

wwPDB EM Validation Summary Report (i)

Oct 22, 2024 – 12:36 AM JST

PDB ID	:	8WLO
EMDB ID	:	EMD-37626
Title	:	Cryo-EM structure of SARS-CoV-2 prototype spike protein in complex with
		hippopotamus ACE2
Authors	:	Han, P.; Yang, R.R.; Li, S.H.
Deposited on	:	2023-09-30
Resolution	:	2.62 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.62 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

206894

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

16415

Mol	Chain	Length	Quality of chain						
1	А	1217	73% 1.	3% •	13%				
1	В	1217	68% 17%	·	13%				
1	С	1217	69% 18	% •	12%				
2	Е	597	74%	24%	•				
3	D	2	100%						
3	F	2	100%						
3	G	2	100%						
3	Н	2	50% 50%						
3	Ι	2	100%						

Contr	nuea jron	<i>i</i> previous	page						
\mathbf{Mol}	Chain	Length	Quality of chain						
ი	т	0							
3	J	Δ	50%	50%					
9	17	0							
3	ĸ	2	50%	50%					
0	т	0							
3	L	2	100%						
-									
3	M	2	50%	50%					
_									
3	Ν	2	50%	50%					
-									
3	0	2	50%	50%					
-	-								
3	P	2	50%	50%					

tio J fa α

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 30464 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	AltConf	Trace			
1	Δ	1061	Total	С	Ν	0	\mathbf{S}	0	0
1		1001	8290	5290	1383	1580	37	0	0
1	В	1061	Total	С	Ν	Ο	\mathbf{S}	0	0
1	D	1001	8292	5292	1383	1579	38		0
1	C	1065	Total	С	Ν	Ο	S	0	0
	U	1000	8322	5312	1388	1584	38	0	0

• Molecule 1 is a protein called Spike glycoprotein.

Thoro are 27	discropping	hotwoon	the modelled	and	roforonco	sociloncos.
There are 21	discrepancies	between	the modelled	ana	reference	sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	682	GLY	ARG	engineered mutation	UNP P0DTC2
А	683	SER	ARG	engineered mutation	UNP P0DTC2
А	685	SER	ARG	engineered mutation	UNP P0DTC2
А	817	PRO	PHE	engineered mutation	UNP P0DTC2
А	892	PRO	ALA	engineered mutation	UNP P0DTC2
А	899	PRO	ALA	engineered mutation	UNP P0DTC2
А	942	PRO	ALA	engineered mutation	UNP P0DTC2
А	986	PRO	LYS	engineered mutation	UNP P0DTC2
А	987	PRO	VAL	engineered mutation	UNP P0DTC2
В	682	GLY	ARG	engineered mutation	UNP P0DTC2
В	683	SER	ARG	engineered mutation	UNP P0DTC2
В	685	SER	ARG	engineered mutation	UNP P0DTC2
В	817	PRO	PHE	engineered mutation	UNP P0DTC2
В	892	PRO	ALA	engineered mutation	UNP P0DTC2
В	899	PRO	ALA	engineered mutation	UNP P0DTC2
В	942	PRO	ALA	engineered mutation	UNP P0DTC2
В	986	PRO	LYS	engineered mutation	UNP P0DTC2
В	987	PRO	VAL	engineered mutation	UNP P0DTC2
С	682	GLY	ARG	engineered mutation	UNP P0DTC2
С	683	SER	ARG	engineered mutation	UNP P0DTC2
С	685	SER	ARG	engineered mutation	UNP P0DTC2
С	817	PRO	PHE	engineered mutation	UNP P0DTC2
С	892	PRO	ALA	engineered mutation	UNP P0DTC2
С	899	PRO	ALA	engineered mutation	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
С	942	PRO	ALA	engineered mutation	UNP P0DTC2
С	986	PRO	LYS	engineered mutation	UNP P0DTC2
С	987	PRO	VAL	engineered mutation	UNP P0DTC2

Continued from previous page...

