
 wwPDB X-ray Structure Validation Summary Report (i)

Aug 20, 2020 - 09:35 PM BST

PDB ID : 4WZJ
Title : Spliceosomal U4 snRNP core domain
Authors : Leung, A.K.W.; Nagai, K.; Li, J.
Deposited on : 2014-11-19
Resolution : $3.60 \AA$ (reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:
MolProbity : 4.02b-467
Xtriage (Phenix) : 1.13
EDS : 2.13
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac : 5.8.0158
CCP4 : 7.0.044 (Gargrove)
Ideal geometry (proteins) : Engh \& Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.13

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is $3.60 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	Similar resolution (\#Entries, resolution range (\AA))
$\mathrm{R}_{\text {free }}$	130704	$1257(3.70-3.50)$
Ramachandran outliers	138981	$1307(3.70-3.50)$
Sidechain outliers	138945	$1307(3.70-3.50)$
RSRZ outliers	127900	$1161(3.70-3.50)$
RNA backbone	3102	$1017(4.20-3.00)$

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	125	3%	66%	34%
1	AA	125	$\%$	66%	34%
1	AAA	125	4%	66%	34%
1	AAAA	125	3%	66%	34%
1	H	125	4%	66%	33%
1	HH	125	3%	67%	33%

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
3	JJJJ	118	68\%	31\%
3	Q	118	$\%$ 68\%	31\%
3	QQ	118	68\%	31\%
3	QQQ	118	68\%	31\%
3	QQQQ	118	$\%$ 68\%	31\%
4	D	118	3\% 81\%	
4	DD	118	3\% 78\%	17\%
4	DDD	118	4\% 81%	17\%
4	DDDD	118	${ }^{6 \%}$	$\text { . . } 12 \%$
4	K	118	${ }^{3 \%} 800$.. 15\%
4	KK	118	5\% 86\%	$\text { . } \quad 12 \%$
4	KKK	118	80\%	16\%
4	KKKK	118	3\% 85\%	$\ldots \quad 12 \%$
4	R	118	3\% 81\%	
4	RR	118	4\% 80\%	17\%
4	RRR	118	${ }^{6 \%} 8$	17%
4	RRRR	118	3\% 79%	17\%
5	F	86	85\%	14\%
5	FF	86	87\%	13\%
5	FFF	86	86\%	14\%
5	FFFF	86	\% 84\%	$. \quad 14 \%$
5	M	86	永\% 90\%	. 8\%
5	MM	86		
5	MMM	86		$\cdot \quad 12 \%$
5	MMMM	86	87\%	. 9\%

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
5	T	86	${ }^{2 \%}$	12\%
5	TT	86	87\%	9\%
5	TTT	86	2\% 80\%	12\%
5	TTTT	86	${ }^{2 \%}$	10\%
6	E	92	86\%	14\%
6	EE	92	$\%$ 86\%	14\%
6	EEE	92	${ }^{20 \%} 8$	14\%
6	EEEE	92	\% 86\%	14\%
6	L	92	3\% 85\%	14\%
6	LL	92	$\%$ 86\%	14\%
6	LLL	92	4\% 86\%	14\%
6	LLLL	92		16\%
6	S	92	${ }^{20 \%} 80$	14\%
6	SS	92	86\%	14\%
6	SSS	92	4\% 86\%	14\%
6	SSSS	92	3\% 86\%	14\%
7	G	76	96\%	\ldots
7	GG	76	5\% 96\%	\ldots
7	GGG	76	4\% 95\%	.
7	GGGG	76	5\% 95\%	\because
7	N	76	${ }^{7 \%}$ 96\%	$=$
7	NN	76	${ }^{7 \%}$	-
7	NNN	76	4\% 96\%	.
7	NNNN	76	${ }^{7 \%}$. \cdot
7	U	76	11\% 93\%	- \cdot

Continued on next page...

Continued from previous page...

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 71485 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Small nuclear ribonucleoprotein Sm D3.

| Mol | Chain | Residues | Atoms | | | | ZeroOcc | AltConf | Trace |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A | 83 | $\begin{array}{c}\text { Total } \\ 652\end{array}$ | $\begin{array}{c}\text { C } \\ 409\end{array}$ | $\begin{array}{c}\text { N }\end{array}$ | $\begin{array}{c}\text { O } \\ 115\end{array}$ | 122 | S | |$)$

- Molecule 2 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
2	B	86	$\begin{array}{c}\text { Total } \\ 690\end{array}$	$\begin{array}{c}\text { C }\end{array}$	434	N	126	O	S

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	P	71	Total 569	C 361	N 102	O 9	S 7	0	0	0
2	BB	71	Total 565	C 358	N 101	O 99	S 7	0	0	0
2	II	75	Total 585	C 370	N 105	O 103	S 7	0	0	0
2	PP	71	Total 569	C 361	N 102	O 99	S 7	0	0	0
2	BBB	71	$\begin{gathered} \hline \text { Total } \\ 565 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 358 \end{gathered}$	N 101	O 99	S 7	0	0	0
2	III	71	Total 565	C 358	N 101	O 99	S 7	0	0	0
2	PPP	71	Total	C 355	N 98	$\begin{array}{cc}\mathrm{O} & \mathrm{S} \\ 99 & 7\end{array}$		0	0	0
2	BBBB	74	$\begin{gathered} \hline \text { Total } \\ 592 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 375 \end{gathered}$	N 106	O 104	S 7	0	0	0
2	IIII	75	$\begin{gathered} \hline \text { Total } \\ 602 \end{gathered}$	C 381	N 109	O 105	S 7	0	0	0
2	PPPP	75	Total 598	C 381	N 107	O 103	S 7	0	0	0

- Molecule 3 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	C	82	$\begin{gathered} \hline \text { Total } \\ 649 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 413 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 113 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 4 \end{aligned}$	0	0	0
3	J	82	Total 649	$\begin{gathered} \mathrm{C} \\ 413 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 113 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 119 \end{gathered}$	S 4	0	0	0
3	Q	82	$\begin{gathered} \text { Total } \\ 649 \end{gathered}$	C 413	N 113	O 119	S	0	0	0
3	CC	82	$\begin{gathered} \hline \text { Total } \\ 649 \end{gathered}$	C 413	N 113	O 119	S	0	0	0
3	JJ	82	$\begin{gathered} \text { Total } \\ 649 \end{gathered}$	C 413	N 113	O 119	S 4	0	0	0
3	QQ	82	Total 649	$\begin{gathered} \mathrm{C} \\ 413 \end{gathered}$	N 113	O 119	S	0	0	0
3	CCC	82	$\begin{gathered} \hline \text { Total } \\ 649 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 413 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 113 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \\ \hline \end{gathered}$	S	0	0	0
3	JJJ	82	$\begin{gathered} \hline \text { Total } \\ 649 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 413 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 113 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	S	0	0	0
3	QQQ	82	$\begin{gathered} \text { Total } \\ 649 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 413 \end{gathered}$	N 113	O 119	S	0	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	CCCC	82	$\begin{array}{c}\text { Total } \\ 649\end{array}$	$\begin{array}{c}\text { C } \\ 413\end{array}$	$\begin{array}{c}\text { N }\end{array}$	\mathbf{O}	S	119	4

