

wwPDB EM Validation Summary Report (i)

Feb 5, 2024 – 11:48 PM EST

PDB ID	:	7U8R
EMDB ID	:	EMD-26388
Title	:	Structure of porcine kidney V-ATPase with SidK, Rotary State 3
Authors	:	Tan, Y.Z.; Keon, K.A.
Deposited on	:	2022-03-09
Resolution	:	3.80 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	EM structures		
Metric	$(\# { m Entries})$	$(\# { m Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain								
1	А	617	▶ 76%	2	20%	••					
1	В	617	74%	18%	6	• 5%					
1	С	617	• 79%		17%	••					
2	D	515	66%	21%	•	11%					
2	Е	515	73%	15%	•	11%					
2	F	515	67%	21%	•	11%					
3	G	382	63%	24%		• 6%					
4	Н	247	70%	16%		14%					

Continued on next page...

Mol	Chain	Length	Quality of chain								
5	Ι	226	79%		16% • •						
5	J	226	74%	2	1% • •						
5	K	226	78%		16% • •						
6	L	119	63%	26%	• 8%						
7	М	118	85%		8% • 7%						
7	Ν	118	6 9%	22%	• 7%						
7	О	118	36%	31%	6% 8%						
8	Q	337	5 4% 12%	• 34	1%						
8	R	337	• 54% 7% •	39%							
8	S	337	• 52% 15%	• 3	3%						
9	Т	483	34% 60%	26%	• 12%						
10	a	838	7%		11%						
11	b	205	99%								
12	с	469	44%	56%							
13	d	351	23%		6%						
14	е	81	9%								
15	f	98	9%		14%						
16	g	155	16%		·						
16	h	155	97%		·						
16	i	155	9%		·						
16	j	155	<u>6%</u> 97%		·						
16	k	155	<u>6%</u> 97%		·						
16	1	155	5% 97%		·						
16	m	155	5% 97%		·						
16	n	155	7% 97%		·						

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain
16	О	155	97% •
17	р	351	15% 85%

2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 62638 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called V-type proton ATPase catalytic subunit A.

Mol	Chain	Residues		At		AltConf	Trace		
1	А	600	Total 4661	C 2957	N 790	O 889	$\begin{array}{c} \mathrm{S} \\ \mathrm{25} \end{array}$	0	0
1	В	587	$\begin{array}{c} \text{Total} \\ 4577 \end{array}$	C 2904	N 776	O 873	S 24	0	0
1	С	600	Total 4661	C 2957	N 790	O 889	S 25	0	0

• Molecule 2 is a protein called Vacuolar proton pump subunit B.

Mol	Chain	Residues		At		AltConf	Trace		
2	р	456	Total	С	Ν	Ο	S	0	0
	D	400	3572	2266	611	674	21	0	0
2	F	456	Total	С	Ν	0	\mathbf{S}	0	0
	Ľ	400	3572	2266	611	674	21	0	0
0	Б	158	Total	С	Ν	0	S	0	0
2	Г	400	3590	2278	615	676	21	0	0

• Molecule 3 is a protein called V-type proton ATPase subunit C.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	G	360	Total 2935	C 1880	N 496	0 549	S 10	0	0

• Molecule 4 is a protein called V-type proton ATPase subunit D.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Н	213	Total 1717	C 1089	N 309	0 314	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called V-type proton ATPase subunit E 1.

Mol	Chain	Residues		At		AltConf	Trace		
5 I	Т	217	Total	С	Ν	0	\mathbf{S}	0	0
	217	1416	880	263	269	4	0	0	
5	5 J	218	Total	С	Ν	Ο	S	0	0
0			1773	1118	317	329	9		0
5 K	K	917	Total	С	Ν	0	S	0	0
	Γ	217	1766	1113	316	328	9	0	0

• Molecule 6 is a protein called V-type proton ATPase subunit F.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	L	109	Total 865	C 548	N 153	0 162	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called V-type proton ATPase subunit G.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	М	110	Total	С	Ν	0	S	0	0
1	111	110	673	413	129	130	1	0	0
7	N	110	Total	С	Ν	Ο	S	0	0
1	IN	110	906	556	172	175	3	0	0
7	0	108	Total	С	Ν	0	S	0	0
(0	0 108	894	548	170	173	3	0	

• Molecule 8 is a protein called Bacterial effector protein SidK.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	Q	224	Total C N O S 1824 1162 306 346 10	0	0
8	R	206	Total C N O S 1685 1073 285 319 8	0	0
8	S	226	Total C N O S 1836 1169 308 348 11	0	0

• Molecule 9 is a protein called V-type proton ATPase subunit H.

