

Nov 13, 2022 – 01:31 AM EST

PDB ID	:	6U59
EMDB ID	:	EMD-20642
Title	:	HIV-1 B41 SOSIP.664 in complex with rabbit antibody 13B
Authors	:	Yang, Y.R.; Ward, A.B.
Deposited on	:	2019-08-27
Resolution	:	3.86 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.86 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	524	84%	• 13%
1	С	524	84%	• 13%
1	G	524	84%	• 13%
2	В	153	73% 5%	6 22%
2	D	153	73% 5%	22%
2	Ι	153	74% 5'	% 22%
3	Е	112	96%	•
3	J	112	96%	•
3	L	112	95%	5%
4	F	119	96%	• ••

Mol	Chain	Length	Quality of chain
4	Η	119	96% •••
4	Κ	119	96% •••
5	М	2	100%
5	Ν	2	100%
5	О	2	100%
5	Р	2	100%
5	Q	2	100%
5	S	2	100%
5	Т	2	100%
5	U	2	100%
5	V	2	100%
5	Х	2	100%
5	Y	2	100%
5	Ζ	2	100%
5	a	2	100%
5	b	2	100%
5	с	2	100%
5	d	2	100%
5	f	2	100%
5	g	2	100%
5	h	2	100%
5	i	2	100%
5	k	2	100%
5	1	2	100%
5	m	2	100%

Mol	Chain	Length	Quality of chain
5	n	2	100%
5	0	2	100%
5	р	2	100%
5	q	2	100%
5	s	2	100%
5	t	2	100%
5	u	2	100%
5	v	2	100%
5	х	2	100%
5	у	2	100%
6	R	3	100%
6	е	3	100%
6	r	3	100%
7	W	4	25% 75%
7	j	4	25% 75%
7	W	4	25% 75%

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 20439 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	454	Total 3562	C 2234	N 629	O 672	S 27	0	0
1	С	454	Total 3562	C 2234	N 629	O 672	S 27	0	0
1	G	454	Total 3562	C 2234	N 629	O 672	S 27	0	0

• Molecule 1 is a protein called SOSIP.664 gp120, SOSIP.664 gp120.

Chain	Residue	Modelled	Actual	Comment	Reference
A	501	CYS	ALA	engineered mutation	UNP B3UES2
A	509	ARG	GLU	engineered mutation	UNP B3UES2
А	510	ARG	LYS	engineered mutation	UNP B3UES2
A	512	ARG	ALA	engineered mutation	UNP B3UES2
А	513	ARG	VAL	engineered mutation	UNP B3UES2
С	501	CYS	ALA	engineered mutation	UNP B3UES2
С	509	ARG	GLU	engineered mutation	UNP B3UES2
С	510	ARG	LYS	engineered mutation	UNP B3UES2
С	512	ARG	ALA	engineered mutation	UNP B3UES2
С	513	ARG	VAL	engineered mutation	UNP B3UES2
G	501	CYS	ALA	engineered mutation	UNP B3UES2
G	509	ARG	GLU	engineered mutation	UNP B3UES2
G	510	ARG	LYS	engineered mutation	UNP B3UES2
G	512	ARG	ALA	engineered mutation	UNP B3UES2
G	513	ARG	VAL	engineered mutation	UNP B3UES2

There are 15 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called SOSIP.664 gp41.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	120	Total 975	C 616	N 167	0 184	S 8	0	0
2	D	120	Total 975	C 616	N 167	O 184	${ m S} 8$	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms	AltConf	Trace		
2	Ι	120	Total 975	C 616	N 167	0 184	S 8	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	559	PRO	ILE	engineered mutation	UNP B3UEZ6
В	605	CYS	THR	engineered mutation	UNP B3UEZ6
D	559	PRO	ILE	engineered mutation	UNP B3UEZ6
D	605	CYS	THR	engineered mutation	UNP B3UEZ6
Ι	559	PRO	ILE	engineered mutation	UNP B3UEZ6
Ι	605	CYS	THR	engineered mutation	UNP B3UEZ6

• Molecule 3 is a protein called rabbit antibody 13B Fragment antigen binding light chain.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3 L	119	Total	С	Ν	0	S	0	0	
	112	842	527	139	172	4	0	0	
2	2 E	119	Total	С	Ν	0	S	0	0
3 E	112	842	527	139	172	4	0	0	
3 J	110	Total	С	Ν	0	S	0	0	
	J	112	842	527	139	172	4		0

• Molecule 4 is a protein called rabbit antibody 13B Fragment antigen binding heavy chain.