- Molecule 4 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	D	97	$\begin{gathered} \text { Total } \\ 776 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 488 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 143 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 140 \end{gathered}$	S 5	0	0	0
4	K	100	Total 796	C 499	N 149	O 143	S 5	0	0	0
4	R	98	Total 787	C 494	N 147	O 141	S 5	0	0	0
4	DD	98	Total 783	C 491	N 146	O 141	S 5	0	0	0
4	KK	104	$\begin{gathered} \text { Total } \\ 838 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 526 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 155 \end{gathered}$	O 152	S 5	0	0	0
4	RR	98	Total 787	$\begin{gathered} \mathrm{C} \\ 494 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 147 \end{gathered}$	O 141	S 5	0	0	0
4	DDD	98	Total 787	C 494	N 147	O	S 5	0	0	0
4	KKK	99	$\begin{gathered} \text { Total } \\ 786 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 494 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 146 \end{gathered}$	O 141	S 5	0	0	0
4	RRR	98	Total 787	C 494	N 147	O 141	S 5	0	0	0
4	DDDD	104	$\begin{gathered} \text { Total } \\ 838 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 526 \end{gathered}$	N 155	O 152	S 5	0	0	0
4	KKKK	104	Total 838	$\begin{gathered} \mathrm{C} \\ 526 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 155 \end{gathered}$	O 152	S 5	0	0	0
4	RRRR	98	Total 787	C 494	N 147	O 141	S 5	0	0	0

- Molecule 5 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	F	74	Total 576	C 373	N 95	O	S 5	0	0	0
5	M	79	$\begin{gathered} \text { Total } \\ 609 \end{gathered}$	C	N 100	O 112	S 5	0	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	T	76	Total 594	C 383	N 97	O 109	S 5	0	0	0
5	FF	75	$\begin{gathered} \text { Total } \\ 585 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 378 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 96 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 106 \end{gathered}$	S 5	0	0	0
5	MM	80	Total 621	$\begin{gathered} \mathrm{C} \\ 399 \end{gathered}$	N 101	O 115	S 6	0	0	0
5	TT	78	Total 596	C 385	N 99	O 107	S 5	0	0	0
5	FFF	74	Total 576	C 373	N 95	O	S 5	0	0	0
5	MMM	76	$\begin{gathered} \text { Total } \\ 590 \end{gathered}$	C 381	N 97	O 107	S 5	0	0	0
5	TTT	76	Total 590	C	N 97	O 107	S 5	0	0	0
5	FFFF	74	$\begin{gathered} \text { Total } \\ 576 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 373 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 95 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 103 \end{gathered}$	S 5	0	0	0
5	MMMM	78	Total 604	$\begin{gathered} \mathrm{C} \\ 389 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 99 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 111 \end{gathered}$	S 5	0	0	0
5	TTTT	77	Total 599	C 386	N 98	O 110	S 5	0	0	0

- Molecule 6 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
6	E	79	$\begin{gathered} \hline \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	L	79	$\begin{gathered} \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	S	79	$\begin{gathered} \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	EE	79	$\begin{gathered} \hline \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	LL	79	$\begin{gathered} \text { Total } \\ 652 \end{gathered}$	C	N 116	O 119	S 5	0	0	0
6	SS	79	Total 652	$\begin{gathered} \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	EEE	79	$\begin{gathered} \hline \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	LLL	79	$\begin{gathered} \hline \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0
6	SSS	79	$\begin{gathered} \text { Total } \\ 652 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 412 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 116 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 119 \end{gathered}$	S 5	0	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
6	EEEE	79	$\begin{array}{c}\text { Total } \\ 652\end{array}$	$\begin{array}{c}\text { C } \\ 412\end{array}$	$\begin{array}{c}\text { N }\end{array}$	116	O	S	S

- Molecule 7 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
7	G	74	$\begin{gathered} \text { Total } \\ 577 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 364 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 104 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 103 \end{gathered}$	S 6	0	0	0
7	N	74	Total 577	C	N 104	O 103	S	0	0	0
7	U	74	Total 577	C 364	N 104	O 103	S 6	0	0	0
7	GG	74	Total 577	C	N 104	O 103	S 6	0	0	0
7	NN	74	Total 577	C	N 104	O 103	S	0	0	0
7	UU	74	Total 571	$\begin{gathered} \mathrm{C} \\ 361 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 101 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 103 \end{gathered}$	S 6	0	0	0
7	GGG	74	Total 577	C 364	N 104	O 103	S 6	0	0	0
7	NNN	74	Total 577	C 364	N 104	O 103	S 6	0	0	0
7	UUU	74	Total 577	C 364	N 104	O 103	S 6	0	0	0
7	GGGG	74	Total 577	C	N 104	O 103	S 6	0	0	0
7	NNNN	74	Total 577	$\begin{gathered} \mathrm{C} \\ 364 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 104 \end{gathered}$	O 103	S 6	0	0	0
7	UUUU	74	Total 577	$\begin{gathered} \mathrm{C} \\ 364 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 104 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 103 \end{gathered}$	S 6	0	0	0

- Molecule 8 is a RNA chain called U4 small nuclear RNA variant: Native sequence $85-145$, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor..

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
8	V	68	Total 1453	C	N	O	P	0	0
0		473	67	0	0				

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
8	X	68	$\begin{aligned} & \hline \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	Y	68	$\begin{aligned} & \hline \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 473 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 67 \end{gathered}$	0	0	0
8	VV	68	Total 1453	$\begin{gathered} \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 473 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 67 \end{gathered}$	0	0	0
8	XX	68	$\begin{aligned} & \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	YY	68	$\begin{aligned} & \hline \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	VVV	68	$\begin{aligned} & \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	XXX	68	Total 1453	$\begin{gathered} \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	YYY	68	$\begin{aligned} & \hline \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	VVVV	68	$\begin{aligned} & \hline \text { Total } \\ & 1453 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	XXXX	68	Total 1453	$\begin{gathered} \mathrm{C} \\ 650 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 263 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 473 \end{gathered}$		0	0	0
8	YYYY	68	$\begin{aligned} & \text { Total } \\ & 1453 \end{aligned}$	C 650	N 263	O 473	P 67	0	0	0