Mol	Chain	Residues		At	AltConf	Trace			
9	Т	427	Total 3510	C 2230	N 606	O 651	S 23	0	0

• Molecule 10 is a protein called V-type proton ATPase subunit a.

Mol	Chain	Residues		Ator	AltConf	Trace		
10	a	750	Total 3707	C 2207	N 750	O 750	0	0

• Molecule 11 is a protein called V-type proton ATPase 21 kDa proteolipid subunit isoform 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
11	b	203	Total 989	C 583	N 203	O 203	0	0

• Molecule 12 is a protein called ATPase H+ transporting accessory protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	с	206	Total 1016	C 604	N 206	O 206	0	0

• Molecule 13 is a protein called V-type proton ATPase subunit.

Mol	Chain	Residues		At	AltConf	Trace			
13	d	350	Total 2835	C 1829	N 462	O 530	S 14	0	0

• Molecule 14 is a protein called V-type proton ATPase subunit.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
14	е	80	Total 394	C 234	N 80	O 80	0	0

• Molecule 15 is a protein called Ribonuclease kappa.

Mol	Chain	Residues	Atoms				AltConf	Trace
15	f	84	Total 412	С 244	N 84	0 84	0	0

• Molecule 16 is a protein called V-type proton ATPase proteolipid subunit.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
16	g	150	Total 729	C 429	N 150	O 150	0	0
16	h	150	Total 729	C 429	N 150	O 150	0	0
16	i	150	Total 729	C 429	N 150	O 150	0	0

Continued on next page...

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
16	i	150	Total	С	Ν	Ο	0	0
10	J	150	729	429	150	150	0	0
16	ŀ	150	Total	С	Ν	Ο	0	0
10	K	100	729	429	150	150	0	0
16	1	150	Total	С	Ν	Ο	0	0
10	1	150	729	429	150	150	0	0
16	m	150	Total	С	Ν	Ο	0	0
10	111	150	729	429	150	150	0	0
16	n	150	Total	С	Ν	Ο	0	0
10	11	150	729	429	150	150	0	0
16	0	150	Total	С	Ν	Ο	0	0
10	0	100	729	429	150	150	0	0

Continued from previous page...

• Molecule 17 is a protein called ATPase H(+)-transporting lysosomal accessory protein 2.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
17	р	53	Total 264	C 158	N 53	O 53	0	0

• Molecule 18 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
18	Δ	1	Total	С	Ν	Ο	Р	0
10	11	1	27	10	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: V-type proton ATPase catalytic subunit A

