

wwPDB EM Validation Summary Report (i)

Oct 10, 2022 - 04:18 PM EDT

PDB ID	:	7UN1
EMDB ID	:	EMD-26611
Title	:	8-nm repeat of the human sperm tip singlet microtubule
Authors	:	Gui, M.; Croft, J.T.; Zabeo, D.; Acharya, V.; Kollman, J.M.; Burgoyne, T.;
		Hoog, J.L.; Brown, A.
Deposited on	:	2022-04-08
Resolution	:	6.00 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 6.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	222	44%	28%				
1	В	222	23%	28%				
1	С	222	13%	29%				
1	D	222	71%	• 28%				
1	Е	222	72%	28%				
1	F	222	5% 69%	• 29%				
1	G	222	72%	28%				
1	Н	222	6% 72%	28%				
1	Ι	222	7%	28%				

Chain Length Quality of chain Mol 7% J 2221 72% 28% 18% Κ 1 22272% 28% 41% L 222 1 72% 28% 38% 2221 Μ 72% 28% 13% Ν 2221 70% 30% 13% Ο 2221 28% 72% 11% Р 2221 72% 28% 10% Q 2221 71% 29% 5% 222 \mathbf{R} 1 72% 28% 6% \mathbf{S} 1 22270% 30% 5% Т 1 22272% 28% 9% U 2221 72% 28% 9% V 2221 28% 72% 17% W 2221 70% 30% 50% Х 2221 72% 28% 8% 1 d 22269% 30% 7% 2221 е 70% 29% 6% \mathbf{f} 1 22272% 28% 5% 2221 g 72% 28% 5% h 2221 70% 30% 8% 1 i 22271% 28% • 7% 2221 j 72% 28% 14% 2221 k 70% 30% 36% 1 2221 68% 32% 2AB 44596%

Mol	Chain	Length	Quality of chain	
2	AD	445	95%	
2	AF	445	95%	• •
2	ВА	445	95%	
2	BD	445	• 95%	·
2	BF	445	95%	
2	СВ	445	• 95%	·
2	CD	445	96%	·
2	CF	445	9 5%	
2	DB	445	96%	
2	DD	445	• 96%	
2	DF	445	۵5% ۵5%	
2	ER	445		80/
2	ED	445	91%	• 070
2		445	95%	
2	EF	445	95%	• •
2	FD	445	95%	
2	\mathbf{FF}	445	95%	
2	FH	445	5% 85%	15%
2	GD	445	<mark>.</mark> ● 96%	•
2	GF	445	95%	•
2	GH	445	96%	•
2	HD	445	95%	·
2	HF	445	9 6%	
2	HH	445	5%	•
- -	 	145	5%	
		440	95% 7%	•
2	IF	445	95%	• •

Mol	Chain	Length	Quality of chain	
2	IH	445	95%	
2	.JD	445	5%	
2	IF	445		
2	VD VD	445	93%	
2	KD	440	95%	•
2	KF	445	96% 5%	•
2	KH	445	90%	9%
2	LB	445	94%	• •
2	LD	445	95%	
2	LF	445	95%	
2	MB	445	5% 95%	
2	MD	445	95%	
2	MF	445	95%	
3	AC	451	94%	. 6%
3	AE	451	• •	E9/
<u> </u>	DC	451	93%	5 °C
3	BC	451	94%	5%
3	BE	451	94%	6%
3	BG	451	85%	15%
3	CC	451	95%	5%
3	CE	451	• 95%	
3	CG	451	95%	5%
3	DC	451	• 95%	5%
3	DE	451	94%	5%
3	DG	451	Δ5%	5%
0 0	EC	451	•	0/ د
3	EU	431	95%	5%
3	EE	451	95%	5%

Chain Length Quality of chain Mol <u>.</u> 3 EG 4515% 95% 3 \mathbf{FC} 45195% 5% i. 3 \mathbf{FE} 451• 5% 94% i. \mathbf{FG} 3 45195% 5% 3 GC 45194% • 5% · GE 3 45194% • 5% • $\mathbf{G}\mathbf{G}$ 3 4515% 94% • 3 HC 4515% 94% ΗE 3 45195% 5% HG 3 45194% 6% 7% IC 3 45192% 8% 5% IE 3 45195% 5% 5% 3 IG4515% 94% 5% JC 3 45195% 5% 5% JE3 451• 5% 94% · 3 JG4515% 95% KC $\mathbf{3}$ 4516% 94% KE 3 4516% 94% **.** $\mathbf{K}\mathbf{G}$ 3 451• 6% 94% LA 3 4515% 95% • LC3 4515% 95% • 3 LE4515% 95% 5% 3 MA 4516% 94% 5% 3 MC45194% 5% 3 ME 451• 6% 94%

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 290845 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms	AltConf	Trace
1	А	160	Total C N O 796 476 160 160	0	0
1	В	160	Total C N O 796 476 160 160	0	0
1	С	158	Total C N O 786 470 158 158	0	0
1	D	160	Total C N O S 1289 805 231 243 10	0	0
1	Е	160	Total C N O S 1289 805 231 243 10	0	0
1	F	157	Total C N O S 1263 788 225 240 10	0	0
1	G	159	Total C N O S 1278 799 227 242 10	0	0
1	Н	159	Total C N O S 1278 799 227 242 10	0	0
1	Ι	159	Total C N O S 1278 799 227 242 10	0	0
1	J	159	Total C N O 791 473 159 159	0	0
1	К	159	Total C N O 791 473 159 159	0	0
1	L	159	Total C N O 791 473 159 159	0	0
1	М	160	Total C N O 796 476 160 160	0	0
1	Ν	156	Total C N O 776 464 156 156	0	0
1	О	160	Total C N O 796 476 160 160	0	0
1	Р	160	Total C N O S 1289 805 231 243 10	0	0
1	Q	157	Total C N O S 1263 788 225 240 10	0	0

• Molecule 1 is a protein called Sperm acrosome-associated protein 9.

Mol	Chain	Residues	Atoms	AltConf	Trace
1	R	160	Total C N O S 1289 805 231 243 10	0	0
1	S	156	Total C N O S 1254 782 223 239 10	0	0
1	Т	159	Total C N O S 1278 799 227 242 10	0	0
1	U	159	Total C N O S 1278 799 227 242 10	0	0
1	V	159	Total C N O 791 473 159 159	0	0
1	W	155	Total C N O 771 461 155 155	0	0
1	Х	160	Total C N O 796 476 160 160	0	0
1	d	156	Total C N O S 1254 782 223 239 10	0	0
1	е	157	Total C N O S 1263 788 225 240 10	0	0
1	f	160	Total C N O S 1289 805 231 243 10	0	0
1	g	159	Total C N O S 1278 799 227 242 10	0	0
1	h	156	Total C N O S 1254 782 223 239 10	0	0
1	i	159	Total C N O S 1278 799 227 242 10	0	0
1	j	159	Total C N O 791 473 159 159	0	0
1	k	155	Total C N O 771 461 155 155	0	0
1	1	152	Total C N O 756 452 152 152	0	0

Continued from previous page...

• Molecule 2 is a protein called Tubulin beta-4B chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	٨B	497	Total	С	Ν	Ο	\mathbf{S}	0	0
Z AB	427	3356	2109	575	646	26	0	0	
9		497	Total	С	Ν	Ο	\mathbf{S}	0	0
	AD	421	3356	2109	575	646	26	0	0
0	٨٢	496	Total	С	Ν	Ο	\mathbf{S}	0	0
	АГ	420	3348	2105	574	643	26	U	U

Mol	Chain	Residues		At	oms			AltConf	Trace
0	D۸	497	Total	С	Ν	0	S	0	0
Ζ	BA	427	3356	2109	575	646	26	0	0
0	DD	497	Total	С	Ν	0	S	0	0
Ζ	DD	427	3356	2109	575	646	26	0	0
0	DF	497	Total	С	Ν	0	S	0	0
Z	Dr	427	3356	2109	575	646	26	0	0
9	CB	497	Total	С	Ν	0	S	0	0
Δ	UD	421	3356	2109	575	646	26	0	0
9	CD	497	Total	С	Ν	0	S	0	0
2	UD	421	3356	2109	575	646	26	0	0
9	CF	497	Total	С	Ν	0	S	0	0
2	Ur	421	3356	2109	575	646	26	0	0
2	DB	497	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DD	421	3356	2109	575	646	26	0	0
2	מס	497	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
2	DD	421	3356	2109	575	646	26	0	0
2	DF	426	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
		120	3348	2105	574	643	26	0	0
2	EB	411	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
2		TII	3214	2015	549	626	24	0	0
2	$\rm ED$	427	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		121	3356	2109	575	646	26	0	0
2	\mathbf{EF}	427	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-		121	3356	2109	575	646	26		
2	FD	427	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-	1.0		3356	2109	575	646	26		·
2	FF	427	Total	С	Ν	Ο	S	0	0
_			3356	2109	575	646	26		<u> </u>
2	FH	379	Total	С	Ν	Ο	S	0	0
			2971	1871	508	570	22		
2	GD	427	Total	С	Ν	0	S	0	0
			3356	2109	575	646	26		
2	GF	427	Total	C	N	0	S	0	0
			3356	2109	575	646	26		
2	GH	427	Total	C	N	0	S	0	0
			3356	2109	575 N	646	26		
2	HD	426	Total	C	N	U C 49	S	0	0
			3348	2105	574	643	26		
2	$_{ m HF}$	426	Total	U		U C 4 2	S	0	0
			3348	2105	574	643	26		
2	HH	427	Total	U		U	S	0	0
			3356	2109	575	646	26		

Mol	Chain	Residues		At	oms			AltConf	Trace
0	ID	496	Total	С	Ν	0	S	0	0
	ID	420	3348	2105	574	643	26	0	0
0	IF	497	Total	С	Ν	0	S	0	0
	11	421	3356	2109	575	646	26	0	0
9	ш	426	Total	С	Ν	0	\mathbf{S}	0	0
	111	420	3348	2105	574	643	26	0	0
2	Л	497	Total	С	Ν	0	\mathbf{S}	0	0
	10	421	3356	2109	575	646	26	0	0
2	IF	497	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
2	91	421	3356	2109	575	646	26	0	0
2	KD	426	Total	С	Ν	Ο	\mathbf{S}	0	0
2	IXD	420	3348	2105	574	643	26	0	0
2	KF	497	Total	С	Ν	Ο	\mathbf{S}	0	0
2	111	421	3356	2109	575	646	26	0	0
2	КН	403	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	1111	400	3165	1996	539	607	23	0	0
2	LB	497	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
2		421	3356	2109	575	646	26	0	0
2	LD	497	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
2		421	3356	2109	575	646	26	0	0
2	LF	497	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
2		421	3356	2109	575	646	26	0	0
2	MB	497	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
2	WID	421	3356	2109	575	646	26	0	0
2	MD	426	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		720	3348	2105	574	643	26	0	0
2	MF	427	Total	\mathbf{C}	N	0	S	0	0
<u> </u>	TATT	741	3356	2109	575	646	26	U	

Continued from previous page...