Mol	Chain	Residues		At	oms			AltConf	Trace
4	Н	118	Total 897	C 577	N 143	0 174	${ m S} { m 3}$	0	0
4	F	118	Total 897	C 577	N 143	0 174	${ m S} { m 3}$	0	0
4	K	118	Total 897	C 577	N 143	0 174	${f S} {f 3}$	0	0

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		AltConf	Trace
Б	м	n	Total	С	Ν	0	0	0
5	IVI	2	28	16	2	10	0	0
5	N	9	Total	С	Ν	0	0	0
0	IN	2	28	16	2	10	0	0
5	0	9	Total	С	Ν	0	0	0
0	0		28	16	2	10	0	0
5	Р	2	Total	С	Ν	Ο	0	0
	1		28	16	2	10	0	0
5	Q	2	Total	С	Ν	0	0	0
	~~	_	28	16	2	10		
5	S	2	Total	С	Ν	0	0	0
	~	_	28	16	2	10		
5	Т	2	Total	С	N	0	0	0
			28	$\frac{16}{3}$	2	10	_	
5	U	2	Total	C	N	0	0	0
			28	16	2	10		
5	V	2	Total	C	N	0	0	0
			28	10	2	10		
5	Х	2	Total	C	N	10	0	0
			28	$\frac{10}{C}$	2	10		
5	Y	2	Total		N O	10	0	0
			Zð Tatal	$\frac{10}{C}$	Z N	$\frac{10}{0}$		
5	Z	2		16	าง ว	10	0	0
			Z0 Total	$\frac{10}{C}$	Z N	$\frac{10}{0}$		
5	a	2	10tai 28	16	2	10	0	0
			Total	$\frac{10}{C}$	N	$\frac{10}{0}$		
5	b	2	28	16	2	10	0	0
			Total	$\frac{10}{C}$	N	0		
5	с	2	28	16	2	10	0	0
			Total	$\frac{10}{C}$	N	0		
5	d	2	28	16	2	10	0	0
			Total	C	N	0		
5	f	2	28	16	2	10	0	0
		2	Total	С	Ν	0	0	0
6	g	2	28	16	2	10	0	0
-	1	0	Total	С	Ν	0	0	0
6	h	2	28	16	2	10	U	U
-		0	Total	С	Ν	0	0	0
G	1	2	28	16	2	10	U	U
F	1-	1 0		С	Ν	0	0	0
G	К	2	28	16	2	10	U	U
۲	1	ი	Total	С	Ν	0	0	0
G			28	16	2	10	U	U

Mol	Chain	Residues	Atoms	AltConf	Trace
5	m	2	Total C N O	0	0
0	111		28 16 2 10	0	0
5	n	2	Total C N O	0	0
	11		28 16 2 10	0	
5	0	2	Total C N O	0	0
			28 16 2 10	Ŭ	
5	n	2	Total C N O	0	0
	Р		28 16 2 10	Ŭ	
5	a	2	Total C N O	0	0
	9	_	28 16 2 10	Ŭ	
5	S	2	Total C N O	0	0
	~	_	28 16 2 10	Ŭ	
5	t	2	Total C N O	0	0
		_	28 16 2 10	Ŭ	
5	u	2	Total C N O	0	0
		_	28 16 2 10	Ŭ,	
5	v	2	Total C N O	0	0
		_	28 16 2 10	Ŭ,	
5	5 x	2	Total C N O	0	0
		_	28 16 2 10		
5	V	2	Total C N O	0	0
	J	_	28 16 2 10		

• Molecule 6 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
6	R	3	Total C N O 39 22 2 15	0	0
6	е	3	Total C N O 39 22 2 15	0	0
6	r	3	Total C N O 39 22 2 15	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	W	4	Total C N O 50 28 2 20	0	0
7	j	4	Total C N O 50 28 2 20	0	0
7	W	4	Total C N O 50 28 2 20	0	0

