

Full wwPDB X-ray Structure Validation Report (i)

Feb 19, 2025 - 07:55 PM JST

PDB ID	:	8X78
Title	:	Crystal Structure of N-Acyl Homoserine Lactone Lactonase from Pseudomonas
		poae
Authors	:	Li, X.H.; Su, D.
Deposited on	:	2023-11-23
Resolution	:	2.36 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.36 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	164625	1460 (2.36-2.36)
Clashscore	180529	$1571 \ (2.36-2.36)$
Ramachandran outliers	177936	1559 (2.36-2.36)
Sidechain outliers	177891	1559 (2.36-2.36)
RSRZ outliers	164620	1460 (2.36-2.36)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Δ	306	900/	1 / 0/	69/
1	11	500	60 %	1470	• 070
1	В	306	79%	14%	• 6%
1	С	306	76%	17%	• 6%
1	D	306	78%	15%	• 6%
	Б	202			
	E	306	78%	15%	• 6%
1	F	306	80%	15%	5%

α $\cdot \cdot$ \cdot	C		
Continued	trom	previous	page
	9	1	1 0

Mol	Chain	Length	Quality of chain		
1	G	306	73%	21%	• 6%
1	Н	306	3% 56%	33%	• 7%
1	Ι	306	66%	26%	• 7%
1	J	306	80%	14%	6%
1	К	306	% • 68%	22%	• 6%
1	L	306	75%	17%	• 6%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 28301 atoms, of which 104 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	т	287	Total	С	Ν	0	S	0	0	0
	L	201	2310	1467	399	434	10	0	0	0
1	V	297	Total	С	Ν	0	S	0	0	0
	K	201	2306	1466	396	434	10	0	0	0
1	С	200	Total	С	Ν	0	S	0	0	0
	G	200	2317	1472	400	435	10	0	0	0
1	ц	286	Total	С	Ν	0	S	0	0	0
1	11	280	2298	1461	395	432	10	0	0	U
1	т	285	Total	С	Ν	0	S	0	0	0
	1	260	2288	1455	391	432	10	0	0	U
1	т	200	Total	С	Ν	0	S	0	0	0
1	1	200	2317	1472	400	435	10	0	0	U
1	Б	201	Total	С	Ν	0	S	0	0	0
	Г	291	2338	1483	403	442	10	0	0	0
1	F	288	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Ľ	280	2317	1472	400	435	10	0	0	0
1	Λ	280	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Л	289	2324	1477	401	436	10	0	0	0
1	В	288	Total	С	Ν	0	\mathbf{S}	0	0	0
1	D	280	2314	1470	397	437	10	0	0	U
1	С	287	Total	С	Ν	Ο	S	0	0	0
	U	201	2310	1467	399	434	10	U	0 0	U
1	П	288	Total	С	Ν	0	S	0	0	0
		200	2317	1472	400	435	10	U	U	U

• Molecule 1 is a protein called Glyoxylase, beta-lactamase superfamily II.

• Molecule 2 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf					
0	т	1	Total	С	Н	0	0	0					
		1	14	3	8	3	0	0					
0	V	1	Total	С	Н	0	0	0					
	ñ	1	14	3	8	3	0	0					
0	C	1	Total	С	Н	0	0	0					
	G	1	14	3	8	3	0	0					
0	ц	1	Total	С	Η	Ο	0	0					
	п	1	14	3	8	3	0	0					
0	Т	1	Total	С	Η	Ο	0	0					
	1	1	14	3	8	3	0	0					
0	т	1	Total	С	Η	Ο	0	0					
	J	1	14	3	8	3	0	0					
2	e F	1	Total	С	Η	Ο	0	0					
2		L	1	T	14	3	8	3	0	0			
2	F	F	\mathbf{F}	F	F	F	1	Total	С	Н	0	0	0
2	Ľ	1	14	3	8	3	0	0					
2	E	1	Total	С	Η	Ο	0	0					
2		Ľ		1	14	3	8	3	0	0			
2	Δ	1	Total	С	Η	Ο	0	0					
	Л	1	14	3	8	3	0	0					
2	В	1	Total	С	Η	Ο	0	0					
	D	1	14	3	8	3	0	0					
2	С	1	Total	\mathbf{C}	Η	0	0	0					
		L	14	3	8	3	0	U					
2	D	1	Total	C	H	0	0	0					
2 D	1	14	3	8	3		U						

• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Inter-

est"	by	depositor)).
CDU	D.y	ucpositor,	•

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	L	2	Total Zn 2 2	0	0
3	K	2	Total Zn 2 2	0	0
3	G	2	Total Zn 2 2	0	0
3	Н	2	Total Zn 2 2	0	0
3	Ι	2	Total Zn 2 2	0	0
3	J	2	Total Zn 2 2	0	0
3	F	2	Total Zn 2 2	0	0
3	Е	2	Total Zn 2 2	0	0
3	А	2	Total Zn 2 2	0	0
3	В	2	Total Zn 2 2	0	0
3	С	2	Total Zn 2 2	0	0
3	D	2	Total Zn 2 2	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	L	13	Total O 13 13	0	0
4	K	5	Total O 5 5	0	0
4	G	4	Total O 4 4	0	0
4	Н	8	Total O 8 8	0	0
4	Ι	14	Total O 14 14	0	0
4	J	34	$\begin{array}{cc} \text{Total} & \text{O} \\ 34 & 34 \end{array}$	0	0
4	F	37	Total O 37 37	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Е	33	Total O 33 33	0	0
4	А	56	Total O 56 56	0	0
4	В	61	Total O 61 61	0	0
4	С	37	$\begin{array}{cc} \text{Total} & \text{O} \\ 37 & 37 \end{array}$	0	0
4	D	37	$\begin{array}{cc} \text{Total} & \text{O} \\ 37 & 37 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glyoxylase, beta-lactamase superfamily II

1280 1281

Molecule 1: Glyoxylase, beta-lactamase superfamily II
 Chain H:
 56%
 56%
 33%
 7%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%
 6%</l

• Molecule 1: Glyoxylase, beta-lactamase superfamily II

• Molecule 1: Glyoxylase, beta-lactamase superfamily II

Chain E:	78%	15%	• 6%
MET LYS ALA LAA LAA LAA ALA ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	V65 D66 N71 L75 F70 F70 F70 P85 E88 1103 F110 F116 F116 F116 F116	1124 1126 1126 131 132	K136 C139 P159 S170
R173 V174 K175 F176 F176 F176 F183 F183 F183 F185 F185 F185 F203 F203 F203 F203 F203 F203 F203 F203	2011 2012 2012 2015 2015 2015 2015 2015		
• Molecule 1: Glyoxylase, bet	a-lactamase superfamily II		
Chain A:	80%	14%	• 6%
MET LYS ALA ALA THE PRO ALA ALA L51 L51 L51 L51 L51 L51 C55 R78 R78 R78 R78 R78 R78 R78 R78 R78 R78	1103 1104 1104 1123 1125 1126 1126 1126 1126 1126 1126 1126	K1/5 1177 1183 1183 1184	R1 90 F203 F204 H208 1218
1225 1225 1228 1234 1234 1234 1234 1224 1246 1260 1260	1275 P277 P277 L285 L285 ASP THR SER SER CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN		
• Molecule 1: Glyoxylase, bet	a-lactamase superfamily II		
Chain B:	79%	14%	• 6%
Chain B:	060 1175 1776 1777 1777 1777 1778 1776 1776 1776	14% 149 143 149 143	H 44 11 45 11 47 11 15 11 15 111 15 11 15 111 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 11
Chain B: 1183 1183 1184 1184 1184 1184 1184 1184 1184 1184 1285 12	H263 1276 4276 4279 4276 4279 4279 4279 4279 4296 4279 4296 4279 4296 420 420 420 420 420 420 420 420 420 420	14%	H144 H1445 E1445 E1448 F145 1155 1155 1155 1155 1155 1155 1155
Chain B:	79% 80 80 90 921 80 80 90 90 921 10 10 10 10 10 10 10 10 10 10 10 10 10	14%	H144 H146 E148 E148 E148 G172
Chain B:	79% 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14%	• 6%
Chain B:	79% 80 80 80 80 80 80 80 80 80 80 80 80 80 8	14% 14% 17% 17%	 K136 H144 H146 H146 H146 H146 H146 H147 H147 H147 H148 H146 H146 H146 H147 H146 <li< td=""></li<>

• Molecule 1: Glyoxylase, beta-lactamase superfamily II

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	142.59Å 87.67Å 159.24Å	Deperitor
a, b, c, α , β , γ	90.00° 115.79° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	39.96 - 2.36	Depositor
Resolution (A)	39.96 - 2.36	EDS
% Data completeness	99.6 (39.96-2.36)	Depositor
(in resolution range)	99.6 (39.96-2.36)	EDS
R _{merge}	0.09	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.25 (at 2.37 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.20.1_4487: ???)	Depositor
D D.	0.168 , 0.223	Depositor
Π, Π_{free}	0.172 , 0.225	DCC
R_{free} test set	143685 reflections (1.37%)	wwPDB-VP
Wilson B-factor $(Å^2)$	46.1	Xtriage
Anisotropy	0.387	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.32 , 45.7	EDS
L-test for twinning ²	$< L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	0.000 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	28301	wwPDB-VP
Average B, all atoms $(Å^2)$	57.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 30.39 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.3175e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond	angles
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.50	0/2396	0.67	0/3258
1	В	0.48	0/2385	0.67	0/3244
1	С	0.46	0/2380	0.64	0/3235
1	D	0.49	0/2388	0.64	0/3247
1	Ε	0.45	0/2388	0.63	0/3247
1	F	0.47	0/2409	0.66	0/3276
1	G	0.39	0/2388	0.60	0/3247
1	Н	0.40	0/2368	0.57	0/3220
1	Ι	0.43	0/2358	0.62	0/3207
1	J	0.49	0/2388	0.65	0/3247
1	Κ	0.47	0/2377	0.66	0/3233
1	L	0.43	0/2380	0.61	0/3235
All	All	0.46	0/28605	0.63	0/38896

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2324	0	2166	31	0

8	Х	7	8

Conti	nuea jron	I previous	page	TT(addad)	Clasher	Commence Classica
	Chain	INOn-H	H(model)	H(added)	Clasnes	Symm-Clasnes
	B	2314	0	2149	42	0
		2310	0	2151	41	0
1	D	2317	0	2158	30	0
1	E	2317	0	2158	37	0
1	F'	2338	0	2174	27	0
1	G	2317	0	2158	40	0
1	Н	2298	0	2135	101	0
1	I	2288	0	2125	80	0
1	J	2317	0	2158	37	0
1	K	2306	0	2145	94	0
1	L	2310	0	2151	60	0
2	А	6	8	8	0	0
2	В	6	8	8	0	0
2	С	6	8	8	1	0
2	D	6	8	8	0	0
2	Е	6	8	8	0	0
2	F	12	16	16	0	0
2	G	6	8	8	0	0
2	Н	6	8	8	0	0
2	Ι	6	8	7	0	0
2	J	6	8	8	0	0
2	Κ	6	8	7	0	0
2	L	6	8	8	0	0
3	А	2	0	0	0	0
3	В	2	0	0	0	0
3	С	2	0	0	0	0
3	D	2	0	0	0	0
3	Е	2	0	0	0	0
3	F	2	0	0	0	0
3	G	2	0	0	0	0
3	Н	2	0	0	0	0
3	Ι	2	0	0	0	0
3	J	2	0	0	0	0
3	K	2	0	0	0	0
3	L	2	0	0	0	0
4	А	56	0	0	1	0
4	В	61	0	0	0	0
4	С	37	0	0	1	0
4	D	37	0	0	1	0
4	Е	33	0	0	1	0
4	F	37	0	0	1	0
4	G	4	0	0	0	0
L	_				Continu	ued on next page

ntia α J fa .

