

Full wwPDB X-ray Structure Validation Report (i)

Dec 23, 2024 – 04:12 PM JST

PDB ID	:	8Y0C
Title	:	Crystal structure of FnCas12a in complex with pre-crRNA and 18nt target
		DNA
Authors	:	Chen, J.; Liu, L.
Deposited on	:	2024-01-22
Resolution	:	3.45 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

Overall quality at a glance (i) 1

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.45 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Percentile relative	to X-ray struct	ures of similar	resolution

Motria	Whole archive	Similar resolution
wietric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	164625	1597 (3.52-3.40)
Clashscore	180529	1041 (3.50-3.42)
Ramachandran outliers	177936	1026 (3.50-3.42)
Sidechain outliers	177891	1027 (3.50-3.42)
RSRZ outliers	164620	1596 (3.52-3.40)
RNA backbone	3690	1057 (3.92 - 3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	В	58	17%	38%	17%	28%		
2	С	27		67%		30% •	_	
3	D	11		55%	27%	18%	•	
4	А	1300	.% 	64%		31% ••		

8Y0C

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 12057 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (42-MER).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	В	42	Total	С	Ν	0	Р	0	0	0
			890	400	155	294	41			

• Molecule 2 is a DNA chain called DNA (27-MER).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	С	27	Total 550	C 265	N 95	0 163	Р 27	0	0	0

• Molecule 3 is a DNA chain called DNA (5'-D(P*AP*GP*TP*CP*CP*TP*TP*TP*AP*CP *T)-3').

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
3	D	11	Total 221	C 107	N 34	O 69	Р 11	0	0	0

• Molecule 4 is a protein called CRISPR-associated endonuclease Cas12a.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
4	А	1260	Total 10392	C 6681	N 1711	O 1978	S 22	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1006	ALA	GLU	conflict	UNP A0Q7Q2

• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	2	Total Mg 2 2	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (42-MER)

D401 D401 L402 5403 5403 5403 5403 5403 7410 7410 PR0 CLM	K457 L460 E461 E461 E463 F463 F463 F465 H466 B467 D468 D469 P472 F475 F475 F475 F475 F489 F488 F488 F488 F488 F488 F488 F488
K496 K505 K506 K506 K506 K511 K511 K511 K511 K511 K513 K513 K513	B559 1574 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1563 1563 1563 1563 1563 1563 1563 1605 1605 1605 1605 1616 1618 1618 1618 1618 1618 1618 1618 1618 1623 1623 1623 1623 1623 1623 1633 1633
M633 K635 K635 K644 K644 K644 K655 K644 K655 K647 K655 K647 F647 F647 F647 F667 F670 F670 F670 F670 F670 F689 R693 R693 R693 R693 R693	H6996 H697 F111 F712 F712 F712 F712 F712 F712 F723 F725 F725 F725 F725 F725 F725 F725 F725
R755 7763 7763 7765 7765 7765 7774 777 777 777 777 777 777 777 777 7	R815 1817 1817 1817 1820 1820 1822 1822 1832 1832 1833 1837 1833 1837 1833 1837 1833 1837 1833 1837 1833 1837 1837
K854 8661 V862 V862 V862 K871 886 8876 8876 F887 F880 F880 F880 F880 F880 F880 F880	8915 1916 1917 8917 8918 8926 1935 1935 1935 1935 1935 1935 1935 1935
K956 1960 1960 1960 1965 1965 1974 1977 1977 1977 1977 1977 1977 1977	HIG K1018 K1018 F1029 F1029 F1028 F1038 K1035 F1038 F1038 F1038 F1038 F1038 F1046 F1066 F1
L1052 L1055 A1055 A1055 A1055 P1065 P1065 F1065 F1065 F1065 F1065 R1066 G1072 T1071 T1071 G1072 T1073 T1074 T1073 T1074 T1074 T1074 T1076 F1069 F1000 F1000 F1000 F1000	VI101 VI102 VI103 VI104 VI104 VI106 FI105 FI106 VI108 VI108 VI108 VI108 VI112 VI123 VI123 VI123 VI123 VI123 VI123 VI123 VI123 VI123 VI123
A1137 A1138 K1141 K1141 1144 T1143 T1144 T1165 N1165 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	C11180 C11180 C1191 A1191 C1196 C1196 G1197 E1198 F1209 F1200 F1209 F1200 F1209 F1200 F120
K1221 THR THR THR GLV CLEU CLEU CL22 CL22 CL22 CL22 CL229 C	H1261 H1261 H1261 H1265 L1270 G1271 H1272 H1272 H1291 F1294 F1294 F1294 F1294 R1296 H1296 H1299 H1299 H1299 H1299 H1299