- Molecule 9 is water.
$\left.\begin{array}{|c|c|c|cc|c|c|}\hline \text { Mol } & \text { Chain } & \text { Residues } & \text { Atoms } & \text { ZeroOcc } & \text { AltConf } \\ \hline 9 & \mathrm{R} & 1 & \begin{array}{c}\text { Total } \\ 1\end{array} & \begin{array}{c}1 \\ \hline\end{array} & 0 & 0 \\ \hline 9 & \text { DD } & 1 & \begin{array}{c}\text { Total } \\ 1\end{array} & \mathrm{O} \\ 1\end{array}\right)$

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ >2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Small nuclear ribonucleoprotein Sm D3

- Molecule 1: Small nuclear ribonucleoprotein Sm D3

- Molecule 1: Small nuclear ribonucleoprotein Sm D3

- Molecule 1: Small nuclear ribonucleoprotein Sm D3

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 2: Small nuclear ribonucleoprotein-associated proteins B and B'

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

Chain JJJ: \qquad .$\quad 31 \%$

- Molecule 3: Small nuclear ribonucleoprotein Sm D1

- Molecule 4: Small nuclear ribonucleoprotein Sm D2

- Molecule 4: Small nuclear ribonucleoprotein Sm D2

- Molecule 4: Small nuclear ribonucleoprotein Sm D2

Chain $R:$| 3% |
| :---: | :---: | :---: |

- Molecule 4: Small nuclear ribonucleoprotein Sm D2

Chain DD: $\begin{array}{lll}3 \% \\ 78 \% & ~ \cdot ~ \cdot ~ & 17 \%\end{array}$

- Molecule 4: Small nuclear ribonucleoprotein Sm D2

- Molecule 5: Small nuclear ribonucleoprotein F

- Molecule 5: Small nuclear ribonucleoprotein F

Chain M:

- Molecule 5: Small nuclear ribonucleoprotein F

Chain T:

- Molecule 5: Small nuclear ribonucleoprotein F

Chain FF:

13%

- Molecule 5: Small nuclear ribonucleoprotein F
Chain MM: $90 \% \quad$ • 7\%

- Molecule 5: Small nuclear ribonucleoprotein F

Chain TT: 87\% . 9%

- Molecule 5: Small nuclear ribonucleoprotein F

Chain FFF: $86 \% \quad 14 \%$

䔡年

- Molecule 5: Small nuclear ribonucleoprotein F

Chain MMM: 87\% . 12%

- Molecule 5: Small nuclear ribonucleoprotein F

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E
Chain EE:

- Molecule 6: Small nuclear ribonucleoprotein E

Chain LL:

- Molecule 6: Small nuclear ribonucleoprotein E

Chain SS:

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E

Chain LLL:

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E

- Molecule 6: Small nuclear ribonucleoprotein E

Chain LLLL:

- Molecule 6: Small nuclear ribonucleoprotein E

Chain SSSS:

- Molecule 7: Small nuclear ribonucleoprotein G

Chain G: -

- Molecule 7: Small nuclear ribonucleoprotein G

- Molecule 7: Small nuclear ribonucleoprotein G

- Molecule 7: Small nuclear ribonucleoprotein G

Chain GG:

- Molecule 7: Small nuclear ribonucleoprotein G

Chain NNN: ${ }^{4 \%} \quad 96 \%$..

- Molecule 7: Small nuclear ribonucleoprotein G

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.
Chain V: $\stackrel{\text { \% }}{\text { 93\% }}$

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

Chain X: $93 \% \quad 7 \%$

¿ロ \&

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.


```
כ- & O
```

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

Chain XXX: $\quad 94 \%$

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

Chain VVVV: $94 \% \quad 6 \%$

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

- Molecule 8: U4 small nuclear RNA variant: Native sequence 85-145, of which nucleotides 97-104 are replaced with GAAA tetraloop and nucleotides 134-137 are replaced with GAAA tetraloop receptor.

Chain YYYY: 93\% 7\%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 31	Depositor
Cell constants $\mathrm{a}, \mathrm{b}, \mathrm{c}, \alpha, \beta, \gamma$	$248.01 \AA$ $248.01 \AA$ $251.94 \AA$ 90.00° 90.00° 120.00°	Depositor
Resolution (\AA)	$\begin{aligned} & 66.15-3.60 \\ & 66.15-3.48 \end{aligned}$	$\begin{gathered} \text { Depositor } \\ \text { EDS } \end{gathered}$
\% Data completeness (in resolution range)	$\begin{aligned} & 83.1(66.15-3.60) \\ & 75.9(66.15-3.48) \end{aligned}$	Depositor EDS
$\mathrm{R}_{\text {merge }}$	0.21	Depositor
$\mathrm{R}_{\text {sym }}$	(Not available)	Depositor
$<I / \sigma(I)>^{1}$	2.20 (at 3.49£)	Xtriage
Refinement program	REFMAC 5.8.0073	Depositor
$\mathrm{R}, \mathrm{R}_{\text {free }}$	0.177 , 0.224 0.179 , 0.176	Depositor DCC DCC
$\mathrm{R}_{\text {free }}$ test set	8492 reflections (5.02\%)	wwPDB-VP
Wilson B-factor (\AA^{2})	84.3	Xtriage
Anisotropy	0.018	Xtriage
Bulk solvent $k_{\text {sol }}\left(\mathrm{e} / \AA^{3}\right), B_{\text {sol }}\left(\AA^{2}\right)$	0.29, 35.6	EDS
L-test for twinning ${ }^{2}$	$<\|L\|>=0.32,<L^{2}>=0.15$	Xtriage
Estimated twinning fraction	0.309 for -h,-k,l 0.306 for $\mathrm{h},-\mathrm{h}-\mathrm{k},-\mathrm{l}$ 0.306 for $-\mathrm{k},-\mathrm{h},-\mathrm{l}$	Xtriage
Reported twinning fraction	0.218 for $\mathrm{H}, \mathrm{K}, \mathrm{L}$ 0.282 for $-\mathrm{K},-\mathrm{H},-\mathrm{L}$ 0.283 for $\mathrm{K}, \mathrm{H},-\mathrm{L}$ 0.216 for $-\mathrm{h},-\mathrm{k}, \mathrm{l}$	Depositor
Outliers	0 of 169321 reflections	Xtriage
$\mathrm{F}_{o}, \mathrm{~F}_{c}$ correlation	0.92	EDS
Total number of atoms	71485	wwPDB-VP
Average B, all atoms (\AA^{2})	128.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 10.59% of the height of the origin peak. No significant pseudotranslation is detected.

