

Apr 16, 2024 - 09:52 am BST

PDB ID	:	6YEF
EMDB ID	:	EMD-10791
Title	:	$70\mathrm{S}$ initiation complex with assigned rRNA modifications from Staphylococcus
		aureus
Authors	:	Fatkhullin, B.; Golubev, A.; Khusainov, I.; Yusupova, G.; Yusupov, M.
Deposited on	:	2020-03-24
Resolution	:	3.20 Å(reported)
Based on initial model	:	5LI0

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	(#Entries)	(#Entries)		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	a	1556	77%	21% •••
2	b	255	85%	• 14%
3	с	217	92%	8%
4	d	200	98%	
5	е	166	93%	• 5%
6	f	98	96%	
7	g	156	94%	6%
8	h	132	99%	
9	i	132	95%	

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
10	j	102	96%	•
11	k	129	87%	12%
12	1	137	98%	••
13	m	121	96%	••
14	n	89	67% 33%	
15	О	89	99%	
16	р	91	99%	.
17	q	87	97%	
18	r	80	80% 20	1%
19	s	92	85% •	11%
20	t	83	96%	•
21	V	29	45% 24% · 28%	
22	А	2923	75% 22%	••
23	В	115	81% 17	% •
24	D	277	96%	•••
25	Е	220	98%	·
26	F	207	96%	••
27	G	179	85% •	14%
28	Н	178	88% •	10%
29	М	145	100%	
30	Ν	122	99%	•
31	О	146	96%	•••
32	Р	144	93%	• 5%
33	Q	122	97%	••
34	R	119	99%	·

Mol	Chain	Length	Quality of chain	
35	\mathbf{S}	116	94%	6%
36	Т	118	97%	
37	U	102	98%	
38	V	117	96%	•
39	W	91	98%	
40	Х	105	81%	• 17%
41	Y	217	43% 57%	
42	Ζ	94	87%	13%
43	0	62	73%	27%
44	1	69	91%	• 6%
45	2	59	93%	•••
46	3	84	87%	•• 11%
47	4	58	84%	5% 10%
48	5	49	84%	6% 10%
49	6	45	98%	
50	7	66	94%	• •
51	8	37	100%	
52	х	77	62% 32%	5%

2 Entry composition (i)

There are 54 unique types of molecules in this entry. The entry contains 141837 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1545	Total 33097	C 14781	N 6034	O 10737	Р 1545	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	b	219	Total 1762	C 1123	N 307	O 325	${f S}7$	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	с	200	Total 1578	C 993	N 296	0 287	${S \over 2}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	d	197	Total 1600	C 1009	N 300	O 289	${ m S} { m 2}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	е	157	Total 1169	C 735	N 214	0 218	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	f	96	Total 798	C 503	N 139	0 153	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	g	146	Total 1176	C 733	N 225	0 214	${S \atop 4}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	h	131	Total 1032	C 652	N 183	O 193	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	i	127	Total 1008	C 623	N 201	0 183	S 1	0	0

• Molecule 10 is a protein called ribosomal protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	j	98	Total 783	C 494	N 143	0 145	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	k	113	Total 833	C 514	N 156	0 160	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
12	1	135	Total 1058	C 658	N 214	0 184	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	m	117	Total 927	C 569	N 184	0 173	S 1	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
14	n	60	Total 481	C 296	N 103	O 80	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	О	88	Total 738	C 454	N 153	O 130	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	р	90	Total 712	C 448	N 132	0 131	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	q	85	Total 698	C 441	N 125	0 131	S 1	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
18	r	64	Total 527	C 335	N 97	O 92	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	82	Total 661	C 426	N 118	0 115	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	t	80	Total 606	C 367	N 119	0 118	${S \over 2}$	0	0

• Molecule 21 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
21	v	21	Total 462	C 207	N 96	O 138	Р 21	0	0

• Molecule 22 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
22	А	2881	Total 61802	C 27593	N 11324	O 20004	Р 2881	0	0

• Molecule 23 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
23	В	115	Total 2445	C 1094	N 436	0 801	Р 114	0	0

• Molecule 24 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
24	D	274	Total 2094	C 1303	N 415	0 371	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
25	Е	216	Total 1635	C 1023	N 301	O 306	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
26	F	203	Total 1540	C 966	N 284	0 288	${S \over 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	G	154	Total 1191	C 751	N 206	0 228	S 6	0	0

• Molecule 28 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	Н	160	Total 1250	C 781	N 222	0 244	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	М	145	Total 1151	С 717	N 211	O 220	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Ν	122	Total 920	C 572	N 174	0 170	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
31	Ο	146	Total 1098	C 680	N 215	O 202	S 1	0	0

• Molecule 32 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	AltConf	Trace			
32	Р	137	Total 1097	С 704	N 207	0 182	S 4	0	0

• Molecule 33 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	AltConf	Trace			
33	Q	119	Total 940	$\begin{array}{c} \mathrm{C} \\ 575 \end{array}$	N 181	0 183	S 1	0	0

• Molecule 34 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
34	R	118	Total 911	C 568	N 173	O 170	0	0

• Molecule 35 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
35	S	109	Total 877	C 552	N 176	O 149	0	0

• Molecule 36 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	AltConf	Trace			
36	Т	116	Total 943	C 593	N 189	0 157	${f S}$ 4	0	0

• Molecule 37 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	AltConf	Trace			
37	U	100	Total 784	C 497	N 140	0 146	S 1	0	0

• Molecule 38 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	AltConf	Trace			
38	V	112	Total 862	C 537	N 164	0 158	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
39	W	89	Total 725	C 457	N 130	0 134	S 4	0	0

• Molecule 40 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	Х	87	Total 662	C 420	N 119	0 122	S 1	0	0

• Molecule 41 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	AltConf	Trace			
41	Y	94	Total 731	C 465	N 131	0 133	${S \over 2}$	0	0

• Molecule 42 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
42	Ζ	82	Total 626	C 386	N 122	0 118	0	0

• Molecule 43 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues	Atoms				AltConf	Trace
43	0	45	Total 358	C 222	N 78	O 58	0	0

• Molecule 44 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues	Atoms				AltConf	Trace
44	1	65	Total 536	C 330	N 101	O 105	0	0

• Molecule 45 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues	Atoms				AltConf	Trace
45	2	57	Total 441	C 274	N 83	0 84	0	0

• Molecule 46 is a protein called 50S ribosomal protein L31 type B.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	3	75	Total 593	C 371	N 106	0 113	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues	Atoms				AltConf	Trace	
47	4	52	Total	C 240	N 85	$\begin{array}{c} 0\\ 72 \end{array}$	${ m S}_{5}$	0	0
			411	249	85	72	\mathbf{b}		

• Molecule 48 is a protein called 50S ribosomal protein L33 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	5	44	Total 371	C 223	N 76	O 68	${S \atop 4}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	6	44	Total 373	C 228	N 90	0 54	S 1	0	0

• Molecule 50 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	7	64	Total 521	C 324	N 113	O 82	${ m S} { m 2}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	8	37	Total 296	C 186	N 60	O 46	$\frac{S}{4}$	0	0

• Molecule 52 is a RNA chain called P-site tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace	
52	х	77	Total 1659	С 741	N 299	0 541	Р 76	${ m S} { m 2}$	0	0

• Molecule 53 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
53	a	54	$\begin{array}{cc} \text{Total} & \text{Mg} \\ 54 & 54 \end{array}$	0
53	V	1	Total Mg 1 1	0
53	А	207	Total Mg 207 207	0
53	В	2	Total Mg 2 2	0
53	D	1	Total Mg 1 1	0
53	Ο	1	Total Mg 1 1	0
53	Х	1	Total Mg 1 1	0
53	x	1	Total Mg 1 1	0

• Molecule 54 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
54	a	2	Total K 2 2	0
54	А	18	Total K 18 18	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S rRNA

 \bullet Molecule 2: 30S ribosomal protein S2

Chain b:

MET VALA VALA VALA VALA VALA VALE SER REA ASP VAL ASP VAL ASP VALA VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA ASP VALA VALA VALA VALA VALA VALA VALA VAL	
• Molecule 3: 30S ribosomal protein S3	
Chain c: 92%	8%
MET 146 177 178 178 178 178 178 178 178 178 178	
• Molecule 4: 30S ribosomal protein S4	
Chain d: 98%	•
MET 42 K24 LEU E27 R200	
• Molecule 5: 30S ribosomal protein S5	
Chain e: 93%	• 5%
MET ALA ARG GLU GLU CLU GLU CLU GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	
• Molecule 6: 30S ribosomal protein S6	
Chain f: 96%	• •
M K66 S S S S S S S S S S S S S S S S S S	
• Molecule 7: 30S ribosomal protein S7	
Chain g: 94%	6%
MRT ARG ARG ARG ARG ARG CI Y CI Y CI Y CI Y CI Y CI Y CI Y	
• Molecule 8: 30S ribosomal protein S8	
Chain h: 99%	
• Molecule 9: 30S ribosomal protein S9	

• Molecule 10: ribosomal protein uS10

Chain j: 96% MET ALA LYS GLN • Molecule 11: 30S ribosomal protein S11 Chain k: 87% 12% MET ALA ARG LYS GLN VAL SER ARG LYS ARG LYS ARG LYS VAL LYS • Molecule 12: 30S ribosomal protein S12 Chain l: 98% • Molecule 13: 30S ribosomal protein S13 Chain m: 96% • Molecule 14: 30S ribosomal protein S14 Chain n: 67% 33% MET LIYS SER LIYS SER LIYS SER LIYS ALA ALA ALA CUU CUU CUU CUU CUU VAR CUU VAR CUU VAR ASN LIYS CUU SU ARC CUU SU ARA ALA ALA ALA SER LIYS SU LIYS SU LIYS SU LIXS SU LIXSU LIXS SU LIXSU LIXU • Molecule 15: 30S ribosomal protein S15 Chain o: 99% MET • Molecule 16: 30S ribosomal protein S16 Chain p: 99%

MET	A2	K91	

 \bullet Molecule 17: 30S ribosomal protein S17

Chain q:	97%	••	
MET S2 D50 I186 ILE			
• Molecule	18: 30S ribosomal protein S18		
Chain r:	80%	20%	
MET ALA GLY GLY PRO PRO ARG GLY GLY	ARG ARG LYS LYS LYS LYS CI6 GLN GLN		
• Molecule	19: 30S ribosomal protein S19		
Chain s:	85%	• 11%	
MET ALA ARG 84 15 K7 K7 K7 V51	V51 R55 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP		
• Molecule :	20: 30S ribosomal protein S20		
Chain t:	96%	•	
MET ALA N3 N82 LYS			
• Molecule :	21: mRNA		
Chain v:	45% 24% ·	28%	
G G A A12 A12 A14 A14 A14	A14 A15 A23 A24 A A A A A A A A		
• Molecule :	22: 23S rRNA		
Chain A:	75%	22%	
G A U12 A13 G23 G24 G24	624 034 433 443 443 443 443 443 443 443 44	A161 A161 A162 A164 A164 A166 U167	A168 G169 A173
A176 G177 A179 A179 A185 A185 A209	A200 (2312) (2313) (231	C U289 U290 G294 U298 U299	G300 U301 A302 C308