L D W I D E

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	Н	8	0	0	2	0
4	Ι	14	0	0	0	0
4	J	34	0	0	0	0
4	Κ	5	0	0	0	0
4	L	13	0	0	1	0
All	All	28197	104	25930	563	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (563) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A + 1	A 4	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:123:LYS:HD3	1:E:175:LYS:HE2	1.31	1.12
1:I:57:GLY:HA2	1:C:295:ARG:HE	1.08	1.06
1:L:143:GLN:NE2	1:K:246:ARG:HD3	1.74	1.02
1:L:96:SER:HB2	1:L:98:GLU:OE1	1.64	0.96
1:H:100:VAL:HG23	1:H:122:ALA:HB2	1.49	0.93
1:I:48:TYR:OH	1:I:89:VAL:HG21	1.69	0.91
1:I:246:ARG:HD3	1:J:143:GLN:HE22	1.36	0.89
1:L:17:SER:HB3	1:L:47:ILE:HD11	1.55	0.88
1:H:169:ILE:HG23	1:I:139:CYS:SG	2.14	0.88
1:K:208:HIS:HB2	1:K:288:LYS:HE3	1.55	0.87
1:I:123:LYS:HD2	1:I:175:LYS:HE2	1.58	0.86
1:L:143:GLN:HE21	1:K:246:ARG:HD3	1.39	0.85
1:I:27:LYS:HD2	1:I:39:SER:HB3	1.60	0.83
1:C:73:HIS:O	1:C:76:THR:HG22	1.79	0.82
1:I:57:GLY:HA2	1:C:295:ARG:NE	1.93	0.81
1:I:143:GLN:HE22	1:J:246:ARG:HD3	1.46	0.80
1:K:288:LYS:HE2	1:K:288:LYS:HA	1.63	0.80
1:I:246:ARG:HD3	1:J:143:GLN:NE2	1.97	0.80
1:H:78:TYR:HB2	1:H:80:PHE:CE2	2.17	0.79
1:E:123:LYS:HD3	1:E:175:LYS:CE	2.12	0.79
1:K:105:VAL:HG21	1:K:124:LEU:HD21	1.65	0.79
1:I:100:VAL:HG11	1:I:119:PHE:HD2	1.48	0.78
1:J:103:ILE:HB	1:J:124:LEU:HD23	1.66	0.77
1:H:146:THR:HG23	1:H:149:GLU:HG3	1.66	0.77
1:I:143:GLN:NE2	1:J:246:ARG:HD3	1.99	0.77
1:A:123:LYS:HG2	1:A:175:LYS:HE2	1.67	0.76
1:L:146:THR:HG23	1:L:149:GLU:H	1.50	0.76
1:E:116:PHE:HE1	1:E:173:ARG:HH12	1.29	0.76

	to ac pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:71:ASN:OD1	1:J:75:LEU:HD11	1.84	0.76
1:H:169:ILE:HD13	1:H:174:VAL:CG1	2.16	0.75
1:L:51:LEU:HB2	1:L:63:VAL:CG2	2.16	0.75
1:K:100:VAL:HG11	1:K:119:PHE:CD2	2.22	0.75
1:K:100:VAL:HG11	1:K:119:PHE:HD2	1.51	0.75
1:I:100:VAL:HG11	1:I:119:PHE:CD2	2.20	0.75
1:I:60:GLN:HG2	1:C:60:GLN:HB2	1.67	0.74
1:I:97:PRO:O	1:I:100:VAL:HG12	1.87	0.74
1:H:222:TYR:OH	1:H:267:ILE:HD13	1.86	0.74
1:C:227:ARG:NH1	1:D:148:GLU:OE2	2.20	0.74
1:H:15:ILE:HG12	1:H:51:LEU:HD22	1.69	0.74
1:H:165:ALA:O	1:H:169:ILE:HG12	1.89	0.73
1:H:11:THR:HG21	1:H:186:GLY:HA3	1.70	0.73
1:I:288:LYS:HG2	1:I:291:ASP:OD2	1.89	0.73
1:H:23:VAL:HG12	1:H:80:PHE:CD1	2.23	0.73
1:E:103:ILE:HB	1:E:124:LEU:HD23	1.69	0.72
1:I:60:GLN:O	1:I:60:GLN:HG3	1.89	0.72
1:C:103:ILE:HB	1:C:124:LEU:HD23	1.70	0.72
1:L:242:ILE:HD11	1:K:152:TRP:CE3	2.25	0.72
1:I:226:GLU:HG2	1:I:256:PHE:CD2	2.24	0.72
1:H:214:ALA:HA	1:H:260:ILE:HG13	1.71	0.71
1:H:140:SER:O	1:H:143:GLN:HG2	1.89	0.71
1:H:129:ASP:HA	1:H:132:THR:HG22	1.71	0.71
1:H:15:ILE:HG22	1:H:285:LEU:HD13	1.72	0.71
1:I:293:SER:O	1:I:294:ARG:C	2.29	0.71
1:I:226:GLU:HG2	1:I:256:PHE:CE2	2.26	0.70
1:I:57:GLY:CA	1:C:295:ARG:HE	1.96	0.70
1:I:62:VAL:CG2	1:I:100:VAL:HA	2.21	0.70
1:G:183:ILE:HD12	1:G:184:LEU:N	2.06	0.69
1:K:12:ASP:HB2	1:K:288:LYS:HG3	1.72	0.69
1:B:10:ASP:O	1:B:56:VAL:HG12	1.93	0.69
1:A:105:VAL:HG13	1:A:125:TYR:O	1.93	0.69
1:K:73:HIS:O	1:K:76:THR:HG22	1.93	0.68
1:K:23:VAL:HG22	1:K:80:PHE:CD2	2.27	0.68
1:H:169:ILE:HD13	1:H:174:VAL:HG13	1.76	0.68
1:I:35:ILE:HG21	1:I:227:ARG:HH21	1.59	0.68
1:K:248:MET:O	1:K:252:VAL:HG12	1.93	0.68
1:G:183:ILE:HD12	1:G:184:LEU:H	1.56	0.68
1:I:103:ILE:HB	1:I:124:LEU:HD12	1.75	0.67
1:K:50:LEU:CD2	1:K:52:VAL:HG23	2.25	0.67
1:B:123:LYS:HE2	1:B:172:GLY:O	1.94	0.67

