

Nov 14, 2022 – 04:36 AM EST

PDB ID	:	6WXF
EMDB ID	:	EMD-21956
Title	:	Cryo-EM reconstruction of $VP5^*/VP8^*$ assembly from rhesus rotavirus parti-
		cles - Intermediate conformation
Authors	:	Herrmann, T.; Harrison, S.C.; Jenni, S.
Deposited on	:	2020-05-10
Resolution	:	4.30 Å(reported)
Based on initial models	:	1SLQ, 4V7Q

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.30 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length		Qual	ity of chain	
1	1	776	20%	64%	•	34%
1	2	776	22%	64%	•	34%
1	3	776	24%	64%	•	35%
2	А	397	•		98%	•
2	В	397	·		98%	·
2	С	397	.		97%	·
2	D	397	.		98%	·
2	Е	397			98%	•
2	F	397			98%	•

Mol

Quality of chain

i 2G 397 99% • i 2Η 39797% ÷. 2Ι 397 99% J 2397 99% . i 2Κ 397 99% • 2 \mathbf{L} 397 98% . 2М 397 98% • i 2Ν 397 . 99% i 2Ο 397 98% . i Р 2397 98% • 2Q 397 99% • ÷ 397 2 \mathbf{R} 99% ÷. 3 326 \mathbf{a} 79% 21% 6% 3 326b 80% 17% . 326 3 \mathbf{c} 79% 20% i 3 \mathbf{d} 326 80% 19% i 326 3 е 79% 20% f 326 3 80% 19% 6% 326 3 g 83% 17% • i. 3 326h 79% 21% . • 3 i 326 83% • 17% 3 326 j 82% 17% • 5% 3 k 326 80% 19% . 3 1 326 81% 19% 3 326 m 83% 17% Continued on next page...

Continued from previous page... Chain Length

Conti	nued from	n previous	page		
Mol	Chain	Length	Quality of chain		
3	n	326	5%		19%
3	О	326	• 81%		19%
3	р	326	37%		• 17%
3	q	326	38% 78%	•	21%
3	r	326	36%		• 17%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 212266 atoms, of which 105044 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom		AltConf	Trace		
1 1	1	511	Total	С	Η	Ν	0	S	0	0
	511	8009	2543	3973	688	788	17	0	0	
1	0	510	Total	С	Η	Ν	0	S	0	0
	510	7998	2539	3970	686	785	18	0	0	
1 3	507	Total	С	Η	Ν	0	S	0	0	
	ა	307	7944	2524	3943	680	779	18	0	U

• Molecule 1 is a protein called Outer capsid protein VP4.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	567	CYS	SER	engineered mutation	UNP G0YZG6
1	590	CYS	ALA	engineered mutation	UNP G0YZG6
2	567	CYS	SER	engineered mutation	UNP G0YZG6
2	590	CYS	ALA	engineered mutation	UNP G0YZG6
3	567	CYS	SER	engineered mutation	UNP G0YZG6
3	590	CYS	ALA	engineered mutation	UNP G0YZG6

• Molecule 2 is a protein called Intermediate capsid protein VP6.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
0	Δ	207	Total	С	Η	Ν	0	S	0	0
	A	397	6275	2004	3112	551	593	15	0	0
0	Р	207	Total	С	Η	Ν	0	S	0	0
	D	391	6275	2004	3112	551	593	15	0	0
0	C	207	Total	С	Η	Ν	0	S	0	0
	397	6275	2004	3112	551	593	15	0	0	
0	Л	207	Total	С	Η	Ν	0	S	0	0
	D		6275	2004	3112	551	593	15		0
0	F	207	Total	С	Η	Ν	0	S	0	0
	Ľ	391	6275	2004	3112	551	593	15	0	0
0	Б	207	Total	С	Η	Ν	0	S	0	0
		6276	2004	3113	551	593	15	0	U	
9	С	307	Total	С	Η	Ν	0	S	0	0
Z G	591	6275	2004	3112	551	593	15		U	

Mol	Chain	Residues	_		Atom	s			AltConf	Trace
0	Ц	207	Total	С	Н	Ν	0	S	0	0
	11	391	6275	2004	3112	551	593	15	0	0
0	т	207	Total	С	Η	Ν	0	S	0	0
	1	391	6275	2004	3112	551	593	15	0	0
9	Т	307	Total	С	Η	Ν	0	\mathbf{S}	0	0
	2 J	391	6275	2004	3112	551	593	15	0	0
9	K	307	Total	С	Η	Ν	0	\mathbf{S}	0	0
	Γ	591	6276	2004	3113	551	593	15	0	0
2	Т	307	Total	С	Η	Ν	0	\mathbf{S}	0	0
2		001	6275	2004	3112	551	593	15	0	0
2	М	307	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
2	111	591	6275	2004	3112	551	593	15	0	0
2	N	307	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
2	11	091	6275	2004	3112	551	593	15	0	0
2	0	307	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
2	U	001	6275	2004	3112	551	593	15	0	0
2	р	307	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
2	T	001	6275	2004	3112	551	593	15	0	0
2	0	307	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0
	2 Q	397	6275	2004	3112	551	593	15	0	0
2	В	397	Total	С	Н	Ν	0	S	0	0
	2 R		6275	2004	3112	551	593	15		

• Molecule 3 is a protein called Outer capsid glycoprotein VP7.