[^0]
5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	A	0.46	0/660	0.67	0/889
1	AA	0.45	0/660	0.69	0/889
1	AAA	0.46	0/656	0.71	1/885 (0.1\%)
1	AAAA	0.49	0/654	0.69	0/881
1	H	0.50	0/666	0.71	0/897
1	HH	0.49	0/661	0.68	0/892
1	HHH	0.49	0/666	0.67	0/897
1	HHHH	0.45	0/651	0.71	1/878 (0.1\%)
1	O	0.45	0/660	0.68	0/889
1	OO	0.44	0/645	0.66	0/870
1	OOO	0.46	0/654	0.67	0/881
1	OOOO	0.44	0/654	0.69	0/881
2	B	0.53	0/700	0.82	0/933
2	BB	0.56	0/573	0.81	1/765 (0.1\%)
2	BBB	0.49	0/573	0.73	0/765
2	BBBB	0.50	0/600	0.84	0/799
2	I	0.56	0/582	0.83	2/776 (0.3\%)
2	II	0.49	0/593	0.77	0/793
2	III	0.61	2/573 (0.3\%)	0.76	1/765 (0.1\%)
2	IIII	0.61	0/610	0.84	1/813 (0.1\%)
2	P	0.46	0/577	0.74	0/769
2	PP	0.49	0/577	0.69	0/769
2	PPP	0.49	0/567	0.92	3/758 (0.4\%)
2	PPPP	0.46	0/607	0.73	0/810
3	C	0.56	0/657	0.77	0/888
3	CC	0.55	0/657	0.78	0/888
3	CCC	0.56	0/657	0.76	0/888
3	CCCC	0.54	0/657	0.76	0/888
3	J	0.54	0/657	0.76	0/888
3	JJ	0.53	0/657	0.76	0/888
3	JJJ	0.53	0/657	0.75	0/888
3	JJJJJ	0.54	0/657	0.78	0/888
3	Q	0.52	0/657	0.74	0/888
3	QQ	0.53	0/657	0.76	0/888

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
3	QQQ	0.56	0/657	0.77	0/888
3	QQQQ	0.51	0/657	0.75	0/888
4	D	0.69	0/786	0.86	0/1053
4	DD	0.66	0/793	0.88	1/1063 (0.1\%)
4	DDD	0.62	0/797	0.86	1/1067 (0.1\%)
4	DDDD	0.62	0/849	0.88	1/1136 (0.1\%)
4	K	0.69	0/806	0.88	4/1079 (0.4\%)
4	KK	0.65	0/849	0.84	1/1136 (0.1\%)
4	KKK	0.63	0/796	0.86	$2 / 1064$ (0.2\%)
4	KKKK	0.76	0/849	0.93	2/1136 (0.2\%)
4	R	0.63	0/797	0.85	1/1067 (0.1\%)
4	RR	0.68	1/797 (0.1\%)	0.89	2/1067 (0.2\%)
4	RRR	0.63	0/797	0.84	1/1067 (0.1\%)
4	RRRR	0.66	0/797	0.89	2/1067 (0.2\%)
5	F	0.81	0/588	0.83	0/795
5	FF	0.72	0/597	0.80	0/807
5	FFF	0.69	0/588	0.82	0/795
5	FFFF	0.70	0/588	0.85	2/795 (0.3\%)
5	M	0.73	0/621	0.81	0/840
5	MM	0.74	0/633	0.83	0/855
5	MMM	0.68	0/602	0.80	0/814
5	MMMM	0.76	0/616	0.84	0/833
5	T	0.72	0/606	0.80	0/819
5	TT	0.71	0/608	0.82	0/823
5	TTT	0.74	0/602	0.77	0/814
5	TTTT	0.69	0/611	0.79	0/826
6	E	0.61	0/660	0.83	0/886
6	EE	0.60	0/660	0.86	0/886
6	EEE	0.63	0/660	0.86	0/886
6	EEEE	0.62	0/660	0.86	0/886
6	L	0.59	0/660	0.86	1/886 (0.1\%)
6	LL	0.57	0/660	0.82	0/886
6	LLL	0.58	0/660	0.82	0/886
6	LLLL	0.66	0/646	0.85	0/867
6	S	0.60	0/660	0.83	0/886
6	SS	0.62	0/660	0.84	0/886
6	SSS	0.57	0/660	0.83	0/886
6	SSSS	0.59	0/660	0.80	0/886
7	G	0.52	0/584	0.78	0/779
7	GG	0.54	0/584	0.78	0/779
7	GGG	0.49	0/584	0.75	0/779
7	GGGG	0.50	0/584	0.79	1/779 (0.1\%)
7	N	0.50	0/584	0.77	0/779

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
7	NN	0.52	$0 / 584$	0.79	$0 / 779$
7	NNN	0.49	$0 / 584$	0.83	$2 / 779(0.3 \%)$
7	NNNN	0.55	$0 / 584$	0.82	$2 / 779(0.3 \%)$
7	U	0.49	$0 / 584$	0.79	$2 / 779(0.3 \%)$
7	UU	0.48	$0 / 578$	0.74	$0 / 772$
7	UUU	0.53	$0 / 584$	0.81	$1 / 779(0.1 \%)$
7	UUUU	0.49	$0 / 584$	0.76	$0 / 779$
8	V	0.59	$1 / 1626(0.1 \%)$	0.80	$3 / 2534(0.1 \%)$
8	VV	0.53	$0 / 1626$	0.79	$7 / 2534(0.3 \%)$
8	VVV	0.46	$0 / 1626$	0.80	$5 / 2534(0.2 \%)$
8	VVVV	0.53	$0 / 1626$	0.76	$4 / 2534(0.2 \%)$
8	X	0.58	$1 / 1626(0.1 \%)$	0.83	$6 / 2534(0.2 \%)$
8	XX	0.46	$0 / 1626$	0.81	$8 / 2534(0.3 \%)$
8	XXX	0.42	$0 / 1626$	0.76	$4 / 2534(0.2 \%)$
8	XXXX	0.51	$0 / 1626$	0.99	$12 / 2534(0.5 \%)$
8	Y	0.46	$0 / 1626$	0.78	$6 / 2534(0.2 \%)$
8	YY	0.43	$0 / 1626$	0.75	$4 / 2534(0.2 \%)$
8	YYY	0.41	$0 / 1626$	0.75	$4 / 2534(0.2 \%)$
8	YYYY	0.48	$0 / 1626$	0.77	$4 / 2534(0.2 \%)$
All	All	0.56	$5 / 74296(0.0 \%)$	0.80	$106 / 103980(0.1 \%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	\#Chirality outliers	\#Planarity outliers
2	PPPP	0	1
4	D	0	1
4	DD	0	1
4	DDD	0	1
4	DDDD	0	1
4	K	0	1
4	KK	0	1
4	KKK	0	1
4	KKKK	0	1
4	R	0	1
4	RR	0	1
4	RRR	0	1
4	RRRR	0	1
5	M	0	1
5	MM	0	2

Continued on next page...

Continued from previous page...