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:107:HIS:CE1	1:D:112:HIS:CE1	2.83	0.67
1:K:208:HIS:HB2	1:K:288:LYS:CE	2.25	0.67
1:D:104:LEU:HD22	1:D:183:ILE:HD12	1.76	0.67
1:F:170:SER:HB2	1:A:159:PRO:HB2	1.77	0.67
1:H:51:LEU:O	1:H:63:VAL:HG22	1.95	0.66
1:E:170:SER:HB2	1:D:159:PRO:HB2	1.76	0.66
1:L:183:ILE:HD12	1:L:184:LEU:H	1.61	0.66
1:D:9:ARG:HA	1:D:9:ARG:NE	2.09	0.66
1:G:246:ARG:HD3	1:H:144:HIS:NE2	2.10	0.66
1:H:294:ARG:HH21	1:H:295:ARG:HB3	1.60	0.65
1:K:136:LYS:HB3	1:K:136:LYS:HZ2	1.60	0.65
1:H:20:TYR:CZ	1:H:68:GLY:HA2	2.31	0.65
1:E:116:PHE:HE1	1:E:173:ARG:NH1	1.95	0.65
1:E:126:ILE:HD11	1:E:131:TYR:HB2	1.79	0.65
1:K:288:LYS:HB3	1:K:288:LYS:HZ3	1.61	0.64
1:L:84:GLU:OE2	1:L:92:ARG:NH2	2.29	0.64
1:H:100:VAL:CG2	1:H:119:PHE:HB3	2.28	0.64
1:K:228:MET:HE3	1:K:249:ARG:HE	1.62	0.64
1:H:13:TRP:HB2	1:H:207:THR:HG22	1.79	0.64
1:H:116:PHE:HE1	1:H:173:ARG:HE	1.46	0.64
1:H:288:LYS:O	1:H:291:ASP:HB2	1.98	0.64
1:H:294:ARG:O	1:H:295:ARG:C	2.37	0.64
1:B:128:LEU:HD22	1:C:136:LYS:HD3	1.79	0.64
1:K:288:LYS:HE2	1:K:288:LYS:CA	2.28	0.63
1:L:35:ILE:HG23	1:L:229:TRP:CZ2	2.33	0.63
1:G:228:MET:HE1	1:G:249:ARG:HD2	1.79	0.63
1:F:103:ILE:HB	1:F:124:LEU:HD23	1.81	0.63
1:F:268:TRP:HA	1:F:273:THR:HG21	1.80	0.63
1:D:70:GLN:HG2	4:D:512:HOH:O	1.97	0.63
1:I:16:TRP:NE1	1:I:284:GLU:HG3	2.13	0.63
1:H:278:ASN:H	1:H:278:ASN:HD22	1.45	0.63
1:H:85:ASP:O	1:H:89:VAL:HG23	1.98	0.62
1:D:161:ASP:OD1	1:D:164:ARG:NH1	2.33	0.62
1:K:228:MET:CE	1:K:249:ARG:HE	2.12	0.62
1:H:23:VAL:HG12	1:H:80:PHE:CE1	2.34	0.62
1:H:276:ALA:HB1	1:H:277:PRO:CD	2.29	0.62
1:G:276:ALA:HB1	1:G:277:PRO:HD2	1.80	0.62
1:A:78:TYR:HB2	1:A:80:PHE:CE2	2.36	0.61
1:A:183:ILE:HG22	1:A:184:LEU:HD22	1.82	0.61
1:B:146:THR:HB	1:B:148:GLU:OE1	2.00	0.61
1:B:250:SER:O	1:B:253:LYS:NZ	2.33	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:159:PRO:HB2	1:D:170:SER:HB2	1.82	0.61
1:L:252:VAL:HG21	1:L:258:ARG:HB2	1.81	0.61
1:H:97:PRO:O	1:H:100:VAL:HG22	2.00	0.60
1:L:37:SER:OG	1:K:28:ASP:OD1	2.20	0.60
1:F:116:PHE:HE1	1:F:173:ARG:HH12	1.49	0.60
1:L:51:LEU:HB2	1:L:63:VAL:HG22	1.82	0.60
1:K:50:LEU:HD21	1:K:52:VAL:HG23	1.83	0.60
1:H:276:ALA:HB1	1:H:277:PRO:HD2	1.82	0.60
1:L:143:GLN:HE22	1:K:246:ARG:HD3	1.62	0.60
1:K:274:TRP:CH2	1:K:284:GLU:HB2	2.37	0.60
1:D:104:LEU:HB3	1:D:203:PHE:CZ	2.37	0.60
1:K:104:LEU:HB3	1:K:203:PHE:CZ	2.37	0.59
1:F:271:HIS:O	1:F:273:THR:HG23	2.02	0.59
1:H:128:LEU:HD21	1:I:136:LYS:HE2	1.84	0.59
1:B:275:THR:HG22	1:B:276:ALA:O	2.02	0.59
1:D:9:ARG:HE	1:D:10:ASP:H	1.50	0.59
1:K:208:HIS:H	1:K:288:LYS:HD3	1.66	0.59
1:L:148:GLU:OE2	1:K:227:ARG:NH1	2.36	0.59
1:I:62:VAL:HG23	1:I:100:VAL:HA	1.84	0.59
1:B:136:LYS:HE2	1:C:128:LEU:CD2	2.32	0.59
1:D:9:ARG:HD3	1:D:55:GLU:OE2	2.03	0.59
1:K:284:GLU:OE1	1:K:287:LEU:HD11	2.03	0.59
1:D:104:LEU:CD2	1:D:183:ILE:HD12	2.32	0.59
1:K:287:LEU:CD1	1:K:293:SER:HA	2.33	0.58
1:H:103:ILE:HB	1:H:124:LEU:HD23	1.85	0.58
1:H:103:ILE:HG13	1:H:122:ALA:HB1	1.85	0.58
1:K:33:ALA:O	1:K:37:SER:HB3	2.03	0.58
1:J:146:THR:HB	1:J:148:GLU:OE1	2.03	0.58
1:H:293:SER:OG	1:H:294:ARG:N	2.34	0.58
1:B:123:LYS:HD2	1:B:175:LYS:HZ2	1.67	0.58
1:B:128:LEU:CD2	1:C:136:LYS:HD3	2.33	0.58
2:C:401:GOL:H11	4:C:508:HOH:O	2.03	0.58
1:I:104:LEU:HD22	1:I:183:ILE:HD12	1.85	0.58
1:A:258:ARG:HG2	1:A:258:ARG:HH11	1.69	0.58
1:G:103:ILE:HB	1:G:124:LEU:HD12	1.86	0.57
1:F:275:THR:HG22	1:F:276:ALA:O	2.04	0.57
1:G:35:ILE:HG21	1:G:227:ARG:HH21	1.69	0.57
1:C:25:MET:HE2	1:C:26:ALA:H	1.69	0.57
1:K:50:LEU:HD21	1:K:52:VAL:CG2	2.34	0.57
1:H:169:ILE:HD13	1:H:174:VAL:HG11	1.85	0.57
1:L:92:ARG:NH1	4:L:501:HOH:O	2.35	0.57

	io ao pago	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:84:GLU:CD	1:L:92:ARG:HH22	2.07	0.57
1:K:252:VAL:O	1:K:252:VAL:HG22	2.04	0.57
1:H:105:VAL:CG2	1:H:124:LEU:HD22	2.35	0.57
1:C:237:ASN:HA	1:D:236:GLY:O	2.04	0.56
1:L:252:VAL:CG2	1:L:258:ARG:HB2	2.36	0.56
1:I:104:LEU:HB3	1:I:203:PHE:CZ	2.39	0.56
1:C:275:THR:HG22	1:C:276:ALA:O	2.04	0.56
1:H:63:VAL:HG11	1:H:184:LEU:HD13	1.86	0.56
1:L:167:GLN:HG2	1:G:163:ILE:HD13	1.87	0.56
1:H:63:VAL:HG12	1:H:102:THR:HB	1.88	0.56
1:K:228:MET:CE	1:K:245:TYR:HB3	2.36	0.56
1:I:246:ARG:HE	1:J:144:HIS:HE1	1.54	0.56
1:E:139:CYS:SG	1:D:169:ILE:HG23	2.46	0.56
1:K:225:ILE:O	1:K:228:MET:HE3	2.05	0.56
1:C:34:GLY:HA3	1:C:229:TRP:HZ2	1.70	0.56
1:L:183:ILE:HD12	1:L:184:LEU:N	2.21	0.55
1:E:55:GLU:HG3	1:E:185:PRO:CB	2.36	0.55
1:D:104:LEU:HD22	1:D:183:ILE:CD1	2.36	0.55
1:L:22:GLN:O	1:L:80:PHE:HA	2.06	0.55
1:E:287:LEU:HD11	1:E:293:SER:HA	1.87	0.55
1:D:288:LYS:HG2	1:D:291:ASP:OD2	2.07	0.55
1:A:218:ILE:HG21	1:A:244:VAL:HG11	1.89	0.55
1:K:50:LEU:HD23	1:K:51:LEU:N	2.22	0.54
1:H:278:ASN:HD22	1:H:278:ASN:N	2.04	0.54
1:I:125:TYR:HD2	1:I:177:ILE:HD11	1.72	0.54
1:K:97:PRO:O	1:K:100:VAL:HG12	2.07	0.54
1:K:105:VAL:HG21	1:K:124:LEU:CD2	2.37	0.54
1:G:246:ARG:HD2	1:H:143:GLN:OE1	2.05	0.54
1:D:103:ILE:HB	1:D:124:LEU:HD12	1.89	0.54
1:E:15:ILE:HG12	1:E:51:LEU:CD2	2.38	0.54
1:K:252:VAL:HG21	1:K:258:ARG:HB2	1.88	0.54
1:K:128:LEU:HD21	1:J:136:LYS:HD2	1.90	0.54
1:K:77:ARG:O	1:K:78:TYR:HB2	2.07	0.54
1:B:136:LYS:HE2	1:C:128:LEU:HD21	1.90	0.54
1:K:287:LEU:HD11	1:K:293:SER:HA	1.89	0.54
1:H:237:ASN:HB3	1:H:240:ASN:HB2	1.90	0.54
1:C:274:TRP:CZ2	1:C:294:ARG:HG3	2.43	0.53
1:B:59:LYS:HG3	1:B:60:GLN:N	2.23	0.53
1:G:52:VAL:O	1:G:288:LYS:NZ	2.40	0.53
1:A:103:ILE:HB	1:A:124:LEU:HD12	1.89	0.53
1:L:188:THR:HG23	1:L:204:GLU:HB3	1.90	0.53

	loue page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:104:LEU:HB3	1:E:203:PHE:CZ	2.44	0.53	
1:K:284:GLU:CD	1:K:287:LEU:HD11	2.29	0.53	
1:F:116:PHE:HE1	1:F:173:ARG:NH1	2.07	0.53	
1:L:103:ILE:HB	1:L:124:LEU:HD12	1.91	0.53	
1:L:123:LYS:HG2	1:L:175:LYS:HE2	1.91	0.53	
1:G:104:LEU:HB3	1:G:203:PHE:CZ	2.44	0.53	
1:L:37:SER:OG	1:K:28:ASP:OD2	2.26	0.52	
1:G:177:ILE:HD11	1:G:183:ILE:HG21	1.90	0.52	
1:H:53:GLY:HA2	1:H:60:GLN:HG3	1.91	0.52	
1:I:196:HIS:ND1	1:I:197:THR:HG23	2.25	0.52	
1:K:12:ASP:CB	1:K:288:LYS:HG3	2.39	0.52	
1:E:55:GLU:HG3	1:E:185:PRO:HB3	1.92	0.52	
1:L:14:SER:OG	1:L:288:LYS:HG2	2.10	0.52	
1:I:225:ILE:HD11	1:I:249:ARG:HG3	1.90	0.52	
1:H:23:VAL:CG1	1:H:80:PHE:CE1	2.93	0.52	
1:H:264:ASP:O	1:H:267:ILE:HG22	2.10	0.52	
1:H:287:LEU:HD22	1:H:293:SER:HA	1.92	0.51	
1:G:146:THR:HG23	1:G:149:GLU:OE2	2.10	0.51	
1:I:176:PHE:O	1:I:177:ILE:HD13	2.11	0.51	
1:D:195:SER:O	1:D:236:GLY:HA3	2.10	0.51	
1:G:132:THR:O	1:G:136:LYS:HD3	2.10	0.51	
1:H:129:ASP:HA	1:H:132:THR:CG2	2.40	0.51	
1:C:209:ASN:ND2	1:C:286:ASN:OD1	2.37	0.51	
1:D:225:ILE:HD13	1:D:259:ILE:HD13	1.92	0.51	
1:H:19:ALA:O	1:H:280:ASN:HB3	2.10	0.51	
1:I:134:TRP:O	1:I:138:VAL:HG23	2.10	0.51	
1:G:68:GLY:O	1:G:114:GLY:O	2.29	0.51	
1:K:78:TYR:HB2	1:K:80:PHE:CE1	2.46	0.51	
1:K:85:ASP:O	1:K:89:VAL:HG23	2.10	0.51	
1:K:272:ASN:CG	1:K:274:TRP:HZ3	2.14	0.51	
1:I:249:ARG:HG2	1:I:256:PHE:HE1	1.75	0.51	
1:J:144:HIS:CD2	1:J:149:GLU:HB3	2.46	0.51	
1:B:104:LEU:HB3	1:B:203:PHE:CZ	2.46	0.51	
1:K:252:VAL:CG2	1:K:258:ARG:HB2	2.40	0.51	
1:H:284:GLU:OE1	1:H:287:LEU:HD21	2.11	0.51	
1:I:273:THR:HG23	1:I:282:ILE:O	2.11	0.51	
1:L:170:SER:HB2	1:G:159:PRO:HB2	1.93	0.50	
1:E:104:LEU:HD22	1:E:183:ILE:HD12	1.93	0.50	
1:J:104:LEU:HB3	1:J:203:PHE:CZ	2.47	0.50	
1:C:226:GLU:HG2	1:C:256:PHE:CD2	2.46	0.50	
1:L:9:ARG:HB3	1:L:9:ARG:CZ	2.42	0.50	