• Molecule 2 is a protein called Angiotensin-converting enzyme.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	Е	597	Total 4873	C 3110	N 805	O 929	S 29	0	0

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		AltConf	Trace
9	р	0	Total	С	Ν	0	0	0
3	D	Δ	28	16	2	10	0	0
2	Б	2	Total	С	Ν	0	0	0
3	Г	Δ	28	16	2	10	0	0
3	С	9	Total	С	Ν	0	0	0
5	G	2	28	16	2	10	0	0
3	Ц	9	Total	С	Ν	0	0	0
5	11	2	28	16	2	10	0	0
3	T	9	Total	С	Ν	0	0	0
5	1	2	28	16	2	10	0	0
3	Т	2	Total	С	Ν	Ο	0	0
5	5		28	16	2	10	, , , , , , , , , , , , , , , , , , ,	
3	K	9	Total	С	Ν	Ο	0	0
0	17		28	16	2	10	0	0
3	T.	2	Total	\mathbf{C}	Ν	Ο	0	0
5	Ľ		28	16	2	10	0	0
3	М	2	Total	\mathbf{C}	Ν	Ο	0	0
	101		28	16	2	10	0	0
3	Ν	2	Total	С	Ν	Ο	0	0
0	1		28	16	2	10	0	0
3	0	2	Total	\mathbf{C}	Ν	Ο	0	0
	0	<u></u>	28	16	2	10	U	0
3	Р	2	Total	\mathbf{C}	Ν	Ο	0	0
0	Г	2	28	16	2	10	U	U

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	ton	ns		AltConf	
4	Δ	1	Total	С	Ν	0	0	
4	A	1	14	8	1	5	0	
4	Λ	1	Total	С	Ν	0	0	
4	A	1	14	8	1	5	0	
4	Λ	1	Total	С	Ν	Ο	0	
4	Л	1	14	8	1	5	0	
4	Δ	1	Total	С	Ν	0	0	
4	Л	1	14	8	1	5	0	
4	Δ	1	Total	С	Ν	Ο	0	
-1	Π	T	14	8	1	5	0	
4	Δ	1	Total	С	Ν	0	0	
- T	11	1	14	8	1	5	U	
4	В	1	Total	С	Ν	Ο	0	
T	D	1	14	8	1	5	U	
4	В	1	Total	С	Ν	Ο	0	
	D	1	14	8	1	5	0	
	В	1	Total	С	Ν	Ο	0	
1		1	14	8	1	5		
4	В	1	Total	С	Ν	Ο	0	
1	D	1	14	8	1	5	Ŭ	
4	В	1	Total	С	Ν	Ο	0	
		*	14	8	1	5		
4	В	1	Total	С	Ν	Ο	0	
1	D	1	14	8	1	5		

Mol	Chain	Residues	A	ton	ns		AltConf
4	р	1	Total	С	Ν	0	0
4	В	1	14	8	1	5	0
4	р	1	Total	С	Ν	Ο	0
4	D	L	14	8	1	5	0
4	D	1	Total	С	Ν	0	0
4	D	L	14	8	1	5	0
4	р	1	Total	С	Ν	Ο	0
4	D	L	14	8	1	5	0
4	D	1	Total	С	Ν	0	0
4	D	L	14	8	1	5	0
4	р	1	Total	С	Ν	0	0
4	D	L	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
-1		T	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
-1	U	T	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
-1	U	T	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
	U	T	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
т	U	I	14	8	1	5	0
	С	1	Total	С	Ν	Ο	0
		1	14	8	1	5	0
	C	1	Total	\mathbf{C}	N	0	0
- '	4 C		14	8	1	5	

Continued from previous page...