• Molecule 1: V-type proton ATPase catalytic subunit A

• Molecule 2: Vacuolar proton pump subunit B

Y498 S499 GLU GLV GLV GLV AALA PRO GLU PRO GLU PRO ASP PRO ASP ASP PRO LEU

• Molecule 5: V-type proton ATPase subunit E 1

 \bullet Molecule 8: Bacterial effector protein SidK

Chain Q:	54%	12% •	34%
MET PHE PHE ILYS LYS VAL CYS GLY GLY CS2 C32 C32 C32 C32 C32	136 136 147 149 148 148 148 148 148 166 166 166 166 166	Lot 187 187 187 183 183 183 193 195 195 195 195 195 195 195 195 195 195	F100 F100 M103 M103 M106 L107 M134 A144
4160 4161 4163 4164 4164 4164 1168 1168 1168 1176 0177 0177 1178 1178 1178 1178	K180 E191 K192 E194 E194 E194 F212 E214 F213 E214 C215 F213 E214	M229 1230 A233 M233 M233 F235 LV8 LEU SER SER SER SER LV8	VAL VAL ASP CJA ASP ASP SSR SSR SSR SSR SSR SSR SSR SSR SSR S
THR LEU LEU LEU LEU ASP ASP ASP LLE ULL CLU CLU CLU CLU CLU CLU	ASN ASN LEU SER SER SER VAL LEU CLY CLY CLY CLY CLY CLY CLY ASP CLY ASP CLY ASP CLY ASP CLY ASP CLY ASP CLY ASS CLA ASN CLA ASN CLA ASS CLA ASS CLA ASS CLA ASS CLA ASS CLA ASS CLA ASS CLA ASS CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	LLE VAL TTRE TTRE SER GLN ALA LEU LLEU LLEU TTLE	GLN GLN ALA ALA CLN GLN GLN ALA ALA ALA GLN GLN
LEU LEU SER MET ALA PHE PRO ASP ASP ASP ASN TLE CLU SER SER	ILE SER ASN LYS		
• Molecule 8: Bacteria	al effector protein SidK		
Chain R:	54%	7% •	39%
MET PHE PHE LYS LYS CAN CIT CIT CIT CIT CIT CIT CIT CIT CIT CIT	Y28 E47 D48 N59 N59 N59 N59 N59 N59 N50 N50 N50 N50 N50 N50 N50 N50 N50 N50	R84 L88 L91 L94 L94 L94 L94 L94	W122 K123 V128 V128 L130 U132 U133 N134 N134 T168
Y197 P218 ALA ALA ALA GLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ASP TYR MET MET MET PRO PRO LEU SER SER SER SER CLN CLN SER CLN SER CLN SER CLN SER SER SER SER SER SER SER SER SER SER	ALA SER SER SER ASP ASP VAL LVAL LYS LYS LYS LYS	ALED SER ARG ARG ARG LLYS GLU GLU GLU CLYS ASN ASN ASN
ALA LEU SER LYS LYS LYS LYS LYS CYS CYS CYS CYS CYS CYS CYS CYS CYS C	ILE GLU VAL TYR TYR SER GLN LEU LEU LEU PRO PRO PRO ALA ALA ALA	THR THR ALA GLN GLN CYS GLN LEU LEU	MET MET ALA ARA ASP ASP ASP ASN TYR TILE GLU SER ILE SER ILE
SER ASN LYS			
• Molecule 8: Bacteria	al effector protein SidK		
Chain S:	52%	15% •	33%
MET PHE TILE LYS CVAL CVS CVS CVAL CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	136 136 142 145 145 051 051 051 051 053 053 053 053 053 053	D 19 D 19 C 181 C 187 C 187 C 187 C 187 C 192 C 192 C 192 C 192 C 192 C 192 C 192 C 193 C	L94 198 L107 8110 8110 7114 7126 P147 P147
M156 1169 1172 1172 1171 1171 1171 1171 1171 117	A189 K192 1193 D194 E195 Q196 A197 H196 H198 K201 Y204 S211 S211 S211	A216 A216 B221 B221 Q222 K223 K223 T228 T228 T228 T228 T235	SER SER LITS VAL LEU ASP ASP LEU SER ALA SER SER SER SER
SER ASP VAL LEU LEU LYS THR LEU LEU ASP SER TLE ASP SER TLE VAL	LYS GLU ASN GLU ASN GLU LYS LEU SER LYS LYS LYS CLY GLY CLY CLY	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ALA ALA LEU LYS LLE SER PRO GLN GLN CLN CLN TYR TYR ALA ALA ALA
GLN CYS CIN CYS ALA ALA BLL DLEU CLU CLU CLU CLN SER PHE PHE PRO CLN SER SER CLN	ASN TTR TLE TLE GLU SER ASN LYS		
• Molecule 9: V-type	proton ATPase subunit	Н	
Chain T:	60%	26%	• 12%

