

Apr 30, 2024 – 03:18 PM EDT

PDB ID	:	8UU9
EMDB ID	:	EMD-42576
Title	:	Cryo-EM structure of the ratcheted Listeria innocua 70S ribosome (head-
		swiveled) in complex with HflXr and pe/E-tRNA (structure II-D)
Authors	:	Seely, S.M.; Basu, R.S.; Gagnon, M.G.
Deposited on	:	2023-10-31
Resolution	:	3.10 Å(reported)
Based on initial model	:	7NHN

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	1550	79%	18% ••
2	b	249	90%	10%
3	с	218	93%	6%
4	d	200	• 100%	
5	е	167	93%	7%
6	f	97	96%	•
7	g	156	50% 94%	6%
8	h	132	99%	·

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 17% 9 i 13094% • 5% 10% 10 j 10293% • 6% 12% 11 k 129 88% 12% 121 13799% . 54% 13121 \mathbf{m} 94% 6% 1461 n 98% . 1589 0 98% • i 90 1698% р • 1787 7% q 93% 1879r 81% • 18% 55% 1992 \mathbf{S} 76% 20% • 13% 20 \mathbf{t} 84 95% 5% 63% 2176. . х 68% 26% 24% 22W 2114% 24% 62% 5% 23418v 99% 6% 24А 2932 82% 17% . i 25В 1169% 89% • \mathbf{C} 2627799% D 2720999% Е 2820799% . 22% ••• F 2917997% G 30 17899% L ••• 3114597% 32М 122100% 33 Ν 146100%

Mol	Chain	Length	Quality of chain	
34	О	144	93%	7%
35	Р	135	90%	• 9%
36	Q	119	• 100%	
37	R	114	99%	
38	S	119	• 97%	•••
39	Т	102	99%	
40	U	118	94%	• 5%
41	V	94	- 96%	• •
42	W	103	• 96%	
43	Y	96	- 79%	21%
44	Z	62	95%	5%
45	1	63	95%	5%
46	2	59	95%	5%
47	3	81	43%	14%
48	4	57	93%	7%
49	5	49	98%	
50	6	44	98%	·
51	7	66	98%	
52	8	37	97%	

Continued from previous page...

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 142177 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S Ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1515	Total 32493	C 14494	N 5955	O 10529	Р 1515	0	0

• Molecule 2 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	b	224	Total 1588	C 1011	N 279	O 292	S 6	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	С	204	Total 1150	C 705	N 223	0 221	S 1	0	0

• Molecule 4 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	d	199	Total 1537	C 961	N 286	0 288	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	е	155	Total 1116	C 701	N 203	O 210	${ m S} { m 2}$	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein bS6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	f	93	Total 655	C 423	N 119	0 111	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	g	147	Total 866	C 533	N 173	0 158	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	h	131	Total 1022	C 651	N 180	0 189	${ m S} { m 2}$	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	i	123	Total 833	$\begin{array}{c} \mathrm{C} \\ 520 \end{array}$	N 163	O 149	S 1	0	0

• Molecule 10 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
10	j	96	Total 608	C 376	N 116	0 115	S 1	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	k	114	Total 824	C 508	N 158	0 155	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	1	135	Total 1002	C 621	N 198	0 181	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	m	114	Total 616	C 367	N 134	0 114	S 1	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
14	n	60	Total 445	C 283	N 84	O 73	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	О	87	Total 696	C 433	N 136	0 125	${S \over 2}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein bS16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	р	88	Total 711	C 450	N 132	0 126	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	q	81	Total 629	C 396	N 120	0 112	S 1	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
18	r	65	Total 527	C 339	N 96	O 90	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
19	s	74	Total	С	Ν	0	0	0
10	2		459	279	96	84	Ŭ	Ŭ

• Molecule 20 is a protein called Small ribosomal subunit protein bS20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	t	80	Total 607	C 366	N 124	0 116	S 1	0	0

• Molecule 21 is a RNA chain called pe/E Hybrid State Phenylalanine tRNA.

Mol	Chain	Residues		_	Atom	s			AltConf	Trace
21	x	74	Total 1591	C 713	N 285	O 517	Р 74	${ m S} { m 2}$	0	0

• Molecule 22 is a RNA chain called F-Stop mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
22	W	8	Total 168	C 76	N 29	O 55	Р 8	0	0

• Molecule 23 is a protein called GTPase HflX.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	v	416	Total 3200	C 2015	N 558	0 619	S 8	0	0

• Molecule 24 is a RNA chain called 23S Ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
24	А	2899	Total 62278	C 27794	N 11524	O 20061	Р 2899	0	0

• Molecule 25 is a RNA chain called 5S Ribosomal RNA.

Mol	Chain	Residues		A		AltConf	Trace		
25	В	114	Total 2428	C 1082	N 428	0 804	Р 114	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
26	С	273	Total 2108	C 1307	N 415	O 379	${f S}{7}$	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	D	206	Total 1545	C 974	N 287	0 280	${}^{\mathrm{S}}_{4}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
28	Е	204	Total 1564	C 989	N 288	0 287	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	F	175	Total 1232	C 785	N 211	0 231	${f S}{5}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	G	176	Total 1318	C 830	N 244	0 243	S 1	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	L	143	Total 1128	C 715	N 205	O 205	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	М	122	Total 925	C 573	N 175	0 172	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Ν	146	Total 1112	C 687	N 216	O 208	S 1	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		Atoms					Trace
34	Ο	134	Total 1057	C 677	N 203	0 171	${ m S}{ m 6}$	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	Р	123	Total 986	C 618	N 194	0 173	S 1	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	Q	119	Total 867	C 530	N 172	0 164	S 1	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	R	113	Total 879	C 557	N 168	0 153	S 1	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	S	118	Total 953	C 605	N 188	O 156	$\frac{S}{4}$	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	Т	101	Total 785	C 506	N 134	0 144	S 1	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
40	U	112	Total 864	C 544	N 162	0 158	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	V	93	Total 760	C 482	N 132	0 143	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	W	100	Total 734	$\begin{array}{c} \mathrm{C} \\ 465 \end{array}$	N 137	0 129	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	Y	76	Total 585	C 357	N 114	0 113	S 1	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues	Atoms			AltConf	Trace		
44	Ζ	59	Total 462	C 286	N 97	O 77	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues	Atoms			AltConf	Trace		
45	1	60	Total	С	Ν	Ο	S	0	0
40	1	00	495	304	95	95	1	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues	Atoms			AltConf	Trace		
46	2	56	Total 433	C 272	N 82	0 78	S 1	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein bL31B.

Mol	Chain	Residues	Atoms			AltConf	Trace	
47	3	70	Total 424	C 263	N 78	O 83	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms				AltConf	Trace	
48	4	53	Total 425	C 259	N 87	О 74	${f S}{5}$	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues	Atoms			AltConf	Trace		
49	5	48	Total 394	C 241	N 79	O 70	$\frac{S}{4}$	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues	Atoms			AltConf	Trace		
50	6	43	Total 365	C 222	N 88	O 53	S 2	0	0

• Molecule 51 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms			AltConf	Trace		
51	7	65	Total 529	C 328	N 116	O 80	${f S}{5}$	0	0

• Molecule 52 is a protein called Large ribosomal subunit protein bL36.