• Molecule 5 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
5	Ε	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein

• Molecule 1: Spike glycoprotein

TILE ALA BB64 B904 B904 B905 B906 P906 P906

GLU LEU GLY CLYS GLU GLU TYR PRO PRO TRP PRO TRP TRP TRP TRP TRP TRP TRP TRP

• Molecule 2: Angiotensin-converting enzyme

Chain E:	74%	24% •
q19 q25 q25 q25 q25 q25 q43 q43 q43 q43 q43 q43 q43 q43 q43 q43	K62 M63 K69 K69 A72 E76 G77 C109 L109 L109	K113 R116 L117 L117 1119 T119 T128 Y128 T128 T128 T128 T128 T128 T128 T128 T
E145 P146 0147 1148 1151 1151 1151 1151 1152 1162 1163 1163 1163 1179 0176 0176 0176 0176 0176 0176 0176	130 1214 1215 1215 1216 1216 1216 1216 1216 1216	A264 H265 L266 L266 C268 C268 C268 C268 C272 C275 C275 C275 C275 C275 C275 C275
K309 8312 8312 8314 8331 8331 8331 8332 8331 8332 8333 8332 8355 8353 8355 8355 8355	M360 M366 M366 M366 M366 M366 M366 M366	Y385 P89 P89 P89 P89 P89 P897 P8417 Y417 Y419 K419 K419 K419 K419 K419 K419 K419 K
8432 E435 E435 F438 P442 L444 L444 L444 L444 F450 P455 P455 P455 P459 P459 P469	4477 4478 4478 4479 449 449 1494 1494 1494 1494 1495 1494 1495 1495	T517 T518 T518 T519 T520 P521 Q524 Q524 R536 R536
4552 M657 L558 V574 V581 K582 K582 K582 K582 K582 K586 K586 K586 K586 K586 K586 K586 K586		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain D:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain F:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:	50%	50%		
NAG1 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy-bo	eta-D-glucopyranose-(1-4	4)-2-acetamide	o-2-deoxy-beta-D-gluc
Chain I:		100%		
NAG1 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy-bo	eta-D-glucopyranose-(1-4	4)-2-acetamide	o-2-deoxy-beta-D-gluc
Chain J:	50%	50%		
NAG1 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy-bo	eta-D-glucopyranose-(1-4	4)-2-acetamide	o-2-deoxy-beta-D-gluc
Chain K:	50%	50%		
NAG1 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy-be	eta-D-glucopyranose-(1-4	4)-2-acetamide	o-2-deoxy-beta-D-gluc
Chain L:		100%		
NAG2 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy-be	eta-D-glucopyranose-(1-4	4)-2-acetamid	o-2-deoxy-beta-D-gluc

Chain M: 50%

NAG1 NAG2

50%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain N:

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain O:	50%	50%	
NAG1 NAG2			
• Molecule	3: 2-acetamido-2-deoxy-beta-D	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc

50%

Chain P: 50% 50%

NAG1 NAG2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	227185	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.26	0/8483	0.50	0/11556	
1	В	0.29	1/8484~(0.0%)	0.54	5/11553~(0.0%)	
1	С	0.26	0/8516	0.51	0/11598	
2	Е	0.26	0/5007	0.51	1/6793~(0.0%)	
All	All	0.27	1/30490~(0.0%)	0.51	$6/41500 \ (0.0\%)$	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	В	384	PRO	CG-CD	-6.06	1.30	1.50

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	384	PRO	CA-N-CD	-12.36	94.20	111.50
1	В	384	PRO	N-CD-CG	-8.94	89.79	103.20
1	В	25	PRO	CA-N-CD	-7.01	101.68	111.50
1	В	614	ASP	CB-CG-OD2	5.12	122.91	118.30
2	Е	216	ASP	CB-CG-OD1	5.09	122.88	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8290	0	8084	106	0
1	В	8292	0	8089	142	0
1	С	8322	0	8120	133	0
2	Е	4873	0	4641	99	0
3	D	28	0	25	1	0
3	F	28	0	25	0	0
3	G	28	0	25	0	0
3	Н	28	0	25	1	0
3	Ι	28	0	25	0	0
3	J	28	0	25	1	0
3	Κ	28	0	25	3	0
3	L	28	0	25	0	0
3	М	28	0	25	1	0
3	Ν	28	0	25	1	0
3	0	28	0	25	2	0
3	Р	28	0	25	1	0
4	А	84	0	78	1	0
4	В	168	0	156	6	0
4	С	98	0	91	3	0
5	Е	1	0	0	0	0
All	All	30464	0	29559	473	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 473 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:498:GLN:H	1:A:501:ASN:HD21	1.22	0.88
1:B:396:TYR:HB2	1:B:514:SER:HB3	1.66	0.78
1:A:462:LYS:HE2	1:A:462:LYS:H	1.49	0.77
1:C:110:LEU:HD22	1:C:237:ARG:HH21	1.53	0.73
2:E:128:TYR:HE2	2:E:504:PHE:HA	1.54	0.72