Mol	Chain	\#Chirality outliers	\#Planarity outliers
5	MMM	0	1
5	MMMM	0	1
5	TT	0	2
5	TTT	0	1
8	V	0	1
8	VVVV	0	1
All	All	0	23

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(\AA)	Ideal(\AA)
4	RR	20	GLU	CB-CG	6.88	1.65	1.52
8	X	8	C	O3'-P	-6.72	1.53	1.61
2	III	47	GLU	CD-OE1	5.94	1.32	1.25
8	V	7	A	O3'-P	-5.39	1.54	1.61
2	III	47	GLU	CD-OE2	-5.10	1.20	1.25

The worst 5 of 106 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{o}\right)$	Ideal $\left({ }^{o}\right)$
8	XXXX	48	U	O5'-P-OP2	-23.61	82.36	110.70
2	PPP	25	ARG	NE-CZ-NH2	-11.55	114.52	120.30
8	XXXX	18	G	O5'-P-OP2	-11.18	95.64	105.70
2	PPP	25	ARG	NE-CZ-NH1	10.24	125.42	120.30
8	XXX	47	A	C2'-C3'-O3'	-9.57	88.44	109.50

There are no chirality outliers.
5 of 23 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
4	D	112	ASN	Peptide
4	DD	112	ASN	Peptide
4	K	112	ASN	Peptide
5	M	3	LEU	Peptide
4	R	112	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A	81/125 (65\%)	80 (99\%)	1 (1\%)	0	100	100
1	AA	81/125 (65\%)	78 (96\%)	3 (4\%)	0	100	100
1	AAA	81/125 (65\%)	80 (99\%)	1 (1\%)	0	100	100
1	AAAA	80/125 (64\%)	78 (98\%)	2 (2\%)	0	100	100
1	H	82/125 (66\%)	81 (99\%)	1 (1\%)	0	100	100
1	HH	82/125 (66\%)	78 (95\%)	4 (5\%)	0	100	100
1	HHH	82/125 (66\%)	81 (99\%)	1 (1\%)	0	100	100
1	НННH	80/125 (64\%)	78 (98\%)	2 (2\%)	0	100	100
1	O	81/125 (65\%)	80 (99\%)	1 (1\%)	0	100	100
1	OO	79/125 (63\%)	78 (99\%)	1 (1\%)	0	100	100
1	OOO	80/125 (64\%)	78 (98\%)	2 (2\%)	0	100	100
1	OOOO	80/125 (64\%)	79 (99\%)	1 (1\%)	0	100	100
2	B	84/95 (88\%)	82 (98\%)	2 (2\%)	0	100	100
2	BB	67/95 (70\%)	66 (98\%)	1 (2\%)	0	100	100
2	BBB	67/95 (70\%)	66 (98\%)	1 (2\%)	0	100	100
2	BBBB	70/95 (74\%)	69 (99\%)	1 (1\%)	0	100	100
2	I	68/95 (72\%)	66 (97\%)	2 (3\%)	0	100	100
2	II	71/95 (75\%)	70 (99\%)	1 (1\%)	0	100	100
2	III	67/95 (70\%)	65 (97\%)	2 (3\%)	0	100	100
2	IIII	71/95 (75\%)	70 (99\%)	1 (1\%)	0	100	100
2	P	67/95 (70\%)	65 (97\%)	2 (3\%)	0	100	100
2	PP	67/95 (70\%)	65 (97\%)	2 (3\%)	0	100	100
2	PPP	67/95 (70\%)	66 (98\%)	1 (2\%)	0	100	100
2	PPPP	71/95 (75\%)	69 (97\%)	2 (3\%)	0	100	100
3	C	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
3	CC	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	CCC	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	CCCC	80/118 (68\%)	78 (98\%)	2 (2\%)	0	100	100
3	J	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	JJ	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	JJJ	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	JJJJ	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	Q	80/118 (68\%)	77 (96\%)	3 (4\%)	0	100	100
3	QQ	80/118 (68\%)	78 (98\%)	2 (2\%)	0	100	100
3	QQQ	80/118 (68\%)	78 (98\%)	2 (2\%)	0	100	100
3	QQQQ	80/118 (68\%)	78 (98\%)	2 (2\%)	0	100	100
4	D	95/118 (80\%)	91 (96\%)	4 (4\%)	0	100	100
4	DD	96/118 (81\%)	92 (96\%)	3 (3\%)	1 (1\%)	15	55
4	DDD	96/118 (81\%)	92 (96\%)	4 (4\%)	0	100	100
4	DDDD	102/118 (86\%)	98 (96\%)	4 (4\%)	0	100	100
4	K	98/118 (83\%)	93 (95\%)	4 (4\%)	1 (1\%)	15	55
4	KK	102/118 (86\%)	98 (96\%)	4 (4\%)	0	100	100
4	KKK	97/118 (82\%)	93 (96\%)	4 (4\%)	0	100	100
4	KKKK	102/118 (86\%)	98 (96\%)	4 (4\%)	0	100	100
4	R	96/118 (81\%)	92 (96\%)	$4(4 \%)$	0	100	100
4	RR	96/118 (81\%)	90 (94\%)	6 (6\%)	0	100	100
4	RRR	96/118 (81\%)	92 (96\%)	4 (4\%)	0	100	100
4	RRRR	96/118 (81\%)	92 (96\%)	4 (4\%)	0	100	100
5	F	72/86 (84\%)	68 (94\%)	4 (6\%)	0	100	100
5	FF	73/86 (85\%)	69 (94\%)	4 (6\%)	0	100	100
5	FFF	72/86 (84\%)	69 (96\%)	3 (4\%)	0	100	100
5	FFFF	72/86 (84\%)	69 (96\%)	3 (4\%)	0	100	100
5	M	77/86 (90\%)	73 (95\%)	4 (5\%)	0	100	100
5	MM	78/86 (91\%)	74 (95\%)	4 (5\%)	0	100	100
5	MMM	74/86 (86\%)	69 (93\%)	5 (7\%)	0	100	100
5	MMMM	76/86 (88\%)	69 (91\%)	6 (8\%)	1 (1\%)	12	50

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
5	T	74/86 (86\%)	70 (95\%)	4 (5\%)	0	100	100
5	TT	76/86 (88\%)	73 (96\%)	3 (4\%)	0	100	100
5	TTT	74/86 (86\%)	70 (95\%)	3 (4\%)	1 (1\%)	11	48
5	TTTT	75/86 (87\%)	71 (95\%)	4 (5\%)	0	100	100
6	E	77/92 (84\%)	76 (99\%)	1 (1\%)	0	100	100
6	EE	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	EEE	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	EEEE	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	L	77/92 (84\%)	74 (96\%)	$3(4 \%)$	0	100	100
6	LL	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	LLL	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	LLLL	75/92 (82\%)	74 (99\%)	1 (1\%)	0	100	100
6	S	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	SS	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	SSS	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
6	SSSS	77/92 (84\%)	75 (97\%)	2 (3\%)	0	100	100
7	G	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	GG	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	GGG	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	GGGG	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	N	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	NN	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	NNN	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	NNNN	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	U	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	UU	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	UUU	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
7	UUUU	72/76 (95\%)	70 (97\%)	2 (3\%)	0	100	100
All	All	6617/8520 (78\%)	6400 (97\%)	213 (3\%)	4 (0\%)	51	83