• Molecule 8 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	ŀ	4ton	ns		AltConf					
0	Δ	1	Total	С	Ν	0	0					
0	A	1	84	48	6	30	0					
8	Λ	1	Total	С	Ν	0	0					
0	Л	1	84	48	6	30	0					
8	Λ	1	Total	С	Ν	0	0					
0	Л	1	84	48	6	30	0					
8	Λ	1	Total	С	Ν	0	0					
0	Л	1	84	48	6	30	0					
8	Λ	1	Total	С	Ν	0	0					
0	А	11	11	Л	A	Л	T	84	48	6	30	0
8	Δ	1	Total	С	N	0	0					
ð	А	1	84	48	6	30	0					

Continued from previous page...

Mol	Chain	Residues	1	Aton	ns		AltConf
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	C	1	Total	С	Ν	0	0
0	U	1	84	48	6	30	0
0	C	1	Total	С	Ν	0	0
0	U	1	84	48	6	30	0
0	C	1	Total	С	Ν	0	0
0	U	1	84	48	6	30	0
0	C	1	Total	С	Ν	0	0
0	U	1	84	48	6	30	0
0	C	1	Total	С	Ν	0	0
0	C	1	84	48	6	30	0
0	C	1	Total	С	Ν	0	0
8	C	1	84	48	6	30	0
0	D	1	Total	С	Ν	0	0
8	D	1	56	32	4	20	0
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	D	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	р	1	Total	С	Ν	0	0
0	D	1	56	32	4	20	0
0	С	1	Total	С	Ν	0	0
0	G	1	84	48	6	30	0
0	С	1	Total	С	Ν	0	0
0	G	1	84	48	6	30	0
0	С	1	Total	С	Ν	0	0
0	G	1	84	48	6	30	0
0	С	1	Total	С	Ν	0	0
0	G	L	84	48	6	30	U
8	С	1	Total	С	Ν	0	0
0	G	1	84	48	6	30	U
8	С	1	Total	С	Ν	0	0
0	G	T	84	48	6	30	U
Q	т	1	Total	С	Ν	0	0
0	1	1	56	32	4	20	U

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
0	Т	1	Total C N O	0
0	1	1	56 32 4 20	0
0	Т	1	Total C N O	0
0	1	T	56 32 4 20	0
8	Т	1	Total C N O	0
ð	1	I	56 32 4 20	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	84%		13%	
MET ASP ALA ALA ALA ALA ALA CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	SER SER GLU GLU GLU GLU HIE ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	Y 39 Y 40 S 55 A 55 A 55 A 15 A 15 A 15 A 15 A 15 A	163 E83 N88	N138 THR ASN ASN SER
THR ALA ALA ALA ALA ALA THE S148 CU CU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	Y217 N234 E269 R327 R456 R456 R456 R469 R469 R503 VAL	GLN ARG ARG ARG ARG ARG ARG		
• Molecule 1: SOSIP.664 gp1	20,SOSIP.664 gp120			
Chain C:	84%	·	13%	
MET ASP ASP ALA MET MET ARC GLY CYS CYS CYS CYS CYS CYS CYS CYS CYS CY	SER SER GLU GLU GLU GLU GLU AILA ARG ARG ARG AILA AILA AILA	Y39 Y40 C54 A55 AS5 AS5 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7	E83 N88	N1 38 THR ASN ASN SER
THR ALA ALA ALA ALA ALA E150 E184 CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	1189 1217 1233 1233 1233 1233 1233 1233 1233	VAL VAL GLN ARG ARG ARG ARG ARG ARG		
• Molecule 1: SOSIP.664 gp1	20,SOSIP.664 gp120			
Chain G:	84%	·	13%	
MET ASP ALA ALA MET LYS ARC GLY CYS CYS CYS CYS CYS CYS CYS CYS CYS CY	SER SER GLU GLU GLU GLU GLU GLN AILA ARG ARG ALA ALA ALA ARG ALA	Y39 Y40 S56 AS5 AS5 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7 AS7	163 E83 N88	<mark>N1 38</mark> THR ASN ASN SER
THR ASN ASN ASN THLA ILE S1148 C104 C114 ASN ASN ASN ASN ASN THE ASN THE ASN THE ASN THE	V217 V217 N234 E269 R327 R456 R456 R456 R456 R503 R503 R503 R503 R503	GLN ARG ARG ARG ARG ARG ARG		
• Molecule 2: SOSIP.664 gp4	1			
Chain B:	73%	5%	22%	
ALA VAL CLY CLY CLY CLY CLY CLY CLY CLY CLY CL	VAL VAL GLN GLN ASN ASN ASN ASN ASN ASN ALA GLN GLN GLN GLN	R588 C604 V605 V631 N631	Y643 E662 L663 D664	
• Molecule 2: SOSIP.664 gp4	1			