• Molecule 3 is a protein called Tubulin alpha-1A chain.

Mol	Chain	Residues		At	oms			AltConf	Trace
		496	Total	С	Ν	0	S	0	0
່ງ	AU	420	3343	2123	569	629	22	0	0
2	٨F	497	Total	С	Ν	0	S	0	0
່ <u>ບ</u>	AL	427	3349	2126	570	631	22	0	0
9	DC	427	Total	С	Ν	0	S	0	0
3	DU		3350	2125	570	633	22	0	0
9	DE	496	Total	С	Ν	0	S	0	0
3	DE	420	3343	2123	569	629	22	0	0
9	DC	295	Total	С	Ν	0	S	0	0
3 B	DG	360	3026	1914	516	575	21	U	U
·	•						-	-	•

\mathbf{Mol}	Chain	Residues		\mathbf{At}	\mathbf{oms}			AltConf	Trace
n	00	420	Total	С	Ν	0	S	0	0
3	CC	430	3369	2136	573	638	22	0	0
3	CF	431	Total	С	Ν	0	\mathbf{S}	0	0
0	UE	451	3377	2140	574	641	22	0	0
3	CG	420	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	00	425	3363	2133	572	636	22	0	0
3	DC	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	DC	120	3357	2130	571	634	22	0	0
3	DE	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0		120	3357	2130	571	634	22	•	0
3	DG	429	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	20	120	3363	2133	572	636	22	•	0
3	\mathbf{EC}	429	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	LO	425	3363	2133	572	636	22	0	0
3	\mathbf{EE}	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0		420	3356	2128	571	635	22	0	0
3	FC	198	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	ĽG	420	3357	2130	571	634	22	0	0
2	FC	420	Total	С	Ν	0	S	0	0
5	гU	429	3365	2134	572	637	22	0	0
9	БĿ	420	Total	С	Ν	0	S	0	0
Э	ГЕ	450	3369	2136	573	638	22	0	0
9	FC	490	Total	С	Ν	0	S	0	0
Э	гG	429	3363	2133	572	636	22	0	0
9	CC	420	Total	С	Ν	0	S	0	0
Э	GC	430	3371	2137	573	639	22	0	0
9	CE	490	Total	С	Ν	0	S	0	0
Э	GE	429	3364	2132	572	638	22	0	0
9	CC	190	Total	С	Ν	0	S	0	0
Э	GG	428	3356	2127	571	637	21	0	0
9	по	497	Total	С	Ν	0	S	0	0
Э	пС	427	3350	2125	570	633	22	0	0
9	ПЕ	497	Total	С	Ν	0	S	0	0
Э	пс	427	3349	2126	570	631	22	0	0
n	по	496	Total	С	Ν	0	S	0	0
3	ПG	420	3342	2121	569	630	22	0	0
0	IC	41.4	Total	С	Ν	0	S	0	0
ა	IC	414	3239	2051	550	617	21	U	U
n	ID	400	Total	С	Ν	Ο	S	0	0
3	IE	428	3357	2130	571	634	22	U	U
ი	IC	407	Total	С	Ν	0	S	0	0
3	IG	427	3350	2125	570	633	22	U	U

Mol	Chain	Residues	_	At	oms			AltConf	Trace
9	IC	490	Total	С	Ν	0	S	0	0
0	JC	429	3365	2134	572	637	22	0	0
9	IF	199	Total	С	Ν	0	S	0	0
0	JE	420	3358	2129	571	636	22	0	0
2	IC	497	Total	С	Ν	0	S	0	0
0	JG	427	3350	2125	570	633	22	0	0
9	KC	496	Total	С	Ν	0	S	0	0
5	nu	420	3342	2121	569	630	22	0	0
2	KE	495	Total	С	Ν	0	S	0	0
5	IL I	420	3335	2116	568	629	22	0	0
2	KC	496	Total	С	Ν	0	S	0	0
5	ng	420	3342	2121	569	630	22	0	0
2	ТА	428	Total	С	Ν	0	S	0	0
5	LA	420	3357	2130	571	634	22	0	0
2	IC	497	Total	С	Ν	0	S	0	0
5		421	3349	2126	570	631	22	0	0
2	IF	428	Total	С	Ν	0	S	0	0
5		420	3357	2130	571	634	22	0	0
2	МА	496	Total	С	Ν	0	S	0	0
5	MA	420	3342	2121	569	630	22	0	0
2	МС	198	Total	С	Ν	0	S	0	0
J	IVI C	420	3357	2130	571	634	22	U	0
2	MF	426	Total	С	Ν	0	S	0	0
3 ME	420	3342	2121	569	630	22	U	U	

• Molecule 4 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $\rm C_{10}H_{15}N_5O_{11}P_2).$

Mol	Chain	Residues		Ato	oms			AltConf
4		1	Total	С	Ν	Ο	Р	0
4	AD	1	28	10	5	11	2	0
4		1	Total	С	Ν	0	Р	0
4	AD	1	28	10	5	11	2	0
4		1	Total	С	Ν	Ο	Р	0
4	Аг	1	28	10	5	11	2	0
4	ΒΛ	1	Total	С	Ν	Ο	Р	0
4	DA	1	28	10	5	11	2	0
4	BD	1	Total	С	Ν	Ο	Р	0
4		1	28	10	5	11	2	0
4	BE	1	Total	С	Ν	Ο	Р	0
4	DI	1	28	10	5	11	2	0
4	CP	1	Total	С	Ν	Ο	Р	0
4	UD UD	1	28	10	5	11	2	0
4	CD	1	Total	С	Ν	0	Р	0
4	UD UD	1	28	10	5	11	2	0
4	CE	1	Total	С	Ν	0	Р	0
4	Or	1	28	10	5	11	2	0
4	DB	1	Total	С	Ν	0	Р	0
4		1	28	10	5	11	2	0
4	מת	1	Total	С	Ν	0	Р	0
4		1	28	10	5	11	2	0
4	DF	1	Total	С	Ν	Ο	Р	0
4		1	28	10	5	11	2	0
4	FB	1	Total	С	Ν	Ο	Р	0
T		1	28	10	5	11	2	0
1	ED	1	Total	С	Ν	Ο	Р	0
		Ĩ	28	10	5	11	2	0
4	EF	1	Total	С	Ν	Ο	Р	0
-	121	1	28	10	5	11	2	0
4	FD	1	Total	С	Ν	Ο	Р	0
		1	28	10	5	11	2	
4	FF	1	Total	С	Ν	Ο	Р	0
		1	28	10	5	11	2	· · · · · ·
4	FH	1	Total	С	Ν	Ο	Р	0
	1 11	±	28	10	5	11	2	Ŭ
4	GD	1	Total	\mathbf{C}	Ν	Ο	Р	0
		*	28	10	5	11	2	
4	GF	1	Total	\mathbf{C}	Ν	Ο	Р	0
		*	28	10	5	11	2	
4	GH	1	Total	\mathbf{C}	Ν	Ο	Р	0
		1	28	10	5	11	2	
	HD	1	Total	\mathbf{C}	Ν	Ο	Р	Ο
–		1	28	10	5	11	2	U

Mol	Chain	Residues		Ate		AltConf			
4	IIE	1	Total	С	Ν	Ο	Р	0	
4	HF	1	28	10	5	11	2	0	
4	ттт	1	Total	С	Ν	Ο	Р	0	
4	пп	L	28	10	5	11	2	0	
4	П	1	Total	С	Ν	Ο	Р	0	
4	ID	L	28	10	5	11	2	0	
4	IE	1	Total	С	Ν	0	Р	0	
4	11	L	28	10	5	11	2	0	
4	Ш	1	Total	С	Ν	Ο	Р	0	
4	111	I	28	10	5	11	2	0	
4	Л	1	Total	С	Ν	Ο	Р	0	
4	10	I	28	10	5	11	2	0	
4	IF	1	Total	С	Ν	Ο	Р	0	
4	JT	T	28	10	5	11	2	0	
4	КD	1	Total	С	Ν	Ο	Р	0	
-1	ND	T	28	10	5	11	2	0	
4	KF	1	Total	С	Ν	Ο	Р	0	
Ŧ	111	I	28	10	5	11	2	0	
4	КН	1	Total	С	Ν	Ο	Р	0	
Ŧ	1111	I	28	10	5	11	2	0	
4	LB	1	Total	С	Ν	Ο	Р	0	
		I	28	10	5	11	2	0	
4	LD	1	Total	С	Ν	Ο	Р	0	
		1	28	10	5	11	2	0	
	\mathbf{LF}	1	Total	С	Ν	Ο	Р	0	
	121	1	28	10	5	11	2	0	
	MB	1	Total	С	Ν	Ο	Р	0	
	MID	1	28	10	5	11	2	0	
	MD	1	Total	С	Ν	Ο	Р	0	
		*	28	10	5	11	2	0	
	MF	1	Total	С	Ν	Ο	Р	0	
- T	MF	MF		28	10	5	11	2	0

Continued from previous page...