	lo uo pugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:I:100:VAL:CG1	1:I:119:PHE:HD2	2.23	0.50	
1:K:274:TRP:CH2	1:K:295:ARG:HB2	2.47	0.50	
1:H:14:SER:HA	1:H:286:ASN:O	2.11	0.50	
1:I:225:ILE:HD13	1:I:259:ILE:HD13	1.93	0.50	
1:E:55:GLU:CG	1:E:185:PRO:HB3	2.42	0.50	
1:E:85:ASP:O	1:E:89:VAL:HG23	2.11	0.50	
1:A:228:MET:HE1	1:B:144:HIS:HE1	1.77	0.50	
1:K:108:MET:SD	1:K:126:ILE:CD1	3.00	0.50	
1:C:49:THR:HG22	1:C:51:LEU:CD1	2.42	0.50	
1:H:274:TRP:HZ2	1:H:294:ARG:HD3	1.77	0.49	
1:B:140:SER:O	1:B:143:GLN:HG2	2.12	0.49	
1:B:23:VAL:HG12	1:B:46:MET:HE3	1.94	0.49	
1:D:142:HIS:HA	1:D:150:LYS:HE2	1.93	0.49	
1:H:75:LEU:HD21	1:H:83:TRP:HB2	1.93	0.49	
1:F:209:ASN:O	1:F:258:ARG:NH2	2.45	0.49	
1:A:85:ASP:O	1:A:89:VAL:HG23	2.13	0.49	
1:J:27:LYS:HG2	1:J:221:TRP:HH2	1.77	0.49	
1:J:248:MET:O	1:J:252:VAL:HG22	2.12	0.49	
1:E:125:TYR:HB3	1:E:177:ILE:HD11	1.94	0.49	
1:H:146:THR:CG2	1:H:149:GLU:HG3	2.39	0.49	
1:H:274:TRP:HE1	1:H:294:ARG:CZ	2.25	0.49	
1:G:177:ILE:CD1	1:G:183:ILE:HG21	2.43	0.49	
1:I:109:HIS:ND1	1:I:196:HIS:HE1	2.10	0.49	
1:E:10:ASP:O	1:E:56:VAL:HG23	2.13	0.49	
1:B:63:VAL:HG21	1:B:184:LEU:CD1	2.43	0.49	
1:L:268:TRP:CE2	1:L:281:GLN:HB2	2.47	0.49	
1:I:86:PRO:HA	1:I:89:VAL:HG22	1.93	0.49	
1:H:73:HIS:HE1	4:H:506:HOH:O	1.96	0.48	
1:F:159:PRO:HB2	1:A:170:SER:HB3	1.95	0.48	
1:C:226:GLU:HG2	1:C:256:PHE:CE2	2.48	0.48	
1:I:16:TRP:CD1	1:I:284:GLU:HG3	2.48	0.48	
1:F:71:ASN:OD1	1:F:75:LEU:HD12	2.13	0.48	
1:A:177:ILE:HD11	1:A:183:ILE:HG13	1.96	0.48	
1:L:43:ILE:O	1:L:43:ILE:HG13	2.12	0.48	
1:C:25:MET:HA	1:C:25:MET:CE	2.43	0.48	
1:G:284:GLU:OE2	1:G:287:LEU:HD11	2.13	0.48	
1:J:116:PHE:CG	1:J:124:LEU:HD11	2.48	0.48	
1:A:275:THR:HG22	1:A:276:ALA:O	2.14	0.48	
1:L:98:GLU:H	1:L:98:GLU:CD	2.16	0.48	
1:F:221:TRP:HA	1:F:264:ASP:HB2	1.96	0.48	
1:I:25:MET:HE1	1:I:29:PHE:CD1	2.48	0.48	

	ti a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:16:TRP:CD1	1:H:284:GLU:HB2	2.49	0.48	
1:L:63:VAL:HG11	1:L:184:LEU:HD13	1.96	0.48	
1:K:128:LEU:CD2	1:J:136:LYS:HD2	2.44	0.48	
1:K:274:TRP:CE3	1:K:295:ARG:HG3	2.49	0.48	
1:A:258:ARG:HG2	1:A:258:ARG:NH1	2.28	0.48	
1:H:100:VAL:HG21	1:H:119:PHE:HB3	1.95	0.47	
1:H:271:HIS:NE2	1:H:285:LEU:HD23	2.29	0.47	
1:J:125:TYR:CZ	1:J:175:LYS:HD2	2.49	0.47	
1:C:25:MET:HA	1:C:25:MET:HE3	1.95	0.47	
1:I:16:TRP:HA	1:I:283:ALA:O	2.14	0.47	
1:A:225:ILE:HD13	1:A:259:ILE:HD13	1.96	0.47	
1:A:228:MET:CE	1:B:144:HIS:CE1	2.97	0.47	
1:K:12:ASP:OD1	1:K:56:VAL:HG22	2.14	0.47	
1:C:291:ASP:OD2	1:C:295:ARG:HD2	2.13	0.47	
1:L:252:VAL:HG21	1:L:258:ARG:CB	2.44	0.47	
1:H:146:THR:OG1	:146:THR:OG1 1:H:148:GLU:HG2		0.47	
1:A:190:ARG:NE	1:A:204:GLU:OE2	2.43	0.47	
1:K:65:VAL:O	1:K:66:ASP:HB2	2.14	0.47	
1:K:108:MET:HG3	1:K:126:ILE:HD12	1.96	0.47	
1:K:228:MET:HE1	1:K:245:TYR:HB3	1.96	0.47	
1:H:59:LYS:HA	1:H:59:LYS:HD3	1.48	0.47	
1:H:108:MET:SD	1:H:126:ILE:CD1	3.02	0.47	
1:L:182:GLU:HA	1:L:188:THR:HA	1.96	0.47	
1:H:241:GLN:NE2	4:H:501:HOH:O	2.46	0.47	
1:I:223:SER:O	1:I:227:ARG:HB2	2.14	0.47	
1:B:46:MET:HE2	1:B:263:HIS:HD1	1.79	0.47	
1:B:123:LYS:HD2	1:B:175:LYS:HE3	1.96	0.47	
1:K:100:VAL:CG1	1:K:119:PHE:HD2	2.24	0.47	
1:K:109:HIS:CD2	1:K:156:SER:HB3	2.50	0.47	
1:L:63:VAL:HG11	1:L:184:LEU:CD1	2.45	0.47	
1:K:209:ASN:O	1:K:258:ARG:NH2	2.39	0.47	
1:I:104:LEU:CD2	1:I:183:ILE:HD12	2.44	0.47	
1:F:273:THR:HG22	1:F:283:ALA:HA	1.97	0.47	
1:C:85:ASP:O	1:C:89:VAL:HG23	2.15	0.47	
1:L:168:GLY:HA2	1:L:173:ARG:HG2	1.96	0.46	
1:L:252:VAL:CG2	1:L:258:ARG:CB	2.93	0.46	
1:K:47:ILE:HD11	1:K:268:TRP:CH2	2.50	0.46	
1:H:223:SER:O	1:H:227:ARG:HB2	2.15	0.46	
1:H:272:ASN:ND2	1:H:272:ASN:H	2.14	0.46	
1:K:273:THR:HG22	1:K:274:TRP:O	2.15	0.46	
1:G:15:ILE:HG12	1:G:51:LEU:HD22	1.96	0.46	