Mol	Chain	Residues			Atom	s			AltConf	Trace
2	0	250	Total	С	Н	Ν	0	S	0	0
3	a	209	4040	1298	1993	324	409	16	0	0
2	h	979	Total	С	Н	Ν	0	S	0	0
່ <u>ບ</u>	D	212	4253	1369	2098	342	428	16	0	0
3	0	261	Total	С	Η	Ν	Ο	S	0	0
5	C	201	4073	1308	2010	327	412	16	0	0
2	2 4	265	Total	С	Η	Ν	Ο	S	0	0
5	u		4132	1328	2036	333	419	16		0
2	0	260	Total	С	Η	Ν	Ο	S	0	0
J	е		4049	1302	1997	323	411	16		0
2	f	265	Total	С	Η	Ν	0	S	0	0
J	1	205	4132	1328	2036	333	419	16	0	0
3	ď	272	Total	С	Η	Ν	0	S	0	0
o g	272	4253	1369	2098	342	428	16	0	U	
3	h	250	Total	С	Η	Ν	0	S	0	0
3	n	259	4040	1298	1993	324	409	16	0	0

Mol	Chain	Residues			Atom	.s			AltConf	Trace
2	;	272	Total	С	Η	Ν	0	S	0	0
0	1	212	4253	1369	2098	342	428	16	0	0
3	;	979	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	J	212	4253	1369	2098	342	428	16	0	0
3	k	265	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	ĸ	200	4132	1328	2036	333	419	16	0	0
3	1	265	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	1	205	4132	1328	2036	333	419	16	0	0
3	m	979	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	111	212	4253	1369	2098	342	428	16	0	0
3	n	265	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
	11	200	4132	1328	2036	333	419	16	0	0
3	0	265	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	0	200	4132	1328	2036	333	419	16	0	0
3	n	979	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	Р		4253	1369	2098	342	428	16	0	0
3	2 9	250	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
	Ч	205	4040	1298	1993	324	409	16	0	0
3	2	979	Total	\mathbf{C}	H	Ν	0	\mathbf{S}	0	0
J	L		4253	1369	2098	342	428	16		U

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues		AltConf				
4	0	1	Total	С	Η	Ν	Ο	0
4 a	a		28	8	14	1	5	0

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page

Mol	Chain	Residues		At	\mathbf{oms}			AltConf
4	h	1	Total	С	Η	Ν	Ο	0
4	D	L	28	8	14	1	5	0
4		1	Total	С	Η	Ν	0	0
4	С	1	28	8	14	1	5	0
4	1	1	Total	С	Н	Ν	0	0
4	a	1	28	8	14	1	5	0
4		1	Total	С	Η	Ν	0	0
4	е	1	28	8	14	1	5	0
4	ſ	1	Total	С	Н	Ν	0	0
4	I	1	28	8	14	1	5	0
4		1	Total	С	Η	Ν	0	0
4	g	1	28	8	14	1	5	0
4	1	1	Total	С	Η	Ν	0	0
4	n	1	28	8	14	1	5	0
4		1	Total	С	Η	Ν	0	0
4	1	1	28	8	14	1	5	0
4	<u>.</u>	1	Total	С	Н	Ν	0	0
4	J	1	28	8	14	1	5	0
4	1-	1	Total	С	Η	Ν	Ο	0
4	K	L	28	8	14	1	5	0
4	1	1	Total	С	Η	Ν	0	0
4	1	L	28	8	14	1	5	0
4	200	1	Total	С	Η	Ν	0	0
4	III	L	28	8	14	1	5	0
4		1	Total	С	Η	Ν	0	0
4	11	L	28	8	14	1	5	0
4	-	1	Total	С	Η	Ν	0	0
4	0	L	28	8	14	1	5	0
4		1	Total	С	Η	Ν	Ο	0
4	h h		28	8	14	1	5	
4	~	1	Total	С	Н	Ν	0	0
4	q		28	8	14	1	5	
4		1	Total	С	Н	Ν	0	0
4	1		28	8	14	1	5	

• Molecule 5 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	AltConf
5	a	3	Total Ca 3 3	0
5	b	3	Total Ca 3 3	0

5

r

Mol	Chain	Residues	Atoms	AltConf
		2	Total Ca	0
5	с	3	3 3	0
-	1	2	Total Ca	0
5	a	3	3 3	0
E		2	Total Ca	0
5	е	0	3 3	0
5	f	2	Total Ca	0
0	1	5	3 3	0
5	ď	2	Total Ca	0
0	g	5	3 3	0
5	h	3	Total Ca	0
0	11	5	3 3	0
5	i	3	Total Ca	0
0	I	0	3 3	0
5	i	3	Total Ca	0
	J	0	3 3	
5	k	3	Total Ca	0
			3 3	
5	1	3	Total Ca	0
	-		3 3	
5	m	3	Total Ca	0
		<u> </u>	3 3	
5	n	3	Total Ca	0
			$\frac{3}{3}$	
5	0	3	Total Ca	0
		_	$\frac{3}{3}$	
5	р	3	Total Ca	0
	1		$\frac{3}{3}$	
5	q	3	Total Ca	0
	1		$\frac{3}{3}$	
5		9	Total Ca	0

3

3

3

Continued from previous page...