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	DD	85	LYS
5	TTT	75	VAL
4	K	117	GLY
5	MMMM	75	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A	$73 / 100(73 \%)$	$73(100 \%)$	0	100	100
1	AA	$73 / 100(73 \%)$	$73(100 \%)$	0	100	100
1	AAA	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
1	AAAA	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
1	H	$74 / 100(74 \%)$	$73(99 \%)$	$1(1 \%)$	67	85
1	HH	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
1	HHH	$74 / 100(74 \%)$	$74(100 \%)$	0	100	100
1	HHHH	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
1	O	$73 / 100(73 \%)$	$73(100 \%)$	0	100	100
1	OO	$71 / 100(71 \%)$	$71(100 \%)$	0	100	100
1	OOO	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
1	OOOO	$72 / 100(72 \%)$	$72(100 \%)$	0	100	100
2	B	$77 / 85(91 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
2	BB	$63 / 85(74 \%)$	$62(98 \%)$	$1(2 \%)$	62	83
2	BBB	$63 / 85(74 \%)$	$61(97 \%)$	$2(3 \%)$	39	70
2	BBBB	$66 / 85(78 \%)$	$65(98 \%)$	$1(2 \%)$	65	84
2	I	$64 / 85(75 \%)$	$62(97 \%)$	$2(3 \%)$	40	71
2	II	$63 / 85(74 \%)$	$62(98 \%)$	$1(2 \%)$	62	83
2	III	$63 / 85(74 \%)$	$62(98 \%)$	$1(2 \%)$	62	83
2	IIII	$67 / 85(79 \%)$	$66(98 \%)$	$1(2 \%)$	65	84
2	P	$64 / 85(75 \%)$	$63(98 \%)$	$1(2 \%)$	62	83

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	PP	$64 / 85(75 \%)$	$63(98 \%)$	$1(2 \%)$	62	83
2	PPP	$62 / 85(73 \%)$	$62(100 \%)$	0	100	100
2	PPPP	$67 / 85(79 \%)$	$65(97 \%)$	$2(3 \%)$	41	71
3	C	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	CC	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	CCC	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	CCCC	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	J	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	JJ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	JJJ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	JJJJ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	Q	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	QQ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	QQQ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
3	QQQQ	$77 / 100(77 \%)$	$75(97 \%)$	$2(3 \%)$	46	74
4	D	$90 / 110(82 \%)$	$88(98 \%)$	$2(2 \%)$	52	77
4	DD	$90 / 110(82 \%)$	$85(94 \%)$	$5(6 \%)$	21	56
4	DDD	$91 / 110(83 \%)$	$90(99 \%)$	$1(1 \%)$	73	88
4	DDDD	$97 / 110(88 \%)$	$95(98 \%)$	$2(2 \%)$	53	78
4	K	$91 / 110(83 \%)$	$89(98 \%)$	$2(2 \%)$	52	77
4	KK	$97 / 110(88 \%)$	$96(99 \%)$	$1(1 \%)$	76	88
4	KKK	$90 / 110(82 \%)$	$89(99 \%)$	$1(1 \%)$	73	88
4	KKKK	$97 / 110(88 \%)$	$95(98 \%)$	$2(2 \%)$	53	78
4	R	$91 / 110(83 \%)$	$90(99 \%)$	$1(1 \%)$	73	88
4	RR	$91 / 110(83 \%)$	$90(99 \%)$	$1(1 \%)$	73	88
4	RRR	$91 / 110(83 \%)$	$90(99 \%)$	$1(1 \%)$	73	88
4	RRRR	$91 / 110(83 \%)$	$89(98 \%)$	$2(2 \%)$	52	77
5	F	$63 / 74(85 \%)$	$62(98 \%)$	$1(2 \%)$	62	83
5	FF	$64 / 74(86 \%)$	$64(100 \%)$	0	100	100
5	FFF	$63 / 74(85 \%)$	$63(100 \%)$	0	100	100
5	FFFF	$63 / 74(85 \%)$	$62(98 \%)$	$1(2 \%)$	62	83

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
5	M	65/74 (88\%)	64 (98\%)	1 (2\%)	65	84
5	MM	67/74 (90\%)	67 (100\%)	0	100	100
5	MMM	64/74 (86\%)	64 (100\%)	0	100	100
5	MMMM	65/74 (88\%)	64 (98\%)	$1(2 \%)$	65	84
5	T	65/74 (88\%)	65 (100\%)	0	100	100
5	TT	63/74 (85\%)	62 (98\%)	1 (2\%)	62	83
5	TTT	64/74 (86\%)	63 (98\%)	1 (2\%)	62	83
5	TTTT	65/74 (88\%)	65 (100\%)	0	100	100
6	E	74/84 (88\%)	74 (100\%)	0	100	100
6	EE	74/84 (88\%)	74 (100\%)	0	100	100
6	EEE	74/84 (88\%)	74 (100\%)	0	100	100
6	EEEE	74/84 (88\%)	74 (100\%)	0	100	100
6	L	74/84 (88\%)	74 (100\%)	0	100	100
6	LL	74/84 (88\%)	74 (100\%)	0	100	100
6	LLL	74/84 (88\%)	74 (100\%)	0	100	100
6	LLLL	72/84 (86\%)	72 (100\%)	0	100	100
6	S	74/84 (88\%)	74 (100\%)	0	100	100
6	SS	74/84 (88\%)	74 (100\%)	0	100	100
6	SSS	74/84 (88\%)	74 (100\%)	0	100	100
6	SSSS	74/84 (88\%)	74 (100\%)	0	100	100
7	G	64/66 (97\%)	63 (98\%)	1 (2\%)	62	83
7	GG	64/66 (97\%)	63 (98\%)	$1(2 \%)$	62	83
7	GGG	64/66 (97\%)	62 (97\%)	$2(3 \%)$	40	71
7	GGGG	64/66 (97\%)	63 (98\%)	1 (2\%)	62	83
7	N	64/66 (97\%)	63 (98\%)	1 (2\%)	62	83
7	NN	64/66 (97\%)	64 (100\%)	0	100	100
7	NNN	64/66 (97\%)	64 (100\%)	0	100	100
7	NNNN	64/66 (97\%)	63 (98\%)	$1(2 \%)$	62	83
7	U	64/66 (97\%)	62 (97\%)	2 (3\%)	40	71
7	UU	63/66 (96\%)	62 (98\%)	$1(2 \%)$	62	83
7	UUU	64/66 (97\%)	62 (97\%)	2 (3\%)	40	71