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 43 21 2	Depositor
Cell constants	124.28Å 124.28Å 268.52Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	47.22 - 3.45	Depositor
Resolution (A)	47.22 - 3.45	EDS
% Data completeness	88.9 (47.22-3.45)	Depositor
(in resolution range)	88.8 (47.22-3.45)	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.32 (at 3.48 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.17.1_3660	Depositor
P. P.	0.216 , 0.285	Depositor
n, n_{free}	0.217 , 0.285	DCC
R_{free} test set	1394 reflections $(4.89%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	48.2	Xtriage
Anisotropy	0.077	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 40.1	EDS
L-test for twinning ²	$ < L >=0.39, < L^2>=0.21$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.85	EDS
Total number of atoms	12057	wwPDB-VP
Average B, all atoms $(Å^2)$	50.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.45% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Chain		Bo	nd lengths	Bond angles		
Moi Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	В	0.89	0/995	1.80	36/1548~(2.3%)	
2	С	1.15	1/615~(0.2%)	1.17	2/946~(0.2%)	
3	D	1.15	1/245~(0.4%)	1.25	1/375~(0.3%)	
4	А	0.55	0/10595	0.71	3/14220~(0.0%)	
All	All	0.64	2/12450~(0.0%)	0.90	42/17089~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	А	0	1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	С	-3	DT	C3'-O3'	-7.79	1.33	1.44
3	D	0	DC	C3'-O3'	-5.93	1.36	1.44

All (42) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	В	20	C	C2-N1-C1'	9.34	129.07	118.80
1	В	-10	U	N3-C2-O2	-8.90	115.97	122.20
1	В	4	A	C8-N9-C4	8.30	109.12	105.80
1	В	-11	С	C6-N1-C2	-8.05	117.08	120.30
1	В	-19	А	N1-C6-N6	-7.47	114.12	118.60
1	В	-10	U	P-O3'-C3'	7.45	128.64	119.70
1	В	20	С	N1-C2-O2	7.10	123.16	118.90

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	-10	U	N1-C2-O2	7.00	127.70	122.80
1	В	-14	С	C6-N1-C2	-6.78	117.59	120.30
1	В	-14	С	N3-C4-C5	-6.63	119.25	121.90
1	В	20	С	C6-N1-C1'	-6.44	113.07	120.80
1	В	0	G	O4'-C1'-N9	6.39	113.32	108.20
1	В	9	U	N1-C2-O2	-6.18	118.47	122.80
1	В	-17	U	N3-C4-C5	-6.13	110.92	114.60
1	В	18	G	N3-C4-C5	-6.13	125.54	128.60
1	В	20	С	C6-N1-C2	-6.11	117.86	120.30
1	В	-19	А	C5-C6-N6	5.91	128.43	123.70
1	В	-8	U	N1-C2-N3	5.88	118.43	114.90
1	В	7	С	N1-C2-O2	-5.82	115.41	118.90
4	А	460	LEU	CA-CB-CG	5.79	128.62	115.30
1	В	3	А	C2-N3-C4	-5.79	107.70	110.60
1	В	-3	G	C4-N9-C1'	-5.71	119.07	126.50
1	В	-15	U	N1-C2-O2	-5.53	118.93	122.80
1	В	14	U	C6-N1-C2	-5.53	117.68	121.00
1	В	3	А	N1-C6-N6	5.48	121.89	118.60
1	В	20	С	C5-C6-N1	5.42	123.71	121.00
1	В	4	А	N9-C4-C5	-5.41	103.64	105.80
1	В	7	С	N3-C2-O2	5.38	125.67	121.90
3	D	-7	DT	N3-C4-O4	5.36	123.12	119.90
1	В	-3	G	N3-C4-N9	-5.35	122.79	126.00
1	В	-3	G	N3-C4-C5	5.30	131.25	128.60
1	В	-18	А	O5'-P-OP2	5.30	117.06	110.70
1	В	7	С	C5-C6-N1	5.29	123.64	121.00
2	С	-4	DT	N3-C4-O4	5.28	123.06	119.90
1	В	-8	U	C4-C5-C6	5.26	122.85	119.70
1	В	20	С	N3-C2-O2	-5.24	118.23	121.90
1	В	-3	G	C8-N9-C1'	5.22	133.78	127.00
1	В	4	A	C4-C5-C6	-5.20	114.40	117.00
1	В	0	G	N3-C4-C5	-5.10	126.05	128.60
4	А	324	LEU	CA-CB-CG	5.05	126.92	115.30
4	А	617	ASN	C-N-CA	-5.05	109.08	121.70
2	С	-15	DT	O4'-C4'-C3'	-5.03	102.49	104.50

Continued from previous page...

