

Apr 22, 2025 – 06:41 AM EDT

PDB ID	:	$8VR8 / pdb_{00008vr8}$
EMDB ID	:	EMD-43477
Title	:	Structure of Mycobacterium smegmatis 50S ribosomal subunit bound to HflX
		and chloramphenicol:50S-HflX-B-Clm
Authors	:	Majumdar, S.; Koripella, R.K.; Sharma, M.R.; Manjari, S.R.; Banavali, N.K.;
		Agrawal, R.K.
Deposited on	:	2024-01-20
Resolution	:	3.25 Å(reported)
Based on initial models	:	6DZI, 5O61

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.42

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.25 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	2	61	84%		13% •
2	3	24	92%		• •
3	4	470	31% 69%	27%	•••
4	В	118	5%	29%	13%
5	С	278	88%		10% •
6	D	217	91%		7% •
7	Е	215	86%		11% •

Mol	Chain	Length	Quality of chain		
8	G	179	<u>6%</u> 81%		15% ••
9	Н	151	37%		23%
10	I	175	67%		28%
11	V	1.47			
11	K	147	93%		7% •
12	L	122	94%		6%
13	М	147	86%		12% ••
14	Ν	138	93%		6% •
15	О	199	53% 6%	41%	
16	Q	113	95%		5%
17	R	129	85%		11% •
18	S	103	89%		8%
19	T	153	£20/	9%	25%
20	I	100	00%	0 /6	2378
20	0	100	9%		8% •
21	V	105	84%		9% 8%
22	W	215	35% 9%	56%	
23	Х	88	82%		8% 10%
24	Y	64	91%		8% •
25	Ζ	77	77%	6%	17%
26	b	57	95%		5%
27	с	55	89%		11%
28	d	47	98%		
29	е	64	97%		
30	f	37	100%		
01		0100	9%		
-31	A	3120	64%	24%	6% 5%

2 Entry composition (i)

There are 33 unique types of molecules in this entry. The entry contains 93099 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
1	2	59	Total 474	C 292	N 95	O 87	0	0

• Molecule 2 is a protein called 50S Ribosomal Protein L37.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
2	3	23	Total	С	N	0	0	0
			189	111	50	28		

• Molecule 3 is a protein called GTPase HflX.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	4	456	Total 3444	C 2127	N 638	O 672	${ m S} 7$	0	0

• Molecule 4 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
4	В	118	Total 2522	C 1126	N 468	0 810	Р 118	0	0

• Molecule 5 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	С	275	Total 2110	C 1298	N 438	0 370	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	D	214	Total 1587	C 982	N 310	O 290	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called 50S Ribosomal Protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	Е	209	Total 1569	C 969	N 295	O 303	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	G	176	Total 1348	C 845	N 249	O 253	S 1	0	0

• Molecule 9 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	Н	151	Total 1018	C 635	N 188	0 194	S 1	0	0

• Molecule 10 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Ι	126	Total 918	C 580	N 156	0 180	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called 50S Ribosomal Protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	K	146	Total 1130	C 722	N 207	O 200	S 1	0	0

• Molecule 12 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L	122	Total 938	C 586	N 179	0 170	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	М	145	Total 1078	C 676	N 205	0 194	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Ν	136	Total 1092	C 690	N 213	O 187	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	0	118	Total 928	C 583	N 180	O 163	${S \over 2}$	0	0

• Molecule 16 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Q	113	Total 907	C 570	N 171	0 165	S 1	0	0

• Molecule 17 is a protein called 50S Ribosomal Protein L20.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
17	В	194	Total	С	Ν	Ο	0	0
11	10	124	988	613	203	172	0	0

• Molecule 18 is a protein called 50S Ribosomal Protein L21.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
18	S	100	Total 754	C 478	N 137	O 139	0	0

• Molecule 19 is a protein called 50S Ribosomal Protein L22.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
10	Т	114	Total	С	N	Ō	0	0
19	1	114	873	543	171	159	0	0

• Molecule 20 is a protein called 50S Ribosomal Protein L23.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
20	U	97	Total 756	C 479	N 138	O 139	0	0

• Molecule 21 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	V	97	Total 732	C 456	N 137	0 137	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	W	95	Total 735	C 452	N 149	0 134	0	0

• Molecule 23 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
23	Х	79	Total 586	C 361	N 123	O 102	0	0

• Molecule 24 is a protein called 50S Ribosomal Protein L28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
24	Y	63	Total 470	C 283	N 103	O 80	$\frac{S}{4}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Ζ	64	Total 531	C 324	N 103	0 103	S 1	0	0

• Molecule 26 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	b	54	Total 423	C 260	N 93	O 69	S 1	0	0

• Molecule 27 is a protein called 50S Ribosomal Protein L33.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
27	С	49	Total 405	C 248	N 82	0 71	${S \atop 4}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	d	46	Total 377	C 225	N 97	0 54	S 1	0	0

• Molecule 29 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
29	е	63	Total 502	C 302	N 115	O 85	0	0

• Molecule 30 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	f	37	Total 299	C 181	N 66	0 47	${ m S}{ m 5}$	0	0

• Molecule 31 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
31	А	2950	Total 63364	C 28241	N 11658	O 20515	Р 2950	0	0

• Molecule 32 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (CCD ID: GCP) (formula: C₁₁H₁₈N₅O₁₃P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
20	4	1	Total	С	Ν	Ο	Р	0
32	4	1	32	11	5	13	3	0

• Molecule 33 is CHLORAMPHENICOL (CCD ID: CLM) (formula: C₁₁H₁₂Cl₂N₂O₅) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
99	Δ	1	Total	С	Cl	Ν	Ο	0
55	A	1	20	11	2	2	5	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L30

• Molecule 4: 5S ribosomal RNA

MET

• Molecule 7: 50S Ribosomal Protein L4

 \bullet Molecule 8: 50S ribosomal protein L6

GLY GLY

• Molecule 9: 50S ribosomal protein L9

• Molecule 15: 508	ribosomal protein L1	7			
Chain O:	53%	6%	41%		
MET P2 L10 C11 C11 C12 C12 C12 C12 C12 C12 C12 C12	I70 I70 R96 R96 E118 K119 THR ASP ASP	ALA ASN ARG ALA ARG ARG ALA ALA	SER GLN LYS ALA ALA GLU ARG	ALA ASP GLU CYS LYS ALA ASP GLU CYS	ALA GLU GLU THR VAL
GLU THR GLU GLU GLU ALA ALA GLU GLU GLU GLU ALA	ALA ALA GLU GLU GLU GLU GLU GLU ALA ALA GLU GLU GLU GLU	SER THR GLU GLU ALA ALA GLU SER SER	ALA LYS ASP ASP THR LYS		
• Molecule 16: 50S	ribosomal protein L1	9			
Chain Q:	95	5%		5%	
M1 116 118 118 126 134 K36 K36 K36 K36	V41 F73 I80 K108 ←				
• Molecule 17: 50S	Ribosomal Protein L	20			
Chain R:	85%			11% •	
MET R3 R3 R3 R3 C26 R3 R3 R3 R3 R3	R48 D49 D73 D73 L83 L83 L83 E89 E89 E89 E89 E89 C110 V112	S125 GLY GLU ALA ALA ALA			
• Molecule 18: 50S	Ribosomal Protein L	21			
Chain S:	89%			8% •	
MET ALA T3 Y14 V24 K23 K23 K23 K23 K23 K23 K23 K23 K23 K23	K72 173 197 1102 1102 1102				
• Molecule 19: 508	Ribosomal Protein L	22			
Chain T:	66%		8%	25%	
MET THR THR VAL THR F7 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8	852 853 855 855 855 866 866 870 870 873 874 873 874 885	P119 LYS GLN LYS GLN LYS GLY SER SER	ALA SER ALA ALA SER ARG ARG ALA	GLN GLY SER LYS ALA ALA ALA ALA	LYS LYS SER ALA GLU
THR LYS GLU GLU SER GLU					
• Molecule 20: 50S	Ribosomal Protein L	23			
Chain U:	89%			8% •	
MET A2 13 14 14 14 14 14 14 14 14 16 18 18 18 18 18 18 18 18	193 193 997 97 808 AD ALA				
• Molecule 21: 50S	ribosomal protein L2	4			

• Molecule 27: 50S Ribosomal Protein L33

Chain c:	89% 11%	-
MET ALA SER SER THR D6	ARG	
• Molecu	le 28: 50S ribosomal protein L34	
Chain d:	98%	.
MET A2 A47		
• Molecu	le 29: 50S ribosomal protein L35	
Chain e:	97%	• •
MET P2 H31 G64		
• Molecu	le 30: 50S ribosomal protein L36	
Chain f:	100%	-
There are	e no outlier residues recorded for this chain.	
• Molecu	le 31: 23S ribosomal RNA	
Chain A:	9% 64% 24% 6% 5%	6
U A3 U7 U8 U9	C21 C21 C21 C21 C21 C21 C21 C22 C22 C22	A138 A148 G153
G158 U161 A162 U163 A164	U171 U176 0176 0176 0176 0176 0176 0176 0176 0176 01216 01216 01216 01216 0216 0216 0216 0217 0216 0217 0218 0218 0218 0218 0218 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0228 0249 0245 0245 0248 0248 0254 0255 0255 0255 0255	U270 A271 A273 C274 C274
U279 G280 A282 U283 G284	4285 4285 4286 4289 4289 4289 4289 4289 4294 4294 4294	C341 C342 C342 C342 C344 C344 C344 C346 C354 C354 C354 C354
A355 G356 U357 G358 A359 A361 A361	A362 U367 U368 U368 G371 G372 G377 G377 G377 G377 G377 G377 G377	C 4223 C 4224 C 4255 C 4255 A 427 A 427
G434 G437 U438 U445	6446 4447 4447 4447 64451 64451 64451 6455 6455 6455 6450 6495 6495 6495 6495 6495 6495 6495 6495	4554 (557 (561 (561 (563 (563) (563)
U570 A571 C572 C572 G576 G577	G591 A592 A593 A593 A593 A593 C597 C597 C597 C597 A615 A615 C614 C614 C614 C618 C614 C618 C629 C623 C663 C665	A667 C672 A678 0679 0679

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	116149	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	70.14	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	105000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	1.775	Depositor
Minimum map value	-1.185	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.062	Depositor
Recommended contour level	0.2	Depositor
Map size (Å)	432.2816, 432.2816, 432.2816	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8443, 0.8443, 0.8443	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CLM, GCP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	2	0.23	0/477	0.56	0/640	
2	3	0.22	0/191	0.64	0/247	
3	4	0.27	0/3484	0.57	0/4721	
4	В	0.25	0/2821	0.85	0/4396	
5	С	0.24	0/2153	0.58	0/2895	
6	D	0.25	0/1609	0.55	0/2165	
7	Е	0.25	0/1592	0.50	0/2153	
8	G	0.30	0/1369	0.61	1/1848~(0.1%)	
9	Н	0.26	0/1027	0.49	0/1398	
10	Ι	0.26	0/925	0.49	0/1246	
11	Κ	0.25	0/1157	0.50	0/1567	
12	L	0.25	0/946	0.58	0/1268	
13	М	0.26	0/1091	0.55	0/1457	
14	Ν	0.24	0/1118	0.53	0/1506	
15	0	0.25	0/945	0.54	0/1267	
16	Q	0.26	0/921	0.56	0/1236	
17	R	0.25	0/1000	0.57	0/1341	
18	S	0.24	0/764	0.50	0/1030	
19	Т	0.25	0/887	0.61	0/1204	
20	U	0.27	0/766	0.55	0/1030	
21	V	0.24	0/738	0.51	0/987	
22	W	0.23	0/745	0.58	0/1008	
23	Х	0.25	0/595	0.59	0/798	
24	Y	0.24	0/478	0.58	0/641	
25	Ζ	0.26	0/534	0.59	0/713	
26	b	0.22	0/427	0.61	0/572	
27	с	0.25	0/413	0.56	0/553	
28	d	0.24	0/380	0.75	0/500	
29	е	0.25	0/507	0.66	0/672	
30	f	0.26	0/303	0.59	0/401	
31	А	0.25	1/70952~(0.0%)	0.77	13/110707~(0.0%)	
All	All	0.25	$1/1\overline{01315}\ (0.0\%)$	0.73	14/152167~(0.0%)	

All	(1)) bond	length	outliers	are	listed	below:	
-----	-----	--------	--------	----------	-----	--------	--------	--

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
31	А	2286	А	O3'-P	-7.01	1.52	1.61

