90        |
| 3   | А     | 1303 | NAG  | C2-N2-C7 | 2.40 | 126.33           | 122.90        |

There are no chirality outliers.

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |
|-----|-------|----------------|------|-------------|
| 3   | В     | 1308           | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1306           | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1310           | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1303           | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1306           | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1310           | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1303           | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1302           | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1306           | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1308           | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1309           | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1309           | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1305           | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1305           | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1309           | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1310           | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1310           | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1303           | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1310           | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1305           | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1308           | NAG  | O5-C5-C6-O6 |

All (75) torsion outliers are listed below:



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 3   | А     | 1303 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1306 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1307 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1302 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1306 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1303 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1309 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1307 | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1308 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1309 | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1309 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1306 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1310 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1307 | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1305 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1303 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1305 | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1302 | NAG  | C8-C7-N2-C2 |
| 3   | С     | 1302 | NAG  | O7-C7-N2-C2 |
| 3   | А     | 1302 | NAG  | C8-C7-N2-C2 |
| 3   | А     | 1302 | NAG  | O7-C7-N2-C2 |
| 3   | В     | 1302 | NAG  | C8-C7-N2-C2 |
| 3   | В     | 1302 | NAG  | O7-C7-N2-C2 |
| 3   | А     | 1305 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1308 | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1307 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1308 | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1312 | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1311 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1307 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1313 | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1307 | NAG  | O5-C5-C6-O6 |
| 3   | В     | 1312 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1301 | NAG  | C4-C5-C6-O6 |
| 3   | A     | 1313 | NAG  | O5-C5-C6-O6 |
| 3   | С     | 1301 | NAG  | O5-C5-C6-O6 |
| 3   | A     | 1311 | NAG  | O5-C5-C6-O6 |
| 3   | B     | 1301 | NAG  | C4-C5-C6-O6 |
| 3   | C     | 1314 | NAG  | O5-C5-C6-O6 |
| 3   | A     | 1302 | NAG  | C4-C5-C6-O6 |
| 3   | C     | 1311 | NAG  | O5-C5-C6-O6 |
| 3   | B     | 1301 | NAG  | O5-C5-C6-O6 |

Continued from previous page...



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 3   | С     | 1312 | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1301 | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1301 | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1302 | NAG  | O5-C5-C6-O6 |
| 3   | А     | 1312 | NAG  | C4-C5-C6-O6 |
| 3   | В     | 1311 | NAG  | C4-C5-C6-O6 |
| 3   | С     | 1303 | NAG  | C3-C2-N2-C7 |
| 3   | С     | 1313 | NAG  | C3-C2-N2-C7 |
| 3   | А     | 1303 | NAG  | C3-C2-N2-C7 |
| 3   | А     | 1313 | NAG  | C3-C2-N2-C7 |
| 3   | В     | 1303 | NAG  | C3-C2-N2-C7 |
| 3   | В     | 1312 | NAG  | C3-C2-N2-C7 |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

















































































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