U309 C310	U A	U	: D	G316	U321	A324	G377	G328	A329	<mark>G338</mark>		A354	A365	A372	A373	U374	U377		C380 C387	A388	C398		0401	0404	U419		04.32	A435	U451	G457	A458	C463	C466		64 / T	C481 U482	C490
C502	U510	0513 0513		A523	G527	G539	ABBO		A553 C554	C555	U556	1.995.V	G567	C568	C572	CE75	U576	A577	8/99	A583	C587		A592 U593	G594	G606	C607	2000	U611	<mark>G616</mark>	A01 / A618	2022	1700	G630	C644	4040 A646	A659	A660 U661
G662	A666 G667	0290		A682 G683	IIEGO		0698 11699	A7 00	C710		G714	A/15 C716	C717	C724		U731	G745	02.20	G774 G774	A775	C776 C777		C781 C782	G783	U792	<mark>G793</mark>		G808 4809	A810	<mark>G813</mark>		C821	G822 G823	A824	A827	<u>4828</u> U829	U830
A834 U835	C836 G837	<u>4838</u> 4839		A847	G850 C851	1000	C857	C861	C862	U872	0873	C883		<mark>6888</mark>	A891			C910		G919	A923		G926	C929	C930 C931	<mark>0932</mark>	a c	C935 G936	6937 6937	1939 1939	U	1 104	A955 A956	C967	C959	C960	U971 A972
A985	A989	0665	A1001	G1005	C1000		A1018	A1023	C1026	A1027	G1028	C1029 C1030		G1 033	<mark>C1</mark> 039	A1040	U1043	1	C1049 C1050		A1053 A1054	A1055	U1056 A1057		01060 G1061		COULA	G1069 A1070	A1071	U1077	41000	61091	C1096		20110	U1105 G1106	<mark>G1107</mark> C1108
U1109 U1110	A1111 G1112	A1113 A1114	G1115	C1116 A1117	C1100	A1121	U1122 C1123	A1124	111107	A1128	A1129	A1130 G1131	A1132	G1133	G1137	U1138 A1130	A1140	5 5 5	G1143 C1144	U1145	C1146 A1147		G1151 U1152	C1153	G1154 A1155	G1156	C1160	A1171	A1172	A11/3 U1174	G1175	A1177	C1178 C1179		AIIXO	C1196	G1201
G1211	C1214 U1215	n	G1218	G1219 A1220	C10ED		A1258	G1276	C1277	OUTE	G1288	G1294	C1295	U1305	A1306	1300	A1310	20 20 20 20	A1323	C1326	A1337	U1338	U1339	U1349	U1350 C1351		ALGOO	C1370	G1375	01377 U1377	U1378	C1382	C1387	C1388	Ulagy	A1402	G1405
U1416	A1421	A1432	C1435	C1436 U1437	A1 450	n	0 0	ņ	U	n	A	A1459 U1460	C1461	G1462 A1463	U1464	G1465	A1471	C1472	614/3	A1489	G1490 C1491	G1492	01493 G1494	C1495	G1496	01 <mark>499</mark>	A1502	U1503 U1504	G1505		U1510	C1516	A1517 G1518	01519	U1525	A1533	C1536
A1537	01540 C1541	G1550	U1551	01552 A1553	A1554 C1555		G1559 A1560	G1561	G1570		A1575	A1576 G1577	Å	D A	n	n	'n	5	⊃ U	U1588	01589 C1590	G1591	A1592	A1600	U1601 U1602		A1605 C1606	G1613	A1614	A1616		07010	A1630 G1631	A1632	A1633 A1634	A1635 U1636	<mark>G1639</mark>
C1651	A1652	C1655	C1661	A1662	U1683	G1686	A1690	G1691	C1692	C1696		C1/04	C1714	G1718	C1719	111737	C1738	G1739	G1/40	U1756	01757 A1758	G1759	A1764		C1768	G1772	G1777	G1785	1200	G1791	1101	10 1	A1800 C1801	U1802	61803	U1806 A1807	U1808
A1811 A1812	A1813 A1814	C1815	G1819	G1826	C1827 111828		A1837 G1838	G1839	111 843	01.043 G1844			A1856	A1893	G1894	C1895	U1897	C1898	01899 G1900	C1901	G1902	<mark>C1909</mark>	C1921		<mark>G1930</mark>	<mark>G1933</mark>	<mark>G1937</mark>	U1938 A1939	A1940	01941 01942	A1943	C1947	G1956	G1957	<mark>C1961</mark>	G1962 A1963	A1964 A1965
U1966 U1967	G1975	111980		C1990 G1991	C1992 A1993	C1994	A 1997	A1998	G1999	U2009	01001	02018 G2019	U2020	C2033		A2050		A2058	62059 A2060		C2063	C2070	C2071 C2072		C2082 G2083	2000	A 2087 G 2088	A2089 C2090		42094 U2095	G2096 G2096	16031	G2114	G2120	G2128	A2132	U2135
J2136 32137	J2138 A2139	C2140	32142	32143 A2144	J2145	32147	42150		A2153	J2157	J2158	12159 32160	A2161	42162 42163	32164	32165 17166	32167	A2168	69175	22172	J2173 A2174	32175	22176	A2179	32183	32184	42185 32186	32187 32188	12189	12191 12191	101	12195	32196 32197	42198	12199 12200	2201	22205
2208	2211	2214 (2216	2217	2220	2255	230	231		2241		2252		2265		2278	2295	2296	2305		2309		2314	2 <mark>321 4</mark>	1332 (2333	2335 (1335		2338	347	2348		2352 2353		2361	2363	2374
377 A.	383 U	386 G1	404 U	405 406	010 010	411 A.	412	418 C		430 C3	-	433 A.	446	450 63	451	452 G.	456 A1	457 A1	464 A1		467 468	469	472	ť	475 U	483 U.	486 G	492 A	493 A.	501 A1	502 G	5 05	518 U		525 A2	528 A.	530 531
C2	C2	C2	A2	G2.	00	A2	C2	G2	CII	C2	00	C	U2	U2.	CS	A2	G2,	A2	C2		8.8	C2	62.		A2	C2	A2	CO	C	U21	C2	A2	02		ڏ	62 C2	A2 U2

UZ709 02532 UZ16 02533 UZ16 02541 CZ719 UZ549 UZ16 02541 CZ741 02549 UZ16 02566 UZ76 02541 UZ76 02545 UZ76 02546 UZ76 02546 UZ76 02546 UZ76 02546 UZ76 02566 UZ76 02566 UZ76 02566 UZ76 02569 UZ76 02569 UZ76 02666 A2775 0269 UZ76 0264 UZ76 0264 UZ76 0264 UZ76 0264 U260 0264 U260 0264 U260 0264 U263 0264 U263 0264 U263 0264 U263 0264 U263 0264 <

C2890 A2893 A2893 C2900 C2900 C2903 C2903 C2903 C2903 C2903 C2903 C2903 C2913 C2913

• Molecule 23: 5S rRNA

Chain B:	81%	17% •
11 C2 M11 M11 M12 M12 M12 M12 M12 M12 M12 M1	A64 A64 C87 C88 C88 C87 C91 C91 C92 C92 C92 C92 C92 C92 C92 C92 C92 C92	
• Molecule 24: 50S rib	osomal protein L2	
Chain D:	96%	•••
MET A1 126 726 734 734 136 136 136 136 721 7218 7274 1278 1278 1278		
• Molecule 25: 50S rib	osomal protein L3	
Chain E:	98%	
MET T2 H148 A 157 SER D159 C218 C218 A SN LYS		
• Molecule 26: 50S rib	osomal protein L4	
Chain F:	96%	•••
MET ALA NIA NI2 1104 1104 1104 1104 1104 1104 1100 1000000		
• Molecule 27: 50S rib	osomal protein L5	
Chain G:	85%	• 14%
MET ASN ASN ASN ASN ALA ALA LYS LYS SER LYS SER TLE TLE TLE LEU	LLE PHE PRE CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA PHE PHE PHE PHE PHE PHE PHE	
• Molecule 28: 50S rib	osomal protein L6	
Chain H:	88%	• 10%

••

MET SER ARG VAL CLY CLYS LYS LYS TR ARG ARG LYS GLU GLY LYS THR GLY LYS LYS ASF

• Molecule 29: 50S ribosomal protein L13

Chain M: 100% There are no outlier residues recorded for this chain. • Molecule 30: 50S ribosomal protein L14 Chain N: 99% • Molecule 31: 50S ribosomal protein L15 Chain O: 96% • Molecule 32: 50S ribosomal protein L16 Chain P: • 5% 93% GLY GLY GLU GLU ASN ASN GLU SER • Molecule 33: 50S ribosomal protein L17 Chain Q: 97% TY GL • Molecule 34: 50S ribosomal protein L18 Chain R: 99% MET 12 • Molecule 35: 50S ribosomal protein L19 Chain S: 94% 6%

- Molecule 36: 50S ribosomal protein L20 Chain T: 97% • Molecule 37: 50S ribosomal protein L21 Chain U: 98% • Molecule 38: 50S ribosomal protein L22 Chain V: 96% GLU ALA LYS GLU ALA • Molecule 39: 50S ribosomal protein L23 Chain W: 98% ASN • Molecule 40: 50S ribosomal protein L24 Chain X: 81% 17% MET LYS PRO GLN GLN LEU LEU ASN PRO GLU VAI ASF GLY GLY LYS LYS ASN ASN ASN • Molecule 41: 50S ribosomal protein L25 Chain Y: 43% 57% TILE SER ASPN VALLEU VALLEV SER ASPN GUU GUU GUU GUU GUU CGUU VALL THR THR CGUU CGUU VALL THR THR CGUU VALL CUU CGUU VALL VALL VALL VALLEU VAL
- GLU GLU GLU CLYS CLU CLYS GLU GLU
- Molecule 42: 50S ribosomal protein L27

Chain Z:

• Molecule 43: 50S ribosomal protein L28

Chain 0:	73%	27%	
MET GLY CLNS GLN CYS CYS PHE VAL THR GLY ARG CLY	K55 SER CLYS VAL THR ARG VAL		
• Molecule 44:	50S ribosomal protein L29		
Chain 1:	91%		• 6%
MET K2 R7 R5 R5 R66 ALA ALA ALA ALA ALA			
• Molecule 45:	50S ribosomal protein L30		
Chain 2:	93%		
MET A2 L53 V54 E58 E58 LYS			
• Molecule 46:	$50\mathrm{S}$ ribosomal protein L 31 type B		
Chain 3:	87%	••	11%
M1 H10 GLN V12 F23 LEU SER GLY S27	C40 LYS CLU PRD PRD PRD PRD PRD PRO N83 ASN		
• Molecule 47:	50S ribosomal protein L32		
Chain 4:	84%	5%	10%
MET A2 C30 C30 C34 A2 C34 A30 E36 E36 R42 R42	VALT ALA ALA LYS LYS		
• Molecule 48:	50S ribosomal protein L33 2		
Chain 5:	84%	6%	10%
M2 L8 CYS CYS CYS D14 D14	R38 R46 THR LVS		
• Molecule 49:	50S ribosomal protein L34		
Chain 6:	98%		

• •

• Molecule 50: 50S ribosomal protein L35

Chain 7:

• Molecule 51: 50S ribosomal protein L36

Chain 8:

100%

94%

There are no outlier residues recorded for this chain.

 \bullet Molecule 52: P-site tRNA

Cha	ain	х	: '											62	2%	,																32	2%		5%
C1 62	G5	U8	G9	C13	010	C17	U17A	G18	G19	U20	120	G26	C3 2	U33	C34		C41	G42	A43	070	640 11/7	041	649 649	U54	056 C56	A57	A58	100	107	C74	C75	31H76			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	83000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.5	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PSU, 2MA, 4OC, MG, H2U, OMC, K, 31H, 4SU, 7MG, MA6, 2MG, OMG, 5MU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	a	0.47	1/36920~(0.0%)	0.98	103/57570~(0.2%)
2	b	0.29	0/1788	0.53	0/2397
3	с	0.27	0/1598	0.52	0/2145
4	d	0.30	0/1629	0.54	0/2185
5	е	0.30	0/1183	0.57	1/1595~(0.1%)
6	f	0.30	0/809	0.51	0/1085
7	g	0.29	0/1192	0.50	0/1603
8	h	0.29	0/1044	0.56	0/1401
9	i	0.30	0/1023	0.58	1/1372~(0.1%)
10	j	0.28	0/795	0.55	0/1071
11	k	0.28	0/848	0.50	0/1147
12	1	0.30	0/1075	0.58	0/1439
13	m	0.28	0/934	0.56	0/1253
14	n	0.26	0/490	0.49	0/650
15	0	0.25	0/747	0.45	0/996
16	р	0.30	0/723	0.56	0/971
17	q	0.28	0/706	0.56	0/944
18	r	0.28	0/536	0.51	0/718
19	S	0.27	0/679	0.50	0/912
20	t	0.23	0/606	0.47	0/810
21	V	0.43	0/521	1.02	1/812~(0.1%)
22	А	0.78	4/69062~(0.0%)	1.06	202/107697~(0.2%)
23	В	0.49	0/2733	1.06	21/4257~(0.5%)
24	D	0.45	2/2129~(0.1%)	0.64	2/2858~(0.1%)
25	Е	0.40	0/1659	0.59	1/2224~(0.0%)
26	F	0.39	0/1563	0.56	0/2113
27	G	0.29	0/1201	0.53	0/1610
28	Н	0.29	0/1267	0.53	0/1710
29	М	0.35	0/1173	0.52	0/1578
30	N	0.39	0/927	0.58	0/1243
31	0	0.42	1/1112~(0.1%)	0.63	1/1482~(0.1%)
32	Р	0.39	0/1121	0.58	1/1504~(0.1%)

Mal	Chain	Bo	ond lengths	I	Bond angles				
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5				
33	Q	0.34	0/943	0.57	0/1259				
34	R	0.29	0/920	0.53	0/1230				
35	S	0.37	0/889	0.61	0/1189				
36	Т	0.40	0/955	0.52	0/1265				
37	U	0.37	0/791	0.55	0/1051				
38	V	0.36	0/870	0.58	0/1171				
39	W	0.36	0/733	0.57	0/978				
40	Х	0.32	0/666	0.66	1/886~(0.1%)				
41	Y	0.29	0/738	0.54	0/989				
42	Ζ	0.43	0/632	0.55	0/838				
43	0	0.39	0/363	0.66	0/486				
44	1	0.29	0/537	0.49	0/714				
45	2	0.34	0/443	0.61	1/597~(0.2%)				
46	3	0.31	0/602	0.61	1/802~(0.1%)				
47	4	0.52	1/416~(0.2%)	0.63	1/550~(0.2%)				
48	5	0.31	0/373	0.69	1/495~(0.2%)				
49	6	0.41	0/377	0.56	0/491				
50	7	0.37	0/526	0.56	0/690				
51	8	0.36	0/299	0.53	0/392				
52	Х	0.46	0/1671	1.08	10/2605~(0.4%)				
All	All	0.61	9/153537~(0.0%)	0.94	349/230030~(0.2%)				

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	с	0	1
5	е	0	1
26	F	0	1
30	N	0	1
36	Т	0	1
44	1	0	2
48	5	0	1
All	All	0	8

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
22	А	774	G	N9-C4	-6.94	1.32	1.38
22	А	774	G	C2-N3	-6.62	1.27	1.32

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	А	774	G	N3-C4	-5.88	1.31	1.35
1	a	204	А	N9-C4	5.49	1.41	1.37
31	0	8	PRO	N-CD	5.43	1.55	1.47
24	D	35	PRO	N-CD	5.29	1.55	1.47
24	D	37	PRO	N-CD	5.23	1.55	1.47
22	А	2457	А	N9-C4	-5.18	1.34	1.37
47	4	31	PRO	N-CD	5.08	1.54	1.47