• Molecule 5 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $\rm C_{10}H_{16}N_5O_{14}P_3).$

Mol	Chain	Residues		Atoms					
-		1	Total	С	Ν	Ο	Р	0	
G	AC	1	32	10	5	14	3	0	
F	٨E	1	Total	С	Ν	0	Р	0	
G	AL	1	32	10	5	14	3	0	
F	PC	1	Total	С	Ν	0	Р	0	
5	DC	1	32	10	5	14	3	0	
5	BE	1	Total	С	Ν	Ο	Р	0	
5	DE	1	32	10	5	14	3	0	
5	BC	1	Total	С	Ν	0	Р	0	
5	DG	1	32	10	5	14	3	0	
5	CC	1	Total	С	Ν	0	Р	0	
5		1	32	10	5	14	3	0	
5	CF	1	Total	С	Ν	Ο	Р	0	
0	UL	1	32	10	5	14	3	0	
5	CC	1	Total	С	Ν	Ο	Р	0	
5	00	T	32	10	5	14	3	0	
5	DC	1	Total	С	Ν	Ο	Р	0	
0	DU	1	32	10	5	14	3	0	
5	DF	1	Total	С	Ν	Ο	Р	0	
0		1	32	10	5	14	3	0	
5	DC	1	Total	С	Ν	Ο	Р	0	
0	DG	1	32	10	5	14	3	0	
5	FC	1	Total	С	Ν	Ο	Р	0	
0	EC	1	32	10	5	14	3	0	
5	EE	1	Total	С	N	Ο	P	0	
0		1	32	10	5	14	3	0	
5	EC	1	Total	С	Ν	0	Р	0	
5	EG	L	32	10	5	14	3	U	

Continued from previous page...

Mol	Chain	Residues			AltConf			
E	FC	1	Total	С	Ν	Ο	Р	0
G	FC	1	32	10	5	14	3	0
5	БĿ	1	Total	С	Ν	0	Р	0
0	ГЕ	1	32	10	5	14	3	0
5	FC	1	Total	С	Ν	Ο	Р	0
5	ГG	1	32	10	5	14	3	0
5	CC	1	Total	С	Ν	Ο	Р	0
0	60	1	32	10	5	14	3	0
5	GE	1	Total	\mathbf{C}	Ν	Ο	Р	0
0	GL	1	32	10	5	14	3	0
5	GG	1	Total	С	Ν	Ο	Р	0
0	uu	1	32	10	5	14	3	0
5	HC	1	Total	С	Ν	Ο	Р	0
0	110	1	32	10	5	14	3	0
5	HE	1	Total	С	Ν	Ο	Р	0
5	1112	T	32	10	5	14	3	0
5	нс	1	Total	С	Ν	Ο	Р	0
0	no	1	32	10	5	14	3	0
5	IC	1	Total	С	Ν	Ο	Р	0
5	IC	1	32	10	5	14	3	0
5	IF	1	Total	С	Ν	Ο	Р	0
5	112	1	32	10	5	14	3	0
5	IC	1	Total	С	Ν	Ο	Р	0
5	IG	1	32	10	5	14	3	0
5	IC	1	Total	С	Ν	Ο	Р	0
0	10	1	32	10	5	14	3	0
5	IF	1	Total	С	Ν	Ο	Р	0
5	10	T	32	10	5	14	3	0
5	IC	1	Total	С	Ν	Ο	Р	0
0	10	1	32	10	5	14	3	0
5	KC	1	Total	С	Ν	Ο	Р	0
0	no	Ĩ	32	10	5	14	3	0
5	KE	1	Total	С	Ν	Ο	Р	0
0	IXL/	1	32	10	5	14	3	0
5	KG	1	Total	\mathbf{C}	Ν	Ο	Р	0
0	no	1	32	10	5	14	3	0
5	Τ.Δ	1	Total	\mathbf{C}	Ν	Ο	Р	Ω
		1	32	10	5	14	3	U
5	LC	1	Total	С	Ν	Ο	Р	Ο
5		1	32	10	5	14	3	U
5	LF	1	Total	С	Ν	Ο	Р	Ο
5	יננ	1	32	10	5	14	3	U

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf
F	МА	1	Total	С	Ν	Ο	Р	0
5	MA	L	32	10	5	14	3	0
5	MC	1	Total	С	Ν	Ο	Р	0
	MU	1	32	10	5	14	3	0
5	ME	1	Total	С	Ν	Ο	Р	0
0			32	10	5	14	3	0

• Molecule 6 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
6	AC	1	Total Mg 1 1	0
6	AE	1	Total Mg 1 1	0
6	BC	1	Total Mg 1 1	0
6	BE	1	Total Mg 1 1	0
6	BG	1	Total Mg 1 1	0
6	CC	1	Total Mg 1 1	0
6	CE	1	Total Mg 1 1	0
6	CG	1	Total Mg 1 1	0
6	DC	1	Total Mg 1 1	0
6	DE	1	Total Mg 1 1	0
6	DG	1	Total Mg 1 1	0
6	EC	1	Total Mg 1 1	0
6	EE	1	Total Mg 1 1	0
6	EG	1	Total Mg 1 1	0
6	FC	1	Total Mg 1 1	0
6	FE	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
6	FG	1	Total Mg 1 1	0
6	GC	1	Total Mg 1 1	0
6	GE	1	Total Mg 1 1	0
6	GG	1	Total Mg 1 1	0
6	HC	1	Total Mg 1 1	0
6	HE	1	Total Mg 1 1	0
6	HG	1	Total Mg 1 1	0
6	IC	1	Total Mg 1 1	0
6	IE	1	Total Mg 1 1	0
6	IG	1	Total Mg 1 1	0
6	JC	1	Total Mg 1 1	0
6	JE	1	Total Mg 1 1	0
6	JG	1	Total Mg 1 1	0
6	KC	1	Total Mg 1 1	0
6	KE	1	Total Mg 1 1	0
6	KG	1	Total Mg 1 1	0
6	LA	1	Total Mg 1 1	0
6	LC	1	Total Mg 1 1	0
6	LE	1	Total Mg 1 1	0
6	МА	1	Total Mg 1 1	0
6	MC	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
6	ME	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Sperm acrosome-associated protein 9

• Molecule 1: Sperm acrosome-associated protein 9

 \bullet Molecule 1: Sperm acrosome-associated protein 9

Chain I:	7%	72%	28%
M1 E6 R33 E34	I40 Y52 V58 N58 D62 D62 Q81	B84 A85 N94 N95 S111 S111 ↓ L143 ANG L143 ANG L143 ANG L143 ANG L143 ANG L143 ANG CLN H15 ANG CLN H15 SER SER	GLU PRO GLN GLN GLN GLN GLN GLN GLY ALA ALA ALA ALA ALA ALA ALA CLY GLY
THR GLN PRO ARG ALA THR LYS	HIS LYS CYS GYS GLN CYS GLN LEU LEU LEU LEU LEU LEU CYS RRA CIEU CYS CIEU CYS GLY CYS CYS CYS CYS CYS CYS CYS CYS CYS CY	CYS ERR LYS PRO TRP ARC PRO GLY CLY LEU	
• Molecu	le 1: Sperm acrosome	e-associated protein 9	
Chain J:	7%	72%	28%
M1 A28 E34	D38 K39 I40 G47 S50 S50 S50 T61 T90	S111 N132 F149 F159 ARG L185 ARG L185 ARG C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	ALA ALA GLN GLU SER THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ARG ALA THR LYS LYS CYS	ARG GLN LEU LEU LEU LYS ALA ALA ALA ALA CYS CYS SER LYS CYS SER LYS	PRO TRP ARG PRO PRO CLY CLY CLY LVS LLEU	
• Molecu	le 1: Sperm acrosom	e-associated protein 9	
Chain K:	18%	72%	28%
M1 N2 E3 S10	K16 L17 Q21 Q21 A28 H31 C32 K33 K33 K33 K33	D38 K39 K41 R41 R41 864 S59 S59 S59 S59 S59 S59 S59 S59 S59 S59	C80 A85 A85 T102 T102 L110 D109 L110 A115 A115 A115 H113 H119 H119 H119 H119
N132	K157 L158 L158 P159 ARG L28 L28 L20 C10 C10 C10 C10 C10	HILM CILIN C	LYS HIS CYS CYS CYS ARG GIN THR LEU LYS SER LEU LYS SER CYS CYS
SER LYS PRO PRO TRP ARG PRO	PR0 GLY GLY LYS LLV LEU		
• Molecu	le 1: Sperm acrosome	e-associated protein 9	
Chain L:	41%	72%	28%
M1 N2 E3 K5 K5	57 87 81 81 81 81 81 81 81 81 82 82 82 82 82 82 82	T24 F25 A27 A27 A28 L29 H31 C32 C32 C32 C32 C32 C32 C32 C32 C32 C32	P42 143 146 146 859 859 850 850 850 850 850 853 850 853 850 853 853 853 853 853 853 853 853 853 853
CB0 V86 H87 CB0 CB0 CB0 CB0 CB0 CB0 CB0 CB0 CB0 CB0	500 689 790 791 793 793 899 K191 K101 K101	D109 L110 S111 S112 L113 L113 A115 P118 P118 P118 P118 P118 P120 P120 P120 P122	C127 C127 C128 E128 A130 A130 A132 A133 C135 G135 G135 G135 C144 C144 C144 C144 C144 C144 C144 C14
P159 ARG LYS VAL LEU GLN GLN	VAL VAL SER SER PRO PRO PLU GLU CLN CLN ALA ALA	ARG PRO GLN GLN GLN GLN GLN GLN GLN CYS CYS CYS CYS CYS CYS CYS CYS CYS ALA ARG GLN CYS ARG GLN ARG ARG ARG ARG ARG ARG ARA ARA ARA ARA	ALA SER LEU LEU LEU LEV ARG CLY CLY SER FRO FRO PRO PRO PRO