All (14) bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	А	1719	С	N3-C2-O2	-7.03	116.98	121.90
31	А	1012	С	N3-C2-O2	-6.46	117.38	121.90
8	G	49	GLY	N-CA-C	-6.31	97.34	113.10
31	А	1012	С	N1-C2-O2	6.14	122.59	118.90
31	А	905	U	C2-N1-C1'	6.04	124.95	117.70
31	А	2245	С	C2-N1-C1'	5.99	125.38	118.80
31	А	1017	G	N1-C6-O6	-5.98	116.31	119.90
31	А	342	С	N1-C2-O2	5.84	122.41	118.90
31	А	342	С	N3-C2-O2	-5.79	117.85	121.90
31	А	1403	С	C2-N1-C1'	5.77	125.15	118.80
31	А	403	U	C2-N1-C1'	5.33	124.09	117.70
31	А	3019	С	N1-C2-O2	5.28	122.07	118.90
31	А	1428	U	C2-N1-C1'	5.14	123.86	117.70
31	А	1017	G	C5-C6-O6	5.08	131.65	128.60

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2	474	0	500	7	0
2	3	189	0	205	1	0
3	4	3444	0	3500	118	0
4	В	2522	0	1285	21	0
5	С	2110	0	2165	22	0
6	D	1587	0	1630	13	0
7	Е	1569	0	1607	16	0
8	G	1348	0	1399	49	0
9	Н	1018	0	988	29	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
10	Ι	918	0	959	67	0
11	K	1130	0	1167	6	0
12	L	938	0	1000	6	0
13	М	1078	0	1151	16	0
14	N	1092	0	1128	5	0
15	0	928	0	972	7	0
16	Q	907	0	938	4	0
17	R	988	0	1038	14	0
18	S	754	0	802	6	0
19	Т	873	0	909	7	0
20	U	756	0	802	7	0
21	V	732	0	782	7	0
22	W	735	0	756	13	0
23	Х	586	0	601	5	0
24	Y	470	0	484	3	0
25	Ζ	531	0	541	4	0
26	b	423	0	463	0	0
27	с	405	0	411	0	0
28	d	377	0	411	0	0
29	е	502	0	541	0	0
30	f	299	0	324	0	0
31	A	63364	0	31879	384	0
32	4	32	0	14	3	0
33	A	20	0	11	4	0
All	All	93099	0	61363	777	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (777) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:G:7:GLN:O	8:G:51:ILE:HD12	1.03	1.19
8:G:7:GLN:C	8:G:51:ILE:HD12	1.64	1.16
8:G:7:GLN:O	8:G:51:ILE:CD1	1.96	1.12
8:G:8:PRO:HA	8:G:51:ILE:CD1	1.80	1.11
8:G:51:ILE:HB	8:G:53:VAL:HG22	1.35	1.08
8:G:8:PRO:HA	8:G:51:ILE:HD13	1.12	1.08
8:G:7:GLN:C	8:G:51:ILE:CD1	2.28	1.00
17:R:77:ASN:OD1	31:A:1270:G:O2'	1.80	1.00
8:G:8:PRO:CA	8:G:51:ILE:CD1	2.41	0.98

	Les page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
31:A:163:U:O2'	31:A:164:A:O4'	1.82	0.97
21:V:94:LYS:NZ	31:A:80:G:OP1	1.98	0.95
31:A:163:U:O2'	31:A:164:A:O5'	1.89	0.91
8:G:8:PRO:CA	8:G:51:ILE:HD13	1.99	0.89
3:4:255:ASN:HA	32:4:501:GCP:O1B	1.71	0.89
17:R:33:ARG:NH2	31:A:672:C:OP1	2.05	0.89
13:M:84:ASN:ND2	13:M:117:LYS:O	2.07	0.88
31:A:1710:A:N6	31:A:1716:A:OP2	2.06	0.88
21:V:94:LYS:NZ	31:A:378:G:OP1	2.07	0.87
31:A:635:G:N2	31:A:635:G:OP2	2.07	0.86
1:2:4:LEU:HD21	1:2:47:ILE:HD11	1.56	0.86
3:4:56:THR:OG1	3:4:57:GLU:OE1	1.93	0.85
3:4:392:VAL:HG23	3:4:398:ASP:HB3	1.55	0.85
31:A:1203:A:O2'	31:A:1204:A:O5'	1.91	0.85
31:A:2255:A:N3	31:A:2679:G:O2'	2.09	0.85
31:A:2257:A:O2'	31:A:2259:G:OP2	1.95	0.84
31:A:1854:U:O2'	31:A:1977:C:O2'	1.95	0.84
9:H:58:VAL:O	9:H:111:ASN:ND2	2.12	0.83
11:K:125:TYR:HH	11:K:132:HIS:HE2	1.18	0.82
31:A:1996:U:OP2	31:A:2001:A:N6	2.11	0.82
10:I:58:LYS:O	10:I:62:SER:OG	1.96	0.82
31:A:980:C:O2'	31:A:981:U:O5'	1.96	0.81
31:A:1170:C:N4	31:A:1225:G:O6	2.11	0.81
10:I:49:TYR:OH	31:A:1203:A:N6	2.14	0.81
31:A:291:C:N4	31:A:293:G:O6	2.13	0.80
31:A:2805:G:N2	31:A:2805:G:OP2	2.14	0.80
8:G:45:ARG:O	8:G:52:VAL:HB	1.82	0.80
8:G:8:PRO:N	8:G:51:ILE:CD1	2.43	0.80
31:A:447:A:O2'	31:A:448:U:O4'	1.99	0.80
10:I:21:THR:HG22	10:I:22:ALA:H	1.46	0.79
31:A:2366:C:O2'	31:A:2368:C:N4	2.16	0.79
10:I:28:TYR:OH	31:A:1225:G:O4'	1.99	0.78
6:D:40:ARG:NH1	6:D:83:GLU:OE2	2.17	0.78
8:G:53:VAL:HG23	8:G:66:HIS:CE1	2.19	0.78
8:G:20:ASN:O	8:G:20:ASN:ND2	2.13	0.77
3:4:201:ARG:O	3:4:204:GLY:N	2.17	0.77
31:A:499:G:OP2	31:A:2630:A:O2'	2.02	0.77
10:I:93:ILE:HD12	10:I:105:ILE:HG21	1.67	0.76
31:A:218:A:N3	31:A:234:U:O2'	2.17	0.76
31:A:1530:G:H21	31:A:1805:G:H22	1.34	0.76
31:A:103:C:HO2'	31:A:375:A:HO2'	1.33	0.76

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
31:A:1426:G:OP2	31:A:1426:G:N2	2.16	0.75
31:A:2482:U:O2'	31:A:2651:C:OP2	2.04	0.75
3:4:384:ARG:HD3	3:4:391:PHE:HE2	1.51	0.74
31:A:1825:C:N4	31:A:1840:G:OP2	2.19	0.74
31:A:2527:G:C6	31:A:2538:A:N6	2.56	0.74
6:D:38:ARG:NH2	31:A:3008:C:O2'	2.20	0.74
8:G:5:GLY:O	8:G:51:ILE:HG21	1.88	0.74
10:I:72:LEU:HD22	10:I:115:LEU:HD21	1.70	0.73
3:4:203:PRO:O	3:4:207:LYS:N	2.22	0.73
17:R:8:LEU:HD23	17:R:8:LEU:O	1.88	0.73
20:U:68:ARG:NH2	31:A:1449:C:OP1	2.21	0.73
31:A:1758:G:O2'	31:A:1759:A:O4'	2.06	0.73
13:M:84:ASN:OD1	13:M:85:LYS:N	2.22	0.73
22:W:9:ASN:ND2	22:W:66:ILE:O	2.21	0.73
8:G:51:ILE:O	8:G:52:VAL:C	2.27	0.73
31:A:1533:U:OP2	31:A:1536:A:N6	2.21	0.72
10:I:48:THR:HG23	10:I:49:TYR:H	1.53	0.72
31:A:285:U:O2'	31:A:287:A:OP1	2.06	0.72
7:E:128:THR:HG22	7:E:129:GLU:H	1.53	0.72
31:A:815:G:O2'	31:A:1850:A:N3	2.19	0.72
8:G:48:ASP:OD1	8:G:50:ALA:N	2.22	0.72
8:G:51:ILE:HD13	8:G:51:ILE:H	1.55	0.71
15:O:96:ARG:NH1	31:A:3103:A:OP1	2.22	0.71
10:I:10:VAL:HG22	10:I:56:LEU:HD11	1.72	0.71
31:A:2375:G:O2'	31:A:2376:G:O4'	2.04	0.71
31:A:544:U:O2	31:A:547:U:O2'	2.09	0.71
31:A:980:C:HO2'	31:A:981:U:P	2.13	0.71
31:A:1196:C:O2'	31:A:1197:C:O5'	2.09	0.71
10:I:119:ASP:OD1	10:I:122:LYS:NZ	2.24	0.70
15:O:106:ASP:OD2	31:A:1867:G:O2'	2.10	0.70
3:4:384:ARG:HD3	3:4:391:PHE:CE2	2.25	0.70
8:G:8:PRO:N	8:G:51:ILE:HD11	2.04	0.70
3:4:331:VAL:HG22	3:4:367:VAL:HB	1.73	0.70
10:I:50:THR:HG22	10:I:50:THR:O	1.92	0.70
1:2:11:SER:OG	31:A:1107:G:OP2	2.09	0.69
31:A:2163:U:O2'	31:A:2164:U:N3	2.25	0.69
7:E:137:SER:O	7:E:168:SER:OG	2.10	0.69
31:A:392:A:O2'	31:A:393:U:OP2	2.06	0.69
31:A:1174:G:N2	31:A:1222:C:N3	2.40	0.69
31:A:378:G:O2'	31:A:424:G:N1	2.25	0.69
31:A:1545:C:N4	31:A:1623:U:O2	2.26	0.69