All (349) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	774	G	N3-C4-N9	-13.61	117.83	126.00
22	А	12	U	N1-C2-O2	12.05	131.24	122.80
22	А	12	U	N3-C2-O2	-11.78	113.95	122.20
22	А	12	U	C2-N1-C1'	11.58	131.59	117.70
23	В	87	С	N1-C2-O2	10.47	125.19	118.90
1	a	1441	С	N1-C2-O2	9.87	124.82	118.90
22	А	774	G	N3-C4-C5	9.75	133.48	128.60
22	А	1802	U	N3-C2-O2	-9.59	115.49	122.20
23	В	87	С	C2-N1-C1'	9.51	129.26	118.80
22	А	774	G	N3-C2-N2	-9.38	113.33	119.90
1	a	1441	С	C2-N1-C1'	9.28	129.00	118.80
23	В	87	С	N3-C2-O2	-9.13	115.51	121.90
22	А	774	G	C8-N9-C1'	9.03	138.73	127.00
1	a	1441	С	N3-C2-O2	-8.90	115.67	121.90
1	a	376	U	C2-N1-C1'	8.87	128.35	117.70
1	a	762	С	C2-N1-C1'	8.80	128.48	118.80
22	А	272	С	N1-C2-O2	8.68	124.11	118.90
22	А	1350	U	C2-N1-C1'	8.61	128.03	117.70
22	А	1802	U	N1-C2-O2	8.53	128.77	122.80
1	a	572	U	N3-C2-O2	-8.39	116.33	122.20
22	А	1802	U	C2-N1-C1'	8.31	127.67	117.70
22	А	1351	С	N1-C2-O2	8.30	123.88	118.90
22	А	1435	С	N1-C2-O2	8.22	123.83	118.90
22	А	774	G	N9-C4-C5	8.21	108.69	105.40
1	a	851	U	N1-C2-O2	8.20	128.54	122.80
1	a	762	С	N1-C2-O2	8.20	123.82	118.90
22	А	1602	U	N3-C2-O2	-8.18	116.47	122.20
22	А	1719	С	C6-N1-C2	-8.18	117.03	120.30
1	a	315	U	C2-N1-C1'	8.14	127.47	117.70
1	a	376	U	N1-C2-O2	8.14	128.50	122.80
22	А	1350	U	N1-C2-O2	8.11	128.48	122.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	572	U	C2-N1-C1'	8.08	127.40	117.70
1	a	641	U	C2-N1-C1'	7.90	127.18	117.70
1	a	572	U	N1-C2-O2	7.84	128.29	122.80
22	А	1602	U	N1-C2-O2	7.84	128.29	122.80
1	a	1391	U	N3-C2-O2	-7.76	116.77	122.20
22	А	557	G	O4'-C1'-N9	7.74	114.39	108.20
1	a	1391	U	N1-C2-O2	7.67	128.17	122.80
1	a	195	С	N1-C2-O2	7.66	123.49	118.90
22	А	1602	U	C2-N1-C1'	7.64	126.86	117.70
1	a	945	С	N1-C2-O2	7.61	123.46	118.90
1	a	851	U	C2-N1-C1'	7.60	126.82	117.70
1	a	1458	С	N1-C2-O2	7.60	123.46	118.90
22	А	1350	U	N3-C2-O2	-7.58	116.90	122.20
22	А	1801	С	C6-N1-C2	-7.55	117.28	120.30
22	А	774	G	C2-N3-C4	-7.50	108.15	111.90
22	А	12	U	C6-N1-C1'	-7.45	110.77	121.20
22	А	835	U	N1-C2-O2	7.42	128.00	122.80
22	А	2467	С	O4'-C1'-N1	7.42	114.14	108.20
23	В	100	U	C2-N1-C1'	7.41	126.59	117.70
1	a	315	U	N1-C2-O2	7.41	127.99	122.80
1	a	315	U	N3-C2-O2	-7.39	117.03	122.20
22	А	2807	G	C4-N9-C1'	7.35	136.06	126.50
22	А	1704	С	C6-N1-C2	-7.32	117.37	120.30
22	А	587	С	N1-C2-O2	7.30	123.28	118.90
1	a	851	U	N3-C2-O2	-7.30	117.09	122.20
1	a	641	U	N3-C2-O2	-7.26	117.12	122.20
22	А	272	С	C2-N1-C1'	7.20	126.72	118.80
22	А	1351	С	C6-N1-C2	-7.14	117.44	120.30
22	А	2332	U	C2-N1-C1'	7.09	126.21	117.70
1	a	641	U	N1-C2-O2	7.08	127.75	122.80
22	А	2492	С	N1-C2-O2	7.00	123.10	118.90
1	a	195	С	N3-C2-O2	-6.98	117.01	121.90
1	a	376	U	N3-C2-O2	-6.98	117.31	122.20
22	А	972	А	O5'-P-OP2	-6.97	99.43	105.70
22	А	1435	С	N3-C2-O2	-6.95	117.03	121.90
5	е	80	THR	C-N-CA	6.93	139.02	121.70
22	А	272	С	N3-C2-O2	-6.90	117.07	121.90
22	A	835	U	C2-N1-C1'	6.90	125.98	117.70
22	А	774	G	C8-N9-C4	-6.89	103.64	106.40
1	a	1168	С	C2-N1-C1'	6.88	126.36	118.80
22	A	774	G	C4-N9-C1'	-6.83	117.62	126.50
22	А	835	U	N3-C2-O2	-6.72	117.49	122.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	759	U	C2-N1-C1'	6.69	125.73	117.70
1	a	992	А	C2-N3-C4	6.64	113.92	110.60
22	А	1661	С	C6-N1-C2	-6.64	117.64	120.30
23	В	87	С	C6-N1-C1'	-6.64	112.83	120.80
22	А	2468	С	N1-C2-O2	6.63	122.88	118.90
1	a	762	С	N3-C2-O2	-6.62	117.27	121.90
22	А	2072	С	C6-N1-C2	-6.62	117.65	120.30
1	a	1171	С	N1-C2-O2	6.62	122.87	118.90
1	a	55	С	N1-C2-O2	6.60	122.86	118.90
22	А	1351	С	C5-C6-N1	6.58	124.29	121.00
22	А	587	С	N3-C2-O2	-6.57	117.30	121.90
22	А	1768	С	C6-N1-C2	-6.57	117.67	120.30
22	А	1351	С	C2-N1-C1'	6.55	126.01	118.80
1	a	463	U	C2-N1-C1'	6.54	125.54	117.70
1	a	1168	С	N1-C2-O2	6.53	122.82	118.90
1	a	1441	С	C6-N1-C1'	-6.53	112.97	120.80
22	А	2468	С	C6-N1-C2	-6.52	117.69	120.30
22	А	935	С	C2-N1-C1'	6.50	125.94	118.80
22	А	272	С	C6-N1-C2	-6.49	117.70	120.30
22	А	2468	С	N3-C2-O2	-6.46	117.38	121.90
1	a	195	С	C2-N1-C1'	6.46	125.91	118.80
22	А	1351	С	N3-C2-O2	-6.45	117.38	121.90
22	А	793	G	O4'-C1'-N9	6.43	113.35	108.20
1	a	1458	С	C2-N1-C1'	6.38	125.82	118.80
1	a	762	С	C6-N1-C2	-6.37	117.75	120.30
22	А	2457	А	C2-N3-C4	-6.36	107.42	110.60
1	a	491	С	C2-N1-C1'	6.35	125.79	118.80
22	А	883	С	N1-C2-O2	6.34	122.70	118.90
22	А	2807	G	C8-N9-C1'	-6.33	118.77	127.00
22	А	935	С	N1-C2-O2	6.30	122.68	118.90
1	a	1391	U	C2-N1-C1'	6.30	125.26	117.70
1	a	1458	С	N3-C2-O2	-6.28	117.50	121.90
22	А	666	А	O4'-C1'-N9	6.28	113.22	108.20
22	А	1696	С	N1-C2-O2	6.27	122.66	118.90
22	А	328	G	P-O3'-C3'	6.23	127.18	119.70
22	А	714	G	N3-C4-C5	-6.23	125.48	128.60
22	A	1683	U	N1-C2-O2	6.21	127.15	122.80
48	5	8	LEU	CA-CB-CG	6.21	129.59	115.30
$\overline{22}$	А	2429	U	C2-N1-C1'	6.20	125.14	117.70
32	Р	84	GLY	N-CA-C	6.19	128.58	113.10
1	a	888	С	C6-N1-C2	-6.19	117.82	120.30
22	А	1049	С	N1-C2-O2	6.17	122.60	118.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	862	С	C6-N1-C2	-6.17	117.83	120.30
1	a	1178	С	N1-C2-O2	6.16	122.60	118.90
22	А	714	G	N3-C4-N9	6.13	129.68	126.00
22	А	1683	U	N3-C2-O2	-6.11	117.93	122.20
22	А	828	А	C2-N3-C4	6.09	113.64	110.60
1	a	818	С	N1-C2-O2	6.08	122.55	118.90
1	a	1171	С	C2-N1-C1'	6.08	125.48	118.80
22	А	2492	С	N3-C2-O2	-6.07	117.65	121.90
1	a	204	А	C2-N3-C4	6.06	113.63	110.60
1	a	376	U	C6-N1-C1'	-6.03	112.76	121.20
22	А	2583	С	N1-C2-O2	6.01	122.50	118.90
1	a	621	С	N1-C2-O2	6.00	122.50	118.90
22	А	644	С	C6-N1-C2	-5.99	117.90	120.30
22	А	2095	U	C2-N3-C4	5.97	130.58	127.00
23	В	87	С	C6-N1-C2	-5.97	117.91	120.30
22	А	1179	С	C5-C6-N1	5.96	123.98	121.00
22	А	1696	С	N3-C2-O2	-5.94	117.74	121.90
22	А	714	G	C2-N3-C4	5.93	114.86	111.90
1	a	1441	С	C6-N1-C2	-5.93	117.93	120.30
22	А	2900	С	N1-C2-O2	5.91	122.45	118.90
22	А	1043	U	N3-C2-O2	-5.91	118.06	122.20
22	А	1714	С	C6-N1-C2	-5.90	117.94	120.30
22	А	2492	С	C6-N1-C2	-5.88	117.95	120.30
1	a	762	С	C6-N1-C1'	-5.88	113.75	120.80
22	А	2332	U	N1-C2-O2	5.88	126.91	122.80
1	a	132	С	C6-N1-C2	-5.85	117.96	120.30
22	А	1921	С	N1-C2-O2	5.85	122.41	118.90
52	X	74	С	N1-C2-O2	5.85	122.41	118.90
22	А	2071	С	C6-N1-C2	-5.84	117.97	120.30
1	a	477	U	C2-N1-C1'	5.84	124.70	117.70
22	А	2501	U	N1-C2-O2	5.83	126.88	122.80
22	А	2793	G	C4-N9-C1'	5.83	134.08	126.50
52	Х	34	С	C6-N1-C2	-5.83	117.97	120.30
21	V	12	А	C2-N3-C4	5.82	113.51	110.60
22	А	2539	С	C6-N1-C2	-5.82	117.97	120.30
22	А	2742	С	C6-N1-C2	-5.82	117.97	120.30
1	a	463	U	N3-C2-O2	-5.82	118.13	122.20
22	A	1704	C	N1-C2-O2	5.80	122.38	118.90
1	a	491	C	N3-C2-O2	-5.79	$117.8\overline{5}$	121.90
22	A	12	U	C6-N1-C2	-5.78	117.53	121.00
22	A	1043	U	N1-C2-O2	5.78	126.84	122.80
22	A	568	С	C6-N1-C2	-5.77	117.99	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	2819	С	N1-C2-O2	5.77	122.36	118.90
22	А	828	А	C8-N9-C4	-5.77	103.49	105.80
22	А	2492	С	C2-N1-C1'	5.75	125.12	118.80
22	А	861	С	C6-N1-C2	-5.75	118.00	120.30
23	В	94	С	N1-C2-O2	5.74	122.35	118.90
22	А	1065	А	C2-N3-C4	5.72	113.46	110.60
1	a	491	С	N1-C2-O2	5.71	122.33	118.90
1	a	945	С	N3-C2-O2	-5.70	117.91	121.90
1	a	992	А	N3-C4-N9	5.70	131.96	127.40
52	Х	1	С	N1-C2-O2	5.69	122.31	118.90
1	a	1458	С	C6-N1-C2	-5.69	118.03	120.30
22	А	1196	С	C6-N1-C2	-5.69	118.03	120.30
22	А	1382	С	N1-C2-O2	5.69	122.31	118.90
47	4	30	CYS	C-N-CD	5.68	140.33	128.40
22	А	1009	С	N1-C2-O2	5.68	122.31	118.90
22	А	1843	U	N1-C2-O2	5.67	126.77	122.80
22	А	2900	С	C6-N1-C2	-5.67	118.03	120.30
23	В	23	U	C5-C6-N1	5.67	125.53	122.70
1	a	1171	С	C6-N1-C2	-5.67	118.03	120.30
1	а	463	U	N1-C2-O2	5.66	126.76	122.80
1	a	886	С	C6-N1-C2	-5.65	118.04	120.30
22	А	2673	С	C6-N1-C2	-5.65	118.04	120.30
52	Х	1	С	P-O3'-C3'	5.64	126.47	119.70
22	А	2070	С	C6-N1-C2	-5.63	118.05	120.30
22	А	2719	С	C6-N1-C2	-5.63	118.05	120.30
22	А	1171	А	C4-N9-C1'	5.63	136.44	126.30
22	А	1661	С	C2-N1-C1'	5.63	124.99	118.80
22	А	957	С	N1-C2-O2	5.63	122.28	118.90
1	a	1289	А	C4-N9-C1'	5.62	136.41	126.30
22	А	463	С	C6-N1-C2	-5.61	118.06	120.30
1	a	627	U	C2-N1-C1'	5.61	124.43	117.70
22	А	12	U	C5-C6-N1	5.60	125.50	122.70
1	a	759	U	N1-C2-O2	5.60	126.72	122.80
22	А	2766	U	N3-C2-O2	-5.60	118.28	122.20
22	А	1179	С	C6-N1-C2	-5.59	118.06	120.30
1	a	1459	С	N1-C2-O2	5.58	122.25	118.90
52	Х	34	С	C5-C6-N1	5.58	123.79	121.00
22	A	1961	C	N1-C2-O2	5.57	122.24	118.90
22	A	1160	C	N1-C2-O2	5.57	$122.2\overline{4}$	118.90
24	D	34	LYS	C-N-CD	5.56	140.07	128.40
22	A	$20\overline{20}$	U	N3-C2-O2	-5.56	118.31	$122.\overline{20}$
1	a	320	С	C6-N1-C2	-5.53	118.09	120.30