0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Outer capsid protein VP4

Chain 2: 64% · 34%

• Molecule 2: Intermediate capsid protein VP6 Chain L: 98% • Molecule 2: Intermediate capsid protein VP6 Chain M: 98% • Molecule 2: Intermediate capsid protein VP6 Chain N: 99% • Molecule 2: Intermediate capsid protein VP6 Chain O: 98% • Molecule 2: Intermediate capsid protein VP6 Chain P: 98% • Molecule 2: Intermediate capsid protein VP6 Chain Q: 99% • Molecule 2: Intermediate capsid protein VP6 Chain R: 99%

• Molecule 3: Outer capsid glycoprotein VP7

Chain a:	79%	21%
MET TYR GLY GLU GLU GLU TYR THR THR THR THR THR	THR THR TILE LLEU LLEU LLEU LLEU LLEU LLEU LLEU L	NAL ILEU SER SER SER SER PRO LEU LEU LEU LEU LET DE4
G114 D130 T200 D267 T281	E282 S314 SER SER SER SER ALA ALA ALA ALA ALA TYR TYR TYR TYR TYR TYR TYR TYR	
• Molecule 3:	Outer capsid glycoprotein VP7	
Chain b:	80%	• 17%
MET TYR GLY GLY GLU TYR THR THR VAL LEU	THR THE LEU LEU LEU LEU LEU LEU TYR ASN TYR TYR ASN TYR ASN TTR ASN TTR TTR TTR TTR TTLE TTLE TTLE TTLE TTL	VAL ILEU ILEU RER PRO ILEU ILE
A68 N69 S70 T71 Q72 E73 E74 T75	F76 L77 T202 C207 C207 C207 C207 C207 C207 C314 H315 H315 H315 H321 H325 H325 H325 H325 H325 H325 H325 H325	
• Molecule 3:	Outer capsid glycoprotein VP7	
Chain c:	79%	• 20%
MET TYR GLY GLY CLLE GLU THR THR THR THR THR THR	THR PHE LEU LEU LEU LEU LEU LEU LEU PHE PHE PHE PHE PHE PHE PHE PHE	VAL LEU LEU PRO PRO LEU LEU LEU LEU LEU LEU CIY ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
N69 E73 E74 N94 C207	1281 SER SER SER ASN ASN ALA ALA ALA ALA ALA ALA ILE ILE	
• Molecule 3:	Outer capsid glycoprotein VP7	
Chain d:	80%	• 19%
MET TYR GLY GLY ILE GLU GLU TYR THR THR THR THR THR THR	THR THR THR THR TLEU TLEU TLEU TLEU TLEU TLEU TLEU TLEU	ILE LEU SER PRO FRO LEU LEU LEU LEU LEU MAA ALA MAA MAA MAA CE T3
C207 221 1281 8315 858 ASN ASN ALA	PALA PAHE TTYR ATYR TTYR ILE	

• Molecule 3: Outer capsid glycoprotein VP7

<p< th=""><th></th></p<>	
• Molecule 3: Outer capsid glycoprotein VP7 Chain f: 80% 19% • Molecule 3: Outer capsid glycoprotein VP7 • 19%	
Molecule 3: Outer capsid glycoprotein VP7 Chain f:	
Chain f: 80% 19% Image: State of the s	
N284 IEU IEU ALA ALA ALA ALA ALA ALA ALA AL	
H284 BEIS SER SER ALA ALA ALA ALA ALA ALA ALA ITR TTR ARG	-
• Molecule 3: Outer capsid glycoprotein VP7	
6% Chain g: 83% · 17%	
MET TYR TYR TYR TYR TYR THR THR TYR THR THR THR THR THR THR THR THR THR TH	Y67
A68 870 870 873 873 875 875 775 775 873 8242 8314 8314 1326	
• Molecule 3: Outer capsid glycoprotein VP7	
Chain h: 79% • 21%	
MET TYR TYR GL Y GL V GL V GL V GL V GL V THR THR THR ILE V ILE V	-
N96 Compared to the second sec	
• Molecule 3: Outer capsid glycoprotein VP7	
Chain i: 83% • 17%	
MET TYR TYR TYR TTR TTR TTR TTR TTR TTR TT	E73