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
4	А	789	TYR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	890	0	449	17	0
2	С	550	0	308	4	0
3	D	221	0	127	7	0
4	А	10392	0	10350	289	1
5	В	2	0	0	0	0
6	А	2	0	0	1	0
All	All	12057	0	11234	301	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (301) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A + 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:371:LYS:HE2	4:A:489:PHE:HB3	1.47	0.93
1:B:19:C:N3	1:B:21:G:N2	2.20	0.89
4:A:518:SER:O	6:A:1401:HOH:O	1.95	0.85
4:A:960:ILE:HG22	4:A:977:ILE:HD12	1.63	0.81
2:C:0:DC:H4'	4:A:827:GLU:HG3	1.63	0.81
4:A:1063:THR:HG22	4:A:1065:LYS:H	1.46	0.79
4:A:1062:GLU:HG2	4:A:1063:THR:H	1.46	0.79
1:B:-15:U:OP1	4:A:833:ARG:NH2	2.16	0.79
4:A:396:ASP:HB3	4:A:398:SER:H	1.47	0.78
4:A:342:LEU:HD22	4:A:347:ASP:HB3	1.64	0.77
4:A:1102:VAL:O	4:A:1106:GLN:HG3	1.85	0.76
4:A:533:THR:CG2	4:A:575:ILE:HD12	2.17	0.75
4:A:895:LYS:HE3	4:A:898:ASP:OD2	1.85	0.75
4:A:1101:SER:HB3	4:A:1104:LYS:HE3	1.67	0.74
4:A:533:THR:HB	4:A:575:ILE:CD1	2.18	0.74
4:A:390:LYS:HB3	4:A:558:ASP:HB2	1.70	0.73
4:A:533:THR:HG22	4:A:575:ILE:HD12	1.69	0.73
4:A:1267:LEU:HD12	4:A:1294:PHE:HZ	1.54	0.73
4:A:944:ILE:HG21	4:A:987:GLN:HG2	1.69	0.73
4:A:643:ASP:HA	4:A:646:ILE:HG12	1.71	0.72
4:A:650:LYS:NZ	4:A:767:GLU:OE2	2.23	0.72