Mol	Chain	Residues	Atoms			AltConf	Trace		
52	8	36	Total 292	C 183	N 59	0 44	S 6	0	0

• Molecule 53 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
53	a	202	Total Mg 202 202	0
53	с	1	Total Mg 1 1	0
53	е	1	Total Mg 1 1	0
53	i	1	Total Mg 1 1	0
53	1	1	Total Mg 1 1	0
53	m	1	Total Mg 1 1	0
53	q	1	Total Mg 1 1	0
53	V	3	Total Mg 3 3	0
53	А	256	Total Mg 256 256	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
53	В	4	Total Mg 4 4	0
53	С	2	Total Mg 2 2	0
53	V	1	Total Mg 1 1	0
53	Υ	1	Total Mg 1 1	0

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
54	n	1	Total Zn 1 1	0
54	4	1	Total Zn 1 1	0
54	5	1	Total Zn 1 1	0
54	8	1	Total Zn 1 1	0

• Molecule 55 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (three-letter code: GCP) (formula: $C_{11}H_{18}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms				AltConf	
55	v	1	Total	С	Ν	Ο	Р	0
55	v	V I	32	11	5	13	3	0

• Molecule 56 is water.

Mol	Chain	Residues	Atoms	AltConf
56	a	105	Total O 105 105	0
56	с	1	Total O 1 1	0
56	d	2	Total O 2 2	0
56	е	1	Total O 1 1	0
56	m	2	Total O 2 2	0
56	n	2	Total O 2 2	0
56	р	1	Total O 1 1	0
56	v	2	Total O 2 2	0
56	А	255	Total O 255 255	0
56	В	5	Total O 5 5	0
56	С	1	Total O 1 1	0
56	Ν	4	Total O 4 4	0
56	О	2	Total O 2 2	0
56	Р	1	Total O 1 1	0
56	S	3	Total O 3 3	0
56	Т	1	Total O 1 1	0
56	U	1	Total O 1 1	0
56	V	3	Total O 3 3	0
56	Y	1	Total O 1 1	0
56	Z	2	Total O 2 2	0
56	2	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S Ribosomal RNA

• Molecule 13: Small ribosomal subunit protein uS13

C2465 C2465 A2465 A2465 A2465 A2465 A2473 C2473 C2473 C2473 C2498 C2498 C2498 C2498 C2508 C2508 C2508 C2508 C2538 C2565 C2538 C25688 C2568 C25688 C25688 C2568 C2568 C2568 C2568 C2568 C2568 C25	02615 02616
U2642 U2646 U2646 U2646 U2648 U2663 Q2663 Q2663 Q2663 Q2663 Q2663 Q2765 Q2724 Q2724 Q2765 Q2855 Q	A2852 C2857
A 2862 A 2862 A 2864 A 2864 C 2896 C 2896 C 2908 C	
\bullet Molecule 25: 5S Ribosomal RNA	
Chain B: 89% 9% ·	
U C C C C C C C C C C C C C	
• Molecule 26: Large ribosomal subunit protein uL2	
Chain C: 99%	
A2 R274 L175 L175 L175	
• Molecule 27: Large ribosomal subunit protein uL3	
Chain D: 99% ·	
MET 12 ALA LVS LVS	
• Molecule 28: Large ribosomal subunit protein uL4	
Chain E: 99%	
MET Ka Ala Ala	
• Molecule 29: Large ribosomal subunit protein uL5	
Chain F: 97%	
MET N2 R12 R12 M21 Y22 D42 A45 A45 A45 A45 A45 A45 R45 R45 R45 R45 R45 R45 R45 R45 R45 R	1141 1142 1143 1144 1145 1145 1145 1146 1146 1146 1156
SX1 RTR	

• Molecule 30: Large ribo	somal subunit protein uL6	
Chain G:	99%	
MET SER RS E46 647 048 E46 647 E49 E49 E101 E114 E114 K178		
• Molecule 31: Large ribo	somal subunit protein uL13	
Chain L:	97%	
MET R2 R136 R134 GLY		
• Molecule 32: Large ribo	somal subunit protein uL14	
Chain M:	100%	
There are no outlier reside	ues recorded for this chain.	
• Molecule 33: Large ribo	somal subunit protein uL15	
Chain N:	100%	
<mark>₩</mark> 1146 6		
• Molecule 34: Large ribo	somal subunit protein uL16	
Chain O:	93%	7%
M M 134 GLV GLV GLV GLV GLV SER SER		
• Molecule 35: Large ribo	somal subunit protein bL17	
Chain P:	90%	• 9%
MET G2 Y1 Y16 V16 C1 V16 C1 V16 C1 V16 C1 V11 C1 V16 C1 V16 C1 V11 C1 V16 C1 V16 C1 V16 C1 V16 C1 V16 C1 V16 C1 V16 C1 V16 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	<mark>1135</mark>	
• Molecule 36: Large ribo	somal subunit protein uL18	
Chain Q:	100%	
M1 562 F119		

• Molecule 37: Large ribosomal subunit protein bL19

W O R L D W I D E PROTEIN DATA BANK

Chain R:	99%	
M E34 C35 C35 C35 C35 E38 E38 E38 E1113 ARG		
• Molecule 38: Larg	e ribosomal subunit protein bL20	
Chain S:	97%	
MET P2 N101 D102 K119		
• Molecule 39: Larg	e ribosomal subunit protein bL21	
Chain T:	99%	
M101 ALA		
• Molecule 40: Larg	e ribosomal subunit protein uL22	
Chain U:	94%	• 5%
ALA SER SER SER SER V V 115 CLU GLY GLY		
• Molecule 41: Larg	e ribosomal subunit protein uL23	
Chain V:	96%	
142 142 143 144 144 145 167 167 167		
• Molecule 42: Larg	e ribosomal subunit protein uL24	
Chain W:	96%	
M 687 897 897 100 11E ASP ASP		
• Molecule 43: Larg	e ribosomal subunit protein bL27	
Chain Y:	79%	21%
LEU LEU LYS LYS ASP ASP ASP ASP ASP ASP ASP ASP ASP CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	S17 S17 B83 CIN GLU GLU ALA	
	PROTEIN DATA BANK	

• Molecule 44:	Large ribosomal subunit protein bL28		
Chain Z:	95%	5%	
MET A2 660 ARG VAL			
• Molecule 45:	Large ribosomal subunit protein uL29		
Chain 1:	95%	5%	
MET LYS A3 L62 ALA			
• Molecule 46:	Large ribosomal subunit protein uL30		
Chain 2:	95%	5%	
MET ALA K3 E58 VAL			
• Molecule 47:	Large ribosomal subunit protein bL31B		
Chain 3:	43% 86%	14%	
M1 K2 T3 G4 D16 S18 S18 S18 S19	P20 F21 F21 F23 F23 F23 F23 S30 S30 S31 S31 S31 S31 S32 S32 S32 S32 S32 S32 S32 S32 S32 S32	T59 G60 G60 G1X G40 G40 G40 G40 G40 G40 G41 G40 G41 G41 G41 G41 G41 G41 G42 G43 G44 G44 G44 G44 G44 G44 G44 G44 G44 G44	GLY LEU LYS
• Molecule 48:	Large ribosomal subunit protein bL32		
Chain 4:	93%	7%	
MET A2 V54 ALA ALA SER SER			
• Molecule 49:	Large ribosomal subunit protein bL33		
Chain 5:	98%		
M1 T48 LYS			
• Molecule 50:	Large ribosomal subunit protein bL34		
Chain 6:	98%		
M1 S43 ALA			

• Molecule 51: Large ribosomal subunit protein bL35

Chain 8:

97%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	80381	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.0	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2300	Depositor
Magnification	96000	Depositor
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	31.784	Depositor
Minimum map value	-18.322	Depositor
Average map value	-0.002	Depositor
Map value standard deviation	1.115	Depositor
Recommended contour level	3.4	Depositor
Map size (Å)	435.2, 435.2, 435.2	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.85, 0.85, 0.85	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PSU, 4SU, MG, MIA, GCP, ZN, 5MU, 7MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	а	0.58	0/36378	0.87	25/56739~(0.0%)
2	b	0.28	0/1612	0.46	0/2195
3	с	0.31	0/1160	0.55	1/1601~(0.1%)
4	d	0.33	0/1564	0.53	0/2109
5	е	0.33	0/1129	0.57	0/1530
6	f	0.29	0/666	0.52	0/909
7	g	0.28	0/871	0.55	0/1190
8	h	0.38	0/1035	0.56	0/1392
9	i	0.35	0/845	0.58	0/1146
10	j	0.37	0/617	0.55	0/845
11	k	0.28	0/838	0.53	0/1132
12	1	0.37	0/1017	0.61	0/1375
13	m	0.25	0/617	0.49	0/843
14	n	0.40	0/453	0.56	0/608
15	0	0.29	0/706	0.59	0/952
16	р	0.37	0/724	0.56	0/970
17	q	0.31	0/638	0.53	0/860
18	r	0.31	0/535	0.55	0/716
19	s	0.31	0/466	0.62	0/636
20	\mathbf{t}	0.28	0/610	0.52	0/813
21	Х	0.28	0/1605	0.82	0/2497
22	W	0.38	0/187	1.10	0/288
23	V	0.31	0/3240	0.52	0/4380
24	А	0.51	0/69775	0.80	10/108849~(0.0%)
25	В	0.31	0/2711	0.76	0/4224
26	С	0.32	0/2144	0.56	0/2875
27	D	0.34	0/1567	0.55	0/2111
28	Ε	0.31	$0/1\overline{584}$	0.53	$0/2\overline{134}$
29	F	0.28	0/1249	0.55	0/1704
30	G	0.28	0/1339	0.51	0/1811
31	L	0.33	0/1151	0.54	1/1546~(0.1%)
32	М	0.32	0/932	0.56	0/1248

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	N	0.30	0/1123	0.55	0/1492	
34	0	0.32	0/1079	0.54	0/1442	
35	Р	0.32	0/997	0.60	1/1333~(0.1%)	
36	Q	0.27	0/874	0.55	0/1175	
37	R	0.31	0/891	0.55	0/1199	
38	S	0.36	0/966	0.53	0/1284	
39	Т	0.35	0/798	0.49	0/1071	
40	U	0.32	0/874	0.55	0/1182	
41	V	0.35	0/769	0.56	0/1029	
42	W	0.30	0/744	0.49	0/998	
43	Y	0.35	0/592	0.60	0/788	
44	Ζ	0.29	0/467	0.58	0/619	
45	1	0.27	0/496	0.55	0/662	
46	2	0.28	0/436	0.56	0/585	
47	3	0.24	0/431	0.48	0/591	
48	4	0.34	0/433	0.59	0/577	
49	5	0.30	0/398	0.58	0/534	
50	6	0.32	0/368	0.64	0/479	
51	7	0.31	0/536	0.64	0/696	
52	8	0.32	0/295	0.56	0/387	
All	All	0.48	0/153532	0.76	38/230351~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
19	s	0	1
31	L	0	1
All	All	0	2

There are no bond length outliers.

All (38) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
24	А	308	U	C2-N1-C1'	6.86	125.93	117.70
1	a	970	U	C2-N3-C4	-6.73	122.96	127.00
24	А	1357	U	C2-N1-C1'	6.68	125.72	117.70
1	а	519	С	C2-N1-C1'	-6.61	111.53	118.80
1	а	1075	С	C2-N1-C1'	6.52	125.98	118.80
1	а	762	С	C2-N1-C1'	6.38	125.82	118.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	969	U	C2-N1-C1'	6.32	125.28	117.70
24	А	1703	А	O4'-C1'-N9	6.25	113.20	108.20
3	с	195	LEU	CA-CB-CG	6.08	129.27	115.30
1	a	1166	С	C2-N1-C1'	6.02	125.42	118.80
1	a	1366	С	C5-C6-N1	6.01	124.01	121.00
1	a	1366	С	C6-N1-C2	-5.98	117.91	120.30
1	a	970	U	N1-C2-N3	5.86	118.42	114.90
1	a	969	U	N1-C2-O2	5.73	126.81	122.80
24	А	554	С	C2-N1-C1'	5.65	125.01	118.80
24	А	231	А	O4'-C1'-N9	5.61	112.69	108.20
1	a	336	С	N1-C2-O2	5.52	122.21	118.90
1	a	993	С	C6-N1-C2	-5.50	118.10	120.30
1	a	67	С	C6-N1-C2	-5.46	118.12	120.30
1	a	1136	G	C4-N9-C1'	5.45	133.58	126.50
1	a	1208	А	P-O3'-C3'	5.44	126.23	119.70
24	А	2539	U	C2-N1-C1'	5.42	124.20	117.70
24	А	1358	С	C2-N1-C1'	5.39	124.73	118.80
1	a	336	С	C2-N1-C1'	5.33	124.67	118.80
1	a	1002	G	N3-C4-N9	5.28	129.17	126.00
24	А	2789	U	P-O3'-C3'	5.26	126.01	119.70
1	a	1136	G	C8-N9-C1'	-5.25	120.17	127.00
1	a	477	U	N3-C2-O2	-5.20	118.56	122.20
31	L	136	GLN	C-N-CA	5.19	134.67	121.70
35	Р	134	LEU	CA-CB-CG	5.17	127.19	115.30
1	a	756	А	P-O3'-C3'	5.15	125.88	119.70
1	a	519	С	C6-N1-C1'	5.13	126.96	120.80
1	a	476	С	C2-N1-C1'	5.13	124.44	118.80
24	А	592	А	N1-C6-N6	-5.10	115.54	118.60
1	a	1110	А	P-O3'-C3'	5.07	125.78	119.70
1	a	1166	С	N1-C2-O2	5.07	121.94	118.90
1	a	1210	С	C5-C6-N1	5.07	123.53	121.00
24	А	308	U	C6-N1-C1'	-5.02	114.17	121.20

Continued from previous page...

There are no chirality outliers.