	to do pagom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:F:225:ILE:HG13	1:F:245:TYR:HB3	1.97	0.46	
1:E:106:THR:O	1:E:200:SER:HA	2.15	0.46	
1:H:161:ASP:OD1	1:H:164:ARG:NH2	2.49	0.46	
1:I:165:ALA:O	1:I:169:ILE:HG12	2.15	0.46	
1:F:104:LEU:HB3	1:F:203:PHE:CZ	2.50	0.46	
1:E:71:ASN:OD1	1:E:75:LEU:HD12	2.15	0.46	
1:L:23:VAL:HG23	1:L:80:PHE:CD1	2.50	0.46	
1:L:146:THR:CG2	1:L:149:GLU:HG3	2.46	0.46	
1:L:276:ALA:HB1	1:L:277:PRO:HD2	1.97	0.46	
1:K:228:MET:HE3	1:K:249:ARG:NE	2.28	0.46	
1:H:19:ALA:HA	1:H:47:ILE:HG22	1.98	0.46	
1:H:152:TRP:HA	1:H:155:THR:HG23	1.97	0.46	
1:F:175:LYS:NZ	4:F:502:HOH:O	2.46	0.46	
1:L:37:SER:OG	1:K:28:ASP:CG	2.53	0.46	
1:F:13:TRP:CZ2	1:F:54:GLY:HA2	2.51	0.46	
1:C:260:ILE:HG12	ILE:HG12 1:C:285:LEU:HD21 1.98		0.46	
1:F:98:GLU:OE1	1:F:98:GLU:N	2.48	0.46	
1:A:173:ARG:HG2	4:A:550:HOH:O	2.14	0.46	
1:B:225:ILE:HD13	1:B:259:ILE:HD13	1.97	0.46	
1:C:52:VAL:CG1	1:C:295:ARG:HH12	2.29	0.46	
1:K:12:ASP:HB2	1:K:288:LYS:CG	2.43	0.46	
1:H:35:ILE:HG23	1:H:229:TRP:CH2	2.51	0.46	
1:H:16:TRP:CZ2	1:H:287:LEU:HD23	2.51	0.46	
1:E:292:THR:O	1:E:294:ARG:NH1	2.49	0.46	
1:G:195:SER:O	1:G:236:GLY:HA3	2.16	0.46	
1:H:11:THR:HG22	1:H:206:ASN:O	2.15	0.46	
1:H:100:VAL:CG2	1:H:122:ALA:HB2	2.33	0.46	
1:H:169:ILE:CD1	1:H:174:VAL:HG11	2.46	0.46	
1:H:183:ILE:HD12	1:H:183:ILE:HA	1.77	0.46	
1:J:27:LYS:CG	1:J:221:TRP:HH2	2.29	0.46	
1:J:65:VAL:O	1:J:66:ASP:HB2	2.16	0.46	
1:L:65:VAL:O	1:L:66:ASP:HB2	2.15	0.46	
1:K:93:VAL:O	1:K:294:ARG:NH1	2.48	0.46	
1:K:163:ILE:HD13	1:J:167:GLN:HG2	1.98	0.46	
1:K:286:ASN:ND2	1:K:288:LYS:HG2	2.31	0.46	
1:H:58:GLY:O	1:H:59:LYS:C	2.54	0.46	
1:B:66:ASP:OD2	1:B:112:HIS:ND1	2.32	0.46	
1:L:143:GLN:HE21	1:K:246:ARG:CD	2.21	0.45	
1:I:176:PHE:C	1:I:177:ILE:HD13	2.36	0.45	
1:E:183:ILE:H	1:E:183:ILE:HG12	1.56	0.45	
1:K:228:MET:CE	1:K:249:ARG:NE	2.78	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:104:LEU:HB3	1:H:203:PHE:CZ	2.51	0.45	
1:J:52:VAL:HA	1:J:61:HIS:O	2.16	0.45	
1:L:242:ILE:HD11	1:K:152:TRP:CZ3	2.52	0.45	
1:E:170:SER:HB2	1:D:159:PRO:CB	2.43	0.45	
1:K:136:LYS:HB3	1:K:136:LYS:NZ	2.28	0.45	
1:G:44:ASN:HB3	1:G:263:HIS:O	2.16	0.45	
1:J:136:LYS:HB3	1:J:136:LYS:HE2	1.63	0.45	
1:C:52:VAL:HG11	1:C:295:ARG:NH1	2.31	0.45	
1:K:35:ILE:HG23	1:K:229:TRP:CZ2	2.52	0.45	
1:K:183:ILE:HD11	1:K:189:ALA:HB2	1.98	0.45	
1:I:27:LYS:NZ	1:I:39:SER:O	2.28	0.45	
1:H:126:ILE:HG13	1:H:127:GLN:N	2.32	0.45	
1:I:109:HIS:CE1	1:I:196:HIS:CE1	3.04	0.45	
1:K:152:TRP:HA	1:K:155:THR:HG23	1.99	0.45	
1:E:259:ILE:O	1:E:261:PRO:HD3	2.16	0.45	
1:C:208:HIS:ND1	208:HIS:ND1 1:C:289:ASP:OD2 2.36		0.45	
1:L:168:GLY:HA3	1:L:174:VAL:HG23	1.99	0.45	
1:L:268:TRP:HB3	1:L:273:THR:HG21	1.99	0.45	
1:G:71:ASN:OD1	1:G:75:LEU:HD12	2.17	0.45	
1:H:87:LYS:HG2	1:H:97:PRO:HD2	1.99	0.45	
1:A:10:ASP:OD1	1:A:208:HIS:NE2	2.50	0.45	
1:K:12:ASP:OD1	1:K:208:HIS:CE1	2.69	0.45	
1:I:62:VAL:HG22	1:I:99:ASP:O	2.17	0.45	
1:I:143:GLN:NE2	1:J:246:ARG:CD	2.74	0.45	
1:B:10:ASP:OD2	1:B:56:VAL:HG11	2.17	0.45	
1:C:104:LEU:HB3	1:C:203:PHE:CZ	2.52	0.45	
1:K:28:ASP:HB3	1:K:37:SER:HA	1.99	0.45	
1:K:35:ILE:HG13	1:K:36:PHE:CD2	2.52	0.45	
1:H:182:GLU:HA	1:H:188:THR:HA	1.97	0.45	
1:I:123:LYS:HD2	1:I:175:LYS:CE	2.38	0.45	
1:J:69:PHE:HB3	1:J:111:ASP:HA	2.00	0.45	
1:C:209:ASN:O	1:C:258:ARG:NH2	2.50	0.45	
1:I:25:MET:CE	1:I:29:PHE:CD1	3.00	0.44	
1:I:104:LEU:HD22	1:I:183:ILE:CD1	2.47	0.44	
1:I:237:ASN:HA	1:J:236:GLY:O	2.17	0.44	
1:F:273:THR:HG22	1:F:283:ALA:CB	2.48	0.44	
1:C:123:LYS:HD2	1:C:175:LYS:HE2	1.99	0.44	
1:K:101:ASP:O	1:K:102:THR:HG23	2.18	0.44	
1:A:152:TRP:HA	1:A:155:THR:HG23	2.00	0.44	
1:D:231:PRO:HD2	1:D:241:GLN:HE22	1.82	0.44	
1:H:288:LYS:O	1:H:289:ASP:C	2.55	0.44	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:105:VAL:CG1	1:A:126:ILE:HG12	2.47	0.44	
1:C:291:ASP:OD1	1:C:295:ARG:HD2	2.17	0.44	
1:L:132:THR:HG22	1:G:132:THR:HG22	1.98	0.44	
1:J:108:MET:HG2	1:J:113:MET:SD	2.57	0.44	
1:J:276:ALA:HB1	1:J:277:PRO:HD2	2.00	0.44	
1:E:15:ILE:HG12	1:E:51:LEU:HD23	1.98	0.44	
1:D:66:ASP:CG	1:D:112:HIS:HB3	2.37	0.44	
1:K:271:HIS:O	1:K:272:ASN:C	2.55	0.44	
1:F:295:ARG:NH1	1:F:299:SER:OG	2.49	0.44	
1:B:295:ARG:HG2	1:B:296:PRO:O	2.18	0.44	
1:L:35:ILE:HG23	1:L:229:TRP:CH2	2.52	0.44	
1:L:242:ILE:CD1	1:K:152:TRP:CZ3	3.00	0.44	
1:K:225:ILE:O	1:K:228:MET:CE	2.65	0.44	
1:G:107:HIS:CE1	1:G:112:HIS:CD2	3.06	0.44	
1:H:267:ILE:O	1:H:267:ILE:HD12	2.18	0.44	
1:I:35:ILE:HG21	LE:HG21 1:I:227:ARG:NH2 2.29		0.44	
1:E:136:LYS:HD2	1:D:128:LEU:HD21	1.99	0.44	
1:A:259:ILE:O	1:A:261:PRO:HD3	2.17	0.44	
1:D:221:TRP:HA	1:D:264:ASP:HB2	1.99	0.44	
1:H:71:ASN:HB2	1:H:83:TRP:CE3	2.52	0.44	
1:H:88:ASP:O	1:H:92:ARG:HD3	2.18	0.44	
1:I:18:LEU:CD1	1:I:90:LEU:HD23	2.48	0.44	
1:A:104:LEU:HB3	1:A:203:PHE:CZ	2.53	0.44	
1:A:228:MET:HE1	1:B:144:HIS:CE1	2.52	0.44	
1:C:23:VAL:HG23	1:C:80:PHE:CD1	2.53	0.44	
1:C:34:GLY:HA3	1:C:229:TRP:CZ2	2.52	0.44	
1:C:71:ASN:OD1	1:C:75:LEU:HD12	2.17	0.44	
1:K:291:ASP:O	1:K:292:THR:C	2.56	0.44	
1:B:46:MET:HE2	1:B:263:HIS:ND1	2.33	0.44	
1:D:119:PHE:CD1	1:D:119:PHE:N	2.86	0.44	
1:A:123:LYS:CG	1:A:175:LYS:HE2	2.42	0.44	
1:C:52:VAL:HG11	1:C:295:ARG:HH12	1.83	0.44	
1:D:167:GLN:O	1:D:171:ASP:OD1	2.35	0.44	
1:L:140:SER:O	1:L:143:GLN:HG2	2.18	0.43	
1:K:46:MET:CE	1:K:80:PHE:HE2	2.31	0.43	
1:H:16:TRP:HE3	1:H:50:LEU:HD23	1.82	0.43	
1:A:237:ASN:HA	1:B:236:GLY:O	2.17	0.43	
1:B:23:VAL:CG1	1:B:46:MET:HE3	2.48	0.43	
1:H:16:TRP:NE1	1:H:284:GLU:HB2	2.33	0.43	
1:L:85:ASP:OD1	1:L:86:PRO:HD2	2.18	0.43	
1:I:107:HIS:CE1	1:I:217:ASP:OD2	2.72	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:I:168:GLY:C	1:I:174:VAL:HG12	2.38	0.43	
1:I:169:ILE:HA	1:I:174:VAL:HG13	1.99	0.43	
1:I:276:ALA:HB1	1:I:277:PRO:HD2	2.00	0.43	
1:K:12:ASP:HA	1:K:207:THR:HA	2.00	0.43	
1:F:212:PHE:CE2	1:F:258:ARG:HD3	2.53	0.43	
1:L:37:SER:HG	1:K:28:ASP:CG	2.20	0.43	
1:H:109:HIS:CG	1:H:156:SER:HB3	2.54	0.43	
1:H:113:MET:HG2	1:H:113:MET:O	2.18	0.43	
1:B:183:ILE:H	1:B:183:ILE:HG12	1.57	0.43	
1:C:273:THR:HA	1:C:282:ILE:O	2.18	0.43	
1:K:84:GLU:CD	1:K:92:ARG:HH22	2.22	0.43	
1:E:125:TYR:CZ	1:E:175:LYS:HD2	2.54	0.43	
1:C:221:TRP:HA	1:C:264:ASP:HB2	2.01	0.43	
1:L:221:TRP:HA	1:L:264:ASP:HB2	2.01	0.43	
1:I:15:ILE:HG12	1:I:51:LEU:CD2	2.49	0.43	
1:J:221:TRP:HA	1:J:264:ASP:HB2	1.99	0.43	
1:B:10:ASP:CG	1:B:56:VAL:HG11	2.39	0.43	
1:B:78:TYR:HB2	1:B:80:PHE:CE2	2.52	0.43	
1:D:271:HIS:CE1	1:D:285:LEU:HD13	2.53	0.43	
1:L:242:ILE:CD1	1:K:152:TRP:CE3	3.00	0.43	
1:L:294:ARG:HG3	1:L:294:ARG:HH11	1.84	0.43	
1:K:126:ILE:HG13	1:K:127:GLN:N	2.34	0.43	
1:K:287:LEU:HD13	1:K:293:SER:HA	2.00	0.43	
1:I:119:PHE:N	1:I:119:PHE:CD1	2.87	0.43	
1:K:119:PHE:CD1	1:K:119:PHE:N	2.87	0.43	
1:I:92:ARG:CZ	1:I:276:ALA:HB2	2.48	0.43	
1:D:276:ALA:HB1	1:D:277:PRO:HD2	2.01	0.43	
1:G:23:VAL:HG23	1:G:80:PHE:CD1	2.54	0.42	
1:H:63:VAL:HA	1:H:102:THR:O	2.19	0.42	
1:I:57:GLY:CA	1:C:295:ARG:HG3	2.49	0.42	
1:I:83:TRP:CH2	1:I:85:ASP:HA	2.54	0.42	
1:D:63:VAL:HG21	1:D:184:LEU:HD13	2.00	0.42	
1:H:170:SER:OG	1:I:159:PRO:HB2	2.19	0.42	
1:I:65:VAL:O	1:I:66:ASP:HB2	2.19	0.42	
1:J:144:HIS:HB3	1:J:149:GLU:OE1	2.19	0.42	
1:L:268:TRP:CZ2	1:L:281:GLN:HB2	2.55	0.42	
1:I:246:ARG:HE	1:J:144:HIS:CE1	2.33	0.42	
1:E:65:VAL:O	1:E:66:ASP:HB2	2.20	0.42	
1:D:51:LEU:HB2	1:D:63:VAL:HB	2.01	0.42	
1:H:274:TRP:HE1	1:H:294:ARG:NE	2.18	0.42	
1:I:64:LEU:O	1:I:103:ILE:HA	2.18	0.42	