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:373:THR:O	4:A:377:LEU:HD13	1.91	0.70
4:A:55:ASP:OD1	4:A:186:ARG:NH1	2.25	0.70
4:A:618:THR:HG21	4:A:633:MET:O	1.91	0.69
4:A:670:PRO:HG3	4:A:724:TYR:OH	1.92	0.69
4:A:1099:TYR:HE2	4:A:1204:PHE:HB2	1.57	0.68
3:D:0:DC:C2	4:A:667:LYS:HE2	2.28	0.68
4:A:1048:THR:HA	4:A:1053:ARG:HB3	1.74	0.68
4:A:275:GLN:HG2	4:A:332:THR:OG1	1.93	0.68
4:A:964:ARG:HD2	4:A:977:ILE:HD11	1.75	0.68
4:A:289:PHE:CE1	4:A:296:LYS:HB2	2.27	0.68
4:A:1045:PHE:CE2	4:A:1052:LEU:HD13	2.28	0.68
4:A:905:LYS:NZ	4:A:1276:ASN:O	2.28	0.67
4:A:356:TYR:HB3	4:A:496:LYS:HD2	1.77	0.66
4:A:533:THR:HB	4:A:575:ILE:HD11	1.76	0.66
4:A:1154:PHE:HE1	4:A:1166:ARG:HB3	1.60	0.66
4:A:87:LYS:NZ	4:A:213:GLU:OE2	2.27	0.66
4:A:180:LYS:HG3	4:A:181:GLY:N	2.10	0.66
4:A:821:VAL:HG23	4:A:887:ASN:HA	1.77	0.65
4:A:275:GLN:OE1	4:A:330:SER:OG	2.13	0.65
4:A:400:THR:HG23	4:A:410:TYR:HB2	1.78	0.64
4:A:960:ILE:CG2	4:A:977:ILE:HD12	2.28	0.64
4:A:1089:THR:HG21	4:A:1233:VAL:HG12	1.80	0.64
4:A:51:LYS:HD2	4:A:182:PHE:CD1	2.33	0.64
4:A:1189:GLU:OE2	4:A:1189:GLU:N	2.22	0.63
4:A:218:TYR:O	4:A:222:LYS:HG3	1.99	0.62
4:A:722:ASP:O	4:A:726:GLN:HG3	1.98	0.62
4:A:916:ILE:O	4:A:1024:TYR:OH	2.15	0.62
4:A:460:LEU:HD11	4:A:475:PHE:HB2	1.81	0.62
4:A:1086:CYS:HG	4:A:1231:SER:HG	1.21	0.61
4:A:1099:TYR:HE2	4:A:1204:PHE:CB	2.13	0.61
1:B:16:A:O2'	4:A:298:LYS:NZ	2.33	0.61
4:A:243:THR:HG23	4:A:255:GLN:HG3	1.83	0.61
4:A:57:TYR:HB2	4:A:141:TRP:CE3	2.36	0.60
4:A:282:ASN:OD1	4:A:323:VAL:HG13	2.02	0.60
4:A:602:ASN:ND2	4:A:616:ASP:O	2.18	0.60
4:A:1195:ILE:HG22	4:A:1203:PHE:CZ	2.37	0.59
4:A:64:GLU:OE2	4:A:118:LYS:HD2	2.02	0.59
4:A:1067:MET:HG3	4:A:1071:THR:HG22	1.84	0.59
4:A:1267:LEU:HD12	4:A:1294:PHE:CZ	2.36	0.59
4:A:467:ARG:HH11	4:A:472:GLN:HA	1.67	0.59
4:A:145:SER:HB3	4:A:150:ILE:HG22	1.84	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:837:ILE:HD11	4:A:870:ASP:HB2	1.85	0.59
4:A:1292:PHE:O	4:A:1296:GLN:HB2	2.03	0.59
4:A:693:ASN:HA	4:A:704:GLN:HB2	1.85	0.58
4:A:1130:TYR:HB3	4:A:1138:ALA:HB1	1.84	0.58
1:B:-2:A:OP2	4:A:1041:LYS:HE3	2.03	0.58
4:A:121:ASN:HA	4:A:124:ASN:HD21	1.68	0.58
4:A:282:ASN:CG	4:A:323:VAL:HG13	2.23	0.58
4:A:27:THR:HG21	4:A:785:LEU:H	1.68	0.58
4:A:640:ILE:HD11	4:A:782:LYS:HB3	1.86	0.58
1:B:-17:U:H2'	4:A:872:ARG:HD3	1.86	0.57
4:A:160:THR:OG1	4:A:161:ASP:N	2.37	0.57
4:A:520:GLU:HG3	4:A:972:LYS:HG2	1.86	0.57
4:A:125:GLN:HA	4:A:176:THR:HG21	1.86	0.57
4:A:1247:PRO:HB2	4:A:1249:ASN:OD1	2.05	0.57
4:A:380:ASP:HB3	4:A:386:LEU:CD2	2.35	0.57
4:A:381:LEU:HD23	4:A:386:LEU:HB2	1.87	0.57
4:A:623:ILE:HG13	4:A:657:ILE:HD11	1.87	0.57
4:A:717:CYS:O	4:A:721:ILE:HG13	2.05	0.57
4:A:722:ASP:OD2	4:A:744:THR:HG21	2.05	0.57
4:A:371:LYS:HE2	4:A:489:PHE:CB	2.30	0.56
4:A:774:ILE:O	4:A:777:VAL:HG12	2.05	0.56
4:A:352:MET:CE	4:A:499:LEU:HD21	2.35	0.56
4:A:612:ASN:ND2	4:A:733:GLU:OE1	2.33	0.56
4:A:945:GLY:CA	4:A:946:ASN:HB2	2.34	0.56
4:A:1210:VAL:HA	4:A:1213:THR:HG22	1.87	0.56
4:A:690:ARG:NH2	4:A:716:ASP:OD1	2.36	0.56
4:A:1144:ILE:HD12	4:A:1215:LEU:HD21	1.87	0.56
4:A:20:GLU:OE2	4:A:877:LYS:HD3	2.06	0.55
4:A:776:SER:O	4:A:780:GLN:HG3	2.06	0.55