All (2)	planarity	outliers	are	listed	below:
-----------	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Group
31	L	137	LYS	Peptide
19	s	36	ARG	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	b	222/249~(89%)	207~(93%)	15 (7%)	0	100	100
3	с	202/218~(93%)	171 (85%)	31 (15%)	0	100	100
4	d	197/200~(98%)	180 (91%)	17 (9%)	0	100	100
5	е	153/167~(92%)	142 (93%)	11 (7%)	0	100	100
6	f	91/97~(94%)	84 (92%)	7 (8%)	0	100	100
7	g	145/156~(93%)	122 (84%)	23 (16%)	0	100	100
8	h	129/132~(98%)	124 (96%)	5 (4%)	0	100	100
9	i	121/130 (93%)	111 (92%)	10 (8%)	0	100	100
10	j	94/102~(92%)	83 (88%)	10 (11%)	1 (1%)	14	46
11	k	112/129~(87%)	102 (91%)	10 (9%)	0	100	100
12	1	133/137~(97%)	126 (95%)	7 (5%)	0	100	100
13	m	112/121 (93%)	100 (89%)	12 (11%)	0	100	100
14	n	58/61~(95%)	52 (90%)	6 (10%)	0	100	100
15	0	85/89~(96%)	83 (98%)	2 (2%)	0	100	100
16	р	86/90~(96%)	82 (95%)	4 (5%)	0	100	100
17	q	79/87~(91%)	74 (94%)	5 (6%)	0	100	100
18	r	63/79~(80%)	59 (94%)	3 (5%)	1 (2%)	9	37
19	S	70/92~(76%)	54 (77%)	14 (20%)	2(3%)	4	24
20	t	78/84~(93%)	76 (97%)	2 (3%)	0	100	100
23	V	414/418 (99%)	384 (93%)	30 (7%)	0	100	100
26	С	271/277 (98%)	258 (95%)	13 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
27	D	204/209~(98%)	193~(95%)	11 (5%)	0	100	100
28	Е	202/207~(98%)	189 (94%)	13 (6%)	0	100	100
29	F	173/179~(97%)	161 (93%)	12 (7%)	0	100	100
30	G	174/178~(98%)	163 (94%)	11 (6%)	0	100	100
31	L	141/145~(97%)	137 (97%)	3 (2%)	1 (1%)	22	57
32	М	120/122~(98%)	114 (95%)	6 (5%)	0	100	100
33	Ν	144/146~(99%)	137 (95%)	7 (5%)	0	100	100
34	Ο	132/144 (92%)	128 (97%)	4 (3%)	0	100	100
35	Р	119/135~(88%)	113 (95%)	5 (4%)	1 (1%)	19	54
36	Q	117/119~(98%)	111 (95%)	6 (5%)	0	100	100
37	R	111/114 (97%)	106 (96%)	5 (4%)	0	100	100
38	S	116/119~(98%)	111 (96%)	4 (3%)	1 (1%)	17	52
39	Т	99/102~(97%)	92 (93%)	7 (7%)	0	100	100
40	U	110/118 (93%)	105 (96%)	4 (4%)	1 (1%)	17	52
41	V	91/94~(97%)	84 (92%)	7 (8%)	0	100	100
42	W	98/103~(95%)	95 (97%)	2 (2%)	1 (1%)	15	49
43	Y	74/96~(77%)	67 (90%)	7 (10%)	0	100	100
44	Z	57/62~(92%)	52 (91%)	5 (9%)	0	100	100
45	1	58/63~(92%)	55 (95%)	3 (5%)	0	100	100
46	2	54/59~(92%)	51 (94%)	3 (6%)	0	100	100
47	3	66/81~(82%)	53 (80%)	13 (20%)	0	100	100
48	4	51/57~(90%)	48 (94%)	3 (6%)	0	100	100
49	5	46/49~(94%)	46 (100%)	0	0	100	100
50	6	41/44 (93%)	41 (100%)	0	0	100	100
51	7	63/66~(96%)	58 (92%)	5 (8%)	0	100	100
52	8	34/37~(92%)	33 (97%)	1 (3%)	0	100	100
All	All	5610/5963~(94%)	5217 (93%)	384 (7%)	9 (0%)	50	79

Continued from previous page...

All (9) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
19	s	9	PRO
31	L	137	LYS
	<i>a i</i> :	1	

Continued from previous page...

Mol	Chain	Res	Type
10	j	57	LYS
18	r	14	VAL
38	S	102	ASP
35	Р	3	TYR
42	W	97	SER
19	s	12	ASP
40	U	5	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	b	138/214~(64%)	137~(99%)	1 (1%)	84 93
3	с	41/177~(23%)	41 (100%)	0	100 100
4	d	154/170~(91%)	154 (100%)	0	100 100
5	е	116/131~(88%)	116 (100%)	0	100 100
6	f	50/85~(59%)	50 (100%)	0	100 100
7	g	38/130~(29%)	38 (100%)	0	100 100
8	h	109/110~(99%)	109 (100%)	0	100 100
9	i	63/102~(62%)	62~(98%)	1 (2%)	62 84
10	j	35/93~(38%)	35~(100%)	0	100 100
11	k	83/100~(83%)	83 (100%)	0	100 100
12	1	105/118~(89%)	105 (100%)	0	100 100
13	m	13/102~(13%)	13~(100%)	0	100 100
14	n	41/52~(79%)	41 (100%)	0	100 100
15	О	72/81~(89%)	72 (100%)	0	100 100
16	р	78/80~(98%)	78 (100%)	0	100 100
17	q	$6\overline{5}/78~(83\%)$	65~(100%)	0	100 100
18	r	58/67~(87%)	58 (100%)	0	100 100
19	s	$2\overline{1/78}~(27\%)$	20 (95%)	1 (5%)	25 58

$\alpha \cdot \cdot \cdot \cdot$	r		
Continued	from	previous	page
	9	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
20	t	62/66~(94%)	62~(100%)	0	100	100
23	v	329/365~(90%)	327~(99%)	2(1%)	86	94
26	\mathbf{C}	221/225~(98%)	221 (100%)	0	100	100
27	D	159/171~(93%)	159~(100%)	0	100	100
28	Ε	170/174~(98%)	170~(100%)	0	100	100
29	F	114/155~(74%)	112 (98%)	2(2%)	59	82
30	G	136/147~(92%)	136 (100%)	0	100	100
31	L	120/121~(99%)	120 (100%)	0	100	100
32	М	101/101 (100%)	101 (100%)	0	100	100
33	Ν	115/115~(100%)	115 (100%)	0	100	100
34	Ο	105/113~(93%)	105 (100%)	0	100	100
35	Р	102/111~(92%)	102 (100%)	0	100	100
36	Q	83/97~(86%)	83 (100%)	0	100	100
37	R	92/99~(93%)	92~(100%)	0	100	100
38	S	96/97~(99%)	94~(98%)	2(2%)	53	79
39	Т	82/82~(100%)	82 (100%)	0	100	100
40	U	93/97~(96%)	93~(100%)	0	100	100
41	V	83/84~(99%)	80~(96%)	3~(4%)	35	67
42	W	78/88~(89%)	78~(100%)	0	100	100
43	Y	61/76~(80%)	61~(100%)	0	100	100
44	Ζ	50/53~(94%)	50 (100%)	0	100	100
45	1	53/55~(96%)	53~(100%)	0	100	100
46	2	50/52~(96%)	50 (100%)	0	100	100
47	3	27/73~(37%)	27~(100%)	0	100	100
48	4	47/50~(94%)	47 (100%)	0	100	100
49	5	44/48~(92%)	44 (100%)	0	100	100
50	6	39/39~(100%)	39 (100%)	0	100	100
51	7	55/56~(98%)	55 (100%)	0	100	100
52	8	35/35~(100%)	35 (100%)	0	100	100
All	All	4082/5013~(81%)	4070 (100%)	12 (0%)	92	96

All (12) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
2	b	169	GLU
9	i	106	ARG
19	s	78	ARG
23	V	45	ARG
23	V	208	THR
29	F	3	ARG
29	F	78	ARG
38	S	101	ASN
38	S	102	ASP
41	V	42	ILE
41	V	43	GLU
41	V	44	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (49) such sidechains are listed below:

Mol	Chain	Res	Type
2	b	15	HIS
4	d	59	HIS
4	d	73	ASN
4	d	85	ASN
4	d	96	ASN
4	d	112	GLN
4	d	116	HIS
5	е	71	ASN
8	h	22	HIS
9	i	81	HIS
12	1	86	ASN
15	0	18	HIS
16	р	85	ASN
17	q	5	ASN
17	q	49	HIS
18	r	56	GLN
19	s	69	HIS
20	t	21	ASN
20	t	24	GLN
23	V	67	GLN
23	V	117	GLN
23	V	119	GLN
23	V	148	ASN
23	V	203	ASN
23	V	264	HIS
26	С	53	HIS
26	С	194	GLN

Mol	Chain	Res	Type
27	D	50	GLN
27	D	68	HIS
27	D	152	ASN
28	Е	119	ASN
30	G	20	ASN
30	G	51	ASN
30	G	97	GLN
31	L	97	ASN
31	L	136	GLN
32	М	4	GLN
33	N	27	ASN
39	Т	90	GLN
40	U	107	HIS
41	V	73	ASN
42	W	67	ASN
43	Y	20	ASN
44	Ζ	16	ASN
44	Ζ	34	GLN
47	3	55	HIS
49	5	16	ASN
49	5	26	ASN
51	7	35	ASN

Continued from previous page...