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
24	D	36	LEU	C-N-CD	5.53	140.02	128.40
22	А	883	С	N3-C2-O2	-5.53	118.03	121.90
22	А	627	С	N3-C2-O2	-5.52	118.03	121.90
1	a	20	С	N1-C2-O2	5.52	122.21	118.90
23	В	23	U	N3-C2-O2	-5.51	118.34	122.20
1	a	759	U	N3-C2-O2	-5.51	118.34	122.20
52	Х	74	С	N3-C2-O2	-5.51	118.05	121.90
22	А	2430	С	N1-C2-O2	5.50	122.20	118.90
23	В	92	С	C6-N1-C2	-5.50	118.10	120.30
23	В	1	U	C2-N1-C1'	5.50	124.30	117.70
22	А	1171	А	N7-C8-N9	5.48	116.54	113.80
22	А	666	А	N7-C8-N9	5.48	116.54	113.80
22	А	2457	А	N1-C2-N3	5.47	132.04	129.30
1	a	1289	А	C2-N3-C4	5.47	113.34	110.60
31	0	7	LYS	C-N-CD	5.47	139.89	128.40
23	В	94	С	N3-C2-O2	-5.46	118.08	121.90
1	a	945	С	C2-N1-C1'	5.45	124.80	118.80
22	А	1704	С	N3-C2-O2	-5.45	118.08	121.90
1	a	20	С	C6-N1-C2	-5.45	118.12	120.30
22	А	1350	U	C6-N1-C1'	-5.45	113.58	121.20
22	А	1806	U	C5-C6-N1	-5.45	119.98	122.70
1	a	546	U	C5-C6-N1	5.44	125.42	122.70
22	А	1655	С	C6-N1-C2	-5.43	118.13	120.30
1	a	20	С	N3-C2-O2	-5.43	118.10	121.90
22	А	2333	U	C2-N1-C1'	5.42	124.20	117.70
22	А	1704	С	C5-C6-N1	5.42	123.71	121.00
22	А	1768	С	C5-C6-N1	5.42	123.71	121.00
22	А	2653	С	C6-N1-C2	-5.42	118.13	120.30
22	А	627	С	N1-C2-O2	5.40	122.14	118.90
22	А	587	С	C2-N1-C1'	5.39	124.73	118.80
22	А	2265	G	N3-C4-C5	-5.39	125.91	128.60
1	a	220	U	OP1-P-O3'	5.38	117.04	105.20
22	А	1661	С	N3-C2-O2	-5.38	118.13	121.90
1	a	55	С	N3-C2-O2	-5.38	118.14	121.90
1	a	821	U	N1-C2-O2	5.38	126.56	122.80
22	А	1370	С	N1-C2-O2	5.38	122.13	118.90
1	a	1407	С	N1-C2-O2	5.37	122.12	118.90
22	А	2020	U	N1-C2-O2	5.37	126.56	122.80
22	A	2386	C	N1-C2-O2	5.37	$122.1\overline{2}$	118.90
1	a	621	C	C6-N1-C2	-5.36	118.16	120.30
22	A	2606	C	N1-C2-O2	$5.3\overline{6}$	$122.1\overline{2}$	118.90
22	A	1179	С	C2-N1-C1	5.36	124.69	118.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	2429	U	N1-C2-O2	5.36	126.55	122.80
22	А	2890	С	C6-N1-C2	-5.36	118.16	120.30
22	А	2644	С	C6-N1-C2	-5.35	118.16	120.30
22	А	1050	С	C6-N1-C2	-5.35	118.16	120.30
1	a	461	С	C6-N1-C2	-5.34	118.16	120.30
22	А	2295	А	O4'-C1'-N9	5.33	112.47	108.20
1	a	227	С	C6-N1-C2	-5.33	118.17	120.30
22	А	935	C	N3-C2-O2	-5.33	118.17	121.90
1	a	137	U	N1-C2-O2	5.33	126.53	122.80
22	А	2070	C	C5-C6-N1	5.32	123.66	121.00
22	А	1802	U	C6-N1-C1'	-5.32	113.75	121.20
1	a	762	С	C5-C6-N1	5.32	123.66	121.00
23	В	23	U	N1-C2-O2	5.31	126.52	122.80
22	А	2090	С	C6-N1-C2	-5.30	118.18	120.30
23	В	100	U	N3-C2-O2	-5.30	118.49	122.20
23	В	1	U	N1-C2-O2	5.30	126.51	122.80
22	А	2464	С	C6-N1-C2	-5.29	118.18	120.30
45	2	53	LEU	CA-CB-CG	5.29	127.47	115.30
1	a	204	А	C4-N9-C1'	5.28	135.81	126.30
1	a	992	А	N3-C4-C5	-5.28	123.10	126.80
1	a	59	С	C6-N1-C2	-5.27	118.19	120.30
22	А	1171	А	N3-C4-N9	5.27	131.62	127.40
1	a	1168	С	N3-C2-O2	-5.26	118.22	121.90
22	А	1631	G	C4-N9-C1'	5.25	133.33	126.50
1	a	478	G	C8-N9-C4	-5.25	104.30	106.40
22	А	2469	С	N1-C2-O2	5.22	122.03	118.90
22	А	2834	C	C6-N1-C2	-5.22	118.21	120.30
9	i	23	LEU	CA-CB-CG	5.22	127.31	115.30
1	a	572	U	C6-N1-C1'	-5.22	113.89	121.20
22	А	37	C	N3-C2-O2	-5.22	118.25	121.90
1	a	1171	С	N3-C2-O2	-5.22	118.25	121.90
1	a	1033	U	C2-N1-C1'	5.21	123.96	117.70
22	А	777	C	C6-N1-C2	-5.21	118.21	120.30
22	А	608	C	C6-N1-C2	-5.20	118.22	120.30
22	А	666	A	C5-N7-C8	-5.19	101.31	103.90
$\overline{22}$	A	1028	G	O4'-C1'-N9	5.19	112.35	108.20
1	a	1032	C	C2-N1-C1'	5.19	$1\overline{24.50}$	118.80
23	B	12	U	$C2-N1-\overline{C1'}$	5.19	123.92	117.70
22	A	1214		N1-C2-O2	5.18	$122.0\overline{1}$	118.90
52	X	13	C	C6-N1-C2	-5.18	118.23	120.30
1	a	945	C	C6-N1-C2	-5.18	118.23	120.30
22	А	212	C	C6-N1-C2	-5.18	118.23	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	201	С	C6-N1-C2	-5.18	118.23	120.30
22	А	960	С	N1-C2-O2	5.18	122.01	118.90
22	А	2051	С	C6-N1-C2	-5.18	118.23	120.30
23	В	23	U	C6-N1-C2	-5.18	117.89	121.00
22	А	724	С	C6-N1-C2	-5.17	118.23	120.30
23	В	94	С	C6-N1-C2	-5.17	118.23	120.30
23	В	100	U	N1-C2-O2	5.17	126.42	122.80
22	А	1030	С	N1-C2-O2	5.17	122.00	118.90
22	А	1719	С	N3-C2-O2	-5.17	118.28	121.90
40	Х	70	LEU	CA-CB-CG	5.17	127.19	115.30
22	А	1382	С	C6-N1-C2	-5.17	118.23	120.30
22	А	2253	С	N1-C2-O2	5.17	122.00	118.90
23	В	100	U	C6-N1-C1'	-5.16	113.98	121.20
1	a	1178	С	C2-N1-C1'	5.16	124.47	118.80
1	a	315	U	C6-N1-C1'	-5.15	113.98	121.20
22	А	644	С	N1-C2-O2	5.15	121.99	118.90
22	А	710	С	C6-N1-C2	-5.15	118.24	120.30
22	А	2796	С	N1-C2-O2	5.15	121.99	118.90
22	А	2483	С	C6-N1-C2	-5.15	118.24	120.30
22	А	1305	U	N3-C2-O2	-5.15	118.60	122.20
46	3	49	ASP	CB-CG-OD2	5.15	122.93	118.30
22	А	2070	С	N1-C2-O2	5.14	121.98	118.90
52	Х	34	С	N1-C2-O2	5.13	121.98	118.90
1	a	1504	А	C2-N3-C4	5.13	113.17	110.60
22	А	272	С	C5-C6-N1	5.13	123.56	121.00
22	А	490	С	C6-N1-C2	-5.13	118.25	120.30
22	А	2451	С	N1-C2-O2	5.13	121.98	118.90
22	А	2750	С	C6-N1-C2	-5.13	118.25	120.30
22	А	419	U	N1-C2-O2	5.13	126.39	122.80
1	a	860	U	N3-C2-O2	-5.12	118.61	122.20
22	А	2347	А	C2-N3-C4	5.12	113.16	110.60
22	А	937	G	OP1-P-O3'	5.12	116.46	105.20
22	А	2612	U	C2-N1-C1'	5.11	123.84	117.70
22	А	2429	U	N3-C2-O2	-5.11	118.62	122.20
22	А	2583	С	C2-N1-C1'	5.11	124.42	118.80
1	a	10	G	O4'-C1'-N9	5.11	112.28	108.20
22	А	1801	С	C5-C6-N1	5.10	123.55	121.00
1	a	1289	A	N7-C8-N9	5.10	116.35	113.80
1	a	621	С	C5-C6-N1	5.10	123.55	121.00
22	A	555	С	N1-C2-O2	5.09	121.95	118.90
22	A	241	С	N1-C2-O2	5.09	121.95	118.90
52	Х	34	С	C2-N1-C1'	5.09	124.40	118.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	1461	С	C6-N1-C2	-5.08	118.27	120.30
22	А	2493	С	N1-C2-O2	5.08	121.94	118.90
22	А	2583	С	C6-N1-C2	-5.08	118.27	120.30
22	А	2807	G	N3-C4-N9	5.07	129.04	126.00
22	А	2900	С	N3-C2-O2	-5.07	118.35	121.90
1	a	137	U	N3-C2-O2	-5.07	118.65	122.20
22	А	2383	С	C6-N1-C2	-5.06	118.28	120.30
22	А	213	С	N1-C2-O2	5.05	121.93	118.90
23	В	100	U	O4'-C1'-N1	5.05	112.24	108.20
1	a	631	С	C6-N1-C2	-5.05	118.28	120.30
22	А	957	С	C6-N1-C2	-5.05	118.28	120.30
22	А	256	С	C6-N1-C2	-5.04	118.28	120.30
22	А	113	U	N1-C2-O2	5.04	126.33	122.80
1	a	377	С	C6-N1-C2	-5.04	118.28	120.30
22	А	717	С	C6-N1-C2	-5.04	118.29	120.30
22	А	883	С	C6-N1-C2	-5.04	118.28	120.30
1	a	1171	С	C5-C6-N1	5.03	123.51	121.00
22	А	1435	С	C6-N1-C2	-5.03	118.29	120.30
22	А	1382	С	N3-C2-O2	-5.02	118.38	121.90
22	А	1794	С	C6-N1-C2	-5.02	118.29	120.30
22	А	607	С	C6-N1-C2	-5.01	118.29	120.30
22	А	1030	С	C5-C6-N1	5.01	123.50	121.00
52	X	41	С	N1-C2-O2	5.01	121.91	118.90
25	Е	148	HIS	C-N-CA	5.00	134.21	121.70

There are no chirality outliers.