	Les page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:4:17:LEU:O	3:4:17:LEU:HD23	1.93	0.69
3:4:433:VAL:HG11	3:4:451:ILE:HD13	1.75	0.69
31:A:2754:G:OP2	31:A:2759:G:N2	2.26	0.69
31:A:1174:G:O2'	31:A:1204:A:O2'	2.04	0.68
7:E:41:GLN:NE2	7:E:184:ASN:OD1	2.26	0.68
10:I:59:ARG:NH1	31:A:1164:A:O4'	2.27	0.68
31:A:1932:U:O2'	31:A:1933:G:OP1	2.12	0.68
3:4:45:ARG:NH1	3:4:79:SER:O	2.27	0.67
5:C:209:ALA:HB2	31:A:2007:C:O2'	1.95	0.67
3:4:132:LEU:O	3:4:132:LEU:HD23	1.94	0.67
4:B:35:G:O2'	4:B:45:G:N7	2.24	0.67
31:A:2253:A:N6	31:A:2257:A:OP2	2.22	0.67
31:A:245:G:O2'	31:A:246:U:H5'	1.95	0.67
1:2:24:ARG:NH2	31:A:1044:U:O2	2.27	0.67
12:L:7:ARG:NE	12:L:18:GLU:OE2	2.27	0.67
10:I:59:ARG:NH2	31:A:1164:A:OP1	2.28	0.66
31:A:1177:G:N2	31:A:1199:U:O4	2.29	0.66
8:G:140:GLN:OE1	31:A:2983:G:N2	2.28	0.66
1:2:4:LEU:HD21	1:2:47:ILE:CD1	2.24	0.65
3:4:93:ASP:OD1	3:4:96:THR:O	2.14	0.65
31:A:283:U:O2	31:A:303:G:O6	2.13	0.65
6:D:7:LEU:HD23	6:D:207:VAL:HG22	1.77	0.65
31:A:3043:G:O2'	31:A:3045:C:OP2	2.11	0.65
31:A:103:C:O2'	31:A:375:A:O2'	2.02	0.65
9:H:38:VAL:HG13	9:H:38:VAL:O	1.97	0.65
10:I:40:ARG:NH2	10:I:48:THR:OG1	2.30	0.65
31:A:7:U:O2'	31:A:8:U:O4'	2.15	0.65
3:4:148:LEU:HD23	3:4:311:LEU:HD11	1.79	0.64
3:4:370:LYS:HA	32:4:501:GCP:O6	1.97	0.64
22:W:26:GLN:OE1	22:W:29:ARG:NH2	2.30	0.64
22:W:28:ARG:NH1	22:W:93:GLN:O	2.30	0.64
9:H:124:ILE:HG22	9:H:124:ILE:O	1.97	0.64
10:I:54:ASN:ND2	10:I:77:THR:O	2.29	0.64
3:4:208:ILE:O	3:4:209:GLU:C	2.36	0.64
10:I:31:LEU:HD12	10:I:31:LEU:O	1.97	0.63
10:I:51:VAL:HG23	10:I:78:ALA:HB1	1.80	0.63
31:A:2801:A:H5'	31:A:2802:G:C5'	2.28	0.63
31:A:2529:A:O2'	31:A:2530:C:O5'	2.15	0.63
31:A:1198:C:N4	31:A:1206:A:OP1	2.31	0.63
17:R:77:ASN:ND2	31:A:1270:G:N3	2.47	0.63
3:4:90:ASP:OD1	3:4:91:LYS:N	2.32	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:B:76:G:H21	22:W:94:HIS:CD2	2.17	0.62
8:G:51:ILE:HG12	8:G:52:VAL:H	1.63	0.62
13:M:82:ASP:OD1	13:M:83:ILE:N	2.32	0.62
31:A:2351:A:O2'	31:A:2352:C:O5'	2.14	0.62
31:A:287:A:OP2	31:A:299:G:N2	2.33	0.62
3:4:142:ASP:OD2	3:4:171:TYR:OH	2.17	0.62
3:4:163:GLN:NE2	3:4:313:GLU:O	2.32	0.62
31:A:1668:C:O2'	31:A:1764:A:N3	2.32	0.62
31:A:1886:A:N3	31:A:1888:C:N4	2.47	0.61
21:V:9:VAL:HB	21:V:71:VAL:HG13	1.82	0.61
31:A:2328:G:N1	31:A:2408:G:O6	2.33	0.61
8:G:51:ILE:CB	8:G:53:VAL:HG22	2.20	0.61
10:I:21:THR:HG22	10:I:22:ALA:N	2.15	0.61
31:A:153:G:O6	31:A:171:U:O2	2.18	0.61
31:A:2538:A:H2'	31:A:2539:G:O4'	2.01	0.61
3:4:432:ARG:HA	3:4:435:THR:HG22	1.83	0.60
4:B:15:U:OP2	4:B:71:C:O2'	2.19	0.60
3:4:392:VAL:CG2	3:4:398:ASP:HB3	2.31	0.60
31:A:2332:U:O4	31:A:2394:A:O2'	2.16	0.60
5:C:158:SER:O	5:C:196:VAL:HG11	2.00	0.60
20:U:62:ARG:NH2	31:A:1455:U:OP2	2.35	0.60
31:A:2727:A:O2'	31:A:2729:G:OP2	2.19	0.60
31:A:176:G:N2	31:A:176:G:OP2	2.30	0.60
4:B:29:C:O2'	4:B:60:G:N2	2.35	0.60
10:I:117:VAL:HG13	10:I:118:ALA:H	1.65	0.60
31:A:2244:A:O2'	31:A:2246:U:OP2	2.13	0.60
3:4:253:TYR:O	3:4:258:LYS:NZ	2.35	0.60
20:U:36:ASP:OD1	20:U:36:ASP:O	2.20	0.60
3:4:32:GLU:HG2	3:4:80:GLU:OE2	2.02	0.59
8:G:53:VAL:HG23	8:G:66:HIS:HE1	1.64	0.59
12:L:42:THR:HG21	31:A:2176:A:OP1	2.01	0.59
19:T:73:PRO:O	19:T:74:SER:OG	2.12	0.59
3:4:161:LYS:NZ	31:A:2707:C:OP1	2.34	0.59
4:B:111:C:H2'	4:B:112:C:H5'	1.84	0.59
3:4:84:GLY:O	3:4:86:ILE:HD12	2.02	0.59
31:A:1478:C:O2'	31:A:2026:A:N3	2.30	0.59
31:A:2422:A:N1	31:A:2450:C:N4	2.50	0.59
3:4:429:LEU:O	3:4:433:VAL:HG23	2.03	0.59
6:D:135:GLN:HE21	31:A:2802:G:H21	1.49	0.59
10:I:21:THR:HG21	10:I:82:VAL:HG13	1.85	0.59
20:U:26:ASP:OD1	20:U:26:ASP:O	2.21	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:4:393:SER:H	3:4:398:ASP:CB	2.16	0.59
10:I:16:GLN:O	10:I:16:GLN:NE2	2.35	0.59
8:G:80:VAL:HG12	8:G:80:VAL:O	2.03	0.59
8:G:119:PRO:O	8:G:122:ILE:HG22	2.03	0.58
3:4:93:ASP:O	3:4:95:SER:N	2.35	0.58
3:4:366:LEU:HD23	3:4:388:ASP:O	2.02	0.58
31:A:1076:A:O2'	31:A:1077:A:O5'	2.14	0.58
31:A:2335:G:O6	31:A:2392:A:N6	2.35	0.58
31:A:2179:U:O2'	31:A:2776:U:OP1	2.21	0.58
31:A:3014:A:H62	31:A:3113:A:H2	1.50	0.58
11:K:24:VAL:HG12	11:K:27:ARG:HD2	1.84	0.58
8:G:7:GLN:C	8:G:51:ILE:HD11	2.21	0.58
8:G:51:ILE:C	8:G:53:VAL:N	2.50	0.58
1:2:4:LEU:CD2	1:2:47:ILE:HD11	2.31	0.58
3:4:151:PHE:HE2	3:4:311:LEU:HD13	1.69	0.58
3:4:449:THR:HB	3:4:451:ILE:HG23	1.86	0.58
3:4:151:PHE:CE2	3:4:311:LEU:HD13	2.39	0.58
10:I:10:VAL:CG2	10:I:56:LEU:HD11	2.34	0.57
8:G:122:ILE:HD11	8:G:134:VAL:CG1	2.34	0.57
15:O:10:LEU:HD21	15:O:40:LYS:HG2	1.85	0.57
23:X:53:ARG:NH1	23:X:57:ASP:OD1	2.36	0.57
31:A:2819:G:N2	31:A:2822:A:OP2	2.34	0.57
14:N:23:GLY:O	14:N:101:ARG:NH2	2.37	0.57
3:4:393:SER:C	3:4:395:ARG:H	2.07	0.57
18:S:22:VAL:HG12	18:S:24:VAL:HG13	1.87	0.57
3:4:39:VAL:HG23	3:4:39:VAL:O	2.05	0.57
3:4:87:GLN:NE2	3:4:88:ARG:O	2.37	0.57
5:C:271:ARG:NH2	5:C:274:THR:HG21	2.19	0.57
8:G:20:ASN:HD22	8:G:20:ASN:C	2.04	0.57
31:A:1530:G:N2	31:A:1805:G:H22	2.00	0.57
10:I:69:LEU:HD11	10:I:73:PHE:CZ	2.40	0.56
3:4:329:ILE:HG23	3:4:367:VAL:HG23	1.85	0.56
4:B:78:U:OP1	22:W:28:ARG:NH2	2.38	0.56
8:G:8:PRO:CA	8:G:51:ILE:HD11	2.28	0.56
31:A:161:U:O2'	31:A:162:A:OP2	2.19	0.56
31:A:1063:G:O6	31:A:1090:G:N2	2.39	0.56
13:M:125:THR:HG23	13:M:125:THR:O	2.05	0.56
31:A:2176:A:N3	31:A:2784:C:O2'	2.36	0.56
31:A:2170:U:O2'	31:A:2185:C:O2	2.18	0.56
13:M:22:VAL:HB	13:M:33:ALA:HB1	1.88	0.56
5:C:273:ARG:O	5:C:274:THR:OG1	2.18	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:4:83:GLU:OE2	3:4:85:LEU:HD21	2.07	0.55
9:H:11:HIS:NE2	31:A:2318:U:O3'	2.39	0.55
12:L:66:VAL:HG22	12:L:66:VAL:O	2.07	0.55
31:A:401:C:O2'	31:A:415:G:N2	2.40	0.55
31:A:678:A:N1	31:A:924:G:O2'	2.36	0.55
31:A:199:U:O2'	31:A:200:C:OP1	2.20	0.55
31:A:3020:U:O2'	31:A:3021:A:O5'	2.24	0.55
31:A:2573:G:O6	31:A:2593:A:N6	2.40	0.55
31:A:2745:C:O2'	31:A:2788:A:N3	2.37	0.55
9:H:135:LYS:O	9:H:136:LEU:HD12	2.06	0.55
31:A:941:U:OP1	31:A:2652:G:H3'	2.06	0.55
31:A:1172:A:N6	31:A:1224:G:O6	2.40	0.55
31:A:402:G:N3	31:A:405:G:N1	2.55	0.55
31:A:1756:G:O5'	31:A:1758:G:N2	2.40	0.55
3:4:393:SER:H	3:4:398:ASP:HB2	1.72	0.54
3:4:32:GLU:O	3:4:82:LEU:HA	2.08	0.54
9:H:21:VAL:HG21	9:H:25:TYR:CD2	2.42	0.54
31:A:287:A:O2'	31:A:288:U:O4'	2.24	0.54
3:4:168:GLN:HB3	3:4:208:ILE:HG13	1.89	0.54
31:A:2730:U:H3'	31:A:2730:U:O2	2.08	0.54
31:A:114:G:OP2	31:A:116:A:O2'	2.20	0.54
31:A:2333:G:OP1	31:A:2341:U:N3	2.40	0.54
9:H:135:LYS:C	9:H:136:LEU:HD12	2.28	0.54
17:R:4:VAL:HG22	31:A:1314:C:H1'	1.89	0.54
22:W:10:LYS:H	22:W:68:THR:HG1	1.54	0.54
3:4:429:LEU:HD21	3:4:463:LEU:HD21	1.90	0.54
3:4:344:ASN:O	3:4:348:THR:HG23	2.07	0.54
31:A:1381:G:O2'	31:A:2236:G:O6	2.23	0.54
5:C:145:VAL:HG23	5:C:155:LEU:HD12	1.90	0.53
5:C:161:VAL:O	5:C:196:VAL:HG12	2.09	0.53
8:G:45:ARG:HG3	8:G:46:ALA:H	1.73	0.53
5:C:2:GLY:N	5:C:20:ASP:OD1	2.41	0.53
11:K:116:ARG:NH2	31:A:615:A:OP2	2.41	0.53
23:X:51:VAL:HG21	23:X:78:VAL:O	2.08	0.53
31:A:940:A:H2'	31:A:941:U:O4'	2.08	0.53
31:A:2338:G:N1	31:A:2342:A:OP1	2.42	0.53
3:4:262:LEU:HD22	3:4:299:ASP:OD2	2.09	0.53
31:A:597:C:O2'	31:A:1351:G:OP1	2.21	0.53
31:A:1291:G:H2'	31:A:1292:U:H4'	1.90	0.53
31:A:1479:G:HO2'	31:A:2025:C:H5	1.57	0.53
31:A:2801:A:H5'	31:A:2802:G:H5'	1.91	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:83:LEU:HD22	17:R:88:VAL:HG11	1.91	0.53
31:A:2357:A:H8	31:A:2380:G:H21	1.56	0.53
9:H:122:ALA:HB3	9:H:124:ILE:HD11	1.90	0.53
7:E:52:THR:HG22	7:E:53:LYS:H	1.74	0.52
8:G:17:VAL:O	8:G:17:VAL:HG23	2.08	0.52
10:I:51:VAL:HG23	10:I:78:ALA:CB	2.39	0.52
10:I:97:ALA:HB1	10:I:104:VAL:HA	1.91	0.52
22:W:40:HIS:ND1	22:W:40:HIS:O	2.43	0.52
31:A:1292:U:O2'	31:A:1293:G:O5'	2.23	0.52
6:D:156:THR:HB	6:D:157:PRO:HD3	1.90	0.52
31:A:1188:A:H3'	31:A:1189:G:H3'	1.90	0.52
20:U:93:ILE:HG21	20:U:96:PHE:CE2	2.44	0.52
3:4:200:THR:O	3:4:201:ARG:HG2	2.09	0.52
10:I:26:THR:HB	10:I:103:LEU:HA	1.90	0.52
31:A:808:A:O2'	31:A:1468:A:N3	2.39	0.52
31:A:1402:A:O2'	31:A:1403:C:O5'	2.27	0.52
31:A:2528:G:N2	31:A:2537:C:O2	2.42	0.52
10:I:47:ALA:HB1	10:I:80:ALA:HB1	1.91	0.52
10:I:25:VAL:HB	10:I:77:THR:HB	1.91	0.52
10:I:56:LEU:HD13	31:A:1164:A:H1'	1.92	0.52
31:A:2799:C:H6	31:A:2799:C:O5'	1.93	0.52
31:A:1991:C:H2'	31:A:1991:C:O2	2.09	0.52
3:4:27:ALA:HA	3:4:85:LEU:HD23	1.91	0.51
3:4:365:LEU:HD12	3:4:388:ASP:HB2	1.92	0.51
10:I:117:VAL:HG13	10:I:118:ALA:N	2.25	0.51
10:I:24:VAL:HG23	10:I:82:VAL:HG12	1.92	0.51
10:I:47:ALA:CB	10:I:80:ALA:HB1	2.40	0.51
31:A:300:G:H22	31:A:303:G:H5'	1.76	0.51
31:A:1206:A:O2'	31:A:1207:G:OP1	2.22	0.51
8:G:158:TYR:O	8:G:160:GLY:N	2.43	0.51
9:H:88:THR:O	9:H:88:THR:HG22	2.11	0.51
10:I:46:SER:HB2	10:I:82:VAL:HG23	1.92	0.51
31:A:301:U:O2'	31:A:302:U:OP1	2.23	0.51
31:A:2230:C:O2'	31:A:3044:A:N3	2.43	0.51
10:I:90:ALA:O	10:I:94:LYS:HG2	2.11	0.51
31:A:2544:U:O2	31:A:2545:G:N1	2.42	0.51
3:4:390:VAL:HG22	3:4:391:PHE:N	2.26	0.51
9:H:90:LYS:C	9:H:91:LEU:HD12	2.31	0.51
5:C:160:GLY:H	5:C:196:VAL:HG13	1.76	0.51
3:4:105:GLU:O	3:4:109:VAL:HG23	2.10	0.51
3:4:251:VAL:O	3:4:330:HIS:HA	2.10	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
31:A:2510:A:H4'	31:A:2511:A:O4'	2.11	0.51
3:4:251:VAL:HG23	3:4:330:HIS:CB	2.40	0.51
31:A:227:A:N1	31:A:505:C:O2'	2.42	0.51
31:A:920:G:N2	31:A:944:A:OP1	2.44	0.51
31:A:2963:U:H2'	31:A:2964:A:H5'	1.92	0.51
31:A:718:C:O2'	31:A:772:U:OP1	2.28	0.50
31:A:2006:A:H2'	31:A:2007:C:O4'	2.11	0.50
13:M:15:GLU:O	31:A:690:G:N2	2.43	0.50
23:X:56:ASP:O	23:X:57:ASP:HB2	2.11	0.50
31:A:327:U:O2	31:A:328:C:N4	2.43	0.50
22:W:71:ILE:HG22	22:W:72:GLU:H	1.76	0.50
31:A:1532:G:N2	31:A:1804:G:C4	2.79	0.50
31:A:2161:A:H61	31:A:2193:A:H61	1.59	0.50
3:4:433:VAL:HG22	3:4:459:LEU:HD21	1.94	0.50
8:G:51:ILE:O	8:G:53:VAL:HG13	2.11	0.50
22:W:71:ILE:HG22	22:W:72:GLU:N	2.27	0.50
31:A:389:G:N1	31:A:392:A:OP2	2.36	0.50
31:A:637:G:O2'	31:A:638:U:OP2	2.20	0.50
3:4:124:LEU:HD12	3:4:142:ASP:OD1	2.12	0.50
3:4:300:THR:HG22	3:4:318:THR:HG23	1.93	0.50
5:C:158:SER:OG	5:C:159:ALA:N	2.45	0.50
10:I:47:ALA:HA	10:I:80:ALA:HB1	1.93	0.50
31:A:935:A:H4'	31:A:951:G:H22	1.77	0.50
31:A:996:G:H2'	31:A:997:G:C8	2.47	0.50
3:4:319:LEU:HD22	3:4:353:VAL:HG21	1.94	0.49
11:K:92:LEU:HD11	11:K:99:ARG:HD2	1.94	0.49
31:A:1221:A:OP2	31:A:1222:C:N4	2.45	0.49
16:Q:73:PHE:HB3	16:Q:80:ILE:HD11	1.93	0.49
31:A:2054:C:O2	31:A:2153:G:O2'	2.21	0.49
3:4:331:VAL:HG22	3:4:367:VAL:CB	2.40	0.49
3:4:442:THR:OG1	3:4:443:GLU:N	2.44	0.49
31:A:380:A:N6	31:A:404:A:O2'	2.40	0.49
31:A:1025:A:N3	31:A:2488:C:O2'	2.39	0.49
31:A:2050:C:H4'	31:A:2051:U:OP1	2.11	0.49
8:G:46:ALA:HA	8:G:52:VAL:HG21	1.93	0.49
9:H:66:ASN:O	9:H:136:LEU:HD23	2.12	0.49
23:X:38:VAL:HG12	23:X:40:GLN:OE1	2.13	0.49
4:B:26:A:H2	4:B:115:A:HO2'	1.61	0.49
31:A:940:A:H3'	31:A:940:A:C8	2.48	0.49
31:A:1630:U:O4	31:A:1631:A:N6	2.46	0.49
31:A:3107:G:O2'	31:A:3108:G:OP2	2.26	0.49