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
7	UUUU	$64 / 66(97 \%)$	$63(98 \%)$	$1(2 \%)$	62	83
All	All	$6108 / 7428(82 \%)$	$6028(99 \%)$	$80(1 \%)$	69	86

5 of 80 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	PP	13	ILE
3	CCC	40	LEU
2	PPPP	11	GLN
3	QQ	40	LEU
5	TT	52	ASP

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 47 such sidechains are listed below:

Mol	Chain	Res	Type
4	R	91	ASN
3	CC	64	ASN
6	SS	27	ASN
1	AA	60	GLN
4	DD	69	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
8	V	$67 / 68(98 \%)$	0	0
8	VV	$67 / 68(98 \%)$	$2(2 \%)$	$1(1 \%)$
8	VVV	$67 / 68(98 \%)$	$1(1 \%)$	0
8	VVVV	$67 / 68(98 \%)$	0	0
8	X	$67 / 68(98 \%)$	0	0
8	XX	$67 / 68(98 \%)$	$3(4 \%)$	$2(2 \%)$
8	XXX	$67 / 68(98 \%)$	$1(1 \%)$	$1(1 \%)$
8	XXXX	$67 / 68(98 \%)$	$2(2 \%)$	0
8	Y	$67 / 68(98 \%)$	$2(2 \%)$	0
8	YY	$67 / 68(98 \%)$	$1(1 \%)$	0
8	YYY	$67 / 68(98 \%)$	$2(2 \%)$	0
8	YYYY	$67 / 68(98 \%)$	$1(1 \%)$	0
All	All	$804 / 816(98 \%)$	$15(1 \%)$	$4(0 \%)$

5 of 15 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
8	Y	8	C
8	Y	68	G
8	VV	8	C
8	VV	68	G
8	XX	8	C

All (4) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
8	VV	67	G
8	XX	47	A
8	XX	67	G
8	XXX	47	A

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled ' $\#$ RSRZ >2 ' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, $95^{\text {th }}$ percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ' $\mathrm{Q}<0.9$ ' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	\langle RSRZ $>$	\#RSRZ $>\mathbf{2}$			OWAB $\left(\AA^{2}\right)$	$\mathbf{Q}<\mathbf{0 . 9}$	
1	A	$83 / 125(66 \%)$	0.26	$4(4 \%)$	30	19	$58,143,193,230$	0	
1	AA	$83 / 125(66 \%)$	0.09	$1(1 \%)$	79	66	$82,130,175,210$	0	
1	AAA	$83 / 125(66 \%)$	0.06	$5(6 \%)$	21	12	$63,130,180,217$	0	
1	AAAA	$82 / 125(65 \%)$	0.18	$4(4 \%)$	29	18	$56,136,187,201$	0	
1	H	$84 / 125(67 \%)$	0.31	$5(5 \%)$	21	12	$58,144,210,248$	0	
1	HH	$84 / 125(67 \%)$	0.17	$4(4 \%)$	30	19	$84,139,195,231$	0	
1	HHH	$84 / 125(67 \%)$	0.21	$2(2 \%)$	59	42	$70,143,195,230$	0	
1	HHHH	$82 / 125(65 \%)$	0.10	$2(2 \%)$	59	42	$71,142,192,240$	0	
1	O	$83 / 125(66 \%)$	0.69	$14(16 \%)$	1	1	$92,164,222,306$	0	
1	OO	$81 / 125(64 \%)$	0.25	$6(7 \%)$	14	9	$64,143,192,213$	0	
1	OOO	$82 / 125(65 \%)$	0.28	$4(4 \%)$	29	18	$74,146,192,214$	0	
1	OOOO	$82 / 125(65 \%)$	0.36	$6(7 \%)$	15	9	$50,152,202,231$	0	
2	B	$86 / 95(90 \%)$	0.31	$7(8 \%)$	12	7	$72,139,198,223$	0	
2	BB	$71 / 95(74 \%)$	0.25	$14(1 \%)$			75	61	$63,125,171,191$

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	\#RSRZ >2		OWAB (\AA^{2})	Q <0.9
3	C	82/118 (69\%)	-0.02	$0 \quad 100$	100	70, 104, 135, 172	0
3	CC	82/118 (69\%)	-0.05	1 (1\%)	7966	57, 91, 139, 162	0
3	CCC	82/118 (69\%)	0.05	1 (1\%)	7966	43, 96, 151, 213	0
3	CCCC	82/118 (69\%)	0.09	2 (2\%)	$59 \quad 42$	56, 99, 159, 214	0
3	J	82/118 (69\%)	-0.00	$0 \quad 100$	100	51, 102, 146, 168	0
3	JJ	82/118 (69\%)	0.03	2 (2\%)	$59 \quad 42$	56, 104, 168, 212	0
3	JJJ	82/118 (69\%)	-0.07	1 (1\%)	7966	57, 101, 144, 178	0
3	JJJJ	82/118 (69\%)	0.05	$0 \quad 100$	100	49, 91, 150, 191	0
3	Q	82/118 (69\%)	0.13	1 (1\%)	7966	57, 108, 151, 275	0
3	QQ	82/118 (69\%)	-0.02	$0 \quad 100$	100	46, 98, 152, 208	0
3	QQQ	82/118 (69\%)	0.03	$0 \quad 100$	100	46, 103, 157, 174	0
3	QQQQ	82/118 (69\%)	0.03	1 (1\%)	79 66	64, 103, 178, 220	0
4	D	97/118 (82\%)	0.00	3 (3\%)	$49 \quad 33$	48, 93, 168, 229	0
4	DD	98/118 (83\%)	0.14	4 (4\%)	$37 \quad 24$	57, 106, 187, 244	0
4	DDD	98/118 (83\%)	0.13	5 (5\%)	28 17	34, 92, 211, 237	0
4	DDDD	104/118 (88\%)	0.18	7 (6\%)	17 10	36, 96, 184, 219	0
4	K	100/118 (84\%)	0.02	3 (3\%)	$50 \quad 34$	29, 99, 180, 200	0
4	KK	104/118 (88\%)	0.09	6 (5\%)	2313	45, 106, 191, 249	0
4	KKK	99/118 (83\%)	-0.04	$0 \quad 100$	100	59, 110, 173, 200	0
4	KKKK	104/118 (88\%)	0.06	4 (3\%)	$40 \quad 26$	47, 100, 198, 262	0
4	R	98/118 (83\%)	0.04	3 (3\%)	$49 \quad 33$	48, 103, 175, 212	0
4	RR	98/118 (83\%)	0.06	5 (5\%)	$28 \quad 17$	49, 100, 207, 227	0
4	RRR	98/118 (83\%)	0.41	7 (7\%)	$16 \quad 9$	26, 95, 263, 292	0
4	RRRR	98/118 (83\%)	0.02	3 (3\%)	$49 \quad 33$	36, 96, 189, 246	0
5	F	74/86 (86\%)	-0.01	$0 \longdiv { 1 0 0 }$	100	$25,74,117,136$	0
5	FF	75/86 (87\%)	-0.04	$0 \quad 100$	100	$25,88,149,188$	0
5	FFF	74/86 (86\%)	0.11	$0 \quad 100$	100	47, 89, 139, 166	0
5	FFFF	74/86 (86\%)	0.10	1 (1\%)	$75 \quad 61$	$42,88,131,165$	0
5	M	79/86 (91\%)	0.05	2 (2\%)	$57 \quad 41$	$45,90,153,171$	0
5	MM	80/86 (93\%)	-0.10	$0 \longdiv { 1 0 0 }$	100	39, 89, 139, 167	0
5	MMM	76/86 (88\%)	0.13	$0 \quad 100$	100	$45,97,143,167$	0