D W I D E D B ATA BANK

GLY GLY LEU LEU

• Molecule 1: Sperm acrosome-associated protein 9

• Molecule 1: Sperm acrosome-associated protein 9

• Molecule 1: Sperm acrosome-associated protein 9

Chain U:	9%			72%			28%	
M1 N2 E3 E6	H31 E34	H37 D38 K39 I 40	S45	Y56 C57 N58	R63 E84 G89	V92 +	G135 P159 P159 CAR LAR LAR LAR CLN CLN CLN CLN CLN CLU PRO	OLN ALA HIS GLN GLN SER THR ALA ALA ALA

• Molecule 1: Sperm acrosome-associated protein 9

	9%	
Chain V:	72%	28%

ALA GLY TTHR P DOL P DOL

• Molecule 1: Sperm acrosome-associated protein 9

6%	-		
Chain f:	72%	28%	
M1 R9 A28 H37 K33 K39 K39 K39 K39	H82 888 888 81003 11003 1120 1120 1120	UNE VAL VAL CLEU CLEU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	PRO ARG
ALA THR LYS LYS LYS CYS CYS CYS CYS GLN THR LYS ALA ALA SER LYS SER LYS	ANY CYS SER LYS PRO PRO PRO PRO CLY GLY CLY LYS LEU		
• Molecule 1: Sperm a 5%	crosome-associated pr	rotein 9	
Chain g:	72%	28%	
M1 N2 R33 H37 H55 F65 F83 E84 R123	C127 ◆ H154 ◆ H154 ◆ LYS LYS LYS LYS CLU CEU CLU SER SER SER SER	CTAN CLA CLA CLA CLA CLA CLA CLA ALA ALA ALA	CLN
LEU THR LYS ALA SER LYS SER LYS PRO ARG GLY CYS SER LYS SER LYS SER TRP	PR0 PR0 GLY GLY LVS LLYS LLYS LLEU		
• Molecule 1: Sperm a	crosome-associated p	rotein 9	
Chain h:	70%	30%	
M1 N2 R3 R3 R3 R41 Y56 S60	E129 A130 A131 E156 LVS LVS LVS LVS LVS LVS VAL LVS CLN CNS CN CNS CNS CNS CNS CNS CNS CNS CNS	VAL VAL CLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LYS
CYS ARG GLN LEU LEU LEU LEV LYS PRO ARG GLY CYS SER LYS	PRO TRP ARG PRO PRO GLY GLY LLYS LLYS LLEU		
• Molecule 1: Sperm a ^{8%}	crosome-associated p	rotein 9	
Chain i:	71%	• 28%	
M1 R.33 E.34 H37 H37 H37 H53 H55 K54 H55 K55 K55 K55 K55 K55 K55 K55 K55 K55	A85 180 180 109 1110 1110 1110	A130 A131 A132 A132 A132 A133 A133 A133 A133	ALA ALA
PRO ALA GLN ALA ALA ILE GLN PRO ALA ALA ALA ALA LYS LYS CYS	ARN LEU LYS ALA SER LEU LYS PRO GLY CYS SER LYS SER LYS	T PRU ARG GLY GLY LLYS LLUS	

• Molecule 1: Sperm acrosome-associated protein 9

	7%	
Chain j:	72%	28%

• Molecule 1: Sperm acrosome-associated protein 9

• Molecule 1: Sperm acrosome-associated protein 9

• Molecule 2: Tubulin beta-4B chain

• Molecule 2: Tubulin beta-4B chain Chain HF: 96% • Molecule 2: Tubulin beta-4B chain 5% Chain HH: 95% ALA THR ALA ALA GLU GLU GLU GLU GLU ALA GLU GLU VAL ALA • Molecule 2: Tubulin beta-4B chain Chain ID: 95% VAL ALA • Molecule 2: Tubulin beta-4B chain Chain IF: • • 95% • Molecule 2: Tubulin beta-4B chain 7% Chain IH: •• 95% ALA THR GLU GLU GLU GLU GLU GLU GLU GLU VAL ALA ALA • Molecule 2: Tubulin beta-4B chain

PROTEIN DATA BANK

GLU GLU GLU TYR

• Molecule 3: Tubulin alpha-1A chain

• Molecule 3: Tubulin alpha-1A chain

• Molecule 3: Tubulin alpha-1A chain

Chain JC: 95% 5%

• Molecule 3: Tubulin alpha-1A chain

• Molecule 3: Tubulin alpha-1A chain

GLU GLU TYR

• Molecule 3: Tubulin alpha-1A chain

Chain KC: 94% 6%

GLU GLU GLU GLU GLU GLU TYR

• Molecule 3: Tubulin alpha-1A chain

Chain KE:

GLY GLU GLU GLU GLU GLU TYR

• Molecule 3: Tubulin alpha-1A chain

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	21990	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	2.386	Depositor
Minimum map value	-0.002	Depositor
Average map value	0.015	Depositor
Map value standard deviation	0.090	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	404.63998, 404.63998, 404.63998	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.843, 0.843, 0.843	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDP, GTP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.23	0/795	0.36	0/1109	
1	В	0.23	0/795	0.34	0/1109	
1	С	0.23	0/785	0.35	0/1095	
1	D	0.26	0/1313	0.52	0/1772	
1	Е	0.26	0/1313	0.52	0/1772	
1	F	0.27	0/1286	0.51	1/1735~(0.1%)	
1	G	0.27	0/1302	0.58	0/1758	
1	Н	0.25	0/1302	0.48	0/1758	
1	Ι	0.26	0/1302	0.49	0/1758	
1	J	0.24	0/790	0.36	0/1102	
1	K	0.24	0/790	0.33	0/1102	
1	L	0.23	0/790	0.35	0/1102	
1	М	0.23	0/795	0.36	0/1109	
1	Ν	0.24	0/775	0.38	0/1081	
1	0	0.24	0/795	0.36	0/1109	
1	Р	0.28	0/1313	0.55	1/1772~(0.1%)	
1	Q	0.27	0/1286	0.53	0/1735	
1	R	0.27	0/1313	0.53	0/1772	
1	S	0.27	0/1277	0.50	0/1724	
1	Т	0.27	0/1302	0.54	0/1758	
1	U	0.27	0/1302	0.56	0/1758	
1	V	0.24	0/790	0.36	0/1102	
1	W	0.23	0/770	0.35	0/1074	
1	Х	0.23	0/795	0.36	0/1109	
1	d	0.29	0/1277	0.57	1/1724~(0.1%)	
1	е	0.27	0/1286	0.53	0/1735	
1	f	0.26	0/1313	0.52	0/1772	
1	g	0.28	0/1302	0.53	0/1758	
1	h	0.27	0/1277	0.52	0/1724	
1	i	0.28	0/1302	0.56	2/1758~(0.1%)	
1	j	0.24	$0/\overline{790}$	0.35	$0/1\overline{102}$	
1	k	0.24	0/770	0.37	0/1074	

Mal	Chain	Bond	lengths	Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.23	0/755	0.35	0/1053
2	AB	0.31	0/3431	0.59	1/4649~(0.0%)
2	AD	0.29	0/3431	0.59	3/4649~(0.1%)
2	AF	0.29	0/3423	0.59	3/4638~(0.1%)
2	BA	0.29	0/3431	0.60	2/4649~(0.0%)
2	BD	0.30	0/3431	0.57	1/4649~(0.0%)
2	BF	0.30	0/3431	0.60	1/4649~(0.0%)
2	CB	0.28	0/3431	0.58	1/4649~(0.0%)
2	CD	0.28	0/3431	0.57	1/4649~(0.0%)
2	CF	0.30	0/3431	0.61	2/4649~(0.0%)
2	DB	0.29	0/3431	0.58	0/4649
2	DD	0.30	0/3431	0.60	1/4649~(0.0%)
2	DF	0.29	0/3423	0.59	1/4638~(0.0%)
2	EB	0.28	0/3282	0.58	3/4449~(0.1%)
2	ED	0.31	0/3431	0.62	1/4649~(0.0%)
2	EF	0.31	0/3431	0.61	1/4649~(0.0%)
2	FD	0.30	0/3431	0.61	4/4649~(0.1%)
2	FF	0.29	0/3431	0.60	2/4649~(0.0%)
2	FH	0.28	0/3037	0.56	0/4112
2	GD	0.29	0/3431	0.57	1/4649~(0.0%)
2	GF	0.29	0/3431	0.56	1/4649~(0.0%)
2	GH	0.27	0/3431	0.56	0/4649
2	HD	0.29	0/3423	0.57	1/4638~(0.0%)
2	HF	0.29	0/3423	0.57	1/4638~(0.0%)
2	HH	0.29	0/3431	0.57	2/4649~(0.0%)
2	ID	0.28	0/3423	0.57	1/4638~(0.0%)
2	IF	0.29	0/3431	0.61	1/4649~(0.0%)
2	IH	0.29	0/3423	0.58	1/4638~(0.0%)
2	JD	0.29	0/3431	0.58	0/4649
2	JF	0.29	0/3431	0.59	1/4649~(0.0%)
2	KD	0.29	0/3423	0.58	1/4638~(0.0%)
2	KF	0.30	0/3431	0.59	1/4649~(0.0%)
2	KH	0.27	0/3237	0.59	1/4387~(0.0%)
2	LB	0.30	0/3431	0.58	2/4649~(0.0%)
2	LD	0.29	0/3431	0.58	2/4649~(0.0%)
2	LF	0.29	0/3431	0.60	$\overline{1/4649}\ (0.0\%)$
2	MB	0.30	0/3431	0.58	0/4649
2	MD	0.29	0/3423	0.60	2/4638~(0.0%)
2	MF	0.29	0/3431	0.59	$1/46\overline{49}\ (0.0\%)$
3	AC	0.31	0/3420	0.59	$1/46\overline{43}~(0.0\%)$
3	AE	0.30	0/3426	0.56	0/4651
3	BC	0.29	0/3426	0.56	1/4650~(0.0%)
3	BE	0.29	0/3420	0.53	0/4643