	as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:L:25:LEU:HD13	12:L:40:VAL:HG23	1.94	0.49
12:L:80:ASP:OD1	12:L:80:ASP:O	2.29	0.49
18:S:25:GLU:OE2	31:A:1111:G:N2	2.39	0.49
31:A:1402:A:C2'	31:A:1403:C:O5'	2.61	0.49
4:B:30:G:O2'	4:B:59:A:N1	2.44	0.49
31:A:2018:G:H8	31:A:2426:C:HO2'	1.59	0.49
3:4:34:ALA:HB3	3:4:48:ARG:NH1	2.28	0.49
3:4:332:VAL:HG21	3:4:343:ILE:CD1	2.42	0.49
9:H:26:GLY:O	9:H:31:LEU:HD13	2.13	0.49
31:A:1294:U:HO2'	31:A:1295:U:H6	1.55	0.49
31:A:1403:C:H2'	31:A:1403:C:O2	2.13	0.49
31:A:1530:G:H22	31:A:1805:G:H1	1.59	0.49
31:A:2727:A:C8	33:A:3201:CLM:CL1	3.03	0.49
3:4:49:VAL:HG12	3:4:117:THR:CG2	2.43	0.49
4:B:33:C:O2'	4:B:34:G:OP1	2.29	0.49
6:D:185:VAL:HG13	6:D:185:VAL:O	2.13	0.49
23:X:56:ASP:OD2	31:A:2588:C:H5'	2.13	0.49
31:A:2351:A:H2'	31:A:2352:C:H6	1.78	0.49
10:I:48:THR:HG23	10:I:49:TYR:N	2.24	0.49
31:A:388:U:H2'	31:A:389:G:O4'	2.13	0.49
13:M:20:THR:O	13:M:20:THR:HG23	2.11	0.48
4:B:116:C:H2'	4:B:117:A:O4'	2.12	0.48
5:C:99:ASP:O	31:A:1720:G:N2	2.45	0.48
31:A:1189:G:O2'	31:A:1190:C:O4'	2.24	0.48
31:A:2010:G:H2'	31:A:2011:U:C6	2.48	0.48
31:A:2387:U:O4	31:A:2394:A:N6	2.46	0.48
3:4:12:THR:O	3:4:12:THR:HG23	2.13	0.48
31:A:1179:U:O4'	31:A:1188:A:O4'	2.31	0.48
31:A:2630:A:OP2	31:A:2635:A:N6	2.39	0.48
9:H:124:ILE:O	9:H:126:SER:N	2.45	0.48
16:Q:18:THR:HG23	16:Q:18:THR:O	2.13	0.48
31:A:2529:A:H2'	31:A:2530:C:C6	2.49	0.48
5:C:244:ARG:O	5:C:245:HIS:CG	2.67	0.48
31:A:378:G:H2'	31:A:379:G:C8	2.49	0.48
31:A:2351:A:O4'	31:A:2396:A:O2'	2.30	0.48
3:4:429:LEU:HD21	3:4:463:LEU:HD11	1.96	0.48
31:A:245:G:H2'	31:A:246:U:C6	2.48	0.48
31:A:1938:G:HO2'	31:A:1939:U:H6	1.59	0.48
31:A:3029:U:O2	31:A:3030:A:C8	2.67	0.47
3:4:251:VAL:HG11	3:4:322:VAL:HG22	1.96	0.47
5:C:235:GLY:HA2	5:C:240:THR:HB	1.96	0.47

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:G:48:ASP:OD1	8:G:49:GLY:N	2.47	0.47
15:O:90:ARG:NH2	15:O:118:GLU:O	2.46	0.47
21:V:81:THR:HG21	21:V:98:ALA:HB1	1.95	0.47
31:A:2043:C:H6	31:A:2043:C:O5'	1.96	0.47
3:4:97:TYR:CD2	3:4:124:LEU:HD21	2.49	0.47
4:B:115:A:H2'	4:B:116:C:O4'	2.14	0.47
31:A:326:A:N6	31:A:450:G:C6	2.83	0.47
31:A:2025:C:O2	31:A:2025:C:O4'	2.32	0.47
3:4:208:ILE:HD13	3:4:208:ILE:HA	1.75	0.47
3:4:399:GLY:O	3:4:402:LYS:HB2	2.14	0.47
9:H:95:VAL:HG12	9:H:96:THR:N	2.29	0.47
3:4:433:VAL:HG11	3:4:451:ILE:CD1	2.44	0.47
31:A:1804:G:H2'	31:A:1805:G:O4'	2.14	0.47
7:E:151:ASN:ND2	7:E:193:ASP:OD1	2.43	0.47
10:I:25:VAL:O	10:I:106:LYS:N	2.48	0.47
10:I:45:ASP:N	10:I:45:ASP:OD1	2.48	0.47
22:W:42:THR:HG22	22:W:42:THR:O	2.15	0.47
31:A:162:A:O2'	31:A:163:U:O5'	2.33	0.47
31:A:844:G:O2'	31:A:878:G:H4'	2.15	0.47
31:A:1069:G:C6	31:A:1083:G:C6	3.03	0.47
31:A:1163:A:H4'	31:A:1164:A:O5'	2.13	0.47
3:4:330:HIS:O	3:4:367:VAL:N	2.38	0.47
3:4:330:HIS:CG	3:4:346:VAL:HG11	2.49	0.47
10:I:99:ASP:OD1	10:I:99:ASP:N	2.42	0.47
31:A:163:U:HO2'	31:A:164:A:P	2.30	0.47
31:A:273:A:H62	31:A:313:G:H21	1.63	0.47
31:A:318:U:O2'	31:A:319:G:O5'	2.19	0.47
31:A:1289:A:H2'	31:A:1290:C:O4'	2.15	0.47
31:A:979:G:H2'	31:A:980:C:C6	2.50	0.47
9:H:5:LEU:O	9:H:16:GLY:N	2.44	0.47
17:R:89:GLU:HG3	17:R:89:GLU:O	2.15	0.47
3:4:258:LYS:HB2	32:4:501:GCP:O2B	2.15	0.46
9:H:38:VAL:O	9:H:38:VAL:CG1	2.63	0.46
31:A:1350:G:O2'	31:A:1351:G:C8	2.66	0.46
31:A:1473:G:N1	31:A:1487:U:OP2	2.35	0.46
3:4:293:ARG:NH2	3:4:412:GLU:O	2.49	0.46
4:B:46:A:C4	4:B:47:A:C8	3.02	0.46
7:E:119:ALA:HB2	7:E:124:ILE:HD12	1.97	0.46
8:G:20:ASN:ND2	8:G:20:ASN:C	2.64	0.46
13:M:96:ASP:N	13:M:96:ASP:OD1	2.46	0.46
31:A:1203:A:O2'	31:A:1204:A:P	2.73	0.46