 \bullet Molecule 1: SOSIP.664 gp120,SOSIP.664 gp120

Chain D:		73%		5%	22%
ALA VAL GLY GLY GLY ALA PHE TLE LEU CLEU	PHE LEU GLY A525 LEU LEU LEU SER CLY TLE VAL	GLN GLN ASN ASN LEU LEU	ARG ALA PRO GLU GLN GLN GLN H564	R588 C604 C605 W623 W631	N637 Y643 E662 L663 D664
• Molecule 2:	SOSIP.664 gp41				
Chain I:		74%		5%	22%
ALA VAL GLY GLY GLY GLY ALA TLEU LEU CLY	PHE LEU GLY A525 LEU LEU LEU SER GLY ILE ILE	GLN GLN GLN ASN LEU LEU	ARG ALA PRO GLU GLU GLN GLN GLN	R588 C604 C605 W631 N637	Y643 E662 L663 D664
• Molecule 3:	rabbit antibody	13B Frag	gment antige	n binding l	ight chain
Chain L:			95%		5%
D1 C23 R28 Y49 R50					
• Molecule 3:	rabbit antibody	13B Frag	gment antige	n binding l	ight chain
Chain E:			96%		·
D1 C23 Y36 Y49	¥87				
• Molecule 3:	rabbit antibody	13B Frag	gment antige	n binding l	ight chain
Chain J:			96%		·
D1 C23 R28 Y36 Y49	787 K107				
• Molecule 4:	rabbit antibody	13B Frag	gment antige	n binding l	neavy chain
Chain H:			96%		
L4 F47 A100A P100B P100B F100C	SI12 SER				
• Molecule 4:	rabbit antibody	13B Frag	gment antige	n binding l	neavy chain
Chain F:			96%		• ••
L4 F47 A100A P100B Y100C F100G	SER SER				

• Molecule 4: rabbit antibody 13B Fragment antigen binding heavy chain

. ..

Chain K:

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

$\alpha_1 \cdot \mathbf{M}$	
Chain M:	100%

96%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

~ .		
Chain	N	
Chiann	± • •	

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

α	•	\sim	
(:h	am	()	•
\mathcal{O}	am	\circ	•

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Q:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain S:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain	T:
-------	----

100%

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U:

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain V:	100%
NAG1 NAG2	

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain X:	100%
NAG1 NAG2	

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:	100%
omann 1.	100,0

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:	100%
NAG1 NAG2	

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:	100%
NAG1 NAG2	
• Molecule 5:	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain d:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Ch	ain	f:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain g:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain h:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

α	•	•	
Ch	am	1:	
~			

100%

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain k:

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain l:	100%
NAG1 NAG2	
• Molecule 5:	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain m:	100%	
NAG1 NAG2		
• Molecule	5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
opyranose		

Chain n:	100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain o:

100%

NAG1 NAG2

• Molecule 5:	2-acetamido-2-deoxy-beta-D-glucopyranose-	-(1-4)-2-acetamido-2-deoxy-beta-D-gluo
opyranose		

100%

Chain p:

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain q:	100%	1.
NAG1 NAG2		
• Molecule 5: opyranose	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
Chain s:	100%	
NAG1 NAG2		
• Molecule 5: opyranose	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
Chain t:	100%	
NAG1 NAG2		
• Molecule 5: opyranose	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc

Chain u:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain v:

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain x:	100%	
NAG1 NAG2		
• Molecule 5: 2-acet opyranose	amido-2-deoxy-beta-D-glucopyranose-(1-4)-2-	acetamido-2-deoxy-beta-D-gluc
Chain y:	100%	
NAG2 NAG2		
• Molecule 6: beta-I etamido-2-deoxy-bet	D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b ta-D-glucopyranose	beta-D-glucopyranose-(1-4)-2-ac
Chain R:	100%	
NAG1 NAG2 BMA3		
• Molecule 6: beta-I etamido-2-deoxy-bet	D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b ta-D-glucopyranose	beta-D-glucopyranose-(1-4)-2-ac
Chain e:	100%	
NAG1 NAG2 BMA3		
• Molecule 6: beta-I etamido-2-deoxy-bet	D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b ta-D-glucopyranose	beta-D-glucopyranose-(1-4)-2-ac

Chain r:	100%	
NAG1 NAG2 BMA3		

 $\bullet \ Molecule \ 7: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

Chain W:	25%	75%
NAG1 NAG2 BMA3 MAN4		

 $\bullet \ {\rm Molecule \ 7: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose} \\ eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \\ eta-D$

Chain j: 25%

75%

NAG1 NAG2 BMA3 MAN4

 $\bullet \ Molecule \ 7: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

Chain w: 25% 75%

NAG1 NAG2 BMA3 MAN4

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C3	Depositor
Number of particles used	147520	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	36000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, MAN, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
WIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.03	4/3638~(0.1%)	0.89	7/4945~(0.1%)	
1	С	1.03	5/3638~(0.1%)	0.89	8/4945~(0.2%)	
1	G	1.03	4/3638~(0.1%)	0.89	7/4945~(0.1%)	
2	В	1.12	6/993~(0.6%)	0.87	2/1347~(0.1%)	
2	D	1.12	6/993~(0.6%)	0.87	2/1347~(0.1%)	
2	Ι	1.11	5/993~(0.5%)	0.87	2/1347~(0.1%)	
3	Е	1.11	4/861~(0.5%)	1.03	1/1171~(0.1%)	
3	J	1.11	4/861~(0.5%)	1.03	1/1171~(0.1%)	
3	L	1.11	4/861~(0.5%)	1.03	2/1171~(0.2%)	
4	F	1.10	4/922~(0.4%)	0.95	0/1257	
4	Н	1.10	4/922~(0.4%)	0.95	0/1257	
4	K	1.10	4/922~(0.4%)	0.95	0/1257	
All	All	1.06	54/19242~(0.3%)	0.92	32/26160~(0.1%)	

All (54) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	Κ	100(G)	PHE	CB-CG	-7.24	1.39	1.51
4	Н	100(G)	PHE	CB-CG	-7.24	1.39	1.51
4	F	100(G)	PHE	CB-CG	-7.18	1.39	1.51
2	В	605	CYS	CB-SG	-7.11	1.70	1.82
2	D	605	CYS	CB-SG	-7.10	1.70	1.82
2	Ι	605	CYS	CB-SG	-7.10	1.70	1.82
3	J	49	TYR	CB-CG	-6.87	1.41	1.51
3	L	49	TYR	CB-CG	-6.82	1.41	1.51
3	Е	49	TYR	CB-CG	-6.81	1.41	1.51
4	Н	100(C)	TYR	CE1-CZ	-6.59	1.29	1.38
4	Κ	100(C)	TYR	CE1-CZ	-6.58	1.30	1.38
1	G	54	CYS	CB-SG	-6.57	1.71	1.82
4	F	100(C)	TYR	CE1-CZ	-6.57	1.30	1.38
1	А	54	CYS	CB-SG	-6.52	1.71	1.82