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	< RSRZ ${ }^{\text {> }}$	\#RSRZ >2		OWAB (\AA^{2})	Q <0.9
5	MMMM	78/86 (90\%)	-0.07	0100	100	37, 85, 136, 165	0
5	T	76/86 (88\%)	0.10	2 (2\%)	$56 \quad 40$	49, 94, 153, 219	0
5	TT	78/86 (90\%)	-0.08	0100	100	$45,89,138,174$	0
5	TTT	76/86 (88\%)	0.13	2 (2\%)	$\begin{array}{lll}56 & 40\end{array}$	46, 91, 142, 213	0
5	TTTT	77/86 (89\%)	0.05	2 (2\%)	$56 \quad 40$	44, 92, 156, 203	0
6	E	79/92 (85\%)	-0.06	0100	100	46, 100, 142, 181	0
6	EE	79/92 (85\%)	0.06	1 (1\%)	$77 \quad 63$	$53,102,159,210$	0
6	EEE	79/92 (85\%)	0.10	2 (2\%)	$57 \quad 41$	51, 100, 158, 195	0
6	EEEE	79/92 (85\%)	0.04	1 (1\%)	77 63	54, 96, 149, 168	0
6	L	79/92 (85\%)	0.14	3 (3\%)	40 17	57, 100, 157, 221	0
6	LL	79/92 (85\%)	0.04	1 (1\%)	77 63	62, 103, 154, 173	0
6	LLL	79/92 (85\%)	0.27	4 (5\%)	28 17	57, 114, 193, 234	0
6	LLLL	77/92 (83\%)	-0.03	2 (2\%)	$56 \quad 40$	42, 91, 157, 190	0
6	S	79/92 (85\%)	0.09	2 (2\%)	$57 \quad 41$	47, 112, 180, 205	0
6	SS	79/92 (85\%)	-0.01	0100	100	52, 98, 157, 202	0
6	SSS	79/92 (85\%)	0.09	4 (5\%)	28 17	58, 109, 179, 203	0
6	SSSS	79/92 (85\%)	0.17	3 (3\%)	$40 \quad 26$	51, 107, 180, 227	0
7	G	74/76 (97\%)	0.24	0100	100	58, 130, 187, 200	0
7	GG	74/76 (97\%)	0.12	4 (5\%)	2516	45, 120, 173, 204	0
7	GGG	74/76 (97\%)	0.17	3 (4\%)	37 24	64, 133, 182, 222	0
7	GGGG	74/76 (97\%)	0.16	4 (5\%)	$25 \quad 16$	57, 129, 183, 233	0
7	N	74/76 (97\%)	0.31	5 (6\%)	$17 \quad 10$	76, 128, 186, 212	0
7	NN	74/76 (97\%)	0.24	5 (6\%)	17 10	70, 120, 172, 243	0
7	NNN	74/76 (97\%)	0.31	3 (4\%)	$37 \quad 24$	75, 142, 187, 214	0
7	NNNN	74/76 (97\%)	0.31	5 (6\%)	$17 \quad 10$	$63,111,186,233$	0
7	U	74/76 (97\%)	0.38	8 (10\%)) 5	86, 132, 212, 239	0
7	UU	74/76 (97\%)	0.31	5 (6\%)	$17 \quad 10$	61, 133, 181, 226	0
7	UUU	74/76 (97\%)	0.49	9 (12\%)	43	50, 141, 213, 254	0
7	UUUU	74/76 (97\%)	0.33	5 (6\%)	17 10	74, 144, 188, 206	0
8	V	68/68 (100\%)	-0.63	1 (1\%)	7360	67, 171, 209, 272	0
8	VV	68/68 (100\%)	-0.60	$0 \quad 100$	100	63, 148, 219, 272	0

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	\langle RSRZ $>$	\#RSRZ $>\mathbf{2}$		OWAB $\left(\AA^{2}\right)$	$\mathbf{Q}<\mathbf{0 . 9}$	
8	VVV	$68 / 68(100 \%)$	-0.63	$1(1 \%)$	73	60	$75,163,213,248$	0
8	VVVV	$68 / 68(100 \%)$	-0.60	0	100	100	$67,168,222,263$	0
8	X	$68 / 68(100 \%)$	-0.60	0	100	100	$81,164,218,272$	0
8	XX	$68 / 68(100 \%)$	-0.60	0	100	100	$74,161,218,267$	0
8	XXX	$68 / 68(100 \%)$	-0.66	0	100	100	$85,158,210,221$	0
8	XXXX	$68 / 68(100 \%)$	-0.55	0	100	100	$69,158,220,249$	0
8	Y	$68 / 68(100 \%)$	-0.62	$1(1 \%)$	73	60	$79,173,228,245$	0
8	YY	$68 / 68(100 \%)$	-0.61	0	100	100	$81,155,229,291$	0
8	YYY	$68 / 68(100 \%)$	-0.57	$1(1 \%)$	73	60	$78,164,247,310$	0
8	YYYY	$68 / 68(100 \%)$	-0.62	0	100	100	$83,164,226,341$	0
All	All	$7623 / 9336(81 \%)$	0.07	$277(3 \%)$	42	28	$25,118,195,341$	$1(0 \%)$

The worst 5 of 277 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	Q	1	MET	8.9
4	RRR	83	GLY	7.8
4	RRR	82	LYS	7.8
2	II	4	GLY	7.4
4	KKKK	83	GLY	7.4

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

[^0]: ${ }^{1}$ Intensities estimated from amplitudes.
 ${ }^{2}$ Theoretical values of $\langle | L \mid>,<L^{2}>$ for acentric reflections are $0.5,0.333$ respectively for untwinned datasets, and $0.375,0.2$ for perfectly twinned datasets.