4:A:61:PHE:CE1	4:A:65:ILE:HD13	2.42	0.55
4:A:235:LYS:CE	4:A:259:SER:HA	2.37	0.55
4:A:657:ILE:HG13	4:A:766:PHE:CE1	2.41	0.55
4:A:1045:PHE:CZ	4:A:1052:LEU:HD13	2.42	0.54
4:A:925:TYR:CZ	4:A:1256:ALA:HB2	2.43	0.54
4:A:113:ILE:CD1	4:A:190:TYR:HB3	2.38	0.54
4:A:240:GLU:HB3	4:A:241:GLU:OE2	2.08	0.54
4:A:1130:TYR:CD1	4:A:1138:ALA:HB1	2.43	0.54
4:A:121:ASN:HA	4:A:124:ASN:ND2	2.22	0.54
4:A:604:THR:O	4:A:617:ASN:HA	2.08	0.54
4:A:1067:MET:SD	4:A:1071:THR:HG21	2.48	0.54
4:A:356:TYR:CZ	4:A:529:LEU:HD22	2.43	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:C:-11:DA:H2'	2:C:-10:DA:C8	2.43	0.54
4:A:877:LYS:HB2	4:A:879:PHE:CE2	2.42	0.54
4:A:457:LYS:O	4:A:461:GLU:HB2	2.08	0.53
4:A:1229:LEU:HB2	4:A:1254:ALA:HB2	1.91	0.53
4:A:170:LYS:O	4:A:173:LYS:HG3	2.09	0.53
4:A:922:HIS:HA	4:A:942:ASN:HD21	1.73	0.53
4:A:343:GLU:O	4:A:512:LYS:HD2	2.09	0.53
4:A:1086:CYS:SG	4:A:1231:SER:OG	2.49	0.53
4:A:926:TYR:CE2	4:A:939:ASP:HB3	2.43	0.53
4:A:1269:LEU:CD1	4:A:1286:ILE:HD11	2.39	0.53
4:A:906:GLU:HG3	4:A:907:LYS:HD3	1.90	0.53
4:A:1228:TYR:HB2	4:A:1243:SER:OG	2.09	0.52
4:A:275:GLN:OE1	4:A:326:LYS:HB2	2.08	0.52
4:A:91:ASP:O	4:A:94:LEU:HB2	2.10	0.52
3:D:-4:DT:OP1	4:A:176:THR:OG1	2.26	0.52
3:D:0:DC:O2	4:A:667:LYS:HE2	2.09	0.52
4:A:533:THR:HB	4:A:575:ILE:HD12	1.92	0.52
1:B:-8:U:O4	4:A:861:SER:HB3	2.10	0.52
4:A:512:LYS:HA	4:A:585:TYR:OH	2.09	0.52
4:A:1183:ILE:HD11	4:A:1198:GLU:OE2	2.09	0.52
4:A:1121:LYS:HB3	4:A:1123:TYR:CE1	2.46	0.51
4:A:146:LYS:HE2	4:A:163:ASP:OD1	2.11	0.51
4:A:381:LEU:HD11	4:A:391:ILE:HD13	1.92	0.51
4:A:916:ILE:HA	4:A:925:TYR:O	2.10	0.51
4:A:964:ARG:HD2	4:A:977:ILE:CD1	2.39	0.51
4:A:229:ILE:HG13	4:A:231:TYR:CE1	2.46	0.51
4:A:533:THR:CB	4:A:575:ILE:HD12	2.41	0.51
4:A:11:TYR:CE1	4:A:1060:PRO:HG3	2.46	0.50
4:A:911:VAL:CG2	4:A:1270:LEU:HD11	2.41	0.50
4:A:166:LEU:O	4:A:170:LYS:HD3	2.11	0.50
4:A:27:THR:HG21	4:A:785:LEU:N	2.26	0.50
4:A:1112:PHE:CE1	4:A:1126:PHE:HB3	2.46	0.50
4:A:1269:LEU:HD13	4:A:1286:ILE:HD11	1.94	0.50
4:A:675:SER:O	4:A:679:ILE:N	2.43	0.50
4:A:876:ASP:OD1	4:A:876:ASP:N	2.43	0.49
1:B:-1:U:O4	4:A:802:ASN:HB3	2.12	0.49
4:A:840:LYS:O	4:A:868:ILE:HG23	2.12	0.49
4:A:1234:ALA:HB1	4:A:1238:GLY:HA2	1.94	0.49
4:A:380:ASP:HB3	4:A:386:LEU:HD23	1.94	0.49
4:A:684:PRO:HB2	4:A:689:LEU:HD22	1.94	0.49
4:A:1195:ILE:HG22	4:A:1203:PHE:HZ	1.77	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:21:LEU:HD21	4:A:880:PHE:HB2	1.95	0.49
4:A:48:LYS:O	4:A:52:GLN:HG3	2.12	0.49
4:A:461:GLU:O	4:A:465:LYS:HG3	2.12	0.49
4:A:945:GLY:HA2	4:A:946:ASN:HB2	1.94	0.49
4:A:1007:ASP:O	4:A:1008:LEU:HG	2.13	0.49
4:A:85:LYS:HE3	4:A:94:LEU:HD21	1.95	0.49
4:A:985:LEU:HD22	4:A:1027:LEU:HB2	1.94	0.49
4:A:1032:ILE:HG12	4:A:1074:ILE:HD12	1.94	0.49
4:A:1043:ASN:HD22	4:A:1049:GLY:HA3	1.77	0.48
4:A:213:GLU:O	4:A:217:LYS:HG3	2.12	0.48
4:A:113:ILE:HD11	4:A:190:TYR:HB3	1.95	0.48
4:A:1012:PHE:HB2	4:A:1080:GLY:HA2	1.95	0.48
1:B:-11:C:H5'	4:A:852:LYS:HD2	1.96	0.48
4:A:382:LYS:HE3	4:A:483:ALA:CB	2.42	0.48
4:A:1151:LEU:HB2	4:A:1219:ASN:HB3	1.94	0.48
4:A:34:ARG:HH12	4:A:636:LYS:HE3	1.78	0.48
1:B:21:G:H1'	1:B:22:U:H5"	1.96	0.47