All ((8)	planarity	outliers	are listed	below:
-------	-----	-----------	----------	------------	--------

Mol	Chain	Res	Type	Group
44	1	58	ARG	Sidechain
44	1	7	ARG	Sidechain
48	5	26	ASN	Peptide
26	F	188	ASN	Peptide
30	Ν	17	ARG	Sidechain
36	Т	25	PHE	Peptide
3	с	155	ARG	Sidechain
5	е	32	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
2	b	215/255~(84%)	202 (94%)	13~(6%)	0	100	100
3	с	194/217~(89%)	186 (96%)	8 (4%)	0	100	100
4	d	193/200~(96%)	187 (97%)	6 (3%)	0	100	100
5	е	155/166~(93%)	151 (97%)	4 (3%)	0	100	100
6	f	94/98~(96%)	92 (98%)	2 (2%)	0	100	100
7	g	142/156~(91%)	137 (96%)	5 (4%)	0	100	100
8	h	129/132~(98%)	125 (97%)	4 (3%)	0	100	100
9	i	123/132~(93%)	117 (95%)	6(5%)	0	100	100
10	j	96/102~(94%)	90 (94%)	6 (6%)	0	100	100
11	k	111/129~(86%)	105 (95%)	6 (5%)	0	100	100
12	1	133/137~(97%)	126 (95%)	7 (5%)	0	100	100
13	m	115/121~(95%)	113 (98%)	2 (2%)	0	100	100
14	n	58/89~(65%)	58 (100%)	0	0	100	100
15	О	86/89~(97%)	84 (98%)	2(2%)	0	100	100
16	р	88/91~(97%)	83 (94%)	5 (6%)	0	100	100
17	q	83/87~(95%)	75~(90%)	8 (10%)	0	100	100
18	r	62/80~(78%)	60 (97%)	2(3%)	0	100	100
19	s	80/92~(87%)	78~(98%)	2(2%)	0	100	100
20	t	78/83~(94%)	77 (99%)	1 (1%)	0	100	100
24	D	272/277~(98%)	265 (97%)	7(3%)	0	100	100
25	Ε	214/220~(97%)	205 (96%)	9 (4%)	0	100	100
26	F	201/207~(97%)	192 (96%)	9 (4%)	0	100	100
27	G	148/179~(83%)	139 (94%)	9 (6%)	0	100	100
28	Н	156/178~(88%)	145 (93%)	11 (7%)	0	100	100
29	М	143/145 (99%)	138 (96%)	5 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
30	N	120/122~(98%)	115 (96%)	5 (4%)	0	100	100
31	Ο	144/146~(99%)	139 (96%)	5 (4%)	0	100	100
32	Р	135/144 (94%)	134 (99%)	1 (1%)	0	100	100
33	Q	117/122~(96%)	114 (97%)	3 (3%)	0	100	100
34	R	116/119 (98%)	114 (98%)	2 (2%)	0	100	100
35	S	107/116~(92%)	101 (94%)	6 (6%)	0	100	100
36	Т	114/118 (97%)	110 (96%)	4 (4%)	0	100	100
37	U	94/102~(92%)	90 (96%)	4 (4%)	0	100	100
38	V	110/117 (94%)	106 (96%)	4 (4%)	0	100	100
39	W	87/91~(96%)	84 (97%)	3 (3%)	0	100	100
40	Х	81/105~(77%)	75 (93%)	6 (7%)	0	100	100
41	Y	92/217~(42%)	90 (98%)	2 (2%)	0	100	100
42	Z	80/94~(85%)	76 (95%)	4 (5%)	0	100	100
43	0	43/62~(69%)	38 (88%)	5 (12%)	0	100	100
44	1	63/69~(91%)	62 (98%)	1 (2%)	0	100	100
45	2	55/59~(93%)	51 (93%)	4 (7%)	0	100	100
46	3	67/84~(80%)	62 (92%)	5 (8%)	0	100	100
47	4	47/58 (81%)	45 (96%)	2 (4%)	0	100	100
48	5	40/49~(82%)	36 (90%)	4 (10%)	0	100	100
49	6	42/45~(93%)	40 (95%)	2 (5%)	0	100	100
50	7	62/66~(94%)	56 (90%)	6 (10%)	0	100	100
51	8	35/37~(95%)	35 (100%)	0	0	100	100
All	All	5220/5804 (90%)	5003 (96%)	217 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	b	189/221~(86%)	187~(99%)	2(1%)	73	88
3	с	162/175~(93%)	162 (100%)	0	100	100
4	d	172/175~(98%)	172 (100%)	0	100	100
5	е	123/131~(94%)	122~(99%)	1 (1%)	81	93
6	f	84/86~(98%)	82~(98%)	2(2%)	49	77
7	g	125/132~(95%)	125~(100%)	0	100	100
8	h	112/113~(99%)	112 (100%)	0	100	100
9	i	105/109~(96%)	105 (100%)	0	100	100
10	j	88/91~(97%)	88 (100%)	0	100	100
11	k	89/104 (86%)	88~(99%)	1 (1%)	73	88
12	1	117/119~(98%)	116 (99%)	1 (1%)	78	91
13	m	100/104~(96%)	99~(99%)	1 (1%)	76	90
14	n	50/78~(64%)	50 (100%)	0	100	100
15	0	80/81~(99%)	80 (100%)	0	100	100
16	р	76/77~(99%)	76 (100%)	0	100	100
17	q	80/82~(98%)	79~(99%)	1 (1%)	69	87
18	r	57/68~(84%)	57~(100%)	0	100	100
19	s	71/80~(89%)	67~(94%)	4 (6%)	21	57
20	t	67/69~(97%)	67~(100%)	0	100	100
24	D	221/224~(99%)	218 (99%)	3 (1%)	67	86
25	Е	173/177~(98%)	173 (100%)	0	100	100
26	F	163/169~(96%)	158 (97%)	5(3%)	40	72
27	G	131/158~(83%)	130 (99%)	1 (1%)	81	93
28	Н	141/155~(91%)	137~(97%)	4 (3%)	43	74
29	М	123/123~(100%)	123 (100%)	0	100	100
30	Ν	100/100~(100%)	100 (100%)	0	100	100
31	О	112/112~(100%)	107~(96%)	5 (4%)	27	63
32	Р	114/119~(96%)	112 (98%)	2 (2%)	59	82
33	Q	100/102~(98%)	99~(99%)	1 (1%)	76	90
34	R	93/95~(98%)	93 (100%)	0	100	100
35	S	$\overline{95/102} \ (93\%)$	95 (100%)	0	100	100
36	Т	96/98~(98%)	95~(99%)	1 (1%)	76	90

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
37	U	84/86~(98%)	84 (100%)	0	100	100
38	V	91/94~(97%)	91 (100%)	0	100	100
39	W	80/82~(98%)	80 (100%)	0	100	100
40	Х	72/90~(80%)	$71 \ (99\%)$	1 (1%)	67	86
41	Y	82/190~(43%)	81 (99%)	1 (1%)	71	88
42	Z	64/75~(85%)	64 (100%)	0	100	100
43	0	37/52~(71%)	37 (100%)	0	100	100
44	1	59/62~(95%)	59 (100%)	0	100	100
45	2	51/53~(96%)	50 (98%)	1 (2%)	55	80
46	3	63/75~(84%)	61 (97%)	2(3%)	39	71
47	4	46/51~(90%)	45 (98%)	1 (2%)	52	79
48	5	43/47~(92%)	42 (98%)	1 (2%)	50	78
49	6	39/40~(98%)	39 (100%)	0	100	100
50	7	55/57~(96%)	53~(96%)	2 (4%)	35	69
51	8	34/35~(97%)	34 (100%)	0	100	100
All	All	4509/4918 (92%)	4465 (99%)	44 (1%)	77	90

All (44) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	b	138	LYS
2	b	167	ARG
5	е	88	ARG
6	f	52	ILE
6	f	56	LYS
11	k	113	VAL
12	l	99	ARG
13	m	102	THR
17	q	50	ASP
19	s	6	LYS
19	s	7	LYS
19	s	51	VAL
19	s	55	ARG
24	D	26	THR
24	D	218	THR
24	D	274	LYS
26	F	117	LYS

Mol	Chain	Res	Type
26	F	121	ASN
26	F	184	LEU
26	F	188	ASN
26	F	190	ASP
27	G	51	ASP
28	Н	43	PHE
28	Н	56	SER
28	Н	61	ASP
28	Н	69	ARG
31	0	7	LYS
31	0	19	VAL
31	0	129	SER
31	0	134	GLU
31	0	139	LYS
32	Р	14	ARG
32	Р	27	VAL
33	Q	11	ASP
36	Т	27	SER
40	Х	72	ASP
41	Y	57	ARG
45	2	54	VAL
46	3	49	ASP
46	3	70	ARG
47	4	42	ARG
48	5	38	ARG
50	7	31	HIS
50	7	32	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (68) such sidechains are listed below:

Mol	Chain	Res	Type
2	b	15	HIS
2	b	55	ASN
2	b	159	GLN
3	с	6	ASN
3	с	64	ASN
3	с	68	HIS
3	с	91	ASN
3	с	133	GLN
4	d	8	ASN
4	d	67	GLN
4	d	137	GLN

Mol	Chain	Res	Type
4	d	192	GLN
5	е	145	GLN
5	е	166	ASN
7	g	28	ASN
7	g	122	ASN
9	i	33	ASN
12	1	25	ASN
12	1	73	ASN
13	m	74	ASN
15	0	37	ASN
15	0	42	HIS
15	0	65	HIS
15	0	68	ASN
17	q	49	HIS
17	q	52	ASN
17	q	64	GLN
18	r	57	GLN
20	t	67	HIS
24	D	225	ASN
24	D	229	HIS
24	D	231	HIS
25	Е	33	ASN
25	Е	143	HIS
26	F	3	ASN
26	F	141	ASN
26	F	158	ASN
28	Н	48	ASN
28	Н	65	HIS
29	М	3	GLN
29	М	11	ASN
29	М	81	HIS
31	0	38	GLN
31	0	78	ASN
31	0	126	HIS
32	Р	25	ASN
32	Р	35	GLN
33	Q	106	GLN
34	R	8	ASN
35	S	4	HIS
35	S	79	HIS
37	U	18	GLN
39	W	37	GLN

Mol	Chain	Res	Type
40	Х	69	GLN
41	Y	20	GLN
42	Ζ	58	ASN
43	0	34	GLN
46	3	55	HIS
46	3	75	ASN
46	3	83	ASN
48	5	22	ASN
48	5	25	ASN
48	5	26	ASN
49	6	7	GLN
49	6	17	HIS
50	7	31	HIS
50	7	40	GLN
50	7	60	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1541/1556~(99%)	310 (20%)	0
21	V	20/29~(68%)	8 (40%)	0
22	А	2870/2923~(98%)	584 (20%)	8~(0%)
23	В	114/115~(99%)	17 (14%)	1 (0%)
52	Х	75/77~(97%)	21 (28%)	0
All	All	4620/4700 (98%)	940 (20%)	9~(0%)

All (940) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	a	7	G
1	a	8	G
1	a	10	G
1	a	11	А
1	a	31	U
1	a	33	А
1	a	40	G
1	a	45	G
1	a	48	С
1	a	49	С
1	a	50	U
1	a	51	А

Mol	Chain	Res	Type
1	a	52	А
1	a	55	С
1	a	64	С
1	a	65	G
1	a	78	А
1	a	80	А
1	a	83	С
1	a	84	U
1	a	85	U
1	a	86	G
1	a	88	U
1	a	89	U
1	a	91	U
1	a	93	U
1	a	94	G
1	a	108	A
1	a	115	А
1	a	120	С
1	a	126	G
1	a	128	U
1	a	129	А
1	a	130	А
1	a	132	С
1	a	138	А
1	a	152	А
1	a	156	С
1	a	159	G
1	a	162	А
1	a	173	U
1	a	177	G
1	a	182	А
1	a	183	U
1	a	184	А
1	a	185	U
1	a	192	С
1	a	195	С
1	a	201	U
1	a	203	А
1	a	204	A
1	a	207	G
1	a	211	А
1	a	212	А

Mol	Chain	Res	Type
1	a	213	G
1	a	216	G
1	a	218	U
1	a	220	U
1	a	221	U
1	a	222	G
1	a	249	G
1	a	253	U
1	a	255	G
1	a	258	А
1	a	259	G
1	a	261	U
1	a	274	G
1	a	275	С
1	a	287	А
1	a	297	G
1	a	310	G
1	a	316	С
1	a	329	А
1	a	336	С
1	a	338	С
1	a	353	С
1	a	355	G
1	a	360	С
1	a	362	G
1	a	375	U
1	a	380	С
1	a	382	A
1	a	392	G
1	a	396	G
1	a	405	A
1	a	406	C
1	a	414	G
1	a	419	A
1	a	420	U
1	a	421	G
1	a	429	U
1	a	432	G
1	a	437	U
1	a	451	U
1	a	$45\overline{4}$	G
1	a	456	A

Mol	Chain	Res	Type
1	a	462	А
1	a	465	U
1	a	466	G
1	a	467	U
1	a	468	G
1	a	469	U
1	a	472	G
1	a	476	С
1	a	477	U
1	a	480	G
1	a	481	С
1	a	482	А
1	a	483	С
1	a	485	U
1	a	486	С
1	a	493	G
1	a	503	А
1	a	505	А
1	a	517	A
1	a	519	С
1	a	526	С
1	a	527	С
1	a	532	G
1	a	535	7MG
1	a	536	С
1	a	539	U
1	a	540	А
1	a	546	U
1	a	555	A
1	a	557	С
1	a	567	A
1	a	572	U
1	a	580	A
1	a	581	A
1	a	584	С
1	a	585	G
1	a	595	G
1	a	604	A
1	a	609	G
1	a	626	С
1	a	635	G
1	a	641	U

Mol	Chain	Res	Type
1	a	646	G
1	a	649	А
1	a	650	А
1	a	659	С
1	a	660	U
1	a	661	U
1	a	662	G
1	a	673	А
1	a	681	G
1	a	693	G
1	a	695	А
1	a	711	G
1	a	715	U
1	a	729	А
1	a	741	G
1	a	742	А
1	a	756	А
1	a	763	G
1	a	769	G
1	a	785	А
1	a	795	А
1	a	801	U
1	a	802	А
1	a	803	С
1	a	807	G
1	a	817	G
1	a	820	G
1	a	823	А
1	a	825	С
1	a	829	G
1	a	836	A
1	a	840	G
1	a	851	U
1	a	852	C
1	a	854	G
1	a	855	C
1	a	862	G
1	a	864	G
1	a	881	A
1	a	911	G
1	a	925	G
1	a	931	G

Mol	Chain	Res	Type
1	a	935	G
1	a	943	С
1	a	944	А
1	a	969	U
1	a	974	А
1	a	977	А
1	a	978	А
1	a	980	G
1	a	984	А
1	a	985	G
1	a	992	А
1	a	1000	U
1	a	1001	U
1	a	1002	G
1	a	1011	U
1	a	1013	А
1	a	1015	А
1	a	1016	А
1	a	1019	С
1	a	1024	G
1	a	1027	А
1	a	1029	А
1	a	1034	U
1	a	1035	С
1	a	1036	С
1	a	1038	С
1	a	1039	U
1	a	1040	U
1	a	1042	G
1	a	1043	G
1	a	1044	G
1	a	1046	G
1	a	1047	А
1	a	1055	A
1	a	1056	С
1	a	1057	A
1	a	1064	G
1	a	1075	G
1	a	1076	U
1	a	1097	U
1	a	1105	G
1	a	1106	U