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1047/1217~(86%)	1023 (98%)	24~(2%)	0	100	100
1	В	1047/1217~(86%)	996~(95%)	51 (5%)	0	100	100
1	С	1051/1217~(86%)	1013 (96%)	38 (4%)	0	100	100
2	Ε	595/597~(100%)	586~(98%)	9~(2%)	0	100	100
All	All	3740/4248~(88%)	3618 (97%)	122 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	930/1065~(87%)	897~(96%)	33~(4%)	31	55
1	В	931/1065~(87%)	880 (94%)	51~(6%)	18	37
1	С	933/1065~(88%)	884 (95%)	49 (5%)	19	38
2	Ε	526/526~(100%)	501~(95%)	25~(5%)	21	42
All	All	3320/3721~(89%)	3162 (95%)	158 (5%)	24	42

5 of 158 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	471	GLU
2	Е	214	ASP
1	С	518	LEU

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
1	С	875	SER
2	Е	367	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 50 such side chains are listed below:

Mol	Chain	Res	Type
1	В	978	ASN
1	С	501	ASN
2	Е	599	ASN
1	С	23	GLN
1	С	314	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

24 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain		Dec	Tink	Bond lengths			Bond angles		
MOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	NAG	D	1	3,1	14,14,15	0.27	0	17,19,21	0.54	0
3	NAG	D	2	3	14,14,15	0.27	0	17,19,21	0.41	0
3	NAG	F	1	3,1	14,14,15	0.20	0	17,19,21	0.51	0
3	NAG	F	2	3	14,14,15	0.22	0	17,19,21	0.47	0
3	NAG	G	1	3,1	14,14,15	0.43	0	17,19,21	0.41	0
3	NAG	G	2	3	14,14,15	0.28	0	17,19,21	0.46	0

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	В	ond ang	les
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	NAG	Н	1	3,1	14,14,15	0.34	0	17,19,21	0.68	1 (5%)
3	NAG	Н	2	3	14,14,15	0.24	0	17,19,21	0.43	0
3	NAG	Ι	1	3,1	14,14,15	0.23	0	17,19,21	0.59	0
3	NAG	Ι	2	3	14,14,15	0.27	0	17,19,21	0.37	0
3	NAG	J	1	3,1	14,14,15	0.37	0	17,19,21	0.53	0
3	NAG	J	2	3	14,14,15	0.19	0	17,19,21	0.46	0
3	NAG	K	1	3,1	14,14,15	0.36	0	17,19,21	0.55	0
3	NAG	K	2	3	14,14,15	0.20	0	17,19,21	0.42	0
3	NAG	L	1	3,1	14,14,15	0.27	0	17,19,21	0.57	0
3	NAG	L	2	3	14,14,15	0.20	0	17,19,21	0.45	0
3	NAG	М	1	3,1	14,14,15	0.43	0	17,19,21	1.31	2 (11%)
3	NAG	М	2	3	14,14,15	0.19	0	17,19,21	0.43	0
3	NAG	N	1	3,1	14,14,15	0.28	0	17,19,21	0.48	0
3	NAG	N	2	3	14,14,15	0.25	0	17,19,21	0.43	0
3	NAG	0	1	3,1	14,14,15	0.38	0	17,19,21	1.27	2 (11%)
3	NAG	0	2	3	14,14,15	0.22	0	17,19,21	0.42	0
3	NAG	Р	1	3,1	14,14,15	0.94	1 (7%)	17,19,21	1.79	3 (17%)
3	NAG	Р	2	3	14,14,15	0.28	0	17,19,21	0.54	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	D	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	D	2	3	-	2/6/23/26	0/1/1/1
3	NAG	F	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	F	2	3	-	0/6/23/26	0/1/1/1
3	NAG	G	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	G	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Н	1	3,1	-	3/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Ι	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	2/6/23/26	0/1/1/1
3	NAG	J	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	J	2	3	-	0/6/23/26	0/1/1/1
3	NAG	K	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	К	2	3	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	L	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	L	2	3	-	0/6/23/26	0/1/1/1
3	NAG	М	1	3,1	-	5/6/23/26	0/1/1/1
3	NAG	М	2	3	-	0/6/23/26	0/1/1/1
3	NAG	Ν	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Ν	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Ο	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	0	2	3	-	0/6/23/26	0/1/1/1
3	NAG	Р	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	3/6/23/26	0/1/1/1