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	С	54	CYS	CB-SG	-6.52	1.71	1.82
3	L	87	TYR	CB-CG	-6.08	1.42	1.51
3	Е	87	TYR	CB-CG	-6.05	1.42	1.51
3	J	87	TYR	CB-CG	-6.02	1.42	1.51
3	J	23	CYS	CB-SG	-5.85	1.72	1.81
3	Е	23	CYS	CB-SG	-5.84	1.72	1.81
4	F	47	PHE	CB-CG	-5.80	1.41	1.51
3	L	23	CYS	CB-SG	-5.80	1.72	1.81
4	Н	47	PHE	CB-CG	-5.79	1.41	1.51
4	Κ	47	PHE	CB-CG	-5.78	1.41	1.51
4	Κ	100(C)	TYR	CD1-CE1	-5.62	1.30	1.39
4	F	100(C)	TYR	CD1-CE1	-5.60	1.30	1.39
4	Н	100(C)	TYR	CD1-CE1	-5.56	1.31	1.39
2	Ι	604	CYS	CB-SG	-5.54	1.72	1.81
2	D	604	CYS	CB-SG	-5.53	1.72	1.81
2	В	604	CYS	CB-SG	-5.48	1.72	1.81
2	В	631	TRP	CD2-CE2	-5.42	1.34	1.41
2	В	662	GLU	CD-OE1	-5.41	1.19	1.25
2	D	631	TRP	CB-CG	-5.37	1.40	1.50
2	Ι	631	TRP	CB-CG	-5.37	1.40	1.50
2	D	662	GLU	CD-OE1	-5.37	1.19	1.25
2	Ι	631	TRP	CD2-CE2	-5.36	1.34	1.41
2	D	631	TRP	CD2-CE2	-5.34	1.34	1.41
2	В	631	TRP	CB-CG	-5.33	1.40	1.50
2	Ι	662	GLU	CD-OE1	-5.32	1.19	1.25
1	А	83	GLU	CD-OE2	-5.18	1.20	1.25
3	J	36	TYR	CB-CG	-5.16	1.44	1.51
3	L	36	TYR	CB-CG	-5.12	1.44	1.51
1	С	217	TYR	CB-CG	-5.12	1.44	1.51
1	С	83	GLU	CD-OE2	-5.11	1.20	1.25
1	А	269	GLU	CD-OE1	-5.10	1.20	1.25
1	G	83	GLU	CD-OE2	-5.10	1.20	1.25
1	С	269	GLU	CD-OE1	-5.10	1.20	1.25
1	G	269	GLU	CD-OE1	-5.10	1.20	1.25
3	Е	36	TYR	CB-CG	-5.08	1.44	1.51
1	G	217	TYR	CB-CG	-5.05	1.44	1.51
1	А	217	TYR	CB-CG	-5.05	1.44	1.51
2	В	623	TRP	CB-CG	-5.02	1.41	1.50
2	D	623	TRP	CB-CG	-5.00	1.41	1.50
1	С	150	GLU	CD-OE1	-5.00	1.20	1.25