W O R L D W I D E PROTEIN DATA BANK

• Molecule 16: V-type proton ATPase proteolipid subunit

• Molecule 16: V-type proton ATPase proteolipid subunit

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	22866	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	100.00	Depositor
Maximum defocus (nm)	3911.445	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor
Maximum map value	2.799	Depositor
Minimum map value	-0.389	Depositor
Average map value	0.160	Depositor
Map value standard deviation	0.254	Depositor
Recommended contour level	0.7	Depositor
Map size (Å)	184.88861, 215.4487, 307.129	wwPDB
Map dimensions	121, 141, 201	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.528005, 1.528005, 1.528005	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.57	0/4757	0.83	0/6446	
1	В	0.56	0/4668	0.82	0/6324	
1	С	0.57	0/4757	0.80	0/6446	
2	D	0.55	0/3644	0.77	0/4939	
2	Е	0.54	0/3644	0.76	0/4939	
2	F	0.55	0/3662	0.79	0/4961	
3	G	0.46	0/2989	0.70	0/4038	
4	Н	0.46	0/1735	0.77	0/2321	
5	Ι	0.40	0/1427	0.58	0/1948	
5	J	0.40	0/1790	0.62	0/2396	
5	К	0.53	0/1783	0.77	0/2386	
6	L	0.51	0/879	0.82	0/1186	
7	М	0.45	0/678	0.57	0/933	
7	Ν	0.41	0/914	0.65	0/1218	
7	0	0.55	0/902	0.75	0/1202	
8	Q	0.48	0/1858	0.76	0/2505	
8	R	0.59	0/1717	0.83	0/2315	
8	S	0.49	0/1870	0.71	0/2520	
9	Т	0.45	0/3576	0.67	0/4818	
10	a	0.28	0/3704	0.41	0/5155	
11	b	0.24	0/988	0.38	0/1366	
12	с	0.26	0/1015	0.49	0/1411	
13	d	0.48	0/2901	0.75	0/3930	
14	е	0.24	0/393	0.37	0/545	
15	f	0.26	0/411	0.35	0/569	
16	g	0.25	0/728	0.38	0/1005	
16	h	0.26	0/728	0.38	0/1005	
16	i	0.25	0/728	0.38	0/1005	
16	j	0.25	0/728	0.37	0/1005	
16	k	0.26	0/728	0.38	0/1005	
16	1	0.25	0/728	0.38	0/1005	
16	m	0.26	0/728	0.38	0/1005	

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
16	n	0.25	0/728	0.38	0/1005	
16	0	0.25	0/728	0.38	0/1005	
17	р	0.23	0/263	0.37	0/366	
All	All	0.48	0/63477	0.70	0/86228	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4661	0	4653	71	0
1	В	4577	0	4577	61	0
1	С	4661	0	4653	54	0
2	D	3572	0	3555	69	0
2	Ε	3572	0	3555	40	0
2	F	3590	0	3581	56	0
3	G	2935	0	2970	50	0
4	Н	1717	0	1822	30	0
5	Ι	1416	0	1167	20	0
5	J	1773	0	1855	32	0
5	Κ	1766	0	1846	20	0
6	L	865	0	872	15	0
7	М	673	0	476	1	0
7	Ν	906	0	913	22	0
7	0	894	0	899	24	0
8	Q	1824	0	1835	27	0
8	R	1685	0	1691	9	0
8	S	1836	0	1847	21	0
9	Т	3510	0	3493	73	0
10	a	3707	0	1627	0	0
11	b	989	0	489	0	0
12	с	1016	0	457	0	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
13	d	2835	0	2770	0	0
14	е	394	0	167	0	0
15	f	412	0	190	0	0
16	g	729	0	388	0	0
16	h	729	0	388	0	0
16	i	729	0	388	0	0
16	j	729	0	388	0	0
16	k	729	0	388	0	0
16	1	729	0	388	0	0
16	m	729	0	388	0	0
16	n	729	0	388	0	0
16	0	729	0	388	0	0
17	р	264	0	116	0	0
18	A	27	0	12	3	0
All	All	62638	0	55580	638	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 638 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:O:45:GLU:N	7:O:45:GLU:OE1	2.00	0.95
7:O:45:GLU:H	7:O:45:GLU:CD	1.66	0.95
7:O:45:GLU:N	7:O:45:GLU:CD	2.21	0.93
4:H:149:ALA:HB2	6:L:89:LEU:HD11	1.51	0.92
2:E:34:ILE:HD12	5:J:202:LEU:HG	1.62	0.81