WORLDWIDE PROTEIN DATA BANK

• Molecule 3: Outer capsid glycoprotein VP7

Chain j:	82%	• 17%	
		••	•
MET TYR GLY GLY GLU GLU THR THR VAL LEU	THR THR SIER SIER SIER SIER LLEU LLEU LLEU LLEU LLEU LLEU ASP SER SER ASP THR MET THR MET THR MET THR MET THR THR TILE LEU LEU LEU LEU LEU LEU LEU LEU LEU L	VAL LEU SER PRO PRO LEU LEU LEU LEU ALA ALA ALA GLY GLY D64	E73
 .	+		
Q149 S186 S189 T209 A242	D274 1211 8314 R315 1326		
• Molecule 3:	Outer capsid glycoprotein VP7		
Chain k:	80%	• 19%	
		•••	• ••
MET TYR GLY ILE GLU GLU THR THR THR VAL	THR THR SELE SELE LLEU LLEU LLEU LLEU LLEU LLEU	rat LEU LEU LEU PRO PRO PRO LEU LEU LEU LEU LEU CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4	D64 Y67 A68
******	• • •		
N69 S70 T71 Q72 E73 E73 E74 T75	LTT T78 T78 178 187 187 188 188 188 158 158 158 158 158 158 158		
• Molecule 3:	Outer capsid glycoprotein VP7		
Chain I:	81%	19%	
		• •	
MET TYR GLY GLY GLU GLU TYR THR THR VAL	THR THR SER LLEU LLEU LLEU LLEU LLEU LLEU LLEU LL	VAL ILEU LEU PRO PRO LEU LEU LEU LEU E73 E73 E73 1281	R315 SER
LEU ASN SER ALA ALA PHE TYR ARG TLE			
• Molecule 3:	Outer capsid glycoprotein VP7		
Unain m:	83%	• 17%	
MET TYR GLY TLE GLU THR VAL VAL	PTHR PTHR SER SER SER SER LLEU LLEU LLEU LLEU LLEU LLEU LLEU LL	VAL LEU ELEU SER PRO LEU LEU LEU CLY ALA ALA ALA CLN RIA GLY N56 GLY L57	D64
T200 ♦ A242 ♦ T281 Y324 R325 R325			

• Molecule 3: Outer capsid glycoprotein VP7

Chain n:	%	79%	·	19%	
MET TYR GLY ILE GLU TYR THR	VAL VAL THE U THE PHE LEU LEU LEU ASN TTR ASN LEU LEU LYS	LEU LEU THR MET MET MET ARG PHE TTR ARG TTR ARG PHE	ILE VAL VAL ILE LEU PRO LEU LEU LEU LYS	ALA 451 N52 753 G54 N55 N56	₩ 66
Y67 A68 N69 S70 T71 Q72	E73 E74 F76 F76 L77 L77 L78 L150 C244 C244 C244 C244 C244 C244	R315 SER LEU LEU ALA ALA ALA TYR TYR TYR TLE ILE			
• Molecule	3: Outer capsid glyco	protein VP7			
Chain o:		81%	·	19%	
MET TYR GLY ILE GLU TYR THR	VAL VAL THEU THEU THEU PHE LEU LEU LEU LEU ASN TYR ASN LUS LEU LEU LEU	LEU LEU THR ARG ARG ARG ARG PHE TTR ARG ARG PHE LEU	111. VAL VAL LLEU LLEU PRO LLEU LLEU LLEU LLEU LLEU LLEU LLEU LLE	Q51 Q54 D64 E73	2
E180	LEU LEU ASN SER ALA ALA ALA PHE TYR TYR TYR ILE				
• Molecule	3: Outer capsid glyco	protein VP7			
Chain p:	37%	82%		17%	
MET TYR GLY ILE GLU THR THR	VAL VAL THEU THE PHE LEU LEU LEU LEU ASN TYR LVS LVS	LEU LEU THR ARG MET MET ARG ARP TTR TTR ARG PHE LEU	ILE VAL VAL ILE LEU EEU EEU LEU LEU LYS	ALA ALN ASN TYR GLY I55 N56 L57	160 661
S62 M63 D64 T65 A66 Y 67	A005 ST0 TT1 TT7 CT2 E74 E74 E74 E75 T75 T75 T75 ST9 ST9	A89 A90 T91 E82 E93 N94 N95 N95 D100 Q104	L107 F118 K119 E120 T122 T122	1129 1130 1130 1132 1133 1133 1133 1133 1133	T147 M152 8153 8155 8155 8155 A156 A156 1158 1158 1158
E162 D169 1170 Q177 Q177	T178 D179 E180 A181 S186 G188 G188 S189 S189 L195 L195	1199 1200 1200 1200 1200 1200 1200 1200	E216 E217 E217 A221 E222 E222 1226 T227 D228	D231 H235 K236 L237 D238 V239	T241 + A242 + A242 + C253 + C253 + C253 + C258 + C258 + A259 + A259 + A259 + A259 + A259 + C258 + C2
q262 V263 G264 G265 S266 S266 D267 V268	L269 D270 D270 1271 T272 A273 P275 P275 P276 P279 P279 P279 P279 P279 P279	E282 R283 M284 M285 R286 I287 W289 W289 K290 K290	Dao1 1307 M310 S311 K312 R313 S314	R315 8319 8319 8320 8321 7323 7323	1324
• Molecule	3: Outer capsid glyco	protein VP7			
Chain q:	38%	78%	• 2	21%	
MET TYR GLY ILE GLU TYR THR THR	VAL VAL THEU PHE LLEU LLEU LLEU LLEU LLEU LLEU LLEU LVS LYS	L SER LEU THR ARG ARG ARG ARC THE TTR ARC TTR ARC LEU	111 VAL VAL 111E 111E 111E 111E 111E 111E 111E 11	ALA ALA ASIN TYR GLY ILE ASIN FSS	2 2 2 2
S62 M63 D64 T65 A66 Y67	N69 870	A90 191 193 193 193 N96 N96 K99 K99 K99 S103	F106 L107 T108 K109 T113 G114 S115	K119 E120 Y121 T122 A125 S126	5128 1128 1130 1131 1133 1133 1133 1133 1133 113
		WORLDWIE PROTEINDATA BA	D E NK		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	82008	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	33	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	40605	Depositor
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	13.304	Depositor
Minimum map value	-6.964	Depositor
Average map value	0.067	Depositor
Map value standard deviation	1.488	Depositor
Recommended contour level	3.5	Depositor
Map size (Å)	393.91998, 393.91998, 393.91998	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.231, 1.231, 1.231	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.27	0/4109	0.56	0/5561
1	2	0.27	0/4101	0.57	0/5549
1	3	0.27	0/4073	0.56	0/5510
2	А	0.27	0/3233	0.55	0/4397
2	В	0.27	0/3233	0.55	0/4397
2	С	0.27	0/3233	0.56	0/4397
2	D	0.27	0/3233	0.57	0/4397
2	Ε	0.26	0/3233	0.56	0/4397
2	F	0.27	0/3233	0.56	0/4397
2	G	0.27	0/3233	0.56	0/4397
2	Н	0.28	0/3233	0.56	0/4397
2	Ι	0.27	0/3233	0.56	0/4397
2	J	0.27	0/3233	0.56	0/4397
2	Κ	0.27	0/3233	0.56	0/4397
2	L	0.27	0/3233	0.56	0/4397
2	М	0.27	0/3233	0.56	0/4397
2	Ν	0.27	0/3233	0.56	0/4397
2	Ο	0.27	0/3233	0.56	0/4397
2	Р	0.27	0/3233	0.55	0/4397
2	Q	0.27	0/3233	0.55	0/4397
2	R	0.27	0/3233	0.56	0/4397
3	a	0.26	0/2089	0.51	0/2854
3	b	0.26	0/2200	0.54	0/3005
3	с	0.25	0/2105	0.52	0/2876
3	d	0.25	0/2139	0.51	0/2922
3	е	0.26	0/2094	0.51	0/2862
3	f	0.26	0/2139	0.52	0/2922
3	g	0.26	$0/2\overline{200}$	0.53	$0/3\overline{005}$
3	h	0.26	0/2089	0.52	0/2854
3	i	0.25	0/2200	0.52	0/3005
3	j	0.25	0/2200	0.51	0/3005
3	k	0.26	0/2139	0.53	0/2922