4:A:657:ILE:HG13	4:A:766:PHE:HE1	1.78	0.47
4:A:293:GLU:OE2	4:A:297:ARG:NH1	2.44	0.47
4:A:345:ASP:HB3	4:A:506:TYR:HB3	1.96	0.47
4:A:725:LYS:HE3	4:A:744:THR:HG22	1.96	0.47
4:A:925:TYR:CD2	4:A:926:TYR:N	2.82	0.47
4:A:159:ILE:HA	4:A:164:GLU:OE1	2.15	0.47
4:A:711:GLU:HG2	4:A:712:PHE:H	1.79	0.47
4:A:976:ASN:C	4:A:977:ILE:HD13	2.35	0.47
4:A:1088:VAL:HG23	4:A:1089:THR:HG23	1.97	0.47
4:A:1113:ASP:O	4:A:1114:LYS:HG2	2.14	0.47
4:A:308:SER:OG	4:A:313:ASP:O	2.24	0.47
4:A:275:GLN:HG3	4:A:275:GLN:O	2.14	0.47
4:A:762:TYR:CZ	4:A:823:LYS:HG2	2.50	0.47
4:A:386:LEU:HD13	4:A:386:LEU:HA	1.78	0.47
4:A:403:SER:OG	4:A:409:ASP:O	2.31	0.46
4:A:697:HIS:CD2	4:A:697:HIS:H	2.33	0.46
4:A:1111:LYS:HE3	4:A:1111:LYS:HB2	1.58	0.46
4:A:138:LEU:HD23	4:A:142:LEU:HD13	1.96	0.46
4:A:390:LYS:CB	4:A:558:ASP:HB2	2.40	0.46
4:A:964:ARG:HD2	4:A:977:ILE:CG1	2.45	0.46
4:A:964:ARG:O	4:A:968:ARG:HG3	2.15	0.46
4:A:51:LYS:HB3	4:A:182:PHE:CE1	2.51	0.46
4:A:598:LEU:HD21	4:A:832:TYR:HB2	1.97	0.46
4:A:902:LEU:HD23	4:A:902:LEU:HA	1.60	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:72:SER:O	4:A:75:LEU:HB2	2.16	0.46
4:A:968:ARG:HG2	4:A:974:ILE:HD13	1.98	0.46
4:A:1052:LEU:HD23	4:A:1053:ARG:HH12	1.81	0.46
4:A:1087:PRO:HG2	4:A:1241:PHE:CE2	2.51	0.46
4:A:244:PHE:HB3	4:A:271:ASN:ND2	2.31	0.46
4:A:210:LYS:HE3	4:A:325:PHE:CE2	2.51	0.45
4:A:618:THR:HG22	4:A:618:THR:O	2.15	0.45
4:A:1062:GLU:HG2	4:A:1063:THR:N	2.24	0.45
3:D:-4:DT:H2"	3:D:-3:DT:H5"	1.98	0.45
4:A:142:LEU:HD23	4:A:166:LEU:HD13	1.97	0.45
1:B:-1:U:OP1	4:A:1034:LYS:HD3	2.16	0.45
4:A:1174:LEU:HG	4:A:1210:VAL:HG11	1.97	0.45
4:A:191:SER:HB3	4:A:195:ILE:HD11	1.98	0.45
4:A:848:ALA:HA	4:A:862:VAL:HG12	1.98	0.45
4:A:280:LYS:O	4:A:284:ILE:HG13	2.17	0.45
4:A:460:LEU:HA	4:A:463:PHE:HB3	1.99	0.45
4:A:1178:LEU:HD12	4:A:1185:TYR:CD2	2.51	0.45
4:A:337:PHE:HE2	4:A:339:ILE:HD13	1.81	0.44
4:A:1038:LEU:HB3	4:A:1055:TYR:HB2	1.98	0.44
4:A:27:THR:HG22	4:A:784:TYR:HA	1.99	0.44
4:A:85:LYS:O	4:A:89:SER:HB2	2.17	0.44
4:A:488:ILE:HD12	4:A:536:LEU:HD13	1.99	0.44
4:A:725:LYS:CE	4:A:744:THR:HG22	2.47	0.44
4:A:375:SER:HA	4:A:486:PRO:HG3	1.99	0.44
4:A:956:LYS:O	4:A:960:ILE:HG13	2.17	0.44
4:A:58:HIS:O	4:A:62:ILE:HG13	2.18	0.44
4:A:130:ALA:HB2	4:A:136:SER:HB2	1.99	0.44
4:A:609:TRP:CD1	4:A:826:GLY:HA2	2.53	0.44
4:A:1129:ASP:HB2	4:A:1141:LYS:HG2	1.99	0.44
4:A:1200:ASP:HB3	4:A:1203:PHE:HB3	1.99	0.44
4:A:202:ARG:O	4:A:206:ASP:HB2	2.17	0.44
4:A:27:THR:O	4:A:31:ILE:HG13	2.17	0.43
4:A:49:LYS:HD3	4:A:168:ILE:HD13	2.00	0.43
4:A:369:SER:OG	4:A:372:GLU:HG3	2.19	0.43
1:B:-8:U:H5	4:A:862:VAL:O	2.00	0.43
1:B:-5:U:H6	1:B:-5:U:O5'	2.01	0.43
4:A:50:ALA:O	4:A:54:ILE:HG13	2.19	0.43
4:A:468:ASP:O	4:A:472:GLN:HB3	2.18	0.43
4:A:915:SER:OG	4:A:1259:ALA:O	2.24	0.43
4:A:944:ILE:CD1	4:A:988:VAL:HG12	2.48	0.43
4:A:918:ARG:HH21	4:A:1020:GLU:HB2	1.83	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:1104:LYS:H	4:A:1104:LYS:HG3	1.62	0.43
4:A:65:ILE:O	4:A:69:VAL:HG23	2.18	0.43
4:A:249:LYS:HD3	4:A:250:THR:HG23	2.01	0.43
4:A:763:LYS:HB3	4:A:763:LYS:HE2	1.55	0.43
4:A:1063:THR:HB	4:A:1066:LYS:H	1.83	0.43