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	598/617~(97%)	554 (93%)	41 (7%)	3(0%)	29	66
1	В	581/617~(94%)	547~(94%)	31~(5%)	3(0%)	29	66
1	С	598/617~(97%)	554 (93%)	41 (7%)	3~(0%)	29	66
2	D	452/515~(88%)	431 (95%)	19 (4%)	2(0%)	34	70
2	Ε	452/515~(88%)	430 (95%)	22 (5%)	0	100	100
2	F	454/515~(88%)	431 (95%)	17 (4%)	6 (1%)	12	48
3	G	356/382~(93%)	342 (96%)	13 (4%)	1 (0%)	41	74
4	Н	211/247~(85%)	203 (96%)	8 (4%)	0	100	100
5	Ι	215/226~(95%)	208 (97%)	7 (3%)	0	100	100
5	J	216/226~(96%)	209 (97%)	7 (3%)	0	100	100
5	K	215/226~(95%)	212 (99%)	3 (1%)	0	100	100
6	L	107/119~(90%)	95 (89%)	12 (11%)	0	100	100
7	М	108/118~(92%)	107 (99%)	1 (1%)	0	100	100
7	Ν	108/118~(92%)	107 (99%)	1 (1%)	0	100	100
7	Ο	106/118~(90%)	102 (96%)	3 (3%)	1 (1%)	17	54
8	Q	222/337~(66%)	214 (96%)	8 (4%)	0	100	100
8	R	204/337~(60%)	195 (96%)	7 (3%)	2 (1%)	15	52
8	S	224/337~(66%)	214 (96%)	9 (4%)	1 (0%)	34	70
9	Т	423/483 (88%)	399 (94%)	24 (6%)	0	100	100
10	a	744/838~(89%)	717 (96%)	25 (3%)	2(0%)	41	74
11	b	201/205~(98%)	197 (98%)	4 (2%)	0	100	100
12	с	204/469~(44%)	184 (90%)	20 (10%)	0	100	100
13	d	348/351~(99%)	330 (95%)	17 (5%)	1 (0%)	41	74
14	е	78/81~(96%)	76 (97%)	2 (3%)	0	100	100
15	f	82/98~(84%)	82 (100%)	0	0	100	100
16	g	148/155~(96%)	147 (99%)	1 (1%)	0	100	100
16	h	148/155~(96%)	146 (99%)	2 (1%)	0	100	100
16	i	148/155~(96%)	147 (99%)	1 (1%)	0	100	100
16	j	148/155~(96%)	147 (99%)	1 (1%)	0	100	100
16	k	148/155~(96%)	145 (98%)	3 (2%)	0	100	100
16	1	148/155~(96%)	146 (99%)	2 (1%)	0	100	100
16	m	148/155~(96%)	147 (99%)	1 (1%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	n	148/155~(96%)	145~(98%)	3~(2%)	0	100	100
16	О	148/155~(96%)	144~(97%)	4(3%)	0	100	100
17	р	51/351~(14%)	49~(96%)	2~(4%)	0	100	100
All	All	8890/10458~(85%)	8503~(96%)	362 (4%)	25~(0%)	44	74

Continued from previous page...

5 of 25 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	315	THR
1	А	450	TRP
1	В	470	THR
10	а	90	PHE
10	a	361	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Rotameric		Perce	entiles
1	А	508/525~(97%)	475~(94%)	33~(6%)	17	48
1	В	501/525~(95%)	446 (89%)	55 (11%)	6	29
1	С	508/525~(97%)	460 (91%)	48 (9%)	8	35
2	D	390/438~(89%)	351 (90%)	39 (10%)	7	32
2	Ε	390/438~(89%)	370~(95%)	20~(5%)	24	54
2	F	392/438~(90%)	362~(92%)	30 (8%)	13	43
3	G	325/344~(94%)	303~(93%)	22 (7%)	16	47
4	Н	184/211~(87%)	182 (99%)	2 (1%)	73	85
5	Ι	96/197~(49%)	81 (84%)	15 (16%)	2	17
5	J	191/197~(97%)	178 (93%)	13 (7%)	16	47
5	Κ	190/197~(96%)	166 (87%)	24 (13%)	4	24
6	L	93/100~(93%)	78 (84%)	15 (16%)	2	16
7	М	33/101~(33%)	23~(70%)	10 (30%)	0	2