Mal	Chain	Bond	lengths	Bond	l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
3	1	0.26	0/2139	0.52	0/2922
3	m	0.25	0/2200	0.51	0/3005
3	n	0.25	0/2139	0.52	0/2922
3	0	0.25	0/2139	0.53	0/2922
3	р	0.26	0/2200	0.52	0/3005
3	q	0.26	0/2089	0.52	0/2854
3	r	0.26	0/2200	0.52	0/3005
All	All	0.26	0/109177	0.55	0/148633

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	1	0	2
3	b	0	2
3	е	0	1
All	All	0	5

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	1	537	THR	Peptide
1	1	589	SER	Peptide
3	b	66	ALA	Peptide
3	b	76	PHE	Peptide
3	е	311	SER	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	503/776~(65%)	494 (98%)	9 (2%)	0	100	100
1	2	502/776~(65%)	494 (98%)	8 (2%)	0	100	100
1	3	498/776~(64%)	492 (99%)	6 (1%)	0	100	100
2	А	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	В	395/397~(100%)	392 (99%)	3 (1%)	0	100	100
2	С	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	D	395/397~(100%)	392 (99%)	3 (1%)	0	100	100
2	Ε	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	F	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	G	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	Н	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	Ι	395/397~(100%)	392 (99%)	3 (1%)	0	100	100
2	J	395/397~(100%)	392 (99%)	3 (1%)	0	100	100
2	Κ	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	L	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	М	395/397~(100%)	392 (99%)	3(1%)	0	100	100
2	Ν	395/397~(100%)	393 (100%)	2(0%)	0	100	100
2	Ο	395/397~(100%)	392 (99%)	3 (1%)	0	100	100
2	Р	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	Q	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
2	R	395/397~(100%)	393 (100%)	2 (0%)	0	100	100
3	a	257/326~(79%)	257 (100%)	0	0	100	100
3	b	$\overline{270/326}$ (83%)	266 (98%)	4 (2%)	0	100	100
3	с	259/326~(79%)	259 (100%)	0	0	100	100
3	d	263/326~(81%)	263 (100%)	0	0	100	100
					Continued a	on next	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	е	258/326~(79%)	258 (100%)	0	0	100	100
3	f	263/326~(81%)	263 (100%)	0	0	100	100
3	g	270/326~(83%)	270 (100%)	0	0	100	100
3	h	257/326~(79%)	257 (100%)	0	0	100	100
3	i	270/326~(83%)	270 (100%)	0	0	100	100
3	j	270/326~(83%)	270 (100%)	0	0	100	100
3	k	263/326~(81%)	263~(100%)	0	0	100	100
3	1	263/326~(81%)	263 (100%)	0	0	100	100
3	m	270/326~(83%)	270 (100%)	0	0	100	100
3	n	263/326~(81%)	263 (100%)	0	0	100	100
3	0	263/326~(81%)	263 (100%)	0	0	100	100
3	р	270/326~(83%)	269 (100%)	1 (0%)	0	100	100
3	q	257/326~(79%)	257 (100%)	0	0	100	100
3	r	270/326~(83%)	270 (100%)	0	0	100	100
All	All	13369/15342~(87%)	13299 (100%)	70 (0%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1	452/689~(66%)	436 (96%)	16 (4%)	36 60
1	2	451/689~(66%)	437 (97%)	14 (3%)	40 63
1	3	448/689~(65%)	434 (97%)	14 (3%)	40 63
2	А	350/350~(100%)	343 (98%)	7 (2%)	55 73
2	В	350/350~(100%)	342 (98%)	8 (2%)	50 70
2	С	350/350~(100%)	340 (97%)	10 (3%)	42 64
2	D	350/350~(100%)	343~(98%)	7 (2%)	55 73