	to de pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:J:116:PHE:HB2	1:J:124:LEU:HD21	2.00	0.42	
1:E:23:VAL:HG23	1:E:80:PHE:CD1	2.54	0.42	
1:G:168:GLY:HA2	1:G:173:ARG:HG2	2.00	0.42	
1:H:19:ALA:HB2	1:H:268:TRP:CZ2	2.54	0.42	
1:H:116:PHE:CG	1:H:124:LEU:HD11	2.55	0.42	
1:F:12:ASP:CG	1:F:288:LYS:HB2	2.40	0.42	
1:H:295:ARG:HE	1:H:295:ARG:HB2	1.68	0.42	
1:I:246:ARG:CD	1:J:143:GLN:NE2	2.74	0.42	
1:J:151:GLU:O	1:J:155:THR:HG23	2.20	0.42	
1:B:33:ALA:O	1:B:37:SER:OG	2.31	0.42	
1:G:228:MET:HE3	1:G:246:ARG:HG2	2.00	0.42	
1:F:35:ILE:HG21	1:F:227:ARG:NH2	2.34	0.42	
1:F:180:ASP:HA	1:F:189:ALA:O	2.20	0.42	
1:D:9:ARG:NE	1:D:10:ASP:H	2.15	0.42	
1:I:246:ARG:NE	1:J:144:HIS:HE1	2.17	0.42	
1:J:259:ILE:O	1:J:261:PRO:HD3	2.20	0.42	
1:B:59:LYS:C	1:B:60:GLN:HE21	2.23	0.42	
1:H:23:VAL:HG13	1:H:46:MET:SD	2.60	0.42	
1:F:237:ASN:HA	1:E:236:GLY:O	2.20	0.42	
1:B:275:THR:HG23	1:B:279:GLY:C	2.40	0.42	
1:E:132:THR:HG22	1:D:132:THR:HG22	2.01	0.42	
1:G:161:ASP:OD1	1:G:164:ARG:NH1	2.53	0.41	
1:H:84:GLU:CD	1:H:92:ARG:HH12	2.23	0.41	
1:B:123:LYS:HD2	1:B:175:LYS:NZ	2.34	0.41	
1:H:71:ASN:HB2	1:H:83:TRP:CD2	2.55	0.41	
1:H:129:ASP:CA	1:H:132:THR:HG22	2.45	0.41	
1:I:142:HIS:HA	1:I:150:LYS:HE2	2.01	0.41	
1:B:275:THR:CG2	1:B:279:GLY:HA2	2.50	0.41	
1:A:51:LEU:CD1	1:A:65:VAL:HG23	2.50	0.41	
1:B:63:VAL:HG22	1:B:102:THR:HB	2.01	0.41	
1:B:104:LEU:HD22	1:B:183:ILE:HD12	2.02	0.41	
1:L:47:ILE:HG22	1:L:262:GLY:O	2.19	0.41	
1:I:107:HIS:CE1	1:I:112:HIS:CD2	3.08	0.41	
1:J:184:LEU:HB3	1:J:185:PRO:HD2	2.02	0.41	
1:A:246:ARG:HE	1:B:144:HIS:CE1	2.39	0.41	
1:K:23:VAL:CG2	1:K:46:MET:SD	3.08	0.41	
1:H:212:PHE:CE1	1:H:258:ARG:HD2	2.55	0.41	
1:I:209:ASN:O	1:I:258:ARG:NH2	2.54	0.41	
1:L:125:TYR:CZ	1:L:175:LYS:HD2	2.56	0.41	
1:G:18:LEU:CD2	1:G:282:ILE:HG23	2.50	0.41	
1:B:196:HIS:CD2	1:B:217:ASP:HB2	2.56	0.41	

		Interatomic	Clash	
Atom-1	Atom-1 Atom-2		overlap (Å)	
1:G:123:LYS:HD2	1:G:123:LYS:N	2.36	0.41	
1:G:151:GLU:O	1:G:155:THR:HG23	2.20	0.41	
1:H:175:LYS:HG3	1:H:176:PHE:N	2.35	0.41	
1:H:281:GLN:OE1	1:H:281:GLN:N	2.45	0.41	
1:I:64:LEU:HB2	1:I:103:ILE:HG12	2.03	0.41	
1:I:177:ILE:HD13	1:I:177:ILE:N	2.36	0.41	
1:E:98:GLU:OE1	1:E:98:GLU:N	2.43	0.41	
1:C:236:GLY:O	1:D:237:ASN:HA	2.20	0.41	
1:L:276:ALA:HB1	1:L:277:PRO:CD	2.50	0.41	
1:G:64:LEU:HD23	1:G:64:LEU:HA	1.82	0.41	
1:G:228:MET:CE	1:H:144:HIS:CE1	3.04	0.41	
1:I:35:ILE:HG23	1:I:229:TRP:CH2	2.55	0.41	
1:B:148:GLU:OE1	1:B:148:GLU:N	2.35	0.41	
1:C:116:PHE:CD2	1:C:124:LEU:HD11	2.55	0.41	
1:K:286:ASN:HD21	1:K:288:LYS:HD2	1.86	0.41	
1:F:37:SER:OG	1:F:37:SER:OG 1:E:28:ASP:OD2 2		0.41	
1:G:168:GLY:HA3	1:G:174:VAL:HG23	2.03	0.40	
1:J:162:LEU:HD23	1:J:162:LEU:HA	1.92	0.40	
1:F:75:LEU:HD23	1:F:75:LEU:HA	1.87	0.40	
1:A:125:TYR:CZ	1:A:175:LYS:HD2	2.56	0.40	
1:A:234:HIS:CG	1:A:241:GLN:HE22	2.39	0.40	
1:D:259:ILE:O	1:D:261:PRO:HD3	2.21	0.40	
1:K:50:LEU:CD2	1:K:50:LEU:CD2 1:K:50:LEU:C		0.40	
1:G:231:PRO:HD2	1:G:241:GLN:HE22	1.86	0.40	
1:E:196:HIS:HE1	4:E:510:HOH:O	2.03	0.40	
1:B:75:LEU:HD23	1:B:75:LEU:HA	1.82	0.40	
1:D:208:HIS:ND1	1:D:289:ASP:OD2	2.54	0.40	
1:K:127:GLN:HA	1:K:177:ILE:O	2.21	0.40	
1:G:15:ILE:HG12	1:G:51:LEU:CD2	2.51	0.40	
1:G:228:MET:HE3	1:H:144:HIS:CE1	2.56	0.40	
1:G:228:MET:CE	1:G:249:ARG:HD2	2.47	0.40	
1:H:294:ARG:HE	1:H:295:ARG:HB3	1.86	0.40	
1:I:225:ILE:O	1:I:249:ARG:NH1	2.52	0.40	
1:E:225:ILE:HD13	1:E:259:ILE:HD13	2.03	0.40	
1:L:146:THR:HG22	1:L:149:GLU:CD	2.42	0.40	
1:K:91:GLY:HA2	1:K:95:PHE:O	2.21	0.40	
1:G:66:ASP:OD2	1:G:112:HIS:ND1	2.50	0.40	
1:I:228:MET:HG3	1:J:144:HIS:CD2	2.56	0.40	
1:A:276:ALA:HB1	1:A:277:PRO:HD2	2.02	0.40	
1:G:74:TRP:CZ2	1:G:158:ASP:HB2	2.56	0.40	
1:F:105:VAL:HG13	1:F:125:TYR:O	2.20	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:E:273:THR:HA	1:E:282:ILE:O	2.22	0.40	
1:B:59:LYS:HE2	1:B:59:LYS:HB2	1.92	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	287/306~(94%)	278~(97%)	9(3%)	0	100	100
1	В	286/306~(94%)	273 (96%)	13 (4%)	0	100	100
1	С	285/306~(93%)	272 (95%)	13 (5%)	0	100	100
1	D	286/306 (94%)	275 (96%)	11 (4%)	0	100	100
1	Е	286/306 (94%)	276 (96%)	10 (4%)	0	100	100
1	F	289/306~(94%)	278 (96%)	11 (4%)	0	100	100
1	G	286/306 (94%)	274 (96%)	12 (4%)	0	100	100
1	Н	284/306~(93%)	261 (92%)	22 (8%)	1 (0%)	30	34
1	Ι	283/306~(92%)	271 (96%)	12 (4%)	0	100	100
1	J	286/306~(94%)	277 (97%)	9 (3%)	0	100	100
1	Κ	285/306~(93%)	264 (93%)	20 (7%)	1 (0%)	30	34
1	L	285/306~(93%)	274 (96%)	11 (4%)	0	100	100
All	All	3428/3672~(93%)	3273 (96%)	153 (4%)	2(0%)	48	59