	A	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:2:5:LYS:HB3	1:2:57:GLU:O	2.16	0.46
3:4:253:TYR:CD2	3:4:254:THR:HG22	2.50	0.46
31:A:243:U:O2	31:A:243:U:H2'	2.15	0.46
31:A:899:G:H5'	31:A:900:G:OP1	2.16	0.46
31:A:2573:G:C6	31:A:2593:A:C6	3.03	0.46
5:C:80:ALA:HB2	5:C:96:HIS:NE2	2.30	0.46
9:H:9:VAL:O	9:H:9:VAL:HG13	2.14	0.46
10:I:24:VAL:HG12	10:I:80:ALA:HB3	1.97	0.46
22:W:39:GLY:HA3	22:W:98:LEU:HD12	1.98	0.46
31:A:546:G:O2'	31:A:557:G:O6	2.29	0.46
31:A:1167:C:N3	31:A:1168:A:N6	2.63	0.46
31:A:1856:C:O2	31:A:2922:U:O2'	2.33	0.46
31:A:2007:C:H2'	31:A:2008:A:C8	2.51	0.46
3:4:261:LEU:CD1	3:4:367:VAL:HG11	2.46	0.46
31:A:244:A:C2	31:A:255:A:C2	3.04	0.46
31:A:617:U:O2	31:A:617:U:C2'	2.64	0.46
3:4:420:VAL:HG13	3:4:422:ILE:HG23	1.97	0.46
8:G:45:ARG:O	8:G:52:VAL:CB	2.61	0.46
9:H:124:ILE:CG2	9:H:148:VAL:HG21	2.45	0.46
15:O:45:ARG:HB3	15:O:46:PRO:HD3	1.98	0.46
31:A:2328:G:C6	31:A:2408:G:O6	2.68	0.46
31:A:3019:C:N4	31:A:3024:A:C2	2.84	0.46
24:Y:36:VAL:HG11	24:Y:61:VAL:HG11	1.97	0.46
31:A:2196:G:HO2'	31:A:2197:G:H8	1.64	0.46
31:A:2411:U:H2'	31:A:2412:U:O4'	2.16	0.46
31:A:2827:G:C2	31:A:2828:U:C5	3.04	0.46
6:D:161:PHE:O	6:D:164:THR:OG1	2.32	0.46
10:I:50:THR:O	10:I:50:THR:CG2	2.62	0.46
31:A:1159:C:H2'	31:A:1160:G:H5'	1.97	0.46
31:A:1178:U:H4'	31:A:1179:U:H5'	1.97	0.46
31:A:2334:U:O2'	31:A:2342:A:OP1	2.34	0.46
5:C:257:THR:O	5:C:257:THR:HG22	2.16	0.46
9:H:3:LEU:HD13	9:H:36:ALA:HB1	1.98	0.46
10:I:51:VAL:O	10:I:51:VAL:HG13	2.16	0.46
19:T:8:PRO:HB2	19:T:71:LEU:HD21	1.98	0.46
31:A:1213:A:O2'	31:A:1214:A:C5'	2.64	0.46
4:B:81:U:H2'	4:B:82:A:C8	2.51	0.45
8:G:156:ASP:OD2	8:G:158:TYR:O	2.33	0.45
15:0:12:GLY:O	15:O:13:SER:OG	2.31	0.45
20:U:4:ILE:HD12	25:Z:22:LEU:HD22	1.98	0.45
10:I:43:LEU:HD13	10:I:46:SER:O	2.16	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
31:A:485:U:O2'	31:A:2454:G:N2	2.49	0.45
6:D:60:ARG:O	6:D:60:ARG:HG2	2.16	0.45
10:I:26:THR:HA	10:I:104:VAL:O	2.16	0.45
31:A:1202:A:N3	31:A:1223:U:H2'	2.31	0.45
31:A:2008:A:C2	31:A:2046:A:H4'	2.50	0.45
3:4:364:GLU:O	3:4:365:LEU:C	2.54	0.45
10:I:39:LEU:HD22	10:I:103:LEU:HB2	1.99	0.45
14:N:28:SER:O	14:N:134:ARG:NH2	2.49	0.45
22:W:11:LEU:HD11	22:W:57:VAL:HG11	1.98	0.45
31:A:2164:U:O2'	31:A:2165:C:OP2	2.27	0.45
2:3:22:PRO:HB3	31:A:1102:G:H2'	1.98	0.45
8:G:50:ALA:HB3	8:G:52:VAL:CG2	2.46	0.45
13:M:54:GLN:OE1	31:A:940:A:H1'	2.17	0.45
31:A:399:G:H2'	31:A:400:C:O4'	2.17	0.45
31:A:765:G:C6	31:A:766:G:N7	2.85	0.45
3:4:293:ARG:HG3	3:4:438:HIS:CG	2.51	0.45
13:M:89:GLN:N	13:M:89:GLN:OE1	2.49	0.45
31:A:602:A:H2	31:A:1376:C:HO2'	1.65	0.45
3:4:365:LEU:HD22	3:4:410:LEU:HD12	1.99	0.45
7:E:141:ALA:HB1	7:E:169:VAL:HG12	1.98	0.45
31:A:2158:C:H1'	31:A:2159:G:H2'	1.98	0.45
31:A:2178:G:O2'	31:A:2179:U:OP2	2.33	0.45
3:4:130:ASN:OD1	3:4:131:ALA:N	2.49	0.45
10:I:47:ALA:CA	10:I:80:ALA:HB1	2.46	0.45
31:A:107:G:C2	31:A:108:A:C8	3.05	0.45
3:4:329:ILE:HA	3:4:365:LEU:O	2.17	0.45
5:C:99:ASP:OD1	5:C:99:ASP:N	2.50	0.45
8:G:48:ASP:OD1	8:G:50:ALA:HB2	2.17	0.45
8:G:122:ILE:HD11	8:G:134:VAL:HG11	1.99	0.45
31:A:2366:C:H3'	31:A:2367:G:C5'	2.46	0.45
9:H:136:LEU:HB2	9:H:140:VAL:HG13	1.98	0.45
31:A:1531:C:N4	31:A:1532:G:O6	2.50	0.45
31:A:1688:G:C6	31:A:1748:A:C2	3.05	0.45
7:E:144:PHE:O	7:E:147:THR:HG22	2.18	0.44
9:H:136:LEU:HD22	9:H:140:VAL:CG2	2.47	0.44
17:R:73:ASP:O	17:R:73:ASP:OD2	2.35	0.44
31:A:41:A:H2'	31:A:42:G:O4'	2.17	0.44
31:A:2031:G:OP2	31:A:2032:A:O2'	2.20	0.44
31:A:2378:U:O2'	31:A:2379:G:O4'	2.35	0.44
31:A:2998:C:H2'	31:A:2999:A:O4'	2.17	0.44
3:4:284:THR:HG22	3:4:298:THR:HG22	1.99	0.44

	A i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:4:332:VAL:HG21	3:4:343:ILE:HD11	1.99	0.44
31:A:317:G:O2'	31:A:509:U:OP2	2.27	0.44
31:A:1640:A:H2'	31:A:1642:G:N7	2.32	0.44
31:A:2675:A:C2	33:A:3201:CLM:H8	2.53	0.44
7:E:167:LYS:O	31:A:403:U:H1'	2.17	0.44
31:A:551:G:N2	31:A:554:A:OP2	2.46	0.44
31:A:2288:C:H2'	31:A:2289:C:H6	1.82	0.44
5:C:75:VAL:HG23	5:C:75:VAL:O	2.18	0.44
11:K:65:SER:OG	11:K:66:GLY:N	2.49	0.44
18:S:14:TYR:CE2	18:S:24:VAL:HG12	2.52	0.44
31:A:950:A:C4	31:A:951:G:C8	3.05	0.44
31:A:3014:A:N6	31:A:3113:A:OP2	2.51	0.44
9:H:124:ILE:O	9:H:124:ILE:CG2	2.64	0.44
9:H:132:VAL:CG1	9:H:144:VAL:HG23	2.46	0.44
18:S:64:VAL:HG22	18:S:97:LEU:HD23	1.99	0.44
31:A:7:U:HO2'	31:A:8:U:C1'	2.30	0.44
31:A:2727:A:H8	33:A:3201:CLM:CL1	2.38	0.44
8:G:51:ILE:CD1	8:G:51:ILE:H	2.21	0.44
31:A:940:A:C2'	31:A:941:U:O5'	2.66	0.44
31:A:2153:G:H2'	31:A:2153:G:N3	2.32	0.44
31:A:2351:A:H2'	31:A:2352:C:C6	2.52	0.44
3:4:48:ARG:HB3	3:4:82:LEU:HD23	1.99	0.44
5:C:145:VAL:HG12	5:C:191:ALA:CB	2.48	0.44
16:Q:15:ASP:C	16:Q:15:ASP:OD2	2.56	0.44
31:A:1334:C:H2'	31:A:1335:G:O4'	2.18	0.44
31:A:2244:A:C2	31:A:2246:U:O4'	2.70	0.44
3:4:209:GLU:O	3:4:215:ILE:HD11	2.18	0.44
12:L:25:LEU:CD1	12:L:40:VAL:HG23	2.48	0.44
14:N:42:ILE:CD1	14:N:97:VAL:HG11	2.48	0.44
31:A:9:U:H2'	31:A:9:U:O2	2.18	0.44
4:B:1:G:C2	4:B:2:U:C4	3.06	0.43
9:H:11:HIS:HE2	31:A:2319:G:P	2.41	0.43
31:A:137:G:H4'	31:A:138:A:OP1	2.17	0.43
31:A:1196:C:H4'	31:A:1197:C:OP1	2.18	0.43
31:A:1536:A:H2'	31:A:1537:U:O4'	2.18	0.43
3:4:291:ASP:OD1	3:4:291:ASP:N	2.46	0.43
5:C:186:ASP:OD2	5:C:188:ARG:NH2	2.51	0.43
6:D:185:VAL:HG23	6:D:192:LEU:HD23	2.00	0.43
8:G:51:ILE:CA	8:G:53:VAL:HG13	2.48	0.43
10:I:33:VAL:CG2	31:A:1173:G:O2'	2.66	0.43
21:V:67:HIS:CE1	21:V:69:SER:HG	2.35	0.43

	Atom-2	Interatomic	Clash
Atom-1		distance (Å)	overlap (Å)
31:A:1001:C:C5	31:A:1002:C:H1'	2.53	0.43
31:A:1758:G:H2'	31:A:1759:A:C8	2.53	0.43
16:Q:26:ASN:OD1	16:Q:41:VAL:CG1	2.66	0.43
21:V:15:LYS:NZ	31:A:390:G:O2'	2.30	0.43
31:A:681:C:H2'	31:A:682:A:H8	1.82	0.43
31:A:2730:U:O2	31:A:2730:U:C2'	2.66	0.43
3:4:14:GLU:O	3:4:16:ALA:N	2.51	0.43
5:C:20:ASP:OD1	5:C:20:ASP:N	2.52	0.43
7:E:52:THR:HG22	7:E:53:LYS:N	2.33	0.43
31:A:899:G:H4'	31:A:900:G:O5'	2.17	0.43
31:A:940:A:H2'	31:A:941:U:O5'	2.18	0.43
3:4:97:TYR:CG	3:4:124:LEU:HD21	2.53	0.43
3:4:392:VAL:HG22	3:4:393:SER:N	2.33	0.43
7:E:128:THR:HG22	7:E:129:GLU:N	2.28	0.43
10:I:23:THR:O	10:I:24:VAL:HG23	2.18	0.43
10:I:51:VAL:HG13	31:A:1202:A:C8	2.54	0.43
10:I:93:ILE:HD12	10:I:105:ILE:CG2	2.43	0.43
13:M:95:VAL:HG23	13:M:110:VAL:HG21	2.00	0.43
31:A:709:U:O2	31:A:709:U:O4'	2.35	0.43
4:B:33:C:C2	4:B:52:G:N2	2.86	0.43
31:A:193:G:H2'	31:A:194:A:O4'	2.19	0.43
31:A:451:U:H2'	31:A:452:G:C8	2.54	0.43
31:A:1010:U:H3'	31:A:1012:C:H41	1.83	0.43
31:A:1083:G:O2'	31:A:1084:U:H5'	2.19	0.43
31:A:2288:C:H2'	31:A:2289:C:C6	2.53	0.43
31:A:2731:C:O2	31:A:2731:C:H2'	2.18	0.43
31:A:2787:U:C2	31:A:2789:A:OP2	2.71	0.43
3:4:36:VAL:O	3:4:37:SER:HB2	2.19	0.43
3:4:49:VAL:HG12	3:4:117:THR:HG21	2.00	0.43
17:R:83:LEU:HD22	17:R:88:VAL:CG1	2.49	0.43
31:A:663:A:N3	31:A:663:A:H2'	2.33	0.43
3:4:390:VAL:CG2	3:4:391:PHE:N	2.81	0.43
10:I:24:VAL:CG1	10:I:105:ILE:HG22	2.48	0.43
10:I:47:ALA:H	10:I:82:VAL:HA	1.84	0.43
31:A:2294:A:H2'	31:A:2295:C:C6	2.54	0.43
31:A:2963:U:C2'	31:A:2964:A:H5'	2.49	0.43
3:4:400:LEU:C	3:4:402:LYS:N	2.70	0.43
7:E:138:THR:OG1	31:A:403:U:O4'	2.36	0.43
9:H:121:LYS:NZ	31:A:158:G:OP2	2.45	0.43
10:I:31:LEU:O	10:I:36:LEU:HD23	2.19	0.43
10:I:56:LEU:HB2	31:A:1165:G:OP2	2.18	0.43