Mal	Chain	Bond	lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
3	BG	0.28	0/3093	0.55	0/4193
3	CC	0.29	0/3446	0.58	0/4678
3	CE	0.29	0/3454	0.57	0/4689
3	CG	0.28	0/3440	0.56	1/4670~(0.0%)
3	DC	0.29	0/3434	0.55	0/4662
3	DE	0.30	0/3434	0.55	0/4662
3	DG	0.28	0/3440	0.55	0/4670
3	EC	0.29	0/3440	0.57	1/4670~(0.0%)
3	EE	0.29	0/3432	0.56	0/4658
3	EG	0.28	0/3434	0.54	0/4662
3	FC	0.28	0/3442	0.54	0/4673
3	FE	0.30	0/3446	0.58	0/4678
3	FG	0.28	0/3440	0.57	0/4670
3	GC	0.28	0/3448	0.57	2/4681~(0.0%)
3	GE	0.28	0/3440	0.58	2/4669~(0.0%)
3	GG	0.28	0/3432	0.56	1/4659~(0.0%)
3	HC	0.28	0/3426	0.56	0/4650
3	HE	0.28	0/3426	0.54	0/4651
3	HG	0.28	0/3418	0.58	0/4639
3	IC	0.27	0/3309	0.54	0/4491
3	IE	0.27	0/3434	0.55	0/4662
3	IG	0.28	0/3426	0.54	1/4650~(0.0%)
3	JC	0.27	0/3442	0.54	0/4673
3	JE	0.29	0/3435	0.58	2/4663~(0.0%)
3	JG	0.28	0/3426	0.54	0/4650
3	KC	0.28	0/3419	0.56	0/4641
3	KE	0.27	0/3411	0.53	0/4629
3	KG	0.28	0/3419	0.53	0/4641
3	LA	0.27	0/3434	0.55	1/4662~(0.0%)
3	LC	0.29	0/3426	0.57	0/4651
3	LE	0.29	0/3434	0.55	0/4662
3	MA	0.28	0/3419	0.56	$1/4641 \ (0.0\%)$
3	MC	0.29	0/3434	0.56	0/4662
3	ME	0.29	0/3419	0.60	$1/4641 \ (0.0\%)$
All	All	0.28	0/294669	0.56	69/399940 (0.0 $%$)

There are no bond length outliers.

The worst 5 of 69 bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	FF	271	ALA	N-CA-C	8.14	132.99	111.00
3	GG	322	ASP	CB-CG-OD2	7.32	124.89	118.30

	5	1	1 0				
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	IF	182	PRO	CA-N-CD	-7.30	101.27	111.50
2	KH	271	ALA	N-CA-C	7.28	130.65	111.00
2	LD	271	ALA	N-CA-C	7.18	130.40	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	158/222~(71%)	155~(98%)	3(2%)	0	100	100
1	В	158/222~(71%)	155~(98%)	3~(2%)	0	100	100
1	С	156/222~(70%)	149 (96%)	7 (4%)	0	100	100
1	D	158/222~(71%)	150 (95%)	8 (5%)	0	100	100
1	Е	158/222~(71%)	150 (95%)	8 (5%)	0	100	100
1	F	155/222~(70%)	150 (97%)	5 (3%)	0	100	100
1	G	157/222~(71%)	151 (96%)	6 (4%)	0	100	100
1	Н	157/222~(71%)	153 (98%)	4 (2%)	0	100	100
1	Ι	157/222~(71%)	153 (98%)	4 (2%)	0	100	100
1	J	157/222~(71%)	147 (94%)	10 (6%)	0	100	100
1	Κ	157/222~(71%)	154 (98%)	3 (2%)	0	100	100
1	L	157/222~(71%)	153 (98%)	4 (2%)	0	100	100
1	М	158/222~(71%)	155 (98%)	3 (2%)	0	100	100

and in a l	£		
Continuea	jrom	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	N	154/222~(69%)	146 (95%)	8 (5%)	0	100	100
1	Ο	158/222~(71%)	154 (98%)	4(2%)	0	100	100
1	Р	158/222~(71%)	158 (100%)	0	0	100	100
1	Q	155/222~(70%)	152 (98%)	3 (2%)	0	100	100
1	R	158/222 (71%)	151 (96%)	7 (4%)	0	100	100
1	S	154/222~(69%)	149 (97%)	5 (3%)	0	100	100
1	Т	157/222~(71%)	152 (97%)	5 (3%)	0	100	100
1	U	157/222~(71%)	152 (97%)	5 (3%)	0	100	100
1	V	157/222~(71%)	150 (96%)	7 (4%)	0	100	100
1	W	153/222~(69%)	149 (97%)	4 (3%)	0	100	100
1	Х	158/222~(71%)	152 (96%)	6 (4%)	0	100	100
1	d	154/222~(69%)	146 (95%)	8 (5%)	0	100	100
1	е	155/222~(70%)	148 (96%)	7 (4%)	0	100	100
1	f	158/222~(71%)	151 (96%)	7 (4%)	0	100	100
1	g	157/222~(71%)	150 (96%)	7 (4%)	0	100	100
1	h	154/222~(69%)	145 (94%)	9 (6%)	0	100	100
1	i	157/222~(71%)	152 (97%)	5 (3%)	0	100	100
1	j	157/222~(71%)	147 (94%)	10 (6%)	0	100	100
1	k	153/222~(69%)	149 (97%)	4 (3%)	0	100	100
1	1	150/222~(68%)	145 (97%)	5 (3%)	0	100	100
2	AB	425/445~(96%)	408 (96%)	17 (4%)	0	100	100
2	AD	425/445~(96%)	405 (95%)	20 (5%)	0	100	100
2	AF	424/445~(95%)	399 (94%)	25 (6%)	0	100	100
2	BA	425/445~(96%)	407 (96%)	16 (4%)	2 (0%)	29	69
2	BD	425/445~(96%)	406 (96%)	18 (4%)	1 (0%)	47	81
2	BF	425/445~(96%)	403 (95%)	22 (5%)	0	100	100
2	CB	425/445~(96%)	405 (95%)	19 (4%)	1 (0%)	47	81
2	CD	425/445~(96%)	398 (94%)	26 (6%)	1 (0%)	47	81
2	CF	425/445~(96%)	407 (96%)	17 (4%)	1 (0%)	47	81
2	DB	425/445~(96%)	412 (97%)	13 (3%)	0	100	100
2	DD	425/445~(96%)	407 (96%)	17 (4%)	1 (0%)	47	81