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Κ	289	ASP
1	Н	293	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	246/261~(94%)	240~(98%)	6(2%)	44	55
1	В	245/261~(94%)	240~(98%)	5 (2%)	50	63
1	С	244/261~(94%)	235~(96%)	9~(4%)	29	38
1	D	245/261~(94%)	238~(97%)	7(3%)	37	48
1	Ε	245/261~(94%)	242~(99%)	3 (1%)	67	80
1	F	248/261~(95%)	239~(96%)	9 (4%)	30	39
1	G	245/261~(94%)	230~(94%)	15~(6%)	15	17
1	Н	242/261~(93%)	220 (91%)	22 (9%)	7	7
1	Ι	242/261~(93%)	234~(97%)	8 (3%)	33	42
1	J	245/261~(94%)	243~(99%)	2(1%)	79	88
1	Κ	244/261~(94%)	228~(93%)	16 (7%)	14	15
1	L	244/261~(94%)	236~(97%)	8 (3%)	33	42
All	All	2935/3132~(94%)	2825 (96%)	110 (4%)	29	38

All (110) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	L	9	ARG
1	L	37	SER
1	L	76	THR
1	L	82	SER
1	L	96	SER
1	L	153	VAL
1	L	188	THR
1	L	252	VAL
1	Κ	11	THR
1	Κ	12	ASP
1	Κ	47	ILE
1	Κ	50	LEU
1	К	93	VAL
1	Κ	102	THR

Mol	Chain	Res	Type
1	K	124	LEU
1	K	126	ILE
1	K	146	THR
1	K	156	SER
1	K	183	ILE
1	K	253	LYS
1	K	258	ARG
1	K	274	TRP
1	K	288	LYS
1	K	292	THR
1	G	23	VAL
1	G	37	SER
1	G	43	ILE
1	G	47	ILE
1	G	56	VAL
1	G	60	GLN
1	G	76	THR
1	G	77	ARG
1	G	81	SER
1	G	98	GLU
1	G	146	THR
1	G	178	THR
1	G	288	LYS
1	G	292	THR
1	G	295	ARG
1	Н	41	THR
1	Н	47	ILE
1	Н	59	LYS
1	Н	77	ARG
1	Н	85	ASP
1	Н	92	ARG
1	Н	93	VAL
1	Н	101	ASP
1	Н	113	MET
1	Н	126	ILE
1	Н	136	LYS
1	Н	260	ILE
1	Н	266	GLU
1	H	270	ARG
1	Н	272	ASN
1	H	278	ASN
1	Н	282	ILE

1 H 284 GLU 1 H 287 LEU 1 H 288 LYS 1 H 293 SER 1 H 293 SER 1 H 294 ARG 1 I 37 SER 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 174 VAL 1 I 178 THR 1 I 178 THR 1 I 183 ILE 1 J 35 ILE 1 J 288 LYS 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 LYS 1 F 136 LEV 1 <td< th=""><th>Mol</th><th>Chain</th><th>Res</th><th>Type</th></td<>	Mol	Chain	Res	Type
1 H 287 LEU 1 H 288 LYS 1 H 293 SER 1 H 294 ARG 1 I 37 SER 1 I 62 VAL 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 178 THR 1 I 178 ILE 1 J 35 ILE 1 J 288 LYS 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 ILE 1	1	Н	284	GLU
1 H 288 LYS 1 H 293 SER 1 H 294 ARG 1 I 37 SER 1 I 62 VAL 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 174 VAL 1 I 178 THR 1 I 183 ILE 1 J 35 ILE 1 J 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 LYS 1 F 136 LEE 1 F 250 SER 1 F	1	Н	287	LEU
1 H 293 SER 1 H 294 ARG 1 I 37 SER 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 183 ILE 1 J 35 ILE 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 LYS 1 F 136 LES 1 F 250 SER 1 <td< th=""><th>1</th><th>Н</th><th>288</th><th>LYS</th></td<>	1	Н	288	LYS
1 H 294 ARG 1 I 37 SER 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 141 SER 1 I 141 SER 1 I 141 SER 1 I 174 VAL 1 I 178 THR 1 I 183 ILE 1 J 35 ILE 1 J 287 LEU 1 F 60 GLN 1 F 105 VAL 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 LEV 1 F 126 SER 1 F 297 ASP 1 E 126 ILE 1	1	Н	293	SER
1 I 37 SER 1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 178 THR 1 I 178 THR 1 I 183 ILE 1 J 35 ILE 1 J 287 LEU 1 J 288 LYS 1 F 105 VAL 1 F 105 VAL 1 F 136 LYS 1 F 136 LEU 1 F 250 SER 1 <td< th=""><th>1</th><th>Н</th><th>294</th><th>ARG</th></td<>	1	Н	294	ARG
1 I 62 VAL 1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 174 VAL 1 I 178 THR 1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 105 VAL 1 F 136 LYS 1 F 136 LEE 1 F 250 SER 1 E 126 ILE 1 <td< td=""><td>1</td><td>Ι</td><td>37</td><td>SER</td></td<>	1	Ι	37	SER
1 I 70 GLN 1 I 141 SER 1 I 174 VAL 1 I 178 THR 1 I 178 THR 1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 105 VAL 1 F 136 LYS 1 F 136 LYS 1 F 136 LYS 1 F 136 LYS 1 F 136 SER 1 F 136 SER 1 F 250 SER 1 F 297 ASP 1 E 126 ILE 1 A 105 VAL 1 <t< td=""><td>1</td><td>Ι</td><td>62</td><td>VAL</td></t<>	1	Ι	62	VAL
1 I 141 SER 1 I 174 VAL 1 I 178 THR 1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 123 LYS 1 F 136 LEU 1 F 136 LEU 1 F 250 SER 1 F 297 ASP 1 E 126 ILE 1 A 145 GLU 1 <	1	Ι	70	GLN
1 I 174 VAL 1 I 178 THR 1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 SER 1 F 250 SER 1 F 297 ASP 1 E 126 ILE 1 A 105 VAL 1 A 105 VAL 1 <	1	Ι	141	SER
1 I 178 THR 1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 LSS 1 F 136 LSS 1 F 136 LSS 1 F 136 SER 1 F 250 SER 1 F 297 ASP 1 E 126 ILE 1 A 105 VAL 1 A 105 VAL 1 <	1	Ι	174	VAL
1 I 183 ILE 1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 LEU 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 A 105 VAL 1 A 145 GLU 1 A 253 LYS 1 <td< td=""><td>1</td><td>Ι</td><td>178</td><td>THR</td></td<>	1	Ι	178	THR
1 I 287 LEU 1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 LEU 1 F 136 Strain 1 F 155 THR 1 F 250 SER 1 F 297 ASP 1 E 183 ILE 1 E 183 ILE 1 A 105 VAL 1 A 145 GLU 1 A 253 LYS 1	1	Ι	183	ILE
1 J 35 ILE 1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 123 LYS 1 F 136 LYS 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 A 105 VAL 1 A 145 GLU 1 A 146 THR 1 A 258 ARG 1 A 258 LEU	1	Ι	287	LEU
1 J 288 LYS 1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 LYS 1 F 155 THR 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 A 105 VAL 1 A 105 VAL 1 A 146 THR 1 A 258 ARG 1 A 258 LEU 1 <t< td=""><td>1</td><td>J</td><td>35</td><td>ILE</td></t<>	1	J	35	ILE
1 F 60 GLN 1 F 105 VAL 1 F 123 LYS 1 F 136 LYS 1 F 155 THR 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 E 183 ILE 1 A 105 VAL 1 A 145 GLU 1 A 145 GLU 1 A 253 LYS 1 A 258 ARG 1 B 124 LEU 1 <t< td=""><td>1</td><td>J</td><td>288</td><td>LYS</td></t<>	1	J	288	LYS
1 F 105 VAL 1 F 123 LYS 1 F 136 LYS 1 F 146 THR 1 F 155 THR 1 F 183 ILE 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 E 183 ILE 1 E 183 ILE 1 A 105 VAL 1 A 105 VAL 1 A 105 VAL 1 A 146 THR 1 A 253 LYS 1 A 258 ARG 1 A 258 LEU 1 B 56 VAL 1 B 124 LEU 1 B 146 THR 1 <t< td=""><td>1</td><td>F</td><td>60</td><td>GLN</td></t<>	1	F	60	GLN
1 F 123 LYS 1 F 136 LYS 1 F 146 THR 1 F 155 THR 1 F 155 THR 1 F 183 ILE 1 F 250 SER 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 E 126 ILE 1 E 183 ILE 1 A 105 VAL 1 A 145 GLU 1 A 145 GLU 1 A 145 GLU 1 A 253 LYS 1 A 258 ARG 1 A 285 LEU 1 B 124 LEU 1 B 146 THR 1 B 155 THR 1 <	1	F	105	VAL
1 F 136 LYS 1 F 146 THR 1 F 155 THR 1 F 183 ILE 1 F 250 SER 1 F 297 ASP 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 E 183 ILE 1 E 183 ILE 1 A 105 VAL 1 A 105 VAL 1 A 145 GLU 1 A 145 GLU 1 A 253 LYS 1 A 258 ARG 1 A 285 LEU 1 B 77 ARG 1 B 124 LEU 1 B 146 THR 1 B 155 THR 1 <t< td=""><td>1</td><td>F</td><td>123</td><td>LYS</td></t<>	1	F	123	LYS
1 F 146 THR 1 F 155 THR 1 F 183 ILE 1 F 250 SER 1 F 297 ASP 1 F 297 ASP 1 E 9 ARG 1 E 126 ILE 1 E 183 ILE 1 E 183 ILE 1 A 105 VAL 1 A 145 GLU 1 A 145 GLU 1 A 253 LYS 1 A 258 ARG 1 A 285 LEU 1 B 56 VAL 1 B 124 LEU 1 B 146 THR 1 B 155 THR 1 C 51 LEU 1 C 51 LEU 1	1	F	136	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	146	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	155	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	183	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	250	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	297	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	9	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	126	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	183	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	105	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	145	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	146	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	253	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	258	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	285	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	56	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	77	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	124	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	146	THR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	155	THR
1 C 63 VAL 1 C 101 ASP 1 C 146 THB	1	С	51	LEU
1 C 101 ASP 1 C 146 THR	1	С	63	VAL
1 C 1/6 THB	1	С	101	ASP
	1	С	146	THR