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
31:A:1173:G:H2'	31:A:1174:G:C8	2.54	0.43
31:A:2349:A:N6	31:A:2386:U:O4'	2.52	0.43
3:4:422:ILE:O	3:4:448:GLY:HA2	2.19	0.43
7:E:101:ARG:O	7:E:101:ARG:HG3	2.18	0.43
17:R:49:ASP:OD1	31:A:651:G:N2	2.52	0.43
18:S:64:VAL:HG22	18:S:97:LEU:CD2	2.49	0.43
31:A:241:A:H5'	31:A:243:U:H1'	2.00	0.43
31:A:243:U:C5	31:A:254:G:N2	2.87	0.43
31:A:714:U:O2	31:A:714:U:C2'	2.67	0.43
31:A:1529:U:H2'	31:A:1530:G:O4'	2.19	0.42
31:A:2378:U:HO2'	31:A:2379:G:C1'	2.32	0.42
31:A:2706:A:C5	31:A:2707:C:C5	3.07	0.42
3:4:168:GLN:HB3	3:4:208:ILE:CG1	2.49	0.42
31:A:2351:A:O2'	31:A:2352:C:O4'	2.37	0.42
3:4:254:THR:OG1	3:4:255:ASN:N	2.52	0.42
3:4:395:ARG:O	3:4:396:THR:CB	2.67	0.42
8:G:22:GLN:OE1	8:G:43:VAL:HG22	2.19	0.42
31:A:1937:U:H2'	31:A:1938:G:O4'	2.20	0.42
31:A:2035:U:HO2'	31:A:2036:A:P	2.42	0.42
31:A:2351:A:HO2'	31:A:2352:C:C5'	2.25	0.42
3:4:393:SER:O	3:4:395:ARG:N	2.52	0.42
4:B:113:G:H2'	4:B:114:A:C8	2.54	0.42
9:H:32:PRO:HB3	24:Y:64:ALA:HB3	2.00	0.42
20:U:14:PRO:HB3	20:U:96:PHE:HD1	1.84	0.42
31:A:7:U:H2'	31:A:8:U:C6	2.54	0.42
31:A:2186:C:H2'	31:A:2187:U:O4'	2.19	0.42
3:4:329:ILE:CG2	3:4:367:VAL:HG23	2.48	0.42
3:4:422:ILE:CD1	3:4:430:VAL:HG23	2.49	0.42
10:I:53:LYS:HE3	31:A:1224:G:OP2	2.18	0.42
10:I:58:LYS:HG3	10:I:70:ASP:HA	2.01	0.42
13:M:84:ASN:OD1	13:M:84:ASN:C	2.57	0.42
31:A:270:U:O2	31:A:270:U:H2'	2.19	0.42
31:A:2552:A:H2'	31:A:2553:G:C8	2.55	0.42
8:G:23:ASN:CG	8:G:23:ASN:O	2.57	0.42
10:I:75:GLY:O	31:A:1225:G:O3'	2.37	0.42
17:R:47:TYR:OH	31:A:1110:C:OP1	2.36	0.42
18:S:71:PRO:O	18:S:73:ILE:HD12	2.20	0.42
31:A:783:G:H2'	31:A:785:A:H62	1.85	0.42
31:A:986:G:H2'	31:A:987:A:O4'	2.19	0.42
31:A:2299:C:OP2	31:A:2462:G:N2	2.47	0.42
5:C:256:ARG:HE	5:C:271:ARG:NH1	2.17	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:I:21:THR:CG2	10:I:22:ALA:H	2.23	0.42
17:R:26:GLY:O	17:R:30:ARG:NH1	2.52	0.42
25:Z:18:LEU:O	25:Z:22:LEU:HD13	2.20	0.42
31:A:273:A:C2	31:A:322:A:O4'	2.72	0.42
31:A:3059:G:C4	31:A:3060:A:C8	3.08	0.42
3:4:332:VAL:HG22	3:4:368:VAL:HG12	2.01	0.42
3:4:364:GLU:O	3:4:364:GLU:CD	2.58	0.42
4:B:2:U:H2'	4:B:3:U:O5'	2.20	0.42
9:H:112:LEU:HD12	9:H:113:ASP:O	2.20	0.42
13:M:81:GLY:O	13:M:84:ASN:OD1	2.38	0.42
19:T:26:ARG:O	19:T:29:ASP:OD1	2.38	0.42
19:T:56:LYS:NZ	31:A:576:G:O2'	2.45	0.42
31:A:1158:U:H2'	31:A:1159:C:O4'	2.19	0.42
31:A:1172:A:C6	31:A:1224:G:C6	3.08	0.42
31:A:1382:U:O2	31:A:1382:U:H2'	2.20	0.42
31:A:1535:C:O2	31:A:1535:C:O4'	2.35	0.42
31:A:1932:U:HO2'	31:A:1933:G:P	2.40	0.42
11:K:135:GLN:NE2	31:A:3:A:N3	2.67	0.42
31:A:781:C:C4	31:A:782:U:O4	2.73	0.42
31:A:1002:C:C2'	31:A:1003:A:OP1	2.67	0.42
31:A:1762:C:H2'	31:A:1763:G:O4'	2.19	0.42
31:A:3046:C:O2	31:A:3046:C:O5'	2.38	0.42
5:C:130:ASN:OD1	5:C:131:LEU:N	2.53	0.42
10:I:28:TYR:OH	31:A:1225:G:C1'	2.67	0.42
14:N:42:ILE:HD12	14:N:97:VAL:HG11	2.01	0.42
31:A:447:A:H2'	31:A:448:U:C6	2.54	0.42
31:A:735:U:H2'	31:A:736:G:O4'	2.20	0.42
31:A:1122:C:H2'	31:A:1129:G:H2'	2.01	0.42
31:A:1196:C:HO2'	31:A:1197:C:P	2.36	0.42
31:A:1758:G:O2'	31:A:1759:A:O5'	2.36	0.42
31:A:2490:A:H4'	31:A:2491:A:O5'	2.20	0.42
31:A:2521:C:O2	31:A:2521:C:H2'	2.19	0.42
3:4:251:VAL:HG23	3:4:330:HIS:HB2	2.02	0.41
6:D:150:SER:OG	31:A:2736:C:O2	2.38	0.41
9:H:75:LEU:HD21	9:H:104:ILE:HD12	2.02	0.41
10:I:28:TYR:OH	31:A:1224:G:N3	2.53	0.41
13:M:49:MET:O	13:M:49:MET:HG2	2.20	0.41
31:A:472:C:O2	31:A:472:C:H2'	2.20	0.41
31:A:1216:A:C5	31:A:1217:G:C8	3.08	0.41
31:A:2194:A:H4'	31:A:2195:U:O4'	2.20	0.41
31:A:2327:C:N4	31:A:2328:G:O6	2.53	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:D:212:ILE:HG23	6:D:213:LYS:N	2.35	0.41
31:A:1087:G:H2'	31:A:1088:U:C6	2.55	0.41
31:A:1183:U:H3	31:A:1187:A:HO2'	1.68	0.41
31:A:1675:U:O2'	31:A:1676:G:N7	2.53	0.41
31:A:2346:G:O6	31:A:2397:C:N4	2.53	0.41
31:A:2801:A:H5'	31:A:2802:G:H5"	2.02	0.41
3:4:464:ARG:HD3	3:4:464:ARG:C	2.40	0.41
6:D:185:VAL:HG23	6:D:192:LEU:CD2	2.50	0.41
10:I:28:TYR:O	10:I:29:ARG:HB2	2.20	0.41
31:A:2:A:C2	31:A:3119:A:C2	3.08	0.41
31:A:1444:U:OP2	31:A:1445:C:N4	2.53	0.41
31:A:2177:A:H3'	31:A:2178:G:C5'	2.51	0.41
4:B:112:C:O5'	4:B:113:G:OP2	2.37	0.41
7:E:9:THR:HG23	7:E:10:PRO:HD2	2.01	0.41
10:I:3:LYS:O	10:I:6:LYS:HG3	2.20	0.41
21:V:43:LYS:NZ	31:A:568:A:OP2	2.49	0.41
25:Z:16:ASP:OD1	25:Z:17:GLU:N	2.53	0.41
31:A:621:U:H2'	31:A:622:C:C6	2.55	0.41
31:A:729:C:O2'	31:A:733:U:OP1	2.36	0.41
31:A:940:A:C8	31:A:940:A:C3'	3.03	0.41
31:A:1009:U:O3'	31:A:1010:U:O4'	2.38	0.41
31:A:1083:G:O4'	31:A:2491:A:N6	2.53	0.41
3:4:150:ILE:HG21	3:4:277:PHE:HD2	1.84	0.41
3:4:254:THR:O	3:4:255:ASN:C	2.58	0.41
3:4:369:ASN:O	3:4:370:LYS:CG	2.69	0.41
3:4:393:SER:C	3:4:395:ARG:N	2.72	0.41
19:T:85:GLU:O	31:A:21:G:O2'	2.39	0.41
31:A:2729:G:O4'	33:A:3201:CLM:CL2	2.75	0.41
3:4:93:ASP:C	3:4:95:SER:N	2.73	0.41
8:G:33:LEU:HD21	8:G:137:ILE:HD12	2.03	0.41
10:I:31:LEU:O	10:I:32:THR:C	2.59	0.41
10:I:59:ARG:HD3	31:A:1164:A:H5'	2.03	0.41
17:R:109:LEU:O	17:R:112:VAL:HG22	2.21	0.41
25:Z:66:LEU:O	25:Z:66:LEU:HD23	2.21	0.41
31:A:361:A:H2'	31:A:362:A:O5'	2.20	0.41
31:A:997:G:O6	31:A:1010:U:H2'	2.20	0.41
3:4:417:THR:HG22	3:4:454:ARG:HG2	2.02	0.41
10:I:54:ASN:OD1	31:A:1225:G:H5"	2.21	0.41
19:T:65:ALA:O	19:T:69:GLU:O	2.39	0.41
31:A:93:A:H2'	31:A:94:G:O4'	2.21	0.41
31:A:244:A:C2	31:A:255:A:C4	3.09	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
31:A:2166:C:H4'	31:A:2168:U:OP1	2.20	0.41
5:C:222:ARG:NH1	31:A:2006:A:OP2	2.54	0.41
10:I:69:LEU:HB2	10:I:72:LEU:HB2	2.03	0.41
31:A:239:U:C2'	31:A:240:G:H5'	2.50	0.41
31:A:619:C:O2	31:A:619:C:H2'	2.20	0.41
31:A:905:U:O2	31:A:905:U:H2'	2.21	0.41
31:A:2681:U:O2'	31:A:2682:G:H5'	2.21	0.41
1:2:22:SER:OG	1:2:49:THR:HG21	2.20	0.41
3:4:346:VAL:O	3:4:349:VAL:HG12	2.20	0.41
4:B:114:A:O5'	4:B:114:A:H8	2.04	0.41
7:E:198:VAL:HG13	7:E:199:GLU:N	2.36	0.41
9:H:75:LEU:HD12	9:H:76:GLY:N	2.36	0.41
31:A:215:A:C4	31:A:216:A:C8	3.09	0.41
31:A:1807:C:C2	31:A:1808:A:C8	3.09	0.41
31:A:2603:G:H2'	31:A:2604:U:C6	2.56	0.41
31:A:2980:U:H4'	31:A:2981:A:OP1	2.21	0.41
8:G:4:ILE:O	8:G:70:ARG:HD3	2.21	0.41
17:R:77:ASN:OD1	31:A:1270:G:C2'	2.66	0.41
22:W:74:THR:HG22	22:W:75:GLU:N	2.35	0.41
31:A:125:C:O2'	31:A:126:C:OP2	2.27	0.41
31:A:401:C:H2'	31:A:402:G:H5'	2.03	0.41
31:A:658:U:C2'	31:A:659:U:O5'	2.70	0.41
31:A:1076:A:C2'	31:A:1077:A:O5'	2.69	0.41
31:A:1380:A:O4'	31:A:1382:U:C6	2.74	0.41
31:A:2248:C:H2'	31:A:2249:G:H8	1.85	0.41
31:A:2693:A:C6	31:A:2706:A:C8	3.09	0.41
31:A:3046:C:O2	31:A:3046:C:O4'	2.39	0.41
3:4:48:ARG:HB2	3:4:115:ALA:CB	2.51	0.40
7:E:171:ASN:ND2	31:A:406:A:OP1	2.55	0.40
31:A:294:G:N3	31:A:294:G:H2'	2.36	0.40
31:A:752:C:C2	31:A:753:A:C8	3.09	0.40
31:A:1203:A:HO2'	31:A:1204:A:P	2.35	0.40
31:A:1292:U:HO2'	31:A:1293:G:P	2.42	0.40
3:4:21:ALA:HA	3:4:24:ARG:HD2	2.03	0.40
3:4:176:LEU:HG	3:4:176:LEU:O	2.21	0.40
3:4:256:ALA:HB1	3:4:331:VAL:HG12	2.03	0.40
8:G:128:SER:OG	8:G:129:PRO:HD2	2.21	0.40
10:I:43:LEU:HD12	10:I:44:GLY:O	2.21	0.40
14:N:118:LEU:O	14:N:122:ILE:HG13	2.22	0.40
31:A:1434:G:H2'	31:A:1435:C:C6	2.55	0.40
3:4:73:LEU:O	3:4:76:THR:HG22	2.21	0.40