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1511/1550~(97%)	281~(18%)	0
21	Х	71/76~(93%)	17 (23%)	0
22	W	7/21~(33%)	5 (71%)	0
24	А	2895/2932~(98%)	473 (16%)	28~(0%)
25	В	113/116~(97%)	11 (9%)	0
All	All	4597/4695~(97%)	787~(17%)	28~(0%)

All (787) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	а	9	G
1	a	22	G
1	а	31	G
1	a	32	А
1	a	39	G

Mol	Chain	Res	Type
1	a	44	G
1	a	47	С
1	a	48	С
1	a	51	A
1	a	66	А
1	a	68	G
1	a	69	A
1	a	70	A
1	a	71	С
1	a	73	G
1	a	95	A
1	a	96	G
1	a	97	U
1	a	99	A
1	a	100	G
1	a	101	U
1	a	107	A
1	a	114	А
1	a	119	С
1	a	128	А
1	a	130	С
1	a	143	U
1	a	154	С
1	a	159	А
1	a	160	А
1	a	162	С
1	a	164	G
1	a	173	А
1	a	182	U
1	a	189	U
1	a	195	A
1	a	209	A
1	a	211	A
1	a	212	G
1	a	218	U
1	a	219	U
1	a	220	С
1	a	222	G
1	a	239	G
1	a	249	G
1	a	253	U
1	a	255	G

Continued from previous page...

Mol	Chain	Res	Type
1	a	259	G
1	a	265	А
1	a	274	G
1	a	275	С
1	a	288	С
1	a	297	G
1	a	329	А
1	a	336	C
1	a	340	G
1	a	351	U
1	a	353	С
1	a	354	G
1	a	355	G
1	a	360	С
1	a	362	G
1	a	372	А
1	a	373	U
1	a	375	U
1	a	380	С
1	a	381	A
1	a	392	G
1	a	400	G
1	a	412	G
1	a	414	G
1	a	416	A
1	a	417	U
1	a	420	A
1	a	421	G
1	a	423	A
1	a	429	U
1	a	430	С
1	a	431	G
1	a	432	G
1	a	437	U
1	a	441	G
1	a	447	U
1	a	454	A
1	a	456	A
1	a	457	A
1	a	460	A
1	a	461	С
1	a	462	A

Mol	Chain	Res	Type
1	a	463	А
1	a	467	U
1	a	468	А
1	a	469	A
1	a	471	А
1	a	473	U
1	a	483	U
1	a	486	С
1	a	487	U
1	a	488	U
1	a	489	G
1	a	492	G
1	a	493	G
1	a	494	U
1	a	503	А
1	a	505	А
1	a	508	G
1	a	511	A
1	a	513	G
1	a	514	G
1	a	515	C
1	a	519	С
1	a	526	С
1	a	529	G
1	a	535	G
1	a	538	G
1	a	539	U
1	a	541	А
1	a	552	G
1	a	553	С
1	a	555	A
1	a	567	A
1	a	570	U
1	a	572	U
1	a	576	G
1	a	580	A
1	a	581	A
1	a	584	С
1	a	585	G
1	a	587	G
1	a	596	G
1	a	604	A

Mol	Chain	Res	Type
1	a	628	U
1	a	643	А
1	a	657	G
1	a	661	G
1	a	673	А
1	a	679	G
1	a	683	А
1	a	695	А
1	a	702	А
1	a	711	G
1	a	712	А
1	a	729	А
1	a	731	U
1	a	739	G
1	a	741	G
1	a	742	A
1	a	750	G
1	a	757	А
1	a	763	G
1	a	768	G
1	a	786	G
1	a	789	А
1	a	801	U
1	a	802	А
1	a	825	C
1	a	829	G
1	a	848	G
1	a	855	С
1	a	881	A
1	a	923	А
1	a	935	G
1	a	936	G
1	a	940	С
1	a	943	С
1	a	944	А
1	a	954	G
1	a	957	С
1	a	965	U
1	a	966	U
1	a	969	U
1	a	970	U
1	a	974	A

Mol	Chain	Res	Type
1	a	977	А
1	a	978	А
1	a	980	G
1	a	981	С
1	a	982	G
1	a	984	А
1	a	985	G
1	a	986	А
1	a	992	А
1	a	1001	U
1	a	1002	G
1	a	1003	А
1	a	1005	А
1	a	1010	U
1	a	1012	G
1	a	1013	А
1	a	1018	U
1	a	1022	G
1	a	1032	U
1	a	1033	U
1	a	1035	С
1	a	1046	С
1	a	1048	А
1	a	1050	G
1	a	1051	U
1	a	1052	G
1	a	1053	А
1	a	1055	А
1	a	1062	G
1	a	1063	С
1	a	1066	G
1	a	1067	G
1	a	1069	U
1	a	1074	U
1	a	1075	С
1	a	1090	G
1	a	1094	U
1	a	1103	G
1	a	1104	U
1	a	1110	A
1	a	1111	А
1	a	1133	G

Mol	Chain	Res	Type
1	a	1135	U
1	a	1141	С
1	a	1142	А
1	a	1147	G
1	a	1148	U
1	a	1156	U
1	a	1165	А
1	a	1167	U
1	a	1176	А
1	a	1178	G
1	a	1181	G
1	a	1191	G
1	a	1203	А
1	a	1204	A
1	a	1208	А
1	a	1209	U
1	a	1219	U
1	a	1220	А
1	a	1231	U
1	a	1232	A
1	a	1233	С
1	a	1234	А
1	a	1235	С
1	a	1245	А
1	a	1264	С
1	a	1267	G
1	a	1274	С
1	a	1276	А
1	a	1287	А
1	a	1293	U
1	a	1294	A
1	a	1295	А
1	a	1306	A
1	a	1307	G
1	a	1308	U
1	a	1309	U
1	a	1312	G
1	a	1325	A
1	a	1329	С
1	a	1342	С
1	a	1343	C
1	a	1355	U

Mol	Chain	Res	Type
1	a	1368	G
1	a	1371	U
1	a	1377	G
1	a	1388	U
1	a	1401	А
1	a	1405	А
1	a	1429	U
1	a	1447	U
1	a	1449	G
1	a	1453	А
1	a	1456	С
1	a	1495	G
1	a	1498	U
1	a	1500	А
1	a	1502	G
1	a	1514	U
1	a	1515	А
1	a	1525	G
1	a	1527	А
1	a	1537	G
1	a	1538	G
1	a	1539	А
1	a	1542	А
1	a	1545	U
21	Х	7	А
21	х	8	4SU
21	Х	9	А
21	Х	10	G
21	Х	19	G
21	Х	26	А
21	Х	29	G
21	Х	30	G
21	х	35	А
21	х	36	А
21	х	44	G
21	х	45	U
21	х	46	7MG
21	х	48	С
21	х	52	G
21	х	73	А
21	х	76	A
22	W	12	А