Mol	Chain	Res	Type
1	a	1112	А
1	a	1119	G
1	a	1121	А
1	a	1135	G
1	a	1136	U
1	a	1137	U
1	a	1138	G
1	a	1141	А
1	a	1149	G
1	a	1150	U
1	a	1151	U
1	a	1152	G
1	a	1155	С
1	a	1161	A
1	a	1168	С
1	a	1169	U
1	a	1170	G
1	a	1177	А
1	a	1178	С
1	a	1181	А
1	a	1184	G
1	a	1193	U
1	a	1194	G
1	a	1206	А
1	a	1207	А
1	a	1211	А
1	a	1222	U
1	a	1224	U
1	a	1237	А
1	a	1243	G
1	a	1248	A
1	a	1266	С
1	a	1267	A
1	a	1270	G
1	a	1284	A
1	a	1290	A
1	a	1295	A
1	a	1297	A
1	a	1298	A
1	a	1300	G
1	a	1309	A
1	a	1310	G

Mol	Chain	Res	Type
1	a	1314	G
1	a	1315	G
1	a	1330	С
1	a	1332	С
1	a	1337	А
1	a	1341	G
1	a	1346	U
1	a	1348	G
1	a	1350	А
1	a	1355	U
1	a	1356	А
1	a	1363	G
1	a	1374	U
1	a	1378	A
1	a	1380	G
1	a	1388	С
1	a	1390	U
1	a	1391	U
1	a	1392	С
1	a	1393	С
1	a	1404	А
1	a	1408	А
1	a	1435	А
1	a	1436	А
1	a	1441	С
1	a	1452	G
1	a	1456	А
1	a	1457	А
1	a	1459	С
1	a	1460	U
1	a	1461	U
1	a	1463	U
1	a	1464	A
1	a	1498	G
1	a	1504	A
1	a	1505	G
1	a	1508	G
1	a	1510	A
1	a	1513	A
1	a	1514	A
1	a	1517	U
1	a	1528	G

Mol	Chain	Res	Type
1	a	1540	G
1	a	1541	G
1	a	1544	С
1	a	1545	А
21	V	12	А
21	V	13	А
21	V	14	А
21	V	15	А
21	V	19	G
21	V	23	А
21	V	24	А
21	V	25	А
22	А	13	А
22	А	23	G
22	А	24	G
22	А	34	U
22	А	37	С
22	А	43	А
22	А	64	А
22	А	71	А
22	А	74	U
22	А	75	G
22	А	89	U
22	А	90	А
22	А	95	А
22	А	96	G
22	А	100	U
22	А	101	G
22	А	117	А
22	А	118	A
22	A	119	U
22	A	120	G
22	А	124	A
22	A	129	С
22	А	130	А
22	A	150	A
22	A	154	A
22	A	161	A
22	A	162	A
22	A	164	A
22	A	165	С
22	A	167	U

Mol	Chain	Res	Type
22	А	168	А
22	А	169	G
22	А	173	А
22	А	176	A
22	А	177	G
22	А	185	A
22	А	199	A
22	А	200	A
22	А	202	A
22	А	218	G
22	А	219	A
22	А	225	А
22	А	227	G
22	A	231	A
22	А	233	U
22	А	236	A
22	А	251	G
22	А	255	G
22	А	268	A
22	А	280	С
22	А	282	А
22	А	290	U
22	А	294	G
22	А	298	U
22	А	300	G
22	А	301	U
22	А	302	A
22	А	308	С
22	А	321	U
22	A	324	A
22	A	327	G
22	A	328	G
22	A	329	A
22	A	338	G
22	A	354	A
22	A	365	A
22	A	372	A
22	A	373	A
22	A	374	U
22	A	377	U
22	A	386	С
22	А	388	А

Mol	Chain	Res	Type
22	А	398	C
22	А	401	U
22	А	404	U
22	А	432	G
22	А	435	А
22	А	451	U
22	А	457	G
22	А	458	А
22	А	466	С
22	А	471	G
22	А	481	С
22	А	482	U
22	А	502	С
22	A	510	U
22	А	513	G
22	А	523	A
22	А	527	G
22	А	539	G
22	А	550	А
22	А	553	A
22	А	554	С
22	А	567	G
22	А	572	С
22	А	575	G
22	А	576	U
22	А	577	A
22	А	578	G
22	А	583	A
22	А	592	A
22	A	593	U
22	A	594	G
22	A	606	G
22	А	611	U
22	A	616	G
22	А	618	A
22	A	630	G
22	А	646	A
22	А	659	A
22	A	661	U
22	A	662	G
22	A	666	A
22	A	667	G

Mol	Chain	Res	Type
22	А	679	G
22	А	682	А
22	А	683	G
22	А	690	U
22	А	698	U
22	А	699	U
22	А	700	A
22	А	715	A
22	А	731	U
22	А	745	G
22	А	773	G
22	А	774	G
22	А	775	A
22	А	781	С
22	А	783	G
22	А	792	U
22	А	807	U
22	А	809	A
22	А	810	A
22	А	813	G
22	А	820	G
22	А	822	G
22	А	824	A
22	А	827	A
22	А	829	U
22	А	830	U
22	А	834	A
22	А	837	G
22	А	839	A
22	А	847	A
22	А	850	G
22	A	851	C
22	A	857	С
22	A	872	U
22	A	873	U
22	A	888	G
22	A	891	A
22	A	904	G
22	A	910	C
22	A	911	A
22	A	919	G
22	А	923	A

Mol	Chain	Res	Type
22	А	926	G
22	А	929	С
22	А	930	С
22	А	931	С
22	А	932	U
22	А	936	G
22	А	938	G
22	А	955	А
22	А	959	С
22	А	960	С
22	А	971	U
22	А	972	A
22	А	985	А
22	А	989	A
22	А	990	G
22	А	1001	А
22	А	1005	G
22	А	1018	А
22	А	1023	А
22	А	1026	С
22	А	1027	А
22	А	1033	G
22	А	1039	С
22	А	1040	А
22	А	1053	А
22	А	1055	А
22	А	1056	U
22	А	1057	А
22	А	1060	U
22	А	1061	G
22	A	1069	G
22	А	1070	А
22	A	1071	A
22	А	1077	U
22	A	1090	A
22	A	1091	G
22	А	1096	С
22	A	1102	U
22	A	1105	U
22	A	1106	G
22	А	1108	С
22	А	1109	U

Mol	Chain	Res	Type
22	А	1110	U
22	А	1111	А
22	А	1113	А
22	А	1114	А
22	А	1115	G
22	А	1116	С
22	А	1117	А
22	А	1120	С
22	А	1122	U
22	А	1124	А
22	А	1127	U
22	А	1128	А
22	А	1129	А
22	А	1131	G
22	А	1132	А
22	А	1133	G
22	А	1137	G
22	А	1138	U
22	А	1139	А
22	А	1140	А
22	А	1143	G
22	А	1145	U
22	А	1146	С
22	А	1147	А
22	А	1151	G
22	А	1152	U
22	А	1153	С
22	А	1154	G
22	А	1155	А
22	А	1156	G
22	А	1171	А
22	A	1172	A
22	А	1174	U
22	A	1176	U
22	А	1177	А
22	A	1178	С
22	А	1179	С
22	A	1186	A
22	А	1201	G
22	A	1211	G
22	А	1215	U
22	А	1220	A

Mol	Chain	Res	Type
22	А	1250	G
22	А	1258	А
22	А	1276	G
22	А	1278	G
22	А	1288	G
22	А	1294	G
22	А	1295	С
22	А	1306	А
22	А	1309	G
22	А	1310	А
22	А	1323	А
22	А	1326	С
22	А	1337	А
22	А	1338	U
22	А	1339	U
22	А	1349	U
22	А	1350	U
22	А	1358	А
22	А	1375	G
22	А	1377	U
22	А	1378	U
22	А	1387	С
22	А	1389	U
22	А	1402	А
22	А	1405	G
22	А	1416	U
22	А	1421	А
22	А	1432	А
22	А	1435	С
22	А	1436	С
22	A	1437	U
22	А	1450	А
22	A	1463	A
22	А	1464	U
22	A	1465	G
22	A	1471	A
22	A	1472	С
22	A	$1\overline{473}$	G
22	A	1489	A
22	A	1490	G
22	A	1491	C
22	A	1492	G

Mol	Chain	Res	Type	
22	А	1494	G	
22	А	1495	С	
22	А	1496	G	
22	А	1499	U	
22	А	1502	А	
22	А	1503	U	
22	А	1504	U	
22	А	1505	G	
22	А	1506	С	
22	А	1510	U	
22	А	1516	С	
22	А	1517	A	
22	А	1519	U	
22	А	1525	U	
22	А	1533	A	
22	А	1536	С	
22	А	1537	А	
22	А	1540	U	
22	А	1541	С	
22	А	1550	G	
22	А	1551	U	
22	А	1552	U	
22	А	1553	А	
22	А	1555	G	
22	А	1559	G	
22	А	1561	G	
22	А	1570	G	
22	А	1575	A	
22	А	1576	А	
22	А	1577	G	
22	A	1590	С	
22	А	1592	A	
22	A	1600	A	
22	А	1601	U	
22	A	1605	A	
22	A	1606	C	
22	А	1613	G	
22	A	1614	A	
22	А	1616	А	
22	A	1625	U	
22	А	1630	А	
22	А	1632	A	

Mol	Chain	Res	Type
22	А	1634	А
22	А	1635	А
22	А	1636	U
22	А	1639	G
22	А	1651	С
22	А	1652	А
22	А	1662	А
22	А	1683	U
22	А	1686	G
22	А	1690	А
22	А	1691	G
22	А	1692	С
22	А	1696	С
22	A	1718	G
22	А	1719	С
22	А	1737	U
22	А	1738	С
22	А	1740	G
22	А	1756	U
22	А	1757	U
22	А	1759	G
22	А	1764	А
22	А	1768	С
22	А	1772	G
22	А	1777	G
22	А	1785	G
22	А	1790	G
22	А	1791	G
22	А	1800	А
22	А	1803	G
22	A	1808	U
22	A	1811	А
22	A	1813	А
22	A	1815	C
22	A	1819	G
22	A	1826	G
22	A	1827	С
22	A	1828	U
22	A	1837	A
22	A	1839	G
22	A	1843	U
22	А	1844	G

Mol	Chain	Res	Type
22	А	1847	U
22	А	1856	A
22	А	1893	A
22	А	1895	С
22	А	1896	U
22	А	1897	U
22	А	1899	U
22	А	1900	G
22	А	1902	G
22	А	1909	С
22	А	1930	G
22	А	1933	G
22	А	1937	G
22	А	1939	A
22	А	1940	А
22	А	1941	С
22	А	1943	А
22	А	1947	OMC
22	А	1956	G
22	А	1957	G
22	А	1963	A
22	А	1964	A
22	А	1965	A
22	А	1966	5MU
22	А	1967	U
22	А	1975	G
22	А	1982	U
22	А	1990	С
22	A	1991	G
22	A	1993	A
22	A	1994	C
22	A	1997	A
22	А	1998	A
22	A	1999	G
22	A	2009	U
22	A	2018	U
22	A	2020	U
22	A	2033	C
22	A	2050	A
22	A	2058	A
22	A	2059	G
22	А	2060	A

Mol	Chain	Res	Type
22	А	2063	С
22	А	2070	С
22	А	2082	С
22	А	2083	G
22	А	2087	А
22	А	2088	G
22	А	2089	А
22	А	2094	G
22	А	2096	G
22	А	2097	G
22	А	2114	G
22	А	2120	G
22	А	2128	G
22	А	2132	A
22	А	2135	U
22	А	2136	U
22	А	2137	G
22	А	2138	U
22	А	2139	А
22	А	2140	С
22	А	2142	G
22	А	2143	G
22	А	2144	А
22	А	2145	U
22	А	2146	А
22	А	2147	G
22	А	2150	А
22	А	2153	А
22	А	2157	U
22	А	2158	U
22	А	2160	G
22	А	2161	А
22	A	2162	A
22	А	2164	С
22	A	2165	G
22	A	2166	U
22	A	2168	А
22	A	2169	G
22	A	2172	С
22	A	$2\overline{173}$	U
22	A	$2\overline{174}$	A
22	А	2175	G

Mol	Chain	Res	Type
22	А	2176	С
22	А	2179	А
22	А	2183	G
22	А	2184	G
22	А	2185	А
22	А	2186	G
22	А	2188	С
22	А	2190	С
22	А	2191	U
22	А	2194	U
22	А	2195	G
22	А	2196	G
22	А	2198	А
22	А	2200	A
22	А	2201	С
22	А	2205	С
22	А	2208	А
22	А	2211	U
22	А	2214	G
22	А	2215	U
22	А	2217	G
22	А	2220	U
22	А	2225	А
22	А	2230	G
22	А	2231	С
22	А	2240	U
22	А	2241	С
22	А	2252	А
22	А	2253	С
22	А	2265	G
22	А	2266	G
22	А	2296	А
22	A	2305	A
22	A	2309	G
22	A	$2\overline{310}$	С
22	A	2314	A
22	А	2321	С
22	A	$2\overline{332}$	U
22	A	2335	G
22	A	2347	А
22	A	2349	A
22	А	2352	G

Mol	Chain	Res	Type
22	А	2353	U
22	А	2361	U
22	А	2362	А
22	А	2363	А
22	А	2374	С
22	А	2377	С
22	А	2386	С
22	А	2404	A
22	А	2406	G
22	А	2410	G
22	А	2412	С
22	А	2418	G
22	А	2429	U
22	А	2433	С
22	А	2446	U
22	А	2450	U
22	А	2452	А
22	А	2456	G
22	А	2457	А
22	А	2467	С
22	А	2468	С
22	А	2472	2MG
22	А	2475	А
22	А	2486	А
22	А	2501	U
22	А	2502	С
22	А	2505	А
22	А	2518	U
22	А	2525	OMC
22	А	2528	С
22	А	2529	G
22	А	2531	U
22	А	2532	G
22	А	2533	U
22	А	2541	U
22	А	2545	A
22	А	2547	С
22	А	2556	G
22	А	2562	G
22	А	2565	С
22	А	2569	A
22	А	2593	A