	1.5	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:4:93:ASP:OD2	3:4:99:GLY:HA2	2.21	0.40	
3:4:201:ARG:O	3:4:202:GLY:C	2.58	0.40	
3:4:232:ILE:HG23	31:A:2703:U:O2'	2.22	0.40	
3:4:393:SER:OG	3:4:398:ASP:HB2	2.20	0.40	
4:B:8:C:H2'	4:B:9:G:O4'	2.22	0.40	
8:G:7:GLN:O	8:G:51:ILE:HG23	2.22	0.40	
13:M:93:VAL:HG13	13:M:93:VAL:O	2.20	0.40	
15:O:51:LEU:HD13	15:O:70:ILE:HD11	2.04	0.40	
19:T:52:GLU:HB3	19:T:53:PRO:HD3	2.01	0.40	
24:Y:18:VAL:HG22	24:Y:24:ARG:HG2	2.04	0.40	
31:A:279:U:H2'	31:A:280:G:H8	1.86	0.40	
31:A:410:U:C2'	31:A:411:G:OP1	2.69	0.40	
31:A:1402:A:HO2'	31:A:1403:C:P	2.43	0.40	
3:4:449:THR:O	3:4:449:THR:HG22	2.21	0.40	
10:I:87:VAL:HG11	10:I:124:ALA:O	2.21	0.40	
31:A:81:A:C2	31:A:100:A:C5	3.09	0.40	
31:A:598:U:H2'	31:A:599:G:C5'	2.50	0.40	
31:A:783:G:C5'	31:A:784:G:OP2	2.70	0.40	
31:A:1005:A:H2'	31:A:1006:G:H5'	2.04	0.40	
31:A:1212:U:H2'	31:A:1213:A:C8	2.56	0.40	
31:A:2381:A:C4'	31:A:2382:G:OP2	2.69	0.40	
31:A:2764:C:O2'	31:A:2964:A:N3	2.47	0.40	
4:B:59:A:H2'	4:B:59:A:N3	2.37	0.40	
6:D:156:THR:HB	6:D:157:PRO:CD	2.52	0.40	
13:M:22:VAL:HG12	13:M:29:LYS:HD2	2.03	0.40	
31:A:248:G:O2'	31:A:2656:A:OP1	2.30	0.40	
31:A:502:C:N4	31:A:503:A:H62	2.19	0.40	
31:A:1500:A:C4	31:A:1501:C:C5	3.10	0.40	
31:A:1988:C:O2'	31:A:2003:A:O4'	2.39	0.40	
31:A:2316:G:C2	31:A:2317:G:C8	3.09	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	2	57/61~(93%)	53~(93%)	4 (7%)	0	100	100
2	3	21/24~(88%)	20~(95%)	1 (5%)	0	100	100
3	4	454/470~(97%)	389~(86%)	65 (14%)	0	100	100
5	С	273/278~(98%)	254 (93%)	19 (7%)	0	100	100
6	D	212/217~(98%)	202 (95%)	10 (5%)	0	100	100
7	Е	207/215~(96%)	194 (94%)	13 (6%)	0	100	100
8	G	174/179~(97%)	156 (90%)	18 (10%)	0	100	100
9	Н	149/151~(99%)	136 (91%)	13 (9%)	0	100	100
10	Ι	124/175~(71%)	85~(68%)	39 (32%)	0	100	100
11	К	144/147~(98%)	142 (99%)	2 (1%)	0	100	100
12	L	120/122~(98%)	114 (95%)	6 (5%)	0	100	100
13	М	143/147~(97%)	130 (91%)	13 (9%)	0	100	100
14	Ν	134/138~(97%)	129 (96%)	5 (4%)	0	100	100
15	Ο	116/199~(58%)	109 (94%)	7 (6%)	0	100	100
16	Q	111/113 (98%)	109 (98%)	2 (2%)	0	100	100
17	R	122/129~(95%)	120 (98%)	2 (2%)	0	100	100
18	S	98/103~(95%)	94 (96%)	4 (4%)	0	100	100
19	Т	112/153~(73%)	106 (95%)	6 (5%)	0	100	100
20	U	95/100~(95%)	89 (94%)	6 (6%)	0	100	100
21	V	93/105~(89%)	83 (89%)	10 (11%)	0	100	100
22	W	93/215~(43%)	83 (89%)	10 (11%)	0	100	100
23	Х	77/88~(88%)	76 (99%)	1 (1%)	0	100	100
24	Y	61/64~(95%)	60 (98%)	1 (2%)	0	100	100
25	Z	62/77~(80%)	62 (100%)	0	0	100	100
26	b	52/57~(91%)	52 (100%)	0	0	100	100
27	с	47/55~(86%)	47 (100%)	0	0	100	100
28	d	44/47~(94%)	43 (98%)	1 (2%)	0	100	100
29	е	61/64~(95%)	61 (100%)	0	0	100	100
30	f	35/37~(95%)	34 (97%)	1 (3%)	0	100	100
All	All	3491/3930~(89%)	3232 (93%)	259 (7%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	2	52/54~(96%)	52~(100%)	0	100	100
2	3	18/19~(95%)	18 (100%)	0	100	100
3	4	359/372~(96%)	355~(99%)	4 (1%)	70	81
5	С	215/218~(99%)	215 (100%)	0	100	100
6	D	160/163~(98%)	160 (100%)	0	100	100
7	Ε	169/173~(98%)	169 (100%)	0	100	100
8	G	148/150~(99%)	145~(98%)	3~(2%)	50	70
9	Η	90/116~(78%)	90 (100%)	0	100	100
10	Ι	89/120~(74%)	88~(99%)	1 (1%)	70	81
11	Κ	119/120~(99%)	119 (100%)	0	100	100
12	L	100/100~(100%)	100 (100%)	0	100	100
13	М	112/114~(98%)	111 (99%)	1 (1%)	75	84
14	Ν	114/116~(98%)	114 (100%)	0	100	100
15	Ο	97/158~(61%)	97~(100%)	0	100	100
16	Q	100/100~(100%)	100 (100%)	0	100	100
17	R	97/99~(98%)	97~(100%)	0	100	100
18	S	81/83~(98%)	81 (100%)	0	100	100
19	Т	90/117~(77%)	89~(99%)	1 (1%)	70	81
20	U	83/85~(98%)	83 (100%)	0	100	100
21	V	81/86 (94%)	81 (100%)	0	100	100
22	W	77/168~(46%)	76~(99%)	1 (1%)	65	78
23	Х	58/63~(92%)	58 (100%)	0	100	100
24	Y	50/51~(98%)	50 (100%)	0	100	100
25	Ζ	58/66~(88%)	58 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
26	b	43/46~(94%)	43 (100%)	0	100 100
27	с	47/52~(90%)	47 (100%)	0	100 100
28	d	35/36~(97%)	35~(100%)	0	100 100
29	е	53/54~(98%)	52 (98%)	1 (2%)	52 71
30	f	35/35~(100%)	35~(100%)	0	100 100
All	All	2830/3134~(90%)	2818 (100%)	12 (0%)	88 92

All (12) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	4	93	ASP
3	4	208	ILE
3	4	209	GLU
3	4	464	ARG
8	G	20	ASN
8	G	51	ILE
8	G	52	VAL
10	Ι	6	LYS
13	М	49	MET
19	Т	44	ARG
22	W	90	ARG
29	е	31	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
22	W	9	ASN
22	W	94	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
31	А	2947/3120~(94%)	623 (21%)	19 (0%)
4	В	117/118~(99%)	34 (29%)	3 (2%)
All	All	3064/3238~(94%)	657 (21%)	22~(0%)

All (657) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
4	В	2	U
4	В	3	U
4	В	4	А
4	В	5	С
4	В	8	С
4	В	9	G
4	В	12	С
4	В	13	С
4	В	14	А
4	В	26	А
4	В	27	А
4	В	28	А
4	В	29	С
4	В	33	С
4	В	34	G
4	В	42	С
4	В	43	С
4	В	44	С
4	В	46	А
4	В	53	А
4	В	57	U
4	В	58	А
4	В	59	А
4	В	67	А
4	В	75	U
4	В	76	G
4	В	88	С
4	В	89	С
4	В	90	G
4	В	107	А
4	В	112	С
4	В	113	G
4	В	115	А
4	В	117	А
31	А	7	U
31	А	9	U
31	А	31	U
31	А	41	А
31	А	42	G
31	А	52	G
31	А	57	A
31	А	60	A
31	А	68	А
		-	

Mol	Chain	Res	Type
31	А	71	А
31	А	72	G
31	А	85	G
31	А	86	U
31	А	91	С
31	А	94	G
31	А	99	G
31	А	115	А
31	А	117	U
31	А	125	С
31	A	138	А
31	А	148	А
31	A	153	G
31	A	158	G
31	A	161	U
31	A	162	А
31	А	163	U
31	А	164	А
31	А	180	А
31	A	195	А
31	А	198	А
31	A	199	U
31	А	200	С
31	А	214	G
31	А	215	А
31	А	221	А
31	А	222	А
31	А	227	А
31	А	229	U
31	A	230	G
31	A	233	А
31	A	243	U
31	A	244	A
31	A	248	G
31	А	265	А
31	A	270	U
31	A	271	A
31	А	274	С
31	A	282	A
31	А	285	U
31	A	286	G
31	A	288	U

Mol	Chain	Res	Type
31	А	289	А
31	А	290	С
31	А	291	С
31	А	292	G
31	А	295	U
31	А	296	А
31	А	300	G
31	А	301	U
31	А	302	U
31	А	303	G
31	А	313	G
31	А	314	G
31	А	315	U
31	A	319	G
31	А	326	A
31	A	327	U
31	А	329	U
31	А	330	U
31	А	331	U
31	А	336	С
31	А	337	U
31	А	338	С
31	А	340	А
31	А	342	С
31	А	343	U
31	А	350	А
31	А	352	G
31	А	353	G
31	А	355	А
31	A	356	G
31	A	357	U
31	A	359	A
31	А	361	A
31	A	367	U
31	A	368	U
31	A	369	G
31	A	370	U
31	A	371	G
31	A	372	G
31	А	376	G
31	A	378	G
31	A	379	G

Mol	Chain	Res	Type
31	А	380	А
31	А	381	А
31	А	384	G
31	А	391	G
31	А	393	U
31	А	395	G
31	А	398	U
31	А	401	С
31	А	402	G
31	А	403	U
31	А	404	A
31	А	405	G
31	А	406	A
31	A	411	G
31	А	412	А
31	A	413	G
31	A	420	G
31	А	423	С
31	А	424	G
31	А	426	G
31	А	427	А
31	А	434	G
31	А	437	G
31	А	438	U
31	А	445	U
31	А	446	G
31	А	447	A
31	А	449	G
31	А	452	G
31	A	453	U
31	A	454	U
31	A	459	A
31	A	460	G
31	A	471	C
31	A	474	G
31	A	482	U
31	A	493	U
31	A	494	G
31	A	499	G
31	A	500	A
31	A	503	А
31	A	505	С

Mol	Chain	Res	Type
31	А	509	U
31	А	512	G
31	А	543	U
31	А	544	U
31	А	553	G
31	А	561	G
31	А	569	G
31	А	572	С
31	А	578	G
31	А	591	G
31	А	592	А
31	А	594	U
31	А	595	А
31	А	596	С
31	A	597	C
31	А	599	G
31	А	614	С
31	А	617	U
31	А	618	С
31	А	619	С
31	А	620	G
31	А	636	U
31	А	637	G
31	А	638	U
31	А	639	С
31	А	640	G
31	А	642	G
31	А	655	G
31	А	659	U
31	А	660	U
31	A	662	G
31	A	665	G
31	A	667	A
31	A	678	A
31	A	679	G
31	A	684	G
31	A	696	А
31	A	706	G
31	A	707	G
31	A	708	G
31	A	715	A
31	A	721	А

Mol	Chain	Res	Type
31	А	731	А
31	А	739	U
31	А	740	А
31	А	747	А
31	А	755	А
31	А	757	G
31	А	758	А
31	А	759	G
31	А	760	U
31	А	766	G
31	А	784	G
31	А	801	U
31	А	829	U
31	А	845	C
31	А	862	U
31	A	879	А
31	A	880	G
31	А	890	G
31	А	891	G
31	А	897	А
31	А	899	G
31	А	900	G
31	А	907	А
31	А	920	G
31	А	921	С
31	А	927	С
31	А	928	U
31	А	940	А
31	А	941	U
31	А	942	U
31	A	$97\overline{4}$	G
31	A	981	U
31	A	982	A
31	A	987	А
31	A	994	A
31	A	995	U
31	А	996	G
31	A	1002	C
31	A	1003	A
31	A	1005	А
31	A	1008	G
31	A	1010	U