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	Ε	350/350~(100%)	341~(97%)	9~(3%)	46	67
2	F	350/350~(100%)	344 (98%)	6 (2%)	60	78
2	G	350/350~(100%)	346 (99%)	4 (1%)	73	85
2	Н	350/350~(100%)	340 (97%)	10 (3%)	42	64
2	Ι	350/350~(100%)	347 (99%)	3 (1%)	78	88
2	J	350/350~(100%)	346 (99%)	4 (1%)	73	85
2	K	350/350~(100%)	346 (99%)	4 (1%)	73	85
2	L	350/350~(100%)	343 (98%)	7 (2%)	55	73
2	М	350/350~(100%)	344 (98%)	6 (2%)	60	78
2	Ν	350/350~(100%)	345 (99%)	5 (1%)	67	81
2	О	350/350~(100%)	342 (98%)	8 (2%)	50	70
2	Р	350/350~(100%)	344 (98%)	6 (2%)	60	78
2	Q	350/350~(100%)	345 (99%)	5 (1%)	67	81
2	R	350/350~(100%)	347 (99%)	3 (1%)	78	88
3	a	233/295~(79%)	232 (100%)	1 (0%)	91	94
3	b	244/295~(83%)	236 (97%)	8 (3%)	38	62
3	с	235/295~(80%)	232~(99%)	3 (1%)	69	82
3	d	238/295~(81%)	235~(99%)	3 (1%)	69	82
3	е	234/295~(79%)	234 (100%)	0	100	100
3	f	238/295~(81%)	234 (98%)	4 (2%)	60	78
3	g	244/295~(83%)	242 (99%)	2 (1%)	81	89
3	h	233/295~(79%)	230~(99%)	3 (1%)	69	82
3	i	244/295~(83%)	242 (99%)	2 (1%)	81	89
3	j	244/295~(83%)	239 (98%)	5 (2%)	55	73
3	k	238/295~(81%)	233 (98%)	5 (2%)	53	72
3	1	238/295~(81%)	237 (100%)	1 (0%)	91	94
3	m	244/295~(83%)	242 (99%)	2 (1%)	81	89
3	n	238/295~(81%)	232 (98%)	6 (2%)	47	68
3	0	238/295~(81%)	236 (99%)	2 (1%)	81	89
3	р	244/295~(83%)	239 (98%)	5 (2%)	55	73
3	q	233/295~(79%)	229 (98%)	4 (2%)	60	78

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	es
3	r	244/295~(83%)	239~(98%)	5 (2%)	55 73	
All	All	11955/13677~(87%)	11738 (98%)	217 (2%)	61 77	

All (217) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	1	323	MET
1	1	336	ASP
1	1	339	ILE
1	1	430	LEU
1	1	443	ARG
1	1	477	ASN
1	1	539	ASP
1	1	594	VAL
1	1	626	THR
1	1	633	PHE
1	1	658	ASP
1	1	697	THR
1	1	701	ILE
1	1	710	ASP
1	1	727	LEU
1	1	758	GLN
1	2	323	MET
1	2	335	THR
1	2	423	SER
1	2	535	LYS
1	2	538	ILE
1	2	626	THR
1	2	628	THR
1	2	641	LEU
1	2	655	THR
1	2	659	ILE
1	2	697	THR
1	2	710	ASP
1	2	727	LEU
1	2	776	LEU
1	3	1	MET
1	3	310	GLU
1	3	321	ASN
1	3	323	MET
1	3	410	THR
1	3	433	GLU