Mol	Chain	Res	Type
22	А	2594	G
22	А	2600	С
22	А	2609	G
22	А	2624	G
22	А	2628	С
22	А	2629	А
22	А	2635	G
22	А	2636	U
22	А	2637	С
22	А	2640	U
22	А	2642	U
22	А	2663	U
22	А	2666	А
22	А	2672	G
22	А	2673	С
22	А	2690	G
22	А	2697	G
22	А	2709	U
22	А	2716	U
22	А	2727	G
22	А	2740	А
22	А	2741	G
22	А	2753	U
22	А	2754	G
22	А	2760	А
22	А	2762	G
22	А	2769	G
22	А	2775	А
22	А	2784	А
22	А	2792	A
22	А	2793	G
22	А	2796	С
22	A	2805	A
22	А	2806	U
22	A	2817	A
22	А	2820	U
22	А	2827	A
22	A	2833	U
22	A	2840	A
22	A	2841	A
22	А	2853	U
22	А	2863	G

Mol	Chain	Res	Type
22	А	2887	G
22	А	2893	А
22	А	2900	С
22	А	2903	А
22	А	2904	U
22	А	2906	G
22	А	2911	А
22	А	2913	G
23	В	2	С
23	В	10	U
23	В	11	А
23	В	23	U
23	В	24	С
23	В	39	G
23	В	41	С
23	В	43	А
23	В	52	G
23	В	64	А
23	В	87	С
23	В	88	G
23	В	90	U
23	В	97	G
23	В	102	G
23	В	106	G
23	В	108	U
52	X	2	G
52	X	5	G
52	X	8	4SU
52	X	9	G
52	X	16	С
52	X	17	С
52	X	17(A)	U
52	X	18	G
52	X	19	G
52	X	20	H2U
52	x	21	А
52	X	26	G
52	X	43	A
52	X	46	7MG
52	X	47	U
52	X	49	G
52	x	56	С

Continued from previous page...

Mol	Chain	Res	Type
52	Х	58	А
52	Х	61	С
52	Х	74	С
52	Х	75	С

All (9) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
22	А	179	А
22	А	327	G
22	А	328	G
22	А	971	U
22	А	1503	U
22	А	1550	G
22	А	2216	U
22	А	2783	U
23	В	23	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

18 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Link	B	ond leng	gths	B	Bond ang	gles
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
52	H2U	х	20	52	22,22,22	0.94	2 (9%)	28,33,33	2.84	6 (21%)
22	OMG	А	2278	22,52	18,26,27	2.31	7 (38%)	19,38,41	1.51	4 (21%)
1	2MG	a	1527	1	18,26,27	2.37	7 (38%)	16,38,41	1.43	3 (18%)
52	4SU	х	8	52	22,22,22	1.71	4 (18%)	33,33,33	2.82	13 (39%)
1	MA6	a	1530	1	18,26,27	1.03	2 (11%)	19,38,41	<mark>3.52</mark>	2 (10%)
52	31H	х	76	52,53	28,34,35	4.57	13 (46%)	23,47,50	2.80	6 (26%)
22	5MU	А	1966	22,54	19,22,23	4.82	7 (36%)	28,32,35	<mark>3.83</mark>	9 (32%)
22	2MA	А	2530	22,54,53	17,25,26	2.41	5 (29%)	17,37,40	1.55	4 (23%)
52	5MU	х	54	52	23,23,23	4.53	7 (30%)	35,35,35	<mark>3.83</mark>	15 (42%)

Mal	Turne	Chain	Bond lengths Bond ang			Bond lengths			gles	
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	7MG	a	535	1	22,26,27	3.80	10 (45%)	29,39,42	2.07	9 (31%)
52	$7 \mathrm{MG}$	х	46	52	26,27,27	3.49	10 (38%)	36,42,42	2.74	15 (41%)
22	$2 \mathrm{MG}$	А	2472	22	18,26,27	2.25	7 (38%)	16,38,41	1.66	4 (25%)
52	OMC	х	32	52	23,23,23	2.73	8 (34%)	33,34,34	2.28	8 (24%)
22	OMC	А	1947	22	19,22,23	2.84	8 (42%)	26,31,34	0.88	1 (3%)
22	OMC	А	2525	22	19,22,23	2.75	7 (36%)	26,31,34	0.99	1 (3%)
1	MA6	а	1529	1	18,26,27	1.04	2 (11%)	19,38,41	3.12	2 (10%)
1	4OC	a	1412	1	20,23,24	3.07	8 (40%)	26,32,35	1.04	2 (7%)
52	PSU	х	55	52	22,22,22	1.25	3 (13%)	29,33,33	2.75	11 (37%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
52	H2U	х	20	52	-	4/10/39/39	0/2/2/2
22	OMG	А	2278	22,52	-	0/5/27/28	0/3/3/3
1	2MG	a	1527	1	-	0/5/27/28	0/3/3/3
52	4SU	Х	8	52	-	1/10/26/26	0/2/2/2
1	MA6	a	1530	1	-	2/7/29/30	0/3/3/3
52	31H	х	76	$52,\!53$	-	14/18/40/41	0/3/3/3
22	$5 \mathrm{MU}$	А	1966	$22,\!54$	-	2/7/25/26	0/2/2/2
22	2MA	А	2530	$22,\!54,\!53$	-	2/3/25/26	0/3/3/3
52	5MU	х	54	52	-	2/10/26/26	0/2/2/2
1	$7 \mathrm{MG}$	a	535	1	-	2/7/37/38	0/3/3/3
52	7MG	х	46	52	-	5/10/38/38	0/3/3/3
22	2MG	А	2472	22	-	2/5/27/28	0/3/3/3
52	OMC	х	32	52	-	4/12/28/28	0/2/2/2
22	OMC	А	1947	22	-	2/9/27/28	0/2/2/2
22	OMC	А	2525	22	-	2/9/27/28	0/2/2/2
1	MA6	a	1529	1	-	1/7/29/30	0/3/3/3
1	4OC	a	1412	1	-	2/9/29/30	0/2/2/2
52	PSU	х	55	52	-	4/10/26/26	0/2/2/2

All (117) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
52	Х	76	31H	C4'-C3'	-13.83	1.28	1.52
52	Х	54	5MU	C2-N1	11.56	1.57	1.38
52	Х	54	5MU	C6-N1	11.11	1.57	1.38
22	А	1966	5MU	C6-N1	10.80	1.56	1.38
22	А	1966	5MU	C2-N1	10.59	1.55	1.38
52	Х	54	5MU	C4-C5	9.93	1.61	1.44
52	Х	76	31H	O4'-C4'	9.70	1.66	1.45
22	А	1966	5MU	C4-C5	9.31	1.60	1.44
52	Х	46	7MG	C8-N9	9.24	1.51	1.46
1	a	535	7MG	C8-N9	9.04	1.51	1.46
52	Х	76	31H	O4'-C1'	-8.26	1.29	1.41
52	Х	76	31H	C3'-N3'	8.21	1.58	1.45
1	a	535	7MG	C5-N7	8.12	1.45	1.35
52	Х	46	7MG	C5-N7	8.09	1.44	1.35
22	А	1966	5MU	C4-N3	-7.82	1.24	1.38
52	Х	54	5MU	C4-N3	-7.43	1.25	1.38
22	А	1966	5MU	C6-C5	6.68	1.45	1.34
22	А	2530	2MA	C2-N3	6.56	1.45	1.31
52	Х	54	5MU	C6-C5	6.41	1.45	1.34
52	Х	32	OMC	C2-N3	6.27	1.49	1.36
1	a	1412	4OC	C4-N3	6.27	1.43	1.32
52	Х	76	31H	C-N3'	6.22	1.47	1.34
1	a	1412	4OC	C6-C5	6.22	1.49	1.35
22	А	1947	OMC	C2-N3	5.98	1.48	1.36
22	А	1947	OMC	C6-C5	5.93	1.48	1.35
52	Х	76	31H	CN-N	5.91	1.53	1.33
52	Х	32	OMC	C6-C5	5.87	1.48	1.35
52	Х	46	7MG	C2-N3	5.85	1.47	1.33
22	А	2525	OMC	C2-N3	5.84	1.48	1.36
1	a	535	7MG	C4-N9	5.82	1.44	1.37
1	a	535	7MG	C2-N3	5.81	1.47	1.33
1	a	1412	4OC	C2-N3	5.79	1.48	1.36
52	Х	46	7MG	C4-N9	5.54	1.44	1.37
1	a	535	7MG	C4-N3	5.54	1.47	1.34
22	А	2525	OMC	C6-C5	5.46	1.47	1.35
52	Х	46	7MG	C4-N3	5.41	1.47	1.34
1	a	1527	2MG	C2-N2	5.16	1.44	1.33
22	А	2530	2MA	C4-N3	5.04	1.49	1.37
52	Х	32	OMC	C4-N3	5.00	1.44	1.34
22	А	2278	OMG	C2-N3	5.00	1.45	1.33
1	a	1412	4OC	C4-N4	4.88	1.45	1.35
52	Х	46	7MG	C2-N2	4.87	1.45	1.34
52	х	32	OMC	C2-N1	4.85	1.50	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
52	Х	32	OMC	C4-N4	4.79	1.45	1.33
1	a	535	7MG	C2-N2	4.77	1.45	1.34
22	А	2472	2MG	C2-N2	4.70	1.43	1.33
22	А	1947	OMC	C4-N4	4.70	1.45	1.33
1	a	1527	2MG	C4-N3	4.61	1.48	1.37
52	Х	8	4SU	C4-S4	-4.61	1.59	1.68
22	А	2525	OMC	C4-N4	4.55	1.44	1.33
22	А	2472	2MG	C4-N3	4.53	1.48	1.37
22	А	2278	OMG	C4-N3	4.49	1.48	1.37
22	А	1947	OMC	C4-N3	4.47	1.43	1.34
1	a	1527	2MG	C2-N1	4.40	1.43	1.36
52	Х	76	31H	O2'-C2'	-4.39	1.32	1.43
22	А	2525	OMC	C4-N3	4.38	1.43	1.34
1	a	1412	4OC	C2-N1	4.34	1.49	1.40
22	А	2525	OMC	C2-N1	4.28	1.49	1.40
22	А	1947	OMC	C2-N1	4.21	1.49	1.40
52	Х	76	31H	C6-N6	3.93	1.48	1.34
52	Х	8	4SU	C5-C4	-3.86	1.37	1.42
1	а	535	7MG	C5-C6	3.77	1.53	1.43
1	a	1412	4OC	C5-C4	3.73	1.48	1.40
1	a	535	7MG	C2-N1	3.61	1.46	1.37
52	Х	46	7MG	C5-C6	3.61	1.52	1.43
22	А	2472	2MG	C2-N1	3.60	1.42	1.36
52	Х	46	7MG	C2-N1	3.59	1.46	1.37
22	А	2278	OMG	C6-N1	3.35	1.42	1.37
22	А	2278	OMG	C2-N2	3.29	1.42	1.34
22	А	2530	2MA	C5-C4	-3.24	1.34	1.43
1	a	1412	4OC	C6-N1	3.24	1.45	1.38
22	А	2472	2MG	C5-C4	-3.23	1.34	1.43
1	a	1527	2MG	C6-N1	3.21	1.42	1.37
52	Х	76	31H	C2'-C1'	3.20	1.58	1.53
22	А	1966	5MU	O4-C4	-3.15	1.17	1.23
52	Х	8	4SU	C4-N3	-3.15	1.34	1.37
52	Х	32	OMC	C6-N1	3.14	1.45	1.38
52	Х	46	7MG	C6-N1	3.08	1.44	1.38
1	a	535	7MG	C6-N1	3.06	1.44	1.38
52	Х	55	PSU	C6-C5	3.05	1.38	1.35
52	X	76	31H	C2'-C3'	3.01	1.59	1.53
22	A	1947	OMC	C6-N1	3.01	1.45	1.38
52	X	54	5MU	O4-C4	-2.98	1.17	1.23
22	A	2278	OMG	C5-C4	-2.98	1.35	1.43
1	a	1527	2MG	C5-C6	2.96	1.53	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	А	2530	2MA	C6-N1	2.93	1.44	1.38
22	А	2278	OMG	O6-C6	-2.92	1.17	1.23
1	a	1412	4OC	O2-C2	-2.89	1.18	1.23
22	А	1966	5MU	O2-C2	-2.88	1.17	1.23
22	А	2525	OMC	O2-C2	-2.86	1.18	1.23
22	А	2472	2MG	O6-C6	-2.85	1.17	1.23
1	a	1527	2MG	C5-C4	-2.84	1.35	1.43
1	a	1530	MA6	C5-C4	-2.83	1.33	1.40
22	А	2525	OMC	C6-N1	2.82	1.44	1.38
1	a	1529	MA6	C5-C4	-2.78	1.33	1.40
52	X	55	PSU	C4-N3	-2.78	1.33	1.38
22	А	1947	OMC	O2-C2	-2.76	1.18	1.23
52	Х	32	OMC	O2-C2	-2.72	1.18	1.23
52	х	20	H2U	C2-N3	-2.70	1.33	1.38
52	Х	46	7MG	O6-C6	-2.62	1.18	1.23
1	a	535	7MG	O6-C6	-2.60	1.18	1.23
52	х	54	5MU	O2-C2	-2.55	1.18	1.23
22	А	2472	2MG	C6-N1	2.52	1.41	1.37
22	А	2472	2MG	C5-C6	2.50	1.52	1.47
22	А	2278	OMG	C5-C6	2.50	1.52	1.47
52	Х	76	31H	CB-CG	2.48	1.61	1.51
52	х	8	4SU	C2-N1	2.46	1.42	1.38
52	Х	76	31H	O-C	-2.43	1.18	1.23
22	А	2530	2MA	C2-N1	2.41	1.44	1.36
1	a	1529	MA6	C2-N3	2.30	1.35	1.32
52	х	76	31H	C6-C5	-2.24	1.35	1.43
1	a	1527	2MG	O6-C6	-2.22	1.18	1.23
52	х	32	OMC	C5-C4	2.21	1.48	1.42
52	х	55	PSU	C2-N3	-2.18	1.33	1.37
52	X	20	H2U	C4-N3	-2.17	1.33	1.37
22	A	1947	OMC	C5-C4	2.09	1.47	1.42
1	a	1530	MA6	C2-N3	2.05	1.35	1.32