Mol	Chain	Res	Type
31	А	1011	А
31	А	1025	А
31	А	1030	С
31	А	1034	U
31	А	1042	А
31	А	1046	С
31	А	1047	А
31	А	1048	А
31	А	1049	G
31	А	1058	А
31	А	1063	G
31	А	1075	U
31	А	1076	А
31	A	1077	A
31	А	1078	G
31	А	1085	G
31	А	1090	G
31	А	1091	А
31	А	1092	G
31	А	1097	А
31	А	1101	А
31	А	1110	С
31	А	1114	G
31	А	1131	G
31	А	1144	А
31	А	1151	U
31	А	1159	С
31	А	1160	G
31	А	1161	С
31	А	1162	G
31	A	1164	A
31	А	1165	G
31	A	1170	С
31	А	1172	A
31	A	1173	G
31	A	1175	A
31	A	1176	G
31	A	1177	G
31	A	1178	U
31	A	1179	U
31	А	1180	G
31	A	1181	G

Mol	Chain	Res	Type
31	А	1182	С
31	А	1184	U
31	А	1188	A
31	А	1189	G
31	А	1191	А
31	А	1192	G
31	А	1194	С
31	А	1197	С
31	А	1201	G
31	А	1202	А
31	А	1203	А
31	А	1204	А
31	А	1205	G
31	А	1206	А
31	А	1207	G
31	А	1208	U
31	А	1212	U
31	А	1213	А
31	А	1214	А
31	А	1215	U
31	А	1216	А
31	А	1217	G
31	А	1222	С
31	А	1223	U
31	А	1224	G
31	А	1240	G
31	А	1245	U
31	А	1247	А
31	А	1248	U
31	А	1250	U
31	A	1253	С
31	A	1254	G
31	A	1260	С
31	A	1262	A
31	A	1277	С
31	A	1292	U
31	А	1293	G
31	A	1294	U
31	А	1295	U
31	A	1307	G
31	A	1316	U
31	А	1335	G

Mol	Chain	Res	Type
31	А	1343	G
31	А	1344	А
31	А	1351	G
31	А	1365	G
31	А	1368	А
31	А	1371	G
31	А	1377	А
31	А	1386	G
31	А	1387	А
31	А	1400	G
31	А	1403	С
31	А	1408	С
31	А	1415	А
31	A	1416	А
31	А	1436	С
31	А	1465	С
31	А	1466	С
31	А	1467	U
31	А	1480	А
31	А	1494	U
31	А	1499	А
31	А	1501	С
31	А	1502	G
31	А	1510	А
31	А	1511	U
31	А	1527	U
31	А	1532	G
31	А	1534	С
31	А	1536	А
31	А	1538	G
31	A	1541	G
31	A	1542	A
31	А	1543	A
31	A	1544	U
31	A	1624	U
31	A	1629	G
31	А	1631	A
31	A	1632	G
31	A	1640	А
31	A	1648	A
31	A	1649	С
31	А	1679	A

Mol	Chain	Res	Type
31	А	1680	А
31	А	1681	U
31	А	1703	G
31	А	1710	А
31	А	1711	G
31	А	1712	G
31	А	1713	U
31	А	1714	А
31	А	1717	U
31	А	1729	А
31	А	1730	U
31	А	1737	А
31	А	1738	G
31	A	1753	С
31	А	1754	G
31	A	1755	A
31	А	1756	G
31	А	1769	G
31	А	1780	G
31	А	1786	G
31	А	1788	G
31	А	1789	А
31	А	1798	U
31	А	1803	А
31	А	1811	С
31	А	1825	С
31	А	1826	А
31	А	1828	А
31	А	1831	А
31	А	1852	А
31	A	1864	U
31	А	1866	С
31	A	1869	G
31	A	1870	U
31	A	1871	G
31	A	1872	А
31	A	1884	G
31	A	1887	A
31	A	1891	G
31	A	1892	G
31	А	1911	U
31	А	1933	G

Mol	Chain	Res	Type
31	А	1945	U
31	А	1946	U
31	А	1947	U
31	А	1949	С
31	А	1950	G
31	А	1955	А
31	А	1967	G
31	А	1974	А
31	А	1975	А
31	А	1981	U
31	А	1990	А
31	А	2001	А
31	А	2017	С
31	A	2018	G
31	А	2025	С
31	A	2033	U
31	А	2046	А
31	А	2049	С
31	А	2051	U
31	А	2052	G
31	А	2053	С
31	А	2055	С
31	А	2152	А
31	А	2153	G
31	А	2154	G
31	А	2155	U
31	А	2156	А
31	А	2158	С
31	А	2159	G
31	А	2160	A
31	A	2162	A
31	А	2163	U
31	A	2164	U
31	А	2165	С
31	A	2166	С
31	A	2167	U
31	A	2168	U
31	A	2169	G
31	A	$2\overline{170}$	U
31	A	2171	C
31	А	2176	A
31	А	2177	A

Mol	Chain	Res	Type
31	А	2178	G
31	А	2182	С
31	А	2184	А
31	А	2186	С
31	А	2188	G
31	А	2189	С
31	А	2190	А
31	А	2191	С
31	А	2192	G
31	А	2193	А
31	А	2194	А
31	А	2195	U
31	А	2196	G
31	А	2197	G
31	А	2215	U
31	А	2217	U
31	А	2220	С
31	А	2221	А
31	А	2246	U
31	А	2247	А
31	А	2255	А
31	А	2256	G
31	А	2257	A
31	А	2258	U
31	А	2267	С
31	А	2275	A
31	А	2279	С
31	А	2280	G
31	А	2284	A
31	А	2285	G
31	А	2286	A
31	А	2315	U
31	А	2316	G
31	А	2320	С
31	А	2321	U
31	А	2323	G
31	А	2325	U
31	А	2326	A
31	А	2331	U
31	А	2332	U
31	А	2333	G
31	А	2335	G
	1	1	1

Mol	Chain	Res	Type
31	А	2336	U
31	А	2338	G
31	А	2339	G
31	А	2340	А
31	А	2341	U
31	А	2342	А
31	А	2343	G
31	А	2345	U
31	А	2348	G
31	А	2349	А
31	А	2350	G
31	А	2351	А
31	А	2353	U
31	А	2354	G
31	А	2355	U
31	А	2356	G
31	А	2357	А
31	А	2361	U
31	А	2362	С
31	А	2367	G
31	А	2368	С
31	А	2369	С
31	А	2370	А
31	А	2373	G
31	А	2375	G
31	А	2377	G
31	А	2380	G
31	А	2382	G
31	А	2384	С
31	А	2387	U
31	А	2388	G
31	А	2390	U
31	А	2391	G
31	А	2392	A
31	А	2393	A
31	А	2394	А
31	А	2395	U
31	А	2396	А
31	А	2398	С
31	А	2400	С
31	А	2402	С
31	А	2403	U

Mol	Chain	Res	Type
31	А	2404	G
31	А	2405	А
31	А	2410	А
31	А	2415	G
31	А	2422	А
31	А	2427	G
31	А	2434	А
31	А	2436	А
31	А	2449	А
31	А	2462	G
31	А	2463	G
31	А	2470	А
31	А	2507	С
31	A	2510	A
31	А	2511	A
31	A	2512	A
31	А	2529	А
31	А	2530	С
31	А	2531	G
31	А	2532	G
31	А	2533	С
31	А	2534	А
31	А	2540	G
31	А	2546	А
31	А	2549	G
31	А	2558	С
31	А	2559	А
31	А	2571	С
31	А	2574	С
31	A	2585	U
31	A	2601	A
31	А	2607	G
31	A	2609	A
31	A	2620	G
31	A	2623	A
31	A	2647	U
31	A	2649	А
31	A	2652	G
31	A	2653	G
31	A	2654	А
31	A	2665	С
31	А	2672	А

Mol	Chain	Res	Type
31	А	2693	А
31	А	2699	С
31	А	2700	А
31	А	2703	U
31	А	2704	С
31	А	2715	U
31	А	2726	G
31	А	2729	G
31	А	2730	U
31	А	2737	G
31	А	2742	А
31	А	2744	С
31	А	2753	G
31	A	2755	A
31	А	2758	А
31	А	2766	А
31	А	2775	С
31	А	2776	U
31	А	2777	G
31	А	2778	U
31	А	2779	U
31	А	2789	А
31	А	2790	А
31	А	2791	G
31	А	2796	А
31	А	2801	А
31	А	2826	А
31	А	2833	U
31	А	2834	С
31	А	2837	U
31	А	2839	U
31	А	2847	G
31	А	2854	А
31	A	2878	А
31	A	2884	А
31	А	2885	G
31	А	2893	G
31	A	2915	С
31	A	2926	А
31	A	2936	С
31	А	2938	G
31	А	2950	С

Mol	Chain	Res	Type
31	А	2957	А
31	А	2964	А
31	А	2968	G
31	А	2972	А
31	А	2982	А
31	А	2989	А
31	А	3002	А
31	А	3013	С
31	А	3015	С
31	А	3021	А
31	А	3022	G
31	А	3023	G
31	А	3024	А
31	А	3029	U
31	А	3042	А
31	А	3082	U
31	А	3088	С
31	А	3093	А
31	А	3101	С
31	А	3104	А
31	А	3105	С
31	А	3108	G
31	А	3112	А
31	А	3115	А
31	А	3119	А
31	А	3120	С

All (22) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
4	В	2	U
4	В	28	А
4	В	33	С
31	А	137	G
31	А	199	U
31	А	228	А
31	А	326	А
31	А	448	U
31	А	571	А
31	A	879	А
31	А	899	G
31	А	940	А

Mol	Chain	Res	Type
31	А	942	U
31	А	980	С
31	А	981	U
31	А	1163	А
31	А	1196	С
31	А	1204	А
31	А	2050	С
31	А	2339	G
31	A	2356	G
31	А	2381	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
33	CLM	А	3201	-	20,20,20	0.76	1 (5%)	23,27,27	1.57	4 (17%)
32	GCP	4	501	-	27,34,34	1.29	4 (14%)	35,54,54	1.88	7 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	CLM	А	3201	-	-	3/20/22/22	0/1/1/1
32	GCP	4	501	-	-	2/15/38/38	0/3/3/3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	4	501	GCP	C5-C6	3.49	1.47	1.41
32	4	501	GCP	PG-O3G	2.62	1.60	1.55
32	4	501	GCP	PG-O2G	2.36	1.60	1.55
33	А	3201	CLM	O9A-N9	-2.13	1.21	1.35
32	4	501	GCP	PB-O1B	-2.01	1.46	1.51

All (11) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	4	501	GCP	PB-O3A-PA	-4.93	116.28	132.37
32	4	501	GCP	C2-N3-C4	4.91	120.78	115.48
32	4	501	GCP	C2-N1-C6	4.36	122.02	115.96
33	А	3201	CLM	C3-N2-C2	-4.20	115.94	123.25
33	А	3201	CLM	C5-C3-N2	3.66	116.64	110.03
32	4	501	GCP	C5-C6-N1	-3.55	118.67	123.42
32	4	501	GCP	N3-C2-N1	-3.45	122.83	127.21
33	А	3201	CLM	C6-C5-C3	3.35	117.73	111.72
32	4	501	GCP	C4-C5-C6	-2.99	116.66	121.23
33	А	3201	CLM	O5-C5-C3	2.53	114.62	107.90
32	4	501	GCP	C4-C5-N7	-2.28	106.93	109.34

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
33	А	3201	CLM	CL2-C1-C2-N2
32	4	501	GCP	C4'-C5'-O5'-PA
33	А	3201	CLM	N2-C3-C4-O4
32	4	501	GCP	O4'-C4'-C5'-O5'
33	А	3201	CLM	CL2-C1-C2-O2

There are no ring outliers.

2 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
33	А	3201	CLM	4	0
32	4	501	GCP	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-43477. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

Primary map 6.3.1

X Index: 255

Z Index: 238

6.3.2Raw map

X Index: 0

Y Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.2. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 633 nm^3 ; this corresponds to an approximate mass of 571 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.308 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.308 \AA^{-1}

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.25	-	-
Author-provided FSC curve	3.25	3.45	3.27
Unmasked-calculated*	3.90	6.29	3.97

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.90 differs from the reported value 3.25 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-43477 and PDB model 8VR8. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.2 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.2).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 82% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.2) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8220	0.5120
2	0.8740	0.5680
3	0.8990	0.5840
4	0.5370	0.4270
А	0.8400	0.5070
В	0.8350	0.4910
С	0.8570	0.5670
D	0.8880	0.5820
E	0.8560	0.5630
G	0.7300	0.5010
Н	0.4990	0.4260
Ι	0.1200	0.1720
K	0.8960	0.5790
L	0.8780	0.5730
М	0.8680	0.5670
N	0.8790	0.5710
0	0.8980	0.5730
Q	0.8100	0.5570
R	0.9010	0.5740
S	0.8870	0.5830
Т	0.8730	0.5700
U	0.8310	0.5620
V	0.7680	0.5150
W	0.7550	0.5310
Х	0.8590	0.5690
Y	0.8740	0.5630
Z	0.8220	0.5260
b	0.8710	0.5720
С	0.8730	0.5580
d	0.9170	0.5810
e	0.9080	0.5780
f	0.8950	0.5810