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	DF	424/445~(95%)	397 (94%)	26 (6%)	1 (0%)	47	81
2	\mathbf{EB}	407/445~(92%)	387~(95%)	19 (5%)	1 (0%)	47	81
2	ED	425/445~(96%)	408 (96%)	16 (4%)	1 (0%)	47	81
2	EF	425/445~(96%)	400 (94%)	24 (6%)	1 (0%)	47	81
2	FD	425/445~(96%)	405 (95%)	19 (4%)	1 (0%)	47	81
2	\mathbf{FF}	425/445~(96%)	406 (96%)	18 (4%)	1 (0%)	47	81
2	FH	373/445~(84%)	353~(95%)	20 (5%)	0	100	100
2	GD	425/445~(96%)	409 (96%)	15 (4%)	1 (0%)	47	81
2	GF	425/445~(96%)	406 (96%)	18 (4%)	1 (0%)	47	81
2	GH	425/445~(96%)	402 (95%)	23~(5%)	0	100	100
2	HD	424/445~(95%)	400 (94%)	23 (5%)	1 (0%)	47	81
2	HF	424/445~(95%)	399 (94%)	24 (6%)	1 (0%)	47	81
2	HH	425/445~(96%)	407 (96%)	17 (4%)	1 (0%)	47	81
2	ID	424/445~(95%)	403 (95%)	21 (5%)	0	100	100
2	IF	425/445~(96%)	389 (92%)	36 (8%)	0	100	100
2	IH	424/445~(95%)	402 (95%)	22 (5%)	0	100	100
2	JD	425/445~(96%)	399 (94%)	26 (6%)	0	100	100
2	JF	425/445~(96%)	402 (95%)	23 (5%)	0	100	100
2	KD	424/445~(95%)	403 (95%)	20 (5%)	1 (0%)	47	81
2	KF	425/445~(96%)	403 (95%)	21 (5%)	1 (0%)	47	81
2	KH	397/445~(89%)	374 (94%)	22 (6%)	1 (0%)	41	76
2	LB	425/445~(96%)	402 (95%)	22 (5%)	1 (0%)	47	81
2	LD	425/445~(96%)	406 (96%)	19 (4%)	0	100	100
2	LF	425/445~(96%)	404 (95%)	19 (4%)	2(0%)	29	69
2	MB	425/445~(96%)	405 (95%)	19 (4%)	1 (0%)	47	81
2	MD	424/445~(95%)	405 (96%)	18 (4%)	1 (0%)	47	81
2	MF	425/445~(96%)	404 (95%)	20 (5%)	1 (0%)	47	81
3	AC	422/451 (94%)	409 (97%)	13 (3%)	0	100	100
3	AE	423/451 (94%)	409 (97%)	14 (3%)	0	100	100
3	BC	423/451 (94%)	411 (97%)	12 (3%)	0	100	100
3	BE	422/451~(94%)	403 (96%)	19 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	BG	377/451~(84%)	367~(97%)	10 (3%)	0	100	100
3	CC	426/451 (94%)	415 (97%)	11 (3%)	0	100	100
3	CE	427/451~(95%)	410 (96%)	17 (4%)	0	100	100
3	CG	425/451~(94%)	412 (97%)	13 (3%)	0	100	100
3	DC	424/451 (94%)	411 (97%)	13 (3%)	0	100	100
3	DE	424/451 (94%)	404 (95%)	20 (5%)	0	100	100
3	DG	425/451 (94%)	407 (96%)	18 (4%)	0	100	100
3	EC	425/451 (94%)	418 (98%)	7 (2%)	0	100	100
3	EE	424/451 (94%)	410 (97%)	14 (3%)	0	100	100
3	EG	424/451 (94%)	402 (95%)	22 (5%)	0	100	100
3	FC	425/451 (94%)	412 (97%)	13 (3%)	0	100	100
3	FE	426/451 (94%)	408 (96%)	18 (4%)	0	100	100
3	FG	425/451~(94%)	412 (97%)	13 (3%)	0	100	100
3	GC	426/451 (94%)	416 (98%)	10 (2%)	0	100	100
3	GE	425/451~(94%)	406 (96%)	19 (4%)	0	100	100
3	GG	424/451~(94%)	410 (97%)	14 (3%)	0	100	100
3	HC	423/451 (94%)	410 (97%)	13 (3%)	0	100	100
3	HE	423/451 (94%)	412 (97%)	11 (3%)	0	100	100
3	HG	422/451 (94%)	406 (96%)	16 (4%)	0	100	100
3	IC	408/451~(90%)	393~(96%)	15 (4%)	0	100	100
3	IE	424/451~(94%)	409 (96%)	15 (4%)	0	100	100
3	IG	423/451~(94%)	408 (96%)	15 (4%)	0	100	100
3	JC	425/451~(94%)	407 (96%)	18 (4%)	0	100	100
3	JE	424/451~(94%)	403 (95%)	21 (5%)	0	100	100
3	JG	423/451 (94%)	404 (96%)	19 (4%)	0	100	100
3	KC	422/451 (94%)	411 (97%)	11 (3%)	0	100	100
3	KE	421/451 (93%)	406 (96%)	15 (4%)	0	100	100
3	KG	422/451~(94%)	411 (97%)	11 (3%)	0	100	100
3	LA	424/451 (94%)	402 (95%)	22 (5%)	0	100	100
3	LC	423/451 (94%)	407 (96%)	16 (4%)	0	100	100
3	LE	424/451 (94%)	409 (96%)	15 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	MA	422/451~(94%)	407~(96%)	15~(4%)	0	100	100
3	MC	424/451~(94%)	405 (96%)	19 (4%)	0	100	100
3	ME	422/451~(94%)	408 (97%)	14 (3%)	0	100	100
All	All	37242/41374~(90%)	35680 (96%)	1535 (4%)	27~(0%)	54	85

Continued from previous page...

5 of 27 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	BA	158	GLU
2	LF	268	PRO
2	ED	272	PRO
2	MF	83	GLN
2	CB	271	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	D	149/199~(75%)	147~(99%)	2(1%)	69	82
1	Ε	149/199~(75%)	148~(99%)	1 (1%)	84	90
1	F	146/199~(73%)	144~(99%)	2(1%)	67	80
1	G	148/199~(74%)	148 (100%)	0	100	100
1	Η	148/199~(74%)	148 (100%)	0	100	100
1	Ι	148/199~(74%)	148 (100%)	0	100	100
1	Р	149/199~(75%)	149 (100%)	0	100	100
1	Q	146/199~(73%)	146 (100%)	0	100	100
1	R	149/199~(75%)	149 (100%)	0	100	100
1	S	145/199~(73%)	145~(100%)	0	100	100
1	Т	148/199~(74%)	148 (100%)	0	100	100
1	U	148/199~(74%)	148 (100%)	0	100	100
1	d	145/199~(73%)	144 (99%)	1 (1%)	84	90

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	е	146/199~(73%)	145~(99%)	1 (1%)	84	90
1	f	149/199~(75%)	149 (100%)	0	100	100
1	g	148/199~(74%)	148 (100%)	0	100	100
1	h	145/199~(73%)	145~(100%)	0	100	100
1	i	148/199~(74%)	148 (100%)	0	100	100
2	AB	367/380~(97%)	366~(100%)	1 (0%)	92	94
2	AD	367/380~(97%)	367 (100%)	0	100	100
2	AF	366/380~(96%)	364 (100%)	2 (0%)	88	93
2	BA	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	BD	367/380~(97%)	365 (100%)	2 (0%)	88	93
2	BF	367/380~(97%)	364 (99%)	3 (1%)	81	89
2	CB	367/380~(97%)	365 (100%)	2 (0%)	88	93
2	CD	367/380~(97%)	367~(100%)	0	100	100
2	CF	367/380~(97%)	367 (100%)	0	100	100
2	DB	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	DD	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	DF	366/380~(96%)	363~(99%)	3 (1%)	81	89
2	EB	354/380~(93%)	352~(99%)	2 (1%)	86	92
2	ED	367/380~(97%)	366~(100%)	1 (0%)	92	94
2	EF	367/380~(97%)	366~(100%)	1 (0%)	92	94
2	FD	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	\mathbf{FF}	367/380~(97%)	366~(100%)	1 (0%)	92	94
2	FH	323/380~(85%)	322 (100%)	1 (0%)	92	94
2	GD	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	GF	367/380~(97%)	365 (100%)	2 (0%)	88	93
2	GH	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	HD	366/380~(96%)	365 (100%)	1 (0%)	92	94
2	HF	366/380~(96%)	366 (100%)	0	100	100
2	HH	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	ID	$\overline{366/380}\ (96\%)$	365 (100%)	1 (0%)	92	94
2	IF	$367/\overline{380}~(97\%)$	365 (100%)	2(0%)	88	93

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
2	IH	366/380~(96%)	364 (100%)	2 (0%)	88	93
2	JD	367/380~(97%)	364~(99%)	3 (1%)	81	89
2	$_{ m JF}$	367/380~(97%)	365~(100%)	2 (0%)	88	93
2	KD	366/380~(96%)	364 (100%)	2 (0%)	88	93
2	KF	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	KH	344/380~(90%)	343~(100%)	1 (0%)	92	94
2	LB	367/380~(97%)	363~(99%)	4 (1%)	73	84
2	LD	367/380~(97%)	364~(99%)	3 (1%)	81	89
2	LF	367/380~(97%)	366 (100%)	1 (0%)	92	94
2	MB	367/380~(97%)	364 (99%)	3 (1%)	81	89
2	MD	366/380~(96%)	363~(99%)	3 (1%)	81	89
2	MF	367/380~(97%)	366 (100%)	1 (0%)	92	94
3	AC	359/378~(95%)	356 (99%)	3 (1%)	81	89
3	AE	360/378~(95%)	360 (100%)	0	100	100
3	BC	360/378~(95%)	359 (100%)	1 (0%)	92	94
3	BE	359/378~(95%)	357~(99%)	2 (1%)	86	92
3	BG	326/378~(86%)	326 (100%)	0	100	100
3	CC	363/378~(96%)	363 (100%)	0	100	100
3	CE	364/378~(96%)	363 (100%)	1 (0%)	92	94
3	CG	362/378~(96%)	362 (100%)	0	100	100
3	DC	361/378~(96%)	361 (100%)	0	100	100
3	DE	361/378~(96%)	359~(99%)	2 (1%)	86	92
3	DG	362/378~(96%)	362 (100%)	0	100	100
3	EC	362/378~(96%)	362 (100%)	0	100	100
3	EE	361/378~(96%)	361 (100%)	0	100	100
3	EG	361/378~(96%)	361 (100%)	0	100	100
3	FC	362/378~(96%)	362 (100%)	0	100	100
3	FE	363/378~(96%)	359~(99%)	4 (1%)	73	84
3	FG	362/378~(96%)	360~(99%)	2 (1%)	86	92
3	GC	363/378~(96%)	361 (99%)	2 (1%)	86	92
3	GE	362/378~(96%)	361 (100%)	1 (0%)	92	94

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	GG	361/378~(96%)	360 (100%)	1 (0%)	92	94
3	HC	360/378~(95%)	359~(100%)	1 (0%)	92	94
3	HE	360/378~(95%)	360 (100%)	0	100	100
3	HG	359/378~(95%)	358 (100%)	1 (0%)	92	94
3	IC	350/378~(93%)	349 (100%)	1 (0%)	92	94
3	IE	361/378~(96%)	360 (100%)	1 (0%)	92	94
3	IG	360/378~(95%)	360 (100%)	0	100	100
3	JC	362/378~(96%)	362 (100%)	0	100	100
3	JE	361/378~(96%)	359~(99%)	2 (1%)	86	92
3	JG	360/378~(95%)	360 (100%)	0	100	100
3	KC	359/378~(95%)	358 (100%)	1 (0%)	92	94
3	KE	358/378~(95%)	357 (100%)	1 (0%)	92	94
3	KG	359/378~(95%)	355~(99%)	4 (1%)	73	84
3	LA	361/378~(96%)	361 (100%)	0	100	100
3	LC	360/378~(95%)	360 (100%)	0	100	100
3	LE	361/378~(96%)	360 (100%)	1 (0%)	92	94
3	MA	359/378~(95%)	358~(100%)	1 (0%)	92	94
3	MC	361/378~(96%)	359~(99%)	2 (1%)	86	92
3	ME	359/378~(95%)	356~(99%)	3 (1%)	81	89
All	All	30176/32386 (93%)	30073 (100%)	103 (0%)	92	94

 $5~{\rm of}~103$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
3	IE	123	ARG
2	KD	306	ARG
3	ME	373	ARG
2	IF	77	ARG
3	JE	85	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 83 such sidechains are listed below:

Mol	Chain	Res	Type
2	IH	292	GLN

Continued from previous page...