Mol	Chain	Res	Type
22	W	14	U
22	W	16	С
22	W	17	U
22	W	18	А
24	А	13	А
24	А	14	А
24	А	28	А
24	А	34	U
24	А	46	С
24	А	51	G
24	А	60	G
24	А	71	А
24	А	75	G
24	A	89	U
24	А	93	U
24	А	100	U
24	А	101	G
24	А	117	А
24	А	119	U
24	А	125	А
24	А	126	А
24	А	130	А
24	А	139	А
24	А	140	G
24	А	145	A
24	А	156	А
24	А	161	А
24	А	162	А
24	А	164	A
24	А	186	С
24	А	187	С
24	А	198	А
24	A	199	A
24	A	201	A
24	A	215	A
24	A	218	A
24	А	223	A
24	А	224	A
24	А	228	A
24	А	230	A
24	А	231	A
24	А	232	U

Mol	Chain	Res	Type
24	А	235	А
24	А	241	U
24	А	247	G
24	А	250	G
24	А	257	А
24	А	267	А
24	А	274	А
24	А	282	G
24	А	283	С
24	А	285	U
24	А	287	С
24	А	289	U
24	А	290	С
24	А	295	G
24	А	296	G
24	А	299	G
24	А	300	U
24	А	301	A
24	А	307	С
24	А	308	U
24	А	309	С
24	А	313	А
24	А	320	U
24	А	323	А
24	А	345	G
24	А	354	А
24	А	360	G
24	А	372	A
24	А	373	A
24	А	374	С
24	А	375	A
24	А	388	A
24	А	396	U
24	А	404	А
24	A	406	A
24	А	410	G
24	А	411	A
24	А	417	A
24	A	418	G
24	A	420	A
24	А	432	G
24	А	433	U

Mol	Chain	Res	Type
24	А	457	G
24	А	458	А
24	А	470	G
24	А	490	С
24	А	501	С
24	А	503	А
24	А	513	G
24	А	527	G
24	А	536	А
24	А	550	А
24	А	552	U
24	А	553	U
24	А	554	С
24	А	555	С
24	А	567	G
24	А	576	U
24	А	577	А
24	А	578	G
24	А	591	А
24	А	592	А
24	А	593	U
24	А	594	G
24	А	606	G
24	А	616	G
24	А	618	А
24	А	646	А
24	А	657	А
24	А	658	А
24	А	659	А
24	А	666	А
24	А	667	G
24	А	672	А
24	А	679	G
24	А	682	А
24	А	689	A
24	А	690	U
24	А	699	U
24	А	700	А
24	А	718	С
24	А	732	U
24	А	760	U
24	A	763	U

Mol	Chain	Res	Type
24	А	764	А
24	А	776	U
24	А	786	С
24	А	793	U
24	А	794	G
24	А	810	А
24	А	811	G
24	А	821	G
24	А	823	G
24	А	825	А
24	А	828	А
24	А	830	U
24	А	836	U
24	А	838	G
24	А	851	G
24	А	858	С
24	А	865	А
24	А	873	U
24	А	874	U
24	А	891	U
24	А	892	А
24	А	893	А
24	А	906	G
24	А	913	А
24	А	928	G
24	А	929	G
24	А	944	С
24	А	945	С
24	А	954	А
24	А	957	А
24	A	959	С
24	А	964	А
24	A	973	U
$\overline{24}$	A	974	A
24	A	976	U
$\overline{24}$	A	979	U
24	А	980	А
24	A	987	A
24	A	991	A
24	A	992	G
24	А	1007	G
24	А	1020	А

Mol	Chain	Res	Type
24	А	1025	А
24	А	1029	А
24	А	1042	А
24	А	1051	С
24	А	1058	U
24	А	1059	А
24	А	1072	А
24	А	1073	А
24	А	1079	U
24	А	1092	А
24	А	1093	G
24	А	1106	U
24	А	1113	А
$\overline{24}$	A	1115	A
24	А	1116	А
24	А	1117	G
24	А	1123	А
24	А	1130	А
24	А	1131	А
24	А	1134	А
24	А	1141	А
24	А	1142	А
24	А	1157	А
24	А	1158	G
24	А	1161	А
24	А	1173	А
24	А	1174	А
24	А	1178	U
24	А	1179	А
24	А	1181	С
24	A	1182	G
24	A	1188	А
24	А	1203	А
24	A	1230	G
24	А	1249	А
24	A	1250	G
24	A	1252	G
24	А	1254	G
24	A	1257	G
24	А	1265	А
24	A	1283	G
24	А	1298	А

Mol	Chain	Res	Type
24	А	1301	G
24	А	1302	С
24	А	1311	G
24	А	1316	G
24	А	1317	А
24	А	1320	G
24	А	1344	А
24	А	1345	А
24	А	1365	А
24	А	1369	С
24	А	1373	U
24	А	1394	С
24	А	1396	U
24	A	1409	A
24	А	1423	U
24	А	1429	А
24	А	1430	С
24	А	1435	А
24	А	1439	А
24	А	1457	А
24	А	1462	U
24	А	1463	U
24	А	1464	А
24	А	1465	А
24	А	1466	С
24	А	1469	А
24	А	1470	U
24	А	1478	С
24	А	1494	А
24	А	1502	А
24	A	1505	G
24	А	1509	A
24	A	1519	A
$\overline{24}$	A	1528	G
24	A	1529	U
$\overline{24}$	A	1530	G
24	A	1531	U
24	A	1532	G
24	A	1533	A
24	A	1534	G
24	A	1536	A
$2\overline{4}$	А	1539	А

Mol	Chain	Res	Type
24	А	1542	С
24	А	1546	U
24	А	1553	С
24	А	1556	G
24	А	1557	С
24	А	1564	U
24	А	1570	G
24	А	1571	U
24	А	1573	А
24	А	1574	U
24	А	1575	G
24	А	1579	А
24	А	1594	G
$2\overline{4}$	A	1618	A
24	А	1621	А
24	А	1630	U
24	А	1638	G
24	А	1656	С
24	А	1657	А
24	А	1659	А
24	А	1695	А
24	А	1696	G
24	А	1697	С
24	А	1700	G
24	А	1703	А
24	А	1704	А
24	А	1723	G
24	А	1724	С
24	А	1749	А
24	А	1761	А
24	A	1762	U
24	А	1763	U
24	A	1764	A
24	А	1771	А
24	A	1773	G
$\overline{24}$	A	1781	G
24	A	1782	A
24	A	1783	G
24	А	1787	С
24	A	1789	G
24	A	1796	G
24	A	1797	G

Mol	Chain	Res	Type
24	А	1806	А
24	А	1809	G
24	А	1815	С
24	А	1833	С
24	А	1834	А
24	А	1842	А
24	А	1849	С
24	А	1862	А
24	А	1880	А
24	А	1886	А
24	А	1887	А
24	А	1889	А
24	А	1891	G
24	А	1892	А
24	А	1899	А
24	А	1903	U
24	А	1939	G
24	А	1946	А
24	А	1947	С
24	А	1949	А
24	А	1951	А
24	А	1952	А
24	А	1962	G
24	А	1963	G
24	А	1973	U
24	А	1988	U
24	А	1996	С
24	А	1998	С
24	А	2000	С
24	A	2003	А
24	A	2004	A
24	А	2005	G
24	A	2024	U
24	A	2026	U
24	A	2027	С
24	A	2030	A
24	A	2031	А
24	A	2056	A
24	A	2064	A
24	A	2065	G
24	A	2066	A
24	A	2067	U