Mol	Chain	\mathbf{Res}	Type
1	С	170	SER
1	С	183	ILE
1	С	223	SER
1	C	288	LYS
1	С	294	ARG
1	D	9	ARG
1	D	60	GLN
1	D	171	ASP
1	D	178	THR
1	D	223	SER
1	D	285	LEU
1	D	287	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such sidechains are listed below:

Mol	Chain	Res	Type
1	L	143	GLN
1	G	143	GLN
1	Н	71	ASN
1	Н	278	ASN
1	Ι	143	GLN
1	Ι	196	HIS
1	J	143	GLN
1	D	112	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 37 ligands modelled in this entry, 24 are monoatomic - leaving 13 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	B	Bond lengths			Bond ang	gles
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	GOL	С	401	-	5,5,5	0.51	0	$5,\!5,\!5$	1.29	0
2	GOL	F	402	-	5,5,5	0.87	0	$5,\!5,\!5$	1.13	0
2	GOL	Е	401	-	5,5,5	0.99	0	$5,\!5,\!5$	1.09	0
2	GOL	L	401	-	5,5,5	0.75	0	$5,\!5,\!5$	0.93	0
2	GOL	K	401	3	5,5,5	1.12	1 (20%)	$5,\!5,\!5$	0.79	0
2	GOL	F	401	-	5,5,5	0.96	0	$5,\!5,\!5$	1.16	0
2	GOL	G	401	-	5,5,5	0.97	0	$5,\!5,\!5$	0.66	0
2	GOL	D	401	-	5,5,5	1.05	0	$5,\!5,\!5$	1.10	0
2	GOL	Ι	401	-	5,5,5	1.12	0	$5,\!5,\!5$	1.44	1 (20%)
2	GOL	В	401	-	5,5,5	0.89	0	$5,\!5,\!5$	1.15	1 (20%)
2	GOL	J	401	-	5,5,5	1.10	0	$5,\!5,\!5$	1.07	0
2	GOL	Н	403	-	5,5,5	0.56	0	$5,\!5,\!5$	0.32	0
2	GOL	A	401	-	5,5,5	1.06	0	5,5,5	1.08	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	С	401	-	-	2/4/4/4	-
2	GOL	F	402	-	-	4/4/4/4	-
2	GOL	Е	401	-	-	4/4/4/4	-
2	GOL	L	401	-	-	2/4/4/4	-
2	GOL	К	401	3	-	3/4/4/4	-
2	GOL	F	401	-	-	4/4/4/4	-
2	GOL	G	401	-	-	3/4/4/4	-
2	GOL	D	401	-	-	4/4/4/4	-
2	GOL	Ι	401	-	-	0/4/4/4	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	В	401	-	-	4/4/4/4	-
2	GOL	J	401	-	-	3/4/4/4	-
2	GOL	Н	403	-	-	2/4/4/4	-
2	GOL	А	401	-	-	2/4/4/4	-

Continued from previous page...

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	Κ	401	GOL	C3-C2	2.16	1.60	1.51

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ι	401	GOL	C3-C2-C1	-2.38	102.45	111.70
2	В	401	GOL	C3-C2-C1	-2.03	103.81	111.70

There are no chirality outliers.

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	G	401	GOL	O1-C1-C2-O2
2	G	401	GOL	O1-C1-C2-C3
2	J	401	GOL	C1-C2-C3-O3
2	F	401	GOL	C1-C2-C3-O3
2	F	402	GOL	C1-C2-C3-O3
2	С	401	GOL	O1-C1-C2-C3
2	Н	403	GOL	O2-C2-C3-O3
2	F	402	GOL	O2-C2-C3-O3
2	L	401	GOL	O1-C1-C2-C3
2	Κ	401	GOL	O1-C1-C2-C3
2	Κ	401	GOL	C1-C2-C3-O3
2	Н	403	GOL	C1-C2-C3-O3
2	F	401	GOL	O1-C1-C2-C3
2	F	402	GOL	O1-C1-C2-C3
2	Ε	401	GOL	O1-C1-C2-C3
2	Е	401	GOL	C1-C2-C3-O3
2	А	401	GOL	O1-C1-C2-C3
2	В	401	GOL	C1-C2-C3-O3
2	D	401	GOL	O1-C1-C2-C3
2	D	401	GOL	C1-C2-C3-O3

Mol	Chain	Res	Type	Atoms
2	F	401	GOL	O1-C1-C2-O2
2	Е	401	GOL	O2-C2-C3-O3
2	Κ	401	GOL	O1-C1-C2-O2
2	J	401	GOL	O2-C2-C3-O3
2	F	401	GOL	O2-C2-C3-O3
2	С	401	GOL	O1-C1-C2-O2
2	D	401	GOL	O1-C1-C2-O2
2	D	401	GOL	O2-C2-C3-O3
2	В	401	GOL	O1-C1-C2-O2
2	L	401	GOL	O1-C1-C2-O2
2	F	402	GOL	O1-C1-C2-O2
2	Е	401	GOL	O1-C1-C2-O2
2	G	401	GOL	C1-C2-C3-O3
2	В	401	GOL	O1-C1-C2-C3
2	В	401	GOL	O2-C2-C3-O3
2	J	401	GOL	O1-C1-C2-O2
2	А	401	GOL	O1-C1-C2-O2

Continued from previous page...

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	С	401	GOL	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	289/306~(94%)	-0.61	1 (0%) 90 91	30, 42, 57, 92	0
1	В	288/306~(94%)	-0.63	0 100 100	31, 43, 63, 117	0
1	С	287/306~(93%)	-0.43	0 100 100	34, 49, 68, 90	0
1	D	288/306~(94%)	-0.31	0 100 100	35, 52, 76, 110	0
1	Ε	288/306~(94%)	-0.44	1 (0%) 90 91	33, 50, 73, 100	0
1	F	291/306~(95%)	-0.53	0 100 100	32, 46, 67, 100	0
1	G	288/306~(94%)	-0.13	0 100 100	41, 67, 95, 119	0
1	Η	286/306~(93%)	0.25	10 (3%) 47 53	30, 75, 108, 126	0
1	Ι	285/306~(93%)	0.01	1 (0%) 89 90	42, 67, 91, 113	0
1	J	288/306~(94%)	-0.49	0 100 100	32, 45, 69, 98	0
1	Κ	287/306~(93%)	0.12	4 (1%) 73 77	40, 76, 109, 142	0
1	L	287/306~(93%)	-0.12	0 100 100	39, 64, 93, 116	0
All	All	3452/3672~(94%)	-0.28	17 (0%) 87 89	30, 54, 93, 142	0

All (17) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Н	99	ASP	6.8
1	Н	272	ASN	4.3
1	Н	284	GLU	4.3
1	Н	295	ARG	3.7
1	Е	9	ARG	3.5
1	Κ	296	PRO	3.2
1	Н	100	VAL	2.8
1	Κ	20	TYR	2.7
1	Н	60	GLN	2.7
1	Κ	274	TRP	2.7
1	Н	59	LYS	2.6

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	Н	90	LEU	2.5
1	Κ	10	ASP	2.5
1	Ι	93	VAL	2.4
1	Н	43	ILE	2.3
1	Н	95	PHE	2.3
1	А	8	PRO	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	GOL	Н	403	6/6	0.25	0.29	30,30,30,30	0
2	GOL	Е	401	6/6	0.80	0.15	47,68,78,85	0
2	GOL	L	401	6/6	0.82	0.13	61,74,85,91	0
2	GOL	В	401	6/6	0.82	0.16	48,62,74,81	0
2	GOL	F	402	6/6	0.83	0.12	53,76,88,95	0
2	GOL	G	401	6/6	0.83	0.14	$53,\!73,\!89,\!89$	0
2	GOL	J	401	6/6	0.83	0.12	42,55,73,76	0
2	GOL	С	401	6/6	0.83	0.13	49,67,82,93	0
2	GOL	F	401	6/6	0.85	0.12	44,66,77,79	0
3	ZN	K	403	1/1	0.86	0.10	76,76,76,76	0
2	GOL	А	401	6/6	0.87	0.12	47,64,80,83	0
2	GOL	Ι	401	6/6	0.87	0.11	58,77,94,97	0
2	GOL	D	401	6/6	0.90	0.11	47,70,84,86	0
2	GOL	K	401	6/6	0.90	0.14	64,85,102,102	0
3	ZN	Н	402	1/1	0.91	0.08	69,69,69,69	0
3	ZN	J	403	1/1	0.91	0.08	$57,\!57,\!57,\!57$	0
3	ZN	D	403	1/1	0.93	0.08	56,56,56,56	0

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9
3	ZN	L	403	1/1	0.94	0.26	$30,\!30,\!30,\!30$	0
3	ZN	F	404	1/1	0.94	0.07	$56,\!56,\!56,\!56$	0
3	ZN	С	403	1/1	0.94	0.08	$54,\!54,\!54,\!54$	0
3	ZN	Ι	403	1/1	0.94	0.09	72,72,72,72	0
3	ZN	Ι	402	1/1	0.96	0.04	60,60,60,60	0
3	ZN	G	403	1/1	0.98	0.04	$65,\!65,\!65,\!65$	0
3	ZN	Е	403	1/1	0.98	0.06	54,54,54,54	0
3	ZN	Н	401	1/1	0.98	0.05	66,66,66,66	0
3	ZN	K	402	1/1	0.98	0.04	66,66,66,66	0
3	ZN	Е	402	1/1	0.99	0.02	45,45,45,45	0
3	ZN	G	402	1/1	0.99	0.05	58, 58, 58, 58	0
3	ZN	А	402	1/1	0.99	0.02	42,42,42,42	0
3	ZN	А	403	1/1	0.99	0.03	$52,\!52,\!52,\!52$	0
3	ZN	В	402	1/1	0.99	0.02	$37,\!37,\!37,\!37$	0
3	ZN	С	402	1/1	0.99	0.02	48,48,48,48	0
3	ZN	F	403	1/1	0.99	0.09	58, 58, 58, 58	0
3	ZN	D	402	1/1	0.99	0.03	46,46,46,46	0
3	ZN	L	402	1/1	0.99	0.03	54,54,54,54	0
3	ZN	J	402	1/1	1.00	0.02	46,46,46,46	0
3	ZN	В	403	1/1	1.00	0.07	42,42,42,42	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