Mol	Chain	Res	Type
1	3	436	SER
1	3	573	SER
1	3	626	THR
1	3	641	LEU
1	3	652	SER
1	3	696	GLU
1	3	697	THR
1	3	738	ARG
2	А	54	LEU
2	А	272	THR
2	А	301	THR
2	А	312	GLN
2	А	320	VAL
2	A	342	MET
2	А	370	LEU
2	В	79	GLU
2	В	86	ASP
2	В	179	THR
2	В	207	GLN
2	В	239	ASN
2	В	301	THR
2	В	337	ASP
2	В	370	LEU
2	С	79	GLU
2	С	86	ASP
2	С	179	THR
2	С	207	GLN
2	С	239	ASN
2	С	264	LEU
2	С	272	THR
2	С	301	THR
2	С	342	MET
2	С	396	VAL
2	D	54	LEU
2	D	125	LYS
2	D	179	THR
2	D	207	GLN
2	D	264	LEU
2	D	342	MET
2	D	396	VAL
2	Е	62	ASP
2	Ε	86	ASP

Mol	Chain	Res	Type
2	Е	179	THR
2	Е	207	GLN
2	Е	231	ARG
2	Е	271	ASN
2	Е	301	THR
2	Е	370	LEU
2	Е	396	VAL
2	F	86	ASP
2	F	207	GLN
2	F	239	ASN
2	F	264	LEU
2	F	320	VAL
2	F	342	MET
2	G	207	GLN
2	G	239	ASN
2	G	272	THR
2	G	342	MET
2	Н	8	SER
2	Н	9	LYS
2	Н	86	ASP
2	Н	107	ASN
2	Н	207	GLN
2	Н	239	ASN
2	Н	301	THR
2	Н	342	MET
2	Н	370	LEU
2	Н	396	VAL
2	Ι	264	LEU
2	Ι	301	THR
2	Ι	342	MET
2	J	207	GLN
2	J	239	ASN
2	J	342	MET
2	J	370	LEU
2	K	7	LEU
2	K	29	ASP
2	K	179	THR
2	K	374	TYR
2	L	207	GLN
2	L	239	ASN
2	L	264	LEU
2	L	272	THR

Mol	Chain	Res	Type
2	L	342	MET
2	L	380	ASP
2	L	396	VAL
2	М	179	THR
2	М	207	GLN
2	М	239	ASN
2	М	264	LEU
2	М	301	THR
2	М	342	MET
2	Ν	7	LEU
2	N	79	GLU
2	N	100	MET
2	N	301	THR
2	Ν	328	SER
2	0	86	ASP
2	0	179	THR
2	0	207	GLN
2	0	238	ILE
2	0	257	ASN
2	0	272	THR
2	0	301	THR
2	0	396	VAL
2	Р	207	GLN
2	Р	234	PHE
2	Р	239	ASN
2	Р	301	THR
2	Р	337	ASP
2	Р	342	MET
2	Q	54	LEU
2	Q	86	ASP
2	Q	207	GLN
2	Q	239	ASN
2	Q	342	MET
2	R	207	GLN
2	R	239	ASN
2	R	301	THR
3	a	281	THR
3	b	65	THR
3	b	69	ASN
3	b	75	THR
3	b	202	THR
3	b	207	CYS

Mol	Chain	Res	Type
3	b	281	THR
3	b	284	MET
3	b	324	TYR
3	с	60	THR
3	С	207	CYS
3	с	281	THR
3	d	69	ASN
3	d	207	CYS
3	d	281	THR
3	f	151	ASP
3	f	209	THR
3	f	281	THR
3	f	284	MET
3	g	281	THR
3	g	324	TYR
3	h	180	GLU
3	h	186	SER
3	h	231	ASP
3	i	180	GLU
3	i	324	TYR
3	j	149	GLN
3	j	186	SER
3	j	209	THR
3	j	274	ASP
3	j	281	THR
3	k	78	THR
3	k	87	THR
3	k	207	CYS
3	k	281	THR
3	k	284	MET
3	1	281	THR
3	m	281	THR
3	m	$32\overline{4}$	TYR
3	n	69	ASN
3	n	78	THR
3	n	150	LEU
3	n	244	CYS
3	n	281	THR
3	n	284	MET
3	0	78	THR
3	0	281	THR
3	р	73	GLU