Mol	Chain	Res	Type
24	А	2072	G
24	А	2076	С
24	А	2085	G
24	А	2088	С
24	А	2089	G
24	А	2093	А
24	А	2094	G
24	А	2095	А
24	А	2096	С
24	А	2102	G
24	А	2126	G
24	А	2127	А
24	А	2133	U
24	А	2144	U
24	А	2149	G
24	А	2150	А
24	А	2152	А
24	А	2165	А
24	А	2188	А
24	А	2190	G
24	А	2191	А
24	А	2192	G
24	А	2193	G
24	А	2198	G
24	А	2205	U
24	А	2206	А
24	А	2223	А
24	А	2224	С
24	А	2231	А
24	А	2236	G
24	А	2237	С
24	А	2245	А
24	A	2256	A
24	А	2258	А
24	А	2259	С
24	A	2271	G
24	А	2272	G
24	A	2312	G
24	A	2316	С
24	A	$2\overline{319}$	A
24	A	2320	A
24	А	2321	A

Mol	Chain	Res	Type
24	А	2329	U
24	А	2338	А
24	А	2341	G
24	А	2343	А
24	А	2344	А
24	А	2353	А
24	А	2355	А
24	А	2358	G
24	А	2360	А
24	А	2367	С
24	А	2368	А
24	А	2380	С
24	А	2383	С
24	A	2394	A
24	А	2412	G
24	А	2416	G
24	А	2418	С
24	А	2420	U
24	А	2435	U
24	А	2439	С
24	А	2447	G
24	А	2455	С
24	А	2457	С
24	А	2458	А
24	А	2462	G
24	А	2463	А
24	А	2473	С
24	А	2474	С
24	А	2481	А
24	А	2492	А
24	A	2498	С
24	A	2507	С
24	А	2509	А
24	A	2514	G
24	А	2524	U
24	A	2531	С
24	А	2535	G
24	А	2536	А
24	A	2538	G
24	А	2546	G
24	A	2548	С
24	A	2551	А

Mol	Chain	Res	Type
24	А	2562	G
24	А	2568	G
24	А	2577	G
24	А	2580	U
24	А	2587	U
24	А	2599	А
24	А	2600	G
24	А	2605	А
24	А	2606	С
24	А	2607	G
24	А	2615	G
24	А	2616	G
24	А	2642	U
24	А	2643	С
24	А	2646	U
24	А	2648	U
24	А	2663	G
24	А	2678	G
24	А	2679	С
24	А	2722	U
24	А	2724	С
24	А	2747	G
24	А	2755	G
24	А	2759	U
24	А	2766	C
24	А	2768	G
24	А	2781	A
24	А	2790	A
24	А	2798	A
24	А	2799	G
24	A	2802	С
24	A	2810	G
24	А	2811	A
24	A	2812	U
24	А	2813	G
24	A	2822	С
24	А	2827	С
24	А	2828	U
24	A	2830	С
24	A	2832	G
24	A	2835	A
24	A	2837	U

Mol	Chain	Res	Type
24	А	2849	А
24	А	2852	А
24	А	2857	С
24	А	2862	A
24	А	2864	A
24	А	2872	G
24	А	2877	G
24	А	2890	U
24	А	2896	G
24	А	2901	G
24	А	2902	А
24	А	2909	С
24	А	2920	А
24	А	2922	G
24	А	2930	С
25	В	10	U
25	В	23	U
25	В	24	С
25	В	33	U
25	В	40	С
25	В	54	U
25	В	55	А
25	В	84	G
25	В	87	U
25	В	88	С
25	В	107	G

All (28) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
24	А	27	G
24	А	88	G
24	А	92	G
24	А	139	А
24	А	553	U
24	А	688	А
24	А	756	А
24	А	809	G
24	А	847	G
24	А	854	G
24	А	1017	С
24	А	1172	А

Mol	Chain	Res	Type
24	А	1248	А
24	А	1249	А
24	А	1497	G
24	А	1528	G
24	А	1532	G
24	А	1533	А
24	А	1569	U
24	А	1886	А
24	А	1888	G
24	А	2320	А
24	А	2438	G
$\overline{24}$	A	2472	A
24	А	2615	G
24	A	2789	U
24	А	2809	А
24	А	2908	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

7 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec Link		Bond lengths			Bond angles		
	Type	Chain	n Res		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
21	5MU	х	54	21	19,22,23	1.39	5 (26%)	28,32,35	2.02	6 (21%)
21	PSU	х	39	21	18,21,22	1.27	2 (11%)	22,30,33	2.08	4 (18%)
21	PSU	х	55	21	18,21,22	1.33	2 (11%)	22,30,33	1.90	3 (13%)
21	MIA	х	37	21	24,31,32	2.22	3 (12%)	26,44,47	2.52	9 (34%)
21	7MG	х	46	21	22,26,27	1.31	3 (13%)	29,39,42	2.58	7 (24%)
21	PSU	х	32	21	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
21	4SU	x	8	21	18,21,22	1.77	5 (27%)	26,30,33	2.34	5 (19%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
21	5MU	Х	54	21	-	0/7/25/26	0/2/2/2
21	PSU	Х	39	21	-	0/7/25/26	0/2/2/2
21	PSU	Х	55	21	-	0/7/25/26	0/2/2/2
21	MIA	х	37	21	-	2/11/33/34	0/3/3/3
21	7MG	х	46	21	-	5/7/37/38	0/3/3/3
21	PSU	Х	32	21	-	0/7/25/26	0/2/2/2
21	4SU	Х	8	21	-	0/7/25/26	0/2/2/2

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

All (22) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
21	Х	37	MIA	C13-C14	7.11	1.52	1.32
21	Х	37	MIA	C2-S10	-6.84	1.69	1.75
21	Х	8	4SU	C4-S4	-4.56	1.59	1.68
21	х	8	4SU	C4-N3	-3.30	1.34	1.37
21	Х	55	PSU	C6-C5	3.12	1.39	1.35
21	Х	46	7MG	C5-C4	2.99	1.47	1.38
21	Х	39	PSU	C6-C5	2.89	1.38	1.35
21	Х	32	PSU	C6-C5	2.76	1.38	1.35
21	Х	46	7MG	C4-N9	-2.76	1.34	1.37
21	Х	54	5MU	C6-C5	2.69	1.39	1.34
21	х	32	PSU	C4-N3	-2.64	1.33	1.38
21	Х	55	PSU	C4-N3	-2.61	1.34	1.38
21	Х	54	5MU	C4-N3	-2.57	1.34	1.38
21	Х	8	4SU	C5-C4	-2.51	1.39	1.42
21	Х	37	MIA	C5-C4	2.50	1.47	1.40
21	х	46	7MG	C6-N1	-2.39	1.34	1.38
21	Х	54	5MU	C2-N1	2.32	1.42	1.38
21	Х	39	PSU	C4-N3	-2.31	1.34	1.38
21	Х	54	5MU	C4-C5	2.24	1.48	1.44
21	Х	54	5MU	C6-N1	-2.17	1.34	1.38
21	х	8	4SU	C2-N1	2.11	1.41	1.38
21	х	8	4SU	C2-N3	-2.08	1.34	1.38