Mol	Chain	Res	Type
2	KF	329	GLN
3	JC	342	GLN
3	JG	228	ASN
2	LD	329	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 114 ligands modelled in this entry, 38 are monoatomic - leaving 76 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les				
	туре	Ullalli	nes	ries	nes	ries	ries		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	GDP	DF	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.35	4 (13%)				
4	GDP	AF	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.30	3 (10%)				
4	GDP	GF	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.40	5 (16%)				
4	GDP	GD	501	-	24,30,30	0.98	1 (4%)	30,47,47	1.32	4 (13%)				
4	GDP	BD	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.29	4 (13%)				
4	GDP	HH	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.41	4 (13%)				
5	GTP	DC	501	6	26,34,34	1.24	2 (7%)	32,54,54	1.61	6 (18%)				
5	GTP	CE	501	6	26,34,34	1.22	2 (7%)	32,54,54	1.64	7 (21%)				

Mol	Tuno	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
5	GTP	IC	501	6	26,34,34	1.19	2 (7%)	32,54,54	1.57	7 (21%)
5	GTP	JE	501	6	26,34,34	1.14	2 (7%)	32,54,54	1.58	6 (18%)
5	GTP	EE	501	6	26,34,34	1.25	2 (7%)	32,54,54	1.66	5 (15%)
4	GDP	JF	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.32	4 (13%)
5	GTP	FG	501	6	26,34,34	1.25	1 (3%)	32,54,54	1.59	6 (18%)
5	GTP	JG	501	6	26,34,34	1.18	2 (7%)	32,54,54	1.55	6 (18%)
4	GDP	MD	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.34	4 (13%)
5	GTP	LE	501	6	26,34,34	1.23	2 (7%)	32,54,54	1.63	7 (21%)
5	GTP	ME	501	6	26,34,34	1.26	2 (7%)	32,54,54	1.67	8 (25%)
5	GTP	CC	501	6	26,34,34	1.21	2 (7%)	32,54,54	1.45	6 (18%)
5	GTP	EC	501	6	26,34,34	1.23	3 (11%)	32,54,54	1.68	6 (18%)
4	GDP	KD	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.31	4 (13%)
4	GDP	ID	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.22	4 (13%)
5	GTP	BE	501	6	26,34,34	1.23	2 (7%)	32,54,54	1.65	7 (21%)
4	GDP	BA	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.31	4 (13%)
4	GDP	HD	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.36	4 (13%)
5	GTP	FE	501	6	26,34,34	1.21	2 (7%)	32,54,54	1.61	7 (21%)
4	GDP	EB	501	-	24,30,30	0.99	1 (4%)	30,47,47	1.30	4 (13%)
5	GTP	LC	501	6	26,34,34	1.22	2 (7%)	32,54,54	1.58	6 (18%)
5	GTP	AC	501	6	26,34,34	1.20	2 (7%)	32,54,54	1.72	7 (21%)
4	GDP	LF	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.26	6 (20%)
5	GTP	CG	501	6	26,34,34	1.22	2(7%)	32,54,54	1.63	7 (21%)
5	GTP	EG	501	6	26,34,34	1.29	2(7%)	32,54,54	1.72	7 (21%)
4	GDP	CD	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.35	4 (13%)
5	GTP	GG	501	6	26,34,34	1.24	2 (7%)	32,54,54	1.74	7 (21%)
5	GTP	KE	501	6	26,34,34	1.25	2 (7%)	32,54,54	1.56	6 (18%)
4	GDP	MF	501	-	24,30,30	0.99	1 (4%)	30,47,47	1.34	4 (13%)
4	GDP	DD	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.35	4 (13%)
4	GDP	BF	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.27	4 (13%)
5	GTP	MA	501	6	26,34,34	1.23	2 (7%)	32,54,54	1.59	7 (21%)
5	GTP	DG	501	6	26,34,34	1.21	2 (7%)	32,54,54	1.59	6 (18%)
5	GTP	IG	501	6	26,34,34	1.19	2 (7%)	32,54,54	1.63	7 (21%)
4	GDP	LB	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.23	4 (13%)
5	GTP	BG	501	6	26,34,34	1.19	1 (3%)	32,54,54	1.60	6 (18%)
4	GDP	KF	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.19	3 (10%)

Mol	Type	Chain	Bos	Link	Bo	Bond lengths		Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	GTP	HC	501	6	26,34,34	1.22	2 (7%)	32,54,54	1.56	7 (21%)
4	GDP	\mathbf{FF}	501	-	24,30,30	0.98	1 (4%)	30,47,47	1.32	4 (13%)
5	GTP	IE	501	6	26,34,34	1.22	2 (7%)	32,54,54	1.58	7 (21%)
4	GDP	AD	501	-	24,30,30	0.99	1 (4%)	30,47,47	1.38	3 (10%)
5	GTP	MC	501	6	26,34,34	1.25	2 (7%)	32,54,54	1.54	6 (18%)
4	GDP	LD	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.33	5 (16%)
5	GTP	GC	501	6	26,34,34	1.24	2 (7%)	32,54,54	1.70	7 (21%)
5	GTP	KG	501	6	26,34,34	1.20	2 (7%)	32,54,54	1.60	6 (18%)
4	GDP	IF	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.32	4 (13%)
5	GTP	GE	501	6	26,34,34	1.20	2 (7%)	32,54,54	1.67	6 (18%)
4	GDP	GH	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.40	4 (13%)
4	GDP	HF	501	-	24,30,30	0.94	1 (4%)	30,47,47	1.39	4 (13%)
5	GTP	DE	501	6	26,34,34	1.20	2(7%)	32,54,54	1.63	7 (21%)
4	GDP	CB	501	-	24,30,30	0.93	1 (4%)	30,47,47	1.25	4 (13%)
5	GTP	FC	501	6	26,34,34	1.19	2 (7%)	32,54,54	1.63	7 (21%)
4	GDP	DB	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.33	4 (13%)
4	GDP	FD	501	-	24,30,30	0.97	1 (4%)	30,47,47	1.27	4 (13%)
5	GTP	BC	501	6	26,34,34	1.20	2 (7%)	32,54,54	1.51	7 (21%)
4	GDP	CF	501	-	24,30,30	0.95	1 (4%)	30,47,47	1.31	4 (13%)
5	GTP	HG	501	6	26,34,34	1.28	2 (7%)	32,54,54	1.66	7 (21%)
4	GDP	MB	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.28	5 (16%)
5	GTP	KC	501	6	26,34,34	1.20	2 (7%)	32,54,54	1.50	7 (21%)
4	GDP	KH	501	-	24,30,30	0.99	1 (4%)	30,47,47	1.36	5 (16%)
4	GDP	IH	501	-	24,30,30	0.92	1 (4%)	30,47,47	1.42	5 (16%)
5	GTP	LA	501	6	26,34,34	1.17	2 (7%)	32,54,54	1.62	7 (21%)
5	GTP	AE	501	6	26,34,34	1.21	2 (7%)	32,54,54	1.55	7 (21%)
5	GTP	JC	501	6	26,34,34	1.17	2 (7%)	32,54,54	1.58	7 (21%)
4	GDP	FH	501	-	24,30,30	0.93	1 (4%)	30,47,47	1.38	4 (13%)
4	GDP	JD	501	-	24,30,30	0.93	1 (4%)	30,47,47	1.34	4 (13%)
4	GDP	EF	501	-	24,30,30	0.96	1 (4%)	30,47,47	1.33	3 (10%)
4	GDP	AB	501	-	24,30,30	0.98	1 (4%)	30,47,47	1.36	4 (13%)
5	GTP	HE	501	6	26,34,34	1.21	2 (7%)	32,54,54	1.60	7 (21%)
4	GDP	ED	501	_	24,30,30	0.94	1 (4%)	30,47,47	1.28	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	GDP	DF	501	-	-	1/12/32/32	0/3/3/3
4	GDP	AF	501	-	-	5/12/32/32	0/3/3/3
4	GDP	GF	501	-	-	3/12/32/32	0/3/3/3
4	GDP	GD	501	-	-	4/12/32/32	0/3/3/3
4	GDP	BD	501	-	-	2/12/32/32	0/3/3/3
4	GDP	HH	501	-	-	2/12/32/32	0/3/3/3
5	GTP	DC	501	6	-	7/18/38/38	0/3/3/3
5	GTP	CE	501	6	-	5/18/38/38	0/3/3/3
5	GTP	IC	501	6	-	9/18/38/38	0/3/3/3
5	GTP	JE	501	6	-	7/18/38/38	0/3/3/3
5	GTP	EE	501	6	-	8/18/38/38	0/3/3/3
4	GDP	JF	501	-	-	4/12/32/32	0/3/3/3
5	GTP	FG	501	6	-	7/18/38/38	0/3/3/3
5	GTP	JG	501	6	-	1/18/38/38	0/3/3/3
4	GDP	MD	501	-	-	2/12/32/32	0/3/3/3
5	GTP	LE	501	6	-	5/18/38/38	0/3/3/3
5	GTP	ME	501	6	-	5/18/38/38	0/3/3/3
5	GTP	CC	501	6	-	4/18/38/38	0/3/3/3
5	GTP	EC	501	6	-	5/18/38/38	0/3/3/3
4	GDP	KD	501	-	-	1/12/32/32	0/3/3/3
4	GDP	ID	501	-	-	5/12/32/32	0/3/3/3
5	GTP	BE	501	6	-	4/18/38/38	0/3/3/3
4	GDP	BA	501	-	-	3/12/32/32	0/3/3/3
4	GDP	HD	501	-	-	2/12/32/32	0/3/3/3
5	GTP	FE	501	6	-	5/18/38/38	0/3/3/3
4	GDP	EB	501	-	-	3/12/32/32	0/3/3/3
5	GTP	LC	501	6	-	2/18/38/38	0/3/3/3
5	GTP	AC	501	6	-	3/18/38/38	0/3/3/3
4	GDP	LF	501	-	-	4/12/32/32	0/3/3/3
5	GTP	CG	501	6	-	5/18/38/38	0/3/3/3
5	GTP	EG	501	6	-	5/18/38/38	0/3/3/3
4	GDP	CD	501	-	-	1/12/32/32	0/3/3/3
5	GTP	GG	501	6	-	4/18/38/38	0/3/3/3