Mol	Chain	Res	Type
3	р	162	GLU
3	р	202	THR
3	р	281	THR
3	р	324	TYR
3	q	69	ASN
3	q	209	THR
3	q	244	CYS
3	q	281	THR
3	r	147	THR
3	r	150	LEU
3	r	207	CYS
3	r	234	ASN
3	r	281	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	2	300	ASN
2	А	271	ASN
2	Н	128	ASN
2	J	383	GLN
2	Κ	170	GLN
2	L	58	ASN
2	М	310	ASN
2	N	207	GLN
2	Ν	293	GLN
2	Ν	383	GLN
2	0	138	ASN
2	Р	206	GLN
3	с	149	GLN
3	d	280	GLN
3	е	149	GLN
3	f	104	GLN
3	f	161	ASN
3	h	161	ASN
3	n	248	ASN
3	n	305	GLN
3	0	149	GLN
3	0	305	GLN
3	р	149	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 72 ligands modelled in this entry, 54 are monoatomic - leaving 18 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bond lengths			Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	q	401	3	14,14,15	0.28	0	17,19,21	0.39	0
4	NAG	i	503	3	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	n	401	3	$14,\!14,\!15$	0.28	0	17,19,21	0.46	0
4	NAG	р	401	3	14,14,15	0.29	0	17,19,21	0.48	0
4	NAG	r	503	3	14,14,15	0.31	0	17,19,21	0.44	0
4	NAG	a	401	3	14,14,15	0.29	0	17,19,21	0.47	0
4	NAG	h	401	3	14,14,15	0.24	0	17,19,21	0.43	0
4	NAG	k	401	3	14,14,15	0.24	0	17,19,21	0.54	0
4	NAG	m	401	3	14,14,15	0.27	0	17,19,21	0.46	0
4	NAG	g	401	3	14,14,15	0.21	0	17,19,21	0.41	0
4	NAG	j	401	3	14,14,15	0.26	0	17,19,21	0.46	0
4	NAG	е	401	3	14,14,15	0.22	0	17,19,21	0.43	0
4	NAG	0	503	3	14,14,15	0.21	0	17,19,21	0.50	0
4	NAG	с	503	3	14,14,15	0.22	0	17,19,21	0.51	0
4	NAG	d	401	3	14,14,15	0.17	0	17,19,21	0.47	0
4	NAG	1	503	3	14,14,15	0.20	0	17,19,21	0.49	0
4	NAG	b	401	3	14,14,15	0.29	0	17,19,21	0.44	0
4	NAG	f	503	3	14,14,15	0.25	0	17,19,21	0.54	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	q	401	3	-	0/6/23/26	0/1/1/1
4	NAG	i	503	3	-	0/6/23/26	0/1/1/1
4	NAG	n	401	3	-	2/6/23/26	0/1/1/1
4	NAG	р	401	3	-	0/6/23/26	0/1/1/1
4	NAG	r	503	3	-	0/6/23/26	0/1/1/1
4	NAG	a	401	3	-	2/6/23/26	0/1/1/1
4	NAG	h	401	3	-	0/6/23/26	0/1/1/1
4	NAG	k	401	3	-	0/6/23/26	0/1/1/1
4	NAG	m	401	3	-	0/6/23/26	0/1/1/1
4	NAG	g	401	3	-	1/6/23/26	0/1/1/1
4	NAG	j	401	3	-	0/6/23/26	0/1/1/1
4	NAG	е	401	3	-	0/6/23/26	0/1/1/1
4	NAG	0	503	3	-	0/6/23/26	0/1/1/1
4	NAG	с	503	3	-	0/6/23/26	0/1/1/1
4	NAG	d	401	3	-	0/6/23/26	0/1/1/1
4	NAG	1	503	3	-	0/6/23/26	0/1/1/1
4	NAG	b	401	3	-	2/6/23/26	0/1/1/1
4	NAG	f	503	3	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	b	401	NAG	O5-C5-C6-O6
4	n	401	NAG	O5-C5-C6-O6
4	b	401	NAG	C4-C5-C6-O6
4	n	401	NAG	C4-C5-C6-O6
4	g	401	NAG	O5-C5-C6-O6
4	a	401	NAG	C4-C5-C6-O6
4	a	401	NAG	O5-C5-C6-O6
4	f	503	NAG	C4-C5-C6-O6
4	f	503	NAG	O5-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-21956. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

Z Index: 160

6.2.2 Raw map

X Index: 160

Y Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 112

Z Index: 134

6.3.2 Raw map

X Index: 161

Y Index: 140

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 3.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.5.1 emd_21956_msk_1.map (i)

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2472 nm^3 ; this corresponds to an approximate mass of 2233 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.233 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.233 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	4.30	-	-	
Author-provided FSC curve	4.27	5.82	4.38	
Unmasked-calculated*	4.94	7.47	5.50	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.94 differs from the reported value 4.3 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-21956 and PDB model 6WXF. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 3.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (3.5).

9.4 Atom inclusion (i)

At the recommended contour level, 73% of all backbone atoms, 73% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (3.5) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7298	0.3060
1	0.5303	0.2350
2	0.5184	0.2330
3	0.4916	0.2340
А	0.8069	0.3500
В	0.8240	0.3380
С	0.8201	0.3380
D	0.7914	0.3360
Ε	0.8163	0.3420
F	0.8034	0.3380
G	0.7959	0.3350
Н	0.8198	0.3360
Ι	0.8059	0.3380
J	0.7808	0.3370
K	0.7956	0.3430
L	0.7798	0.3370
М	0.7782	0.3450
Ν	0.7782	0.3290
О	0.7953	0.3360
Р	0.8079	0.3300
Q	0.8160	0.3320
R	0.8001	0.3160
a	0.7530	0.2790
b	0.7186	0.2780
с	0.7510	0.2780
d	0.8010	0.3080
e	0.8254	0.3090
f	0.8279	0.3070
g	0.7453	0.2700
h	0.7908	0.2800
i	0.7753	0.2960
j	0.7832	0.2790
k	0.7716	0.2940
1	0.7918	0.3000
m	0.7959	0.2980

Chain	Atom inclusion	Q-score
n	0.7740	0.2930
О	0.7990	0.3050
р	0.4185	0.2470
q	0.4222	0.2500
r	0.4457	0.2470