All (37) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
21	Х	46	7MG	N9-C4-N3	9.14	139.14	125.47
21	Х	37	MIA	C12-C13-C14	-8.03	111.52	127.14
21	Х	8	4SU	C4-N3-C2	-7.13	120.41	127.34

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
21	х	39	PSU	N1-C2-N3	6.32	122.29	115.13
21	X	8	4SU	C5-C4-N3	6.02	120.27	114.69
21	Х	55	PSU	N1-C2-N3	5.94	121.86	115.13
21	х	32	PSU	N1-C2-N3	5.88	121.79	115.13
21	Х	46	7MG	C5-C4-N3	-5.60	117.45	128.13
21	Х	46	7MG	N9-C8-N7	-5.08	96.12	103.38
21	Х	54	5MU	C4-N3-C2	-4.94	120.95	127.35
21	Х	54	5MU	N3-C2-N1	4.83	121.31	114.89
21	Х	39	PSU	C4-N3-C2	-4.59	119.72	126.34
21	Х	46	7MG	C2-N3-C4	4.37	120.09	112.30
21	X	37	MIA	C2-N3-C4	4.29	121.24	115.32
21	Х	39	PSU	O2-C2-N1	-4.23	118.13	122.79
21	Х	54	5MU	C5-C4-N3	4.23	118.92	115.31
21	х	8	4SU	N3-C2-N1	4.19	120.45	114.89
21	X	37	MIA	C16-C14-C13	-4.08	110.86	122.65
21	X	54	5MU	O4-C4-C5	-4.06	120.20	124.90
21	Х	55	PSU	C4-N3-C2	-4.04	120.51	126.34
21	X	8	4SU	C5-C4-S4	-4.01	119.31	124.47
21	X	37	MIA	C15-C14-C13	-3.96	111.21	122.65
21	X	32	PSU	O2-C2-N1	-3.87	118.53	122.79
21	X	32	PSU	C4-N3-C2	-3.82	120.84	126.34
21	Х	37	MIA	C5-C6-N1	-3.63	117.79	120.81
21	X	55	PSU	O2-C2-N1	-3.46	118.98	122.79
21	X	54	5MU	C5-C6-N1	-3.38	119.86	123.34
21	Х	37	MIA	C4-C5-N7	-2.76	106.52	109.40
21	Х	46	7MG	C5-C6-N1	2.76	115.86	110.99
21	Х	37	MIA	C11-S10-C2	-2.73	100.23	102.27
21	Х	37	MIA	C2-N1-C6	2.65	121.93	117.19
21	Х	46	7MG	C5-C4-N9	-2.27	103.40	106.35
21	X	37	MIA	N3-C2-N1	-2.23	122.88	126.98
21	х	46	7MG	O6-C6-C5	-2.19	122.18	127.54
21	Х	39	PSU	C5-C6-N1	-2.03	119.07	122.11
21	x	8	4SU	C3'-C2'-C1'	2.02	105.27	101.43
21	X	54	5MU	O2-C2-N1	-2.00	120.12	122.79

There are no chirality outliers.

All (7) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
21	Х	37	MIA	C12-C13-C14-C16
21	Х	46	7MG	O4'-C4'-C5'-O5'
21	Х	46	7MG	O4'-C1'-N9-C4

Mol	Chain	Res	Type	Atoms
21	Х	46	7MG	C3'-C4'-C5'-O5'
21	Х	46	7MG	O4'-C1'-N9-C8
21	Х	37	MIA	N6-C12-C13-C14
21	Х	46	7MG	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 480 ligands modelled in this entry, 479 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain	Type	Chain	Doc	Dog	Ros	Ros	Ros	Bos	Bos	Tink	Bo	ond leng	ths	В	ond ang	les
Moi Type	туре	Chain	nes	LIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2							
55	GCP	v	502	53	27,34,34	1.42	5 (18%)	34,54,54	1.87	7 (20%)							

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	GCP	V	502	53	-	5/15/38/38	0/3/3/3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
55	V	502	GCP	C5-C6	3.77	1.47	1.41

001000	server pressed of pagette									
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)			
55	V	502	GCP	PG-O3G	2.87	1.61	1.54			
55	V	502	GCP	PG-O2G	2.67	1.61	1.54			
55	V	502	GCP	PB-O3A	2.34	1.61	1.58			
55	V	502	GCP	C5-C4	2.16	1.46	1.40			

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	V	502	GCP	C2-N3-C4	4.39	120.37	115.36
55	V	502	GCP	C4-C5-C6	-4.30	116.69	120.80
55	V	502	GCP	C2-N1-C6	4.06	122.39	115.93
55	V	502	GCP	C5-C6-N1	-3.98	117.99	123.43
55	V	502	GCP	PB-O3A-PA	-3.43	121.69	132.56
55	V	502	GCP	N3-C2-N1	-3.20	122.96	127.22
55	V	502	GCP	C4-C5-N7	-2.58	106.71	109.40

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
55	V	502	GCP	C5'-O5'-PA-O1A
55	V	502	GCP	C3'-C4'-C5'-O5'
55	V	502	GCP	O4'-C4'-C5'-O5'
55	V	502	GCP	C5'-O5'-PA-O3A
55	V	502	GCP	C5'-O5'-PA-O2A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-42576. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

Y Index: 256

2 maex. 250

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 230

Z Index: 296

6.3.2 Raw map

X Index: 296

Y Index: 234

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 3.4. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 997 $\rm nm^3;$ this corresponds to an approximate mass of 901 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution ostimato}(\mathbf{\hat{A}})$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.10	-	-			
Author-provided FSC curve	-	-	-			
Unmasked-calculated*	2.97	3.06	2.98			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-42576 and PDB model 8UU9. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 3.4 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (3.4).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 85% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (3.4) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8510	0.4950
1	0.8620	0.5420
2	0.8940	0.5740
3	0.4420	0.3260
4	0.8860	0.5630
5	0.8970	0.5780
6	0.9390	0.6050
7	0.9220	0.6050
8	0.8990	0.5820
А	0.9170	0.5600
В	0.9350	0.5130
C	0.8930	0.5940
D	0.9220	0.5880
Ε	0.8850	0.5720
\mathbf{F}	0.5740	0.4020
G	0.7650	0.5040
L	0.9140	0.5930
М	0.8220	0.5750
Ν	0.8610	0.5650
О	0.8940	0.5850
Р	0.8920	0.5810
Q	0.8180	0.5200
R	0.8480	0.5760
S	0.9230	0.5910
Т	0.9110	0.5880
U	0.8910	0.5860
V	0.8520	0.5620
W	0.8420	0.5490
Y	0.9110	0.5750
Ζ	0.8640	0.5700
a	0.8150	0.3880
b	0.6720	0.4670
с	0.8160	0.4320
d	0.7840	0.4280
e	0.8550	0.5450

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
f	0.7170	0.3850
g	0.4440	0.1330
h	0.8600	0.5120
i	0.6920	0.2370
j	0.8110	0.4170
k	0.6440	0.3450
1	0.8610	0.5340
m	0.4220	0.0750
n	0.8370	0.4080
0	0.7150	0.4320
р	0.7400	0.3670
q	0.8090	0.4140
r	0.7680	0.4390
s	0.3210	0.0980
t	0.6540	0.2830
V	0.7920	0.5180
W	0.2740	0.1830
X	0.3410	0.2300