Continued from previous page...

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Р	1	NAG	O5-C1	3.13	1.48	1.43

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Р	1	NAG	C1-O5-C5	5.08	119.08	112.19
3	0	1	NAG	C2-N2-C7	4.33	129.06	122.90
3	Р	1	NAG	C2-N2-C7	4.32	129.06	122.90
3	М	1	NAG	C2-N2-C7	4.32	129.05	122.90
3	0	1	NAG	C1-C2-N2	2.17	114.19	110.49

There are no chirality outliers.

5 of 47 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	G	2	NAG	C4-C5-C6-O6
3	D	2	NAG	O5-C5-C6-O6
3	D	1	NAG	C4-C5-C6-O6
3	Ι	1	NAG	O5-C5-C6-O6
3	N	2	NAG	O5-C5-C6-O6

There are no ring outliers.

9 monomers are involved in 11 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Ν	1	NAG	1	0
3	D	1	NAG	1	0
3	J	1	NAG	1	0
3	D	2	NAG	1	0
3	0	1	NAG	2	0
3	Н	1	NAG	1	0
3	Κ	1	NAG	3	0
3	М	1	NAG	1	0
3	Р	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 26 ligands modelled in this entry, 1 is monoatomic - leaving 25 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Tv	Turne	rna Chain	Dec	Link	Bond lengths			Bond angles		
MOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	А	1303	1	14,14,15	0.25	0	17,19,21	0.35	0
4	NAG	В	1302	1	14,14,15	0.21	0	17,19,21	0.42	0
4	NAG	В	1308	1	14,14,15	0.28	0	17,19,21	0.35	0
4	NAG	В	1303	1	14,14,15	0.22	0	17,19,21	0.43	0