1:B:7:C:H2'	1:B:8:A:C8	2.53	0.43
4:A:1183:ILE:HG21	4:A:1191:ILE:HG23	1.99	0.43
4:A:1217:MET:O	4:A:1229:LEU:HA	2.18	0.43
4:A:60:PHE:CD2	4:A:141:TRP:NE1	2.86	0.43
4:A:120:LYS:HG3	4:A:121:ASN:N	2.33	0.43
4:A:300:ILE:O	4:A:304:ILE:HG13	2.19	0.43
4:A:394:LYS:HD2	4:A:396:ASP:CG	2.39	0.43
4:A:208:LEU:HB3	4:A:209:PRO:HD3	2.01	0.43
4:A:290:VAL:HG21	4:A:297:ARG:NH1	2.34	0.43
4:A:1257:ASN:OD1	4:A:1261:HIS:CE1	2.72	0.43
4:A:1253:ASP:OD2	4:A:1253:ASP:N	2.52	0.42
3:D:-3:DT:OP1	4:A:124:ASN:HB2	2.19	0.42
4:A:449:LYS:NZ	4:A:550:ASP:HB2	2.34	0.42
4:A:394:LYS:HD2	4:A:396:ASP:OD1	2.19	0.42
4:A:511:LYS:HE2	4:A:513:ASP:OD2	2.19	0.42
1:B:7:C:H6	1:B:7:C:O5'	2.02	0.42
4:A:61:PHE:HD1	4:A:118:LYS:HD3	1.84	0.42
4:A:1035:LEU:HD13	4:A:1073:ILE:HD11	2.01	0.42
4:A:233:GLN:O	4:A:237:ASP:N	2.49	0.42
4:A:390:LYS:HA	4:A:390:LYS:HD3	1.89	0.42
4:A:1268:MET:HE1	4:A:1291:TYR:HD1	1.83	0.42
4:A:49:LYS:HB3	4:A:159:ILE:HD11	2.02	0.42
4:A:1272:ARG:HH22	4:A:1286:ILE:HA	1.85	0.42
4:A:1032:ILE:CG1	4:A:1074:ILE:HD12	2.50	0.42
4:A:1154:PHE:CE1	4:A:1166:ARG:HB3	2.47	0.42
3:D:-3:DT:OP1	4:A:125:GLN:N	2.30	0.42
4:A:816:ASN:HD22	4:A:817:LEU:CD1	2.33	0.42
1:B:-3:G:OP1	4:A:1041:LYS:HD2	2.20	0.42
4:A:17:LEU:HD13	4:A:808:TRP:HB2	2.02	0.42
4:A:131:LYS:HG3	4:A:132:LYS:HE3	2.02	0.42
4:A:356:TYR:OH	4:A:529:LEU:HD22	2.20	0.41
4:A:691:ILE:HG23	4:A:696:THR:OG1	2.19	0.41
4:A:1108:PHE:HA	4:A:1111:LYS:HE3	2.01	0.41
1:B:5:G:H2'	1:B:6:U:O4'	2.20	0.41
2:C:-16:DT:H2'	2:C:-15:DT:C6	2.55	0.41
4:A:370:ILE:O	4:A:374:LEU:HD12	2.21	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:505:LYS:HE3	4:A:506:TYR:CE2	2.55	0.41
4:A:394:LYS:HG2	4:A:450:TYR:CE1	2.56	0.41
4:A:1142:TRP:CH2	4:A:1296:GLN:HG2	2.54	0.41
1:B:10:U:H2'	1:B:11:U:C6	2.56	0.41
3:D:-8:DG:C8	3:D:-7:DT:H72	2.55	0.41
4:A:235:LYS:O	4:A:239:ALA:HB2	2.20	0.41
4:A:249:LYS:CB	4:A:265:GLU:HG2	2.51	0.41
4:A:968:ARG:HG2	4:A:974:ILE:CD1	2.50	0.41
4:A:557:LYS:HE3	4:A:559:GLU:OE2	2.20	0.41
4:A:597:LYS:HD2	4:A:829:GLU:HG2	2.03	0.41
4:A:244:PHE:CZ	4:A:272:TYR:HE1	2.38	0.41
4:A:790:ASN:H	4:A:793:PHE:HD1	1.68	0.41
4:A:978:LYS:HE3	4:A:979:GLU:OE2	2.21	0.41
4:A:17:LEU:HD11	4:A:884:ILE:HD13	2.02	0.41
4:A:735:LYS:H	4:A:735:LYS:HG2	1.58	0.41
4:A:925:TYR:HD2	4:A:926:TYR:N	2.19	0.41
4:A:929:VAL:HG12	4:A:935:ILE:HG12	2.03	0.41
4:A:27:THR:CG2	4:A:785:LEU:H	2.33	0.40
4:A:249:LYS:HB2	4:A:265:GLU:HG2	2.03	0.40
4:A:391:ILE:HD11	4:A:543:PHE:CE2	2.55	0.40
4:A:884:ILE:HG13	4:A:886:ILE:HD11	2.02	0.40
4:A:1116:CYS:HA	4:A:1190:CYS:HA	2.04	0.40
4:A:94:LEU:HD23	4:A:94:LEU:HA	1.86	0.40
4:A:109:ILE:O	4:A:113:ILE:HG23	2.21	0.40
4:A:488:ILE:O	4:A:492:ILE:HG13	2.21	0.40
4:A:1071:THR:O	4:A:1071:THR:OG1	2.29	0.40
2:C:-2:DC:H2'	2:C:-1:DT:C6	2.57	0.40
4:A:75:LEU:HA	4:A:75:LEU:HD23	1.88	0.40
4:A:471:LYS:HB2	4:A:471:LYS:HE3	1.95	0.40
4:A:762:TYR:CE1	4:A:823:LYS:HG2	2.56	0.40
4:A:1040:PHE:C	4:A:1042:ASP:H	2.23	0.40
4:A:1294:PHE:O	4:A:1298:ARG:HG2	2.21	0.40
4:A:54:ILE:HD13	4:A:54:ILE:HG21	1.84	0.40
4:A:73:GLU:OE1	4:A:267:ALA:HB2	2.21	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:A:72:SER:OG	4:A:1046:ASP:OD1[5_454]	2.11	0.09