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	GTP	KE	501	6	-	4/18/38/38	0/3/3/3
4	GDP	MF	501	-	-	2/12/32/32	0/3/3/3
4	GDP	DD	501	-	-	2/12/32/32	0/3/3/3
4	GDP	BF	501	-	-	2/12/32/32	0/3/3/3
5	GTP	MA	501	6	_	1/18/38/38	0/3/3/3
5	GTP	DG	501	6	-	6/18/38/38	0/3/3/3
5	GTP	IG	501	6	-	2/18/38/38	0/3/3/3
4	GDP	LB	501	-	-	4/12/32/32	0/3/3/3
5	GTP	BG	501	6	-	6/18/38/38	0/3/3/3
4	GDP	KF	501	-	-	1/12/32/32	0/3/3/3
5	GTP	HC	501	6	-	7/18/38/38	0/3/3/3
4	GDP	FF	501	-	-	2/12/32/32	0/3/3/3
5	GTP	IE	501	6	-	8/18/38/38	0/3/3/3
4	GDP	AD	501	-	-	4/12/32/32	0/3/3/3
5	GTP	MC	501	6	-	5/18/38/38	0/3/3/3
4	GDP	LD	501	-	-	2/12/32/32	0/3/3/3
5	GTP	GC	501	6	-	6/18/38/38	0/3/3/3
5	GTP	KG	501	6	-	5/18/38/38	0/3/3/3
4	GDP	IF	501	-	-	5/12/32/32	0/3/3/3
5	GTP	GE	501	6	-	7/18/38/38	0/3/3/3
4	GDP	GH	501	-	_	3/12/32/32	0/3/3/3
4	GDP	HF	501	-	_	3/12/32/32	0/3/3/3
5	GTP	DE	501	6	_	7/18/38/38	0/3/3/3
4	GDP	CB	501	-	_	2/12/32/32	0/3/3/3
5	GTP	FC	501	6	_	4/18/38/38	0/3/3/3
4	GDP	DB	501	_	-	2/12/32/32	0/3/3/3
4	GDP	FD	501	-	_	1/12/32/32	0/3/3/3
5	GTP	BC	501	6	-	3/18/38/38	0/3/3/3
4	GDP	CF	501	-	-	1/12/32/32	0/3/3/3
5	GTP	HG	501	6	-	5/18/38/38	0/3/3/3
4	GDP	MB	501	-	-	2/12/32/32	0/3/3/3
5	GTP	KC	501	6	-	4/18/38/38	0/3/3/3
4	GDP	KH	501	-	_	3/12/32/32	0/3/3/3
4	GDP	IH	501	-	-	1/12/32/32	0/3/3/3
5	GTP	LA	501	6	-	6/18/38/38	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	GTP	AE	501	6	-	2/18/38/38	0/3/3/3
5	GTP	JC	501	6	-	6/18/38/38	0/3/3/3
4	GDP	FH	501	-	-	3/12/32/32	0/3/3/3
4	GDP	JD	501	-	-	2/12/32/32	0/3/3/3
4	GDP	EF	501	-	-	2/12/32/32	0/3/3/3
4	GDP	AB	501	-	-	1/12/32/32	0/3/3/3
5	GTP	ΗE	501	6	-	7/18/38/38	0/3/3/3
4	GDP	ED	501	-	-	2/12/32/32	0/3/3/3

The worst 5 of 113 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
5	HG	501	GTP	C5-C6	-4.69	1.37	1.47
5	EG	501	GTP	C5-C6	-4.59	1.38	1.47
5	ME	501	GTP	C5-C6	-4.52	1.38	1.47
5	GC	501	GTP	C5-C6	-4.52	1.38	1.47
5	MC	501	GTP	C5-C6	-4.52	1.38	1.47

The worst 5 of 407 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	HH	501	GDP	PA-O3A-PB	-4.64	116.91	132.83
4	GF	501	GDP	PA-O3A-PB	-4.61	117.01	132.83
5	IG	501	GTP	PB-O3B-PG	-4.60	117.06	132.83
5	EC	501	GTP	PA-O3A-PB	-4.57	117.14	132.83
5	GG	501	GTP	PB-O3B-PG	-4.55	117.22	132.83

There are no chirality outliers.

5 of 286 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	AB	501	GDP	C5'-O5'-PA-O1A
4	AD	501	GDP	C5'-O5'-PA-O1A
4	AF	501	GDP	C5'-O5'-PA-O3A
4	AF	501	GDP	C5'-O5'-PA-O2A
4	AF	501	GDP	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26611. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

6.2.2 Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

6.3.2 Raw map

X Index: 238

Y Index: 239

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$6.5.1 \quad \mathrm{emd}_26611_\mathrm{msk}_1.\mathrm{map}~(\mathrm{i})$

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2981 nm^3 ; this corresponds to an approximate mass of 2692 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.167 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.167 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

Resolution estimate (Å)	Estimation criterion (FSC cut-off)		
	0.143	0.5	Half-bit
Reported by author	6.00	-	-
Author-provided FSC curve	5.96	7.79	6.16
Unmasked-calculated*	5.98	8.20	6.45

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26611 and PDB model 7UN1. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 76% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7606	0.2540
А	0.4033	0.0620
AB	0.7898	0.2920
AC	0.7980	0.2980
AD	0.8033	0.3010
AE	0.8026	0.2950
AF	0.7814	0.2790
В	0.6181	0.1090
BA	0.7958	0.3010
BC	0.8138	0.3250
BD	0.8057	0.3210
BE	0.8089	0.3180
BF	0.8072	0.3040
BG	0.7873	0.2760
\mathbf{C}	0.7697	0.1700
CB	0.7916	0.3000
CC	0.8176	0.3250
CD	0.7991	0.3240
CE	0.8153	0.3330
CF	0.8009	0.3120
CG	0.7968	0.3020
D	0.6085	0.1440
DB	0.7843	0.2810
DC	0.8025	0.3180
DD	0.8081	0.3220
DE	0.7983	0.3180
$\overline{\mathrm{DF}}$	0.8080	0.3130
DG	0.7935	0.2890
E	0.6835	0.1840
EB	0.7798	0.2850
EC	0.7863	0.3030
ED	0.8069	0.3020
EE	0.8039	0.3100
EF	0.7934	0.2920
EG	0.7871	0.2900

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
F	0.7160	0.1960
FC	0.7822	0.2870
FD	0.7825	0.2930
FE	0.7999	0.3050
FF	0.7904	0.2960
FG	0.7944	0.2880
FH	0.7497	0.2570
G	0.7003	0.2100
GC	0.7599	0.2560
GD	0.7672	0.2730
GE	0.7762	0.2790
GF	0.7605	0.2650
GG	0.7645	0.2570
GH	0.7440	0.2370
Н	0.6757	0.1900
HC	0.7514	0.2230
HD	0.7594	0.2430
HE	0.7670	0.2500
HF	0.7588	0.2420
HG	0.7765	0.2490
HH	0.7473	0.2160
Ι	0.6542	0.1660
IC	0.7223	0.1860
ID	0.7277	0.1950
IE	0.7354	0.2120
IF	0.7331	0.2030
IG	0.7469	0.2110
IH	0.7271	0.1840
J	0.8230	0.2300
JC	0.7316	0.1860
JD	0.7467	0.2110
JE	0.7415	0.2020
JF	0.7446	0.2140
JG	0.7367	0.1920
K	0.6877	0.1610
KC	0.7554	0.2210
KD	0.7594	0.2250
KE	0.7548	0.2450
KF	0.7590	0.2210
KG	0.7626	0.2290
KH	0.7378	0.2000
L L	0.4311	0.0510

Continued on next page...

Chain	Atom inclusion	Q-score
LA	0.7565	0.2360
LB	0.7759	0.2510
LC	0.7673	0.2550
LD	0.7732	0.2640
LE	0.7523	0.2410
LF	0.7542	0.2280
М	0.4849	0.0630
MA	0.7590	0.2560
MB	0.7675	0.2620
MC	0.7706	0.2690
MD	0.7699	0.2630
ME	0.7744	0.2700
MF	0.7717	0.2510
N	0.7294	0.1880
0	0.7513	0.2030
Р	0.6069	0.1340
Q	0.6895	0.1970
R	0.6953	0.1950
S	0.7123	0.2180
Т	0.6900	0.1780
U	0.6645	0.1820
V	0.8104	0.2280
W	0.7030	0.1940
Х	0.3392	0.0160
d	0.6442	0.1400
е	0.6862	0.1880
f	0.7088	0.2040
g	0.6940	0.2040
h	0.6945	0.1950
i	0.6701	0.1830
j	0.8243	0.2460
k	0.7017	0.1810
1	0.4418	0.0520

Continued from previous page...