All (115) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	a	1530	MA6	N1-C6-N6	-13.63	102.72	117.06
22	А	1966	5MU	C5-C4-N3	12.76	126.20	115.31
52	Х	54	5MU	C5-C4-N3	12.34	125.84	115.31
1	a	1529	MA6	N1-C6-N6	-12.04	104.38	117.06
22	А	1966	5MU	C5-C6-N1	-11.02	112.00	123.34
52	Х	20	H2U	OP3-P-O5'	-10.38	79.11	106.73

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
52	Х	54	5MU	C5-C6-N1	-9.40	113.67	123.34
52	Х	20	H2U	C4-N3-C2	-8.06	119.10	125.79
52	Х	76	31H	C5-C6-N6	7.89	132.35	120.35
52	Х	55	PSU	OP3-P-O5'	-7.53	86.69	106.73
52	Х	8	4SU	OP3-P-O5'	-6.71	88.88	106.73
52	Х	32	OMC	OP3-P-OP1	-6.66	84.60	110.68
1	a	1530	MA6	N3-C2-N1	-6.27	118.88	128.68
52	Х	54	5MU	OP3-P-O5'	-6.12	90.44	106.73
52	Х	54	5MU	OP3-P-OP1	-6.00	87.21	110.68
52	Х	76	31H	N3-C2-N1	-5.96	119.36	128.68
52	Х	46	7MG	OP3-P-OP1	-5.95	87.39	110.68
52	Х	46	7MG	OP3-P-OP2	-5.92	85.01	107.64
52	Х	46	7MG	OP3-P-O5'	-5.85	91.17	106.73
1	a	1529	MA6	N3-C2-N1	-5.85	119.54	128.68
52	Х	55	PSU	N1-C2-N3	5.67	121.55	115.13
22	А	1966	5MU	O4-C4-C5	-5.65	118.36	124.90
52	Х	32	OMC	OP3-P-OP2	-5.50	86.61	107.64
22	А	1966	5MU	C4-N3-C2	-5.48	120.26	127.35
52	Х	54	5MU	OP3-P-OP2	-5.47	86.73	107.64
52	Х	76	31H	C1'-N9-C4	-5.47	117.03	126.64
52	Х	8	4SU	C4-N3-C2	-5.42	122.07	127.34
52	Х	8	4SU	C5-C4-N3	5.32	119.63	114.69
52	Х	8	4SU	C5-C4-S4	-5.32	117.61	124.47
52	Х	54	5MU	O4-C4-C5	-5.26	118.81	124.90
52	Х	32	OMC	OP3-P-O5'	-5.23	92.80	106.73
52	Х	76	31H	N6-C6-N1	-5.21	107.75	118.57
1	a	535	7MG	C5-C6-N1	5.17	120.11	110.99
52	Х	46	$7 \mathrm{MG}$	C5-C6-N1	5.17	120.11	110.99
52	Х	46	7MG	OP2-P-OP1	5.17	130.91	110.68
52	Х	8	4SU	OP2-P-OP1	5.10	130.63	110.68
22	А	1966	5MU	N3-C2-N1	5.02	121.56	114.89
52	Х	55	PSU	OP2-P-OP1	4.85	129.66	110.68
52	Х	54	5MU	C4-N3-C2	-4.79	121.15	127.35
52	Х	54	5MU	OP2-P-OP1	4.72	129.16	110.68
52	Х	32	OMC	OP2-P-OP1	4.66	128.92	110.68
1	a	535	7MG	C2-N3-C4	4.63	120.55	112.30
52	Х	54	5MU	N3-C2-N1	4.54	120.92	114.89
52	х	46	7MG	C2-N3-C4	4.50	120.32	112.30
52	Х	8	4SU	OP3-P-OP1	-4.48	93.13	110.68
1	a	535	7MG	C5-C4-N3	-4.25	120.03	128.13
52	Х	8	4SU	C1'-N1-C2	4.17	125.12	117.57
52	x	55	PSU	OP3-P-OP1	-4.15	94.43	110.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	А	2472	2MG	C5-C6-N1	4.10	121.20	113.95
52	Х	54	5MU	C5M-C5-C4	4.10	123.28	118.77
52	Х	46	7MG	C5-C4-N3	-4.03	120.46	128.13
52	Х	54	5MU	C5M-C5-C6	-3.95	117.58	122.85
52	Х	55	PSU	C4-N3-C2	-3.83	120.82	126.34
22	А	2530	2MA	C5-C6-N1	3.78	120.55	114.02
52	Х	8	4SU	N3-C2-N1	3.67	119.77	114.89
22	А	2278	OMG	C5-C6-N1	3.58	120.27	113.95
52	Х	20	H2U	OP3-P-OP1	3.57	124.67	110.68
52	Х	55	PSU	OP3-P-OP2	-3.46	94.40	107.64
52	Х	8	4SU	O5'-P-OP1	3.44	116.14	106.47
1	a	535	7MG	C5-C4-N9	3.38	110.73	106.35
52	Х	46	7MG	C5-C4-N9	3.34	110.68	106.35
1	a	1527	2MG	C5-C6-N1	3.31	119.80	113.95
22	А	2472	2MG	CM2-N2-C2	-3.26	116.65	123.86
52	Х	32	OMC	O5'-P-OP1	3.24	115.56	106.47
22	А	2530	2MA	C8-N7-C5	3.22	109.13	102.99
22	А	2278	OMG	C2-N1-C6	-3.22	119.16	125.10
52	Х	55	PSU	OP2-P-O5'	3.18	115.19	106.73
52	Х	54	5MU	O5'-P-OP1	3.17	115.38	106.47
52	Х	8	4SU	C6-N1-C2	-3.16	116.95	120.99
52	Х	54	5MU	OP2-P-O5'	3.14	115.09	106.73
52	Х	32	OMC	OP2-P-O5'	3.13	115.06	106.73
52	Х	20	H2U	O5'-P-OP1	-3.05	97.93	106.47
52	Х	8	4SU	OP3-P-OP2	-3.03	96.06	107.64
52	Х	55	PSU	O2-C2-N1	-2.96	119.53	122.79
52	Х	46	7MG	OP2-P-O5'	2.96	114.62	106.73
52	Х	55	PSU	O5'-P-OP1	2.94	114.73	106.47
22	А	1966	5MU	O2-C2-N1	-2.92	118.90	122.79
1	a	535	7MG	C2-N1-C6	-2.87	119.87	125.10
52	Х	46	7MG	C4-C5-N7	2.86	109.49	105.53
52	Х	55	PSU	C6-C5-C4	-2.84	116.21	118.20
52	Х	46	7MG	C2-N1-C6	-2.82	119.96	125.10
1	a	535	7MG	C4-C5-N7	2.75	109.35	105.53
1	a	1412	4OC	O2-C2-N3	-2.68	117.97	122.33
52	Х	32	OMC	O2-C2-N3	-2.68	117.98	122.33
52	Х	46	7MG	O5'-P-OP1	2.67	113.96	106.47
1	a	535	7MG	N9-C8-N7	2.67	107.19	103.38
1	a	1527	2MG	C8-N7-C5	2.66	108.06	102.99
1	a	1527	2MG	CM2-N2-C2	-2.66	117.99	123.86
52	X	8	4SU	S4-C4-N3	2.59	122.76	120.21
22	А	2278	OMG	C8-N7-C5	2.58	107.90	102.99

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	535	7MG	N9-C4-N3	2.52	129.24	125.47
22	А	2472	2MG	C8-N7-C5	2.51	107.77	102.99
52	Х	76	31H	CE-SD-CG	2.49	108.95	100.40
22	А	2530	2MA	CM2-C2-N1	2.49	121.76	116.23
52	Х	54	5MU	O4-C4-N3	-2.49	115.35	120.12
52	Х	46	7MG	N9-C8-N7	2.48	106.93	103.38
22	А	2530	2MA	N1-C2-N3	-2.48	118.95	123.06
22	А	2525	OMC	O2-C2-N3	-2.46	118.33	122.33
52	х	20	H2U	C5-C6-N1	-2.44	103.57	111.61
22	А	1966	5MU	O4-C4-N3	-2.44	115.44	120.12
22	А	2472	2MG	O6-C6-C5	-2.43	119.63	124.37
22	А	1966	5MU	C5M-C5-C6	-2.36	119.70	122.85
1	a	1412	4OC	C6-C5-C4	2.36	119.84	116.96
52	х	46	7MG	O6-C6-C5	-2.35	121.78	127.54
52	Х	32	OMC	C1'-N1-C2	2.30	123.55	118.42
52	Х	46	7MG	N9-C4-N3	2.27	128.86	125.47
52	х	20	H2U	OP2-P-OP1	2.23	119.43	110.68
52	Х	55	PSU	O3'-C3'-C4'	2.22	117.47	111.05
1	a	535	7MG	O6-C6-C5	-2.20	122.15	127.54
22	А	1966	5MU	C6-C5-C4	2.17	119.85	118.03
52	Х	8	4SU	OP2-P-O5'	2.15	112.45	106.73
22	А	2278	OMG	O6-C6-C5	-2.15	120.17	124.37
52	X	76	31H	O4'-C1'-C2'	-2.15	103.79	106.93
22	А	1947	OMC	O2-C2-N3	-2.12	118.88	122.33
52	Х	54	5MU	C6-N1-C2	-2.00	119.27	121.30

There are no chirality outliers.

All (51) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	a	1530	MA6	O4'-C4'-C5'-O5'
22	А	1947	OMC	O4'-C4'-C5'-O5'
52	Х	20	H2U	O4'-C4'-C5'-O5'
52	Х	32	OMC	C5'-O5'-P-OP1
52	Х	46	7MG	C5'-O5'-P-OP3
52	Х	54	5MU	C5'-O5'-P-OP3
52	Х	55	PSU	O4'-C1'-C5-C4
52	Х	55	PSU	O4'-C1'-C5-C6
52	Х	55	PSU	C5'-O5'-P-OP1
52	Х	55	PSU	C5'-O5'-P-OP3
52	Х	76	31H	C3'-C4'-C5'-O5'
52	Х	76	31H	C-CA-N-CN

EMD-10791,	6YEF
------------	------

Mol	Chain	Res	Type	Atoms	
52	х	76	31H	CB-CA-N-CN	
52	X	76	31H	C-CA-CB-CG	
52	X	76	31H	N-CA-CB-CG	
52	X	76	31H	OCN-CN-N-CA	
1	a	535	7MG	C3'-C4'-C5'-O5'	
1	a	1412	4OC	O4'-C4'-C5'-O5'	
1	a	1530	MA6	C3'-C4'-C5'-O5'	
22	А	1947	OMC	C3'-C4'-C5'-O5'	
22	А	1966	5MU	C3'-C4'-C5'-O5'	
22	А	1966	5MU	O4'-C4'-C5'-O5'	
52	Х	76	31H	O4'-C4'-C5'-O5'	
1	a	535	7MG	O4'-C4'-C5'-O5'	
1	a	1412	4OC	C3'-C4'-C5'-O5'	
52	Х	20	H2U	C2'-C1'-N1-C2	
22	А	2472	2MG	C3'-C4'-C5'-O5'	
22	А	2525	OMC	C3'-C4'-C5'-O5'	
52	Х	46	7MG	C3'-C4'-C5'-O5'	
52	Х	76	31H	CB-CG-SD-CE	
22	А	2525	OMC	O4'-C4'-C5'-O5'	
52	Х	46	7MG	O4'-C4'-C5'-O5'	
52	Х	20	H2U	C2'-C1'-N1-C6	
1	a	1529	MA6	C5-C6-N6-C9	
52	Х	46	7MG	C5'-O5'-P-OP1	
52	Х	76	31H	O-C-CA-N	
52	Х	76	31H	N3'-C-CA-N	
52	Х	76	31H	C4'-C5'-O5'-P	
52	Х	76	31H	O-C-CA-CB	
22	А	2472	2MG	O4'-C4'-C5'-O5'	
52	х	20	H2U	C3'-C4'-C5'-O5'	
52	Х	32	OMC	C3'-C4'-C5'-O5'	
52	Х	76	31H	N3'-C-CA-CB	
52	Х	8	4SU	C5'-O5'-P-OP1	
52	Х	46	7MG	C4'-C5'-O5'-P	
22	А	2530	2MA	O4'-C4'-C5'-O5'	
52	х	32	OMC	O4'-C4'-C5'-O5'	
52	х	32	OMC	C5'-O5'-P-OP3	
52	х	54	5MU	C5'-O5'-P-OP1	
22	А	2530	2MA	C4'-C5'-O5'-P	
52	х	76	31H	C4'-C3'-N3'-C	

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 288 ligands modelled in this entry, 288 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
47	4	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	4	53:GLU	С	57:GLU	Ν	9.89

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10791. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