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
4	А	1246/1300~(96%)	1185 (95%)	55~(4%)	6~(0%)	25 59

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	А	574	ASN
4	А	160	THR
4	А	626	ASP
4	А	1013	LYS
4	А	1137	ALA
4	А	510	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	А	1144/1183~(97%)	1089~(95%)	55~(5%)	21 51

All (55) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	А	1	MET
4	А	39	ASP
4	А	64	GLU
4	А	67	SER
4	А	72	SER

Mol	Chain	Res	Type
4	А	85	LYS
4	А	115	ASP
4	А	131	LYS
4	А	136	SER
4	А	137	ASP
4	А	151	GLU
4	А	202	ARG
4	А	252	GLU
4	А	265	GLU
4	А	272	TYR
4	А	289	PHE
4	А	298	LYS
4	А	352	MET
4	А	398	SER
4	А	401	ASP
4	А	467	ARG
4	А	515	LEU
4	А	605	LEU
4	A	644	LYS
4	А	695	SER
4	А	735	LYS
4	А	736	ASP
4	А	745	GLN
4	А	746	ARG
4	А	755	ARG
4	А	776	SER
4	А	800	ARG
4	А	804	HIS
4	A	819	ASP
4	А	846	LYS
4	A	854	LYS
4	A	876	ASP
4	А	895	LYS
4	A	907	LYS
4	А	948	ARG
4	А	950	LYS
4	А	966	SER
4	А	1012	PHE
4	A	1053	ARG
4	A	1069	LYS
4	A	1084	LYS
4	A	1099	TYR

Continued from previous page				
Mol	Chain	\mathbf{Res}	Type	
4	А	1101	SER	
4	А	1105	SER	
4	А	1130	TYR	
4	А	1150	ARG	
4	А	1196	CYS	
4	А	1250	MET	
4	А	1280	LYS	
4	А	1298	ARG	

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

Mol	Chain	Res	Type
4	А	77	GLN
4	А	617	ASN
4	А	697	HIS
4	А	843	HIS
4	А	901	ASN
4	А	1043	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	В	41/58~(70%)	6 (14%)	2(4%)

All (6) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	В	-10	U
1	В	-9	G
1	В	-7	U
1	В	-6	G
1	В	21	G
1	В	22	U

All (2) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	В	-10	U
1	В	0	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 2 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	В	42/58~(72%)	-0.74	0 100 100	19, 27, 101, 139	0
2	С	27/27~(100%)	-0.63	0 100 100	21, 39, 70, 98	0
3	D	11/11 (100%)	-0.61	0 100 100	33, 38, 78, 95	0
4	А	1260/1300~(96%)	-0.20	18 (1%) 73 57	14, 44, 112, 152	0
All	All	1340/1396~(95%)	-0.23	18 (1%) 74 59	14, 43, 112, 152	0

All (18) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
4	А	1207	LEU	5.3
4	А	1203	PHE	3.7
4	А	1213	THR	2.9
4	А	1214	ILE	2.9
4	А	298	LYS	2.7
4	А	1206	LYS	2.6
4	А	1109	PHE	2.5
4	А	1156	ASN	2.5
4	А	1191	ILE	2.5
4	А	112	TYR	2.4
4	А	1221	LYS	2.3
4	А	1127	SER	2.3
4	А	647	LYS	2.3
4	А	552	ALA	2.3
4	A	469	ILE	2.2
4	А	445	THR	2.2
4	А	1012	PHE	2.1
4	А	381	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
5	MG	В	101	1/1	0.95	0.28	2,2,2,2	0
5	MG	В	102	1/1	0.96	0.20	$9,\!9,\!9,\!9$	0

6.5 Other polymers (i)

There are no such residues in this entry.