Mal	Trune	Chain	Dec	Timle	Bo	Bond lengths			Bond angles		
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
4	NAG	В	1309	1	14,14,15	0.69	1 (7%)	17,19,21	1.25	1 (5%)	
4	NAG	В	1311	1	14,14,15	0.45	0	17,19,21	1.27	1 (5%)	
4	NAG	С	1303	1	14,14,15	0.24	0	17,19,21	0.42	0	
4	NAG	В	1305	1	14,14,15	0.55	0	17,19,21	0.52	0	
4	NAG	В	1307	1	14,14,15	0.40	0	17,19,21	0.61	1 (5%)	
4	NAG	С	1301	1	14,14,15	0.24	0	17,19,21	0.36	0	
4	NAG	А	1305	1	14,14,15	0.19	0	17,19,21	0.34	0	
4	NAG	В	1310	1	14,14,15	0.20	0	17,19,21	0.37	0	
4	NAG	А	1301	1	14,14,15	0.24	0	17,19,21	0.44	0	
4	NAG	В	1304	1	14,14,15	0.44	0	17,19,21	0.39	0	
4	NAG	С	1304	1	14,14,15	0.21	0	17,19,21	0.48	0	
4	NAG	С	1302	1	14,14,15	0.25	0	17,19,21	0.43	0	
4	NAG	А	1302	1	14,14,15	0.83	1 (7%)	17,19,21	1.03	1 (5%)	
4	NAG	В	1306	1	14,14,15	0.26	0	17,19,21	0.47	0	
4	NAG	В	1301	1	14,14,15	0.20	0	17,19,21	0.49	0	
4	NAG	С	1306	1	14,14,15	0.21	0	17,19,21	0.35	0	
4	NAG	А	1304	1	14,14,15	0.21	0	17,19,21	0.44	0	
4	NAG	А	1306	1	14,14,15	0.23	0	17,19,21	0.45	0	
4	NAG	С	1305	1	14,14,15	0.49	0	17,19,21	0.57	0	
4	NAG	С	1307	1	14,14,15	0.88	1 (7%)	17,19,21	0.87	1 (5%)	
4	NAG	В	1312	1	14,14,15	0.54	0	17,19,21	0.60	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	А	1303	1	-	1/6/23/26	0/1/1/1
4	NAG	В	1302	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1308	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1303	1	-	4/6/23/26	0/1/1/1
4	NAG	В	1309	1	-	3/6/23/26	0/1/1/1
4	NAG	В	1311	1	-	5/6/23/26	0/1/1/1
4	NAG	С	1303	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1305	1	-	4/6/23/26	0/1/1/1
4	NAG	В	1307	1	-	0/6/23/26	0/1/1/1
4	NAG	C	1301	1	-	2/6/23/26	0/1/1/1
4	NAG	А	1305	1	-	1/6/23/26	0/1/1/1
4	NAG	В	1310	1	-	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	А	1301	1	-	0/6/23/26	0/1/1/1
4	NAG	В	1304	1	-	0/6/23/26	0/1/1/1
4	NAG	С	1304	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1302	1	-	3/6/23/26	0/1/1/1
4	NAG	А	1302	1	-	3/6/23/26	0/1/1/1
4	NAG	В	1306	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1301	1	-	0/6/23/26	0/1/1/1
4	NAG	С	1306	1	-	0/6/23/26	0/1/1/1
4	NAG	А	1304	1	-	4/6/23/26	0/1/1/1
4	NAG	А	1306	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1305	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1307	1	-	0/6/23/26	0/1/1/1
4	NAG	В	1312	1	-	4/6/23/26	0/1/1/1

Continued from previous page...

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	А	1302	NAG	O5-C1	2.68	1.48	1.43
4	С	1307	NAG	O5-C1	2.67	1.48	1.43
4	В	1309	NAG	C1-C2	2.29	1.55	1.52

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	В	1311	NAG	C2-N2-C7	4.29	129.00	122.90
4	В	1309	NAG	C2-N2-C7	4.23	128.93	122.90
4	А	1302	NAG	C1-O5-C5	3.86	117.42	112.19
4	С	1307	NAG	C1-O5-C5	3.38	116.77	112.19
4	В	1307	NAG	C1-O5-C5	2.10	115.04	112.19

There are no chirality outliers.

5	of 4	48	torsion	outliers	are	listed	below:
---	------	----	---------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms
4	А	1302	NAG	C4-C5-C6-O6
4	В	1312	NAG	C4-C5-C6-O6
4	В	1305	NAG	C4-C5-C6-O6
4	В	1312	NAG	O5-C5-C6-O6
4	В	1305	NAG	O5-C5-C6-O6

There are no ring outliers.

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	В	1309	NAG	3	0
4	В	1311	NAG	1	0
4	С	1303	NAG	2	0
4	В	1305	NAG	1	0
4	В	1307	NAG	1	0
4	А	1306	NAG	1	0
4	С	1305	NAG	1	0

7 monomers are involved in 10 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