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
7	Ν	95/101~(94%)	87~(92%)	8 (8%)	11 40
7	Ο	94/101~(93%)	66~(70%)	28 (30%)	0 2
8	Q	203/305~(67%)	195~(96%)	8 (4%)	32 60
8	R	188/305~(62%)	175~(93%)	13~(7%)	15 46
8	S	204/305~(67%)	185~(91%)	19 (9%)	9 35
9	Т	385/429~(90%)	336~(87%)	49 (13%)	4 23
13	d	305/306~(100%)	284~(93%)	21 (7%)	15 46
All	All	5275/6088~(87%)	4803 (91%)	472 (9%)	13 38

Continued from previous page...

5 of 472 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	G	180	GLU
9	Т	365	GLU
5	Κ	76	MET
9	Т	353	ASP
8	S	221	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 14 such side chains are listed below:

Mol	Chain	Res	Type
2	F	199	GLN
5	Κ	47	GLN
9	Т	384	ASN
8	S	149	ASN
9	Т	206	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Tura Chain B			Tiple	Bond lengths			Bond angles			
MOI	Moi Type Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
18	ADP	А	701	-	24,29,29	0.69	0	$29,\!45,\!45$	0.83	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
18	ADP	А	701	-	-	5/12/32/32	0/3/3/3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
18	А	701	ADP	C5'-O5'-PA-O1A
18	А	701	ADP	C5'-O5'-PA-O2A
18	А	701	ADP	O4'-C4'-C5'-O5'
18	А	701	ADP	C3'-C4'-C5'-O5'
18	А	701	ADP	C5'-O5'-PA-O3A

There are no ring outliers.

1 monomer is involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
18	А	701	ADP	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26388. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 60

Raw map

6.2.2

Y Index: 70

Z Index: 100

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 73

6.3.2

Raw map

Z Index: 50

X Index: 161

Y Index: 156

The images above show the largest variance slices of the map in three orthogonal directions.

Orthogonal standard-deviation projections (False-color) (i) **6.4**

Primary map 6.4.1

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.7. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 504 nm^3 ; this corresponds to an approximate mass of 456 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.263 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.80	-	-		
Author-provided FSC curve	3.82	4.31	3.89		
Unmasked-calculated*	7.24	9.41	7.67		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 7.24 differs from the reported value 3.8 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26388 and PDB model 7U8R. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.7 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.7).

9.4 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 70% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.7) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score		
All	0.6970	0.3010		
А	0.7720	0.3550		
В	0.7030	0.3240		
С	0.7570	0.3440		
D	0.7740	0.3630		
Е	0.7880	0.3670		
F	0.7810	0.3570		
G	0.2490	0.1410		
Н	0.6690	0.3070		
Ι	0.8500	0.3250		
J	0.7430	0.2780		
K	0.6150	0.2530		
L	0.5840	0.2890		
М	0.8310	0.2890		
Ν	0.6950	0.2400		
0	0.4580	0.2210		
Q	0.6780	0.2700		
R	0.7320	0.2620		
S	0.7210	0.2660		
Т	0.4410	0.1660		
a	0.8340	0.3220		
b	0.7510	0.3320		
с	0.8460	0.3620		
d	0.5250	0.2740		
е	0.8200	0.3300		
f	0.7720	0.2870		
g	0.7010	0.3140		
h	0.6840	0.2910		
i	0.7310	0.2910		
j	0.7750	0.2980		
k	0.7910	0.3020		
1	0.8200	0.3040		
m	0.7970	0.3020		
n	0.7590	0.2990		
0	0.7350	0.3190		
р	0.6820	0.3460		

0.0 <.00