All (32) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	G	503	ARG	NE-CZ-NH1	8.48	124.54	120.30
1	С	503	ARG	NE-CZ-NH1	8.41	124.50	120.30
1	А	503	ARG	NE-CZ-NH1	8.36	124.48	120.30
1	G	503	ARG	NE-CZ-NH2	-8.08	116.26	120.30
1	А	503	ARG	NE-CZ-NH2	-8.04	116.28	120.30
1	С	503	ARG	NE-CZ-NH2	-8.02	116.29	120.30
1	G	327	ARG	NE-CZ-NH2	-7.99	116.31	120.30
1	А	327	ARG	NE-CZ-NH2	-7.95	116.33	120.30
1	С	327	ARG	NE-CZ-NH2	-7.85	116.38	120.30
1	С	469	ARG	NE-CZ-NH2	-7.18	116.71	120.30
1	А	469	ARG	NE-CZ-NH2	-7.13	116.73	120.30
1	G	469	ARG	NE-CZ-NH2	-7.12	116.74	120.30
3	J	28	ARG	NE-CZ-NH2	-6.66	116.97	120.30
3	Е	28	ARG	NE-CZ-NH2	-6.64	116.98	120.30
3	L	28	ARG	NE-CZ-NH2	-6.61	116.99	120.30
1	А	40	TYR	CB-CG-CD1	-6.61	117.03	121.00
1	С	40	TYR	CB-CG-CD1	-6.60	117.04	121.00
2	D	588	ARG	NE-CZ-NH2	-6.55	117.02	120.30
1	G	40	TYR	CB-CG-CD1	-6.55	117.07	121.00
2	В	588	ARG	NE-CZ-NH2	-6.50	117.05	120.30
2	Ι	588	ARG	NE-CZ-NH2	-6.42	117.09	120.30
1	G	456	ARG	NE-CZ-NH1	6.13	123.36	120.30
1	А	456	ARG	NE-CZ-NH1	6.05	123.33	120.30
1	С	456	ARG	NE-CZ-NH1	6.05	123.32	120.30
2	В	643	TYR	CB-CG-CD2	-5.23	117.86	121.00
2	Ι	643	TYR	CB-CG-CD2	-5.23	117.86	121.00
1	А	39	TYR	CB-CG-CD2	-5.19	117.89	121.00
1	С	39	TYR	CB-CG-CD2	-5.17	117.90	121.00
1	G	39	TYR	CB-CG-CD2	-5.16	117.90	121.00
2	D	643	TYR	CB-CG-CD2	-5.15	117.91	121.00
1	С	469	ARG	NE-CZ-NH1	5.08	122.84	120.30
3	L	50	ARG	NE-CZ-NH1	5.04	122.82	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	446/524~(85%)	435~(98%)	11 (2%)	0	100	100
1	С	446/524~(85%)	435~(98%)	11 (2%)	0	100	100
1	G	446/524~(85%)	435 (98%)	11 (2%)	0	100	100
2	В	116/153~(76%)	113 (97%)	3 (3%)	0	100	100
2	D	116/153~(76%)	113 (97%)	3 (3%)	0	100	100
2	Ι	116/153~(76%)	113 (97%)	3 (3%)	0	100	100
3	Е	110/112~(98%)	108 (98%)	2 (2%)	0	100	100
3	J	110/112~(98%)	108 (98%)	2 (2%)	0	100	100
3	L	110/112~(98%)	108 (98%)	2 (2%)	0	100	100
4	F	116/119~(98%)	111 (96%)	4 (3%)	1 (1%)	17	53
4	Н	116/119~(98%)	111 (96%)	4 (3%)	1 (1%)	17	53
4	К	116/119~(98%)	111 (96%)	4 (3%)	1 (1%)	17	53
All	All	2364/2724~(87%)	2301 (97%)	60 (2%)	3 (0%)	54	83

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	Н	100(A)	ALA
4	F	100(A)	ALA
4	Κ	100(A)	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	401/461~(87%)	399 (100%)	2 (0%)	88	93
1	С	401/461 (87%)	399 (100%)	2~(0%)	88	93
1	G	401/461 (87%)	399 (100%)	2 (0%)	88	93
2	В	106/130~(82%)	105 (99%)	1 (1%)	78	88
2	D	106/130~(82%)	105 (99%)	1 (1%)	78	88
2	Ι	106/130~(82%)	105 (99%)	1 (1%)	78	88
3	Е	93/93~(100%)	93 (100%)	0	100	100
3	J	93/93~(100%)	93~(100%)	0	100	100
3	L	93/93~(100%)	93 (100%)	0	100	100
4	F	92/93~(99%)	91 (99%)	1 (1%)	73	84
4	Н	92/93~(99%)	91 (99%)	1 (1%)	73	84
4	K	92/93~(99%)	91 (99%)	1 (1%)	73	84
All	All	2076/2331 (89%)	2064 (99%)	12 (1%)	86	91

All (12) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	88	ASN
1	А	234	ASN
2	В	637	ASN
4	Н	100(C)	TYR
1	С	88	ASN
1	С	234	ASN
2	D	637	ASN
4	F	100(C)	TYR
1	G	88	ASN
1	G	234	ASN
2	Ι	637	ASN
4	Κ	100(C)	TYR

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such side chains are listed below:

Mol	Chain	Res	Type
2	В	575	GLN
2	D	575	GLN
4	F	35	GLN
2	Ι	575	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

87 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type Chain Bes Li		Tink	Bo	ond leng	ths	Bond angles			
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	NAG	М	1	5,1	14,14,15	0.70	0	17,19,21	1.22	3 (17%)
5	NAG	М	2	5	14,14,15	0.77	1 (7%)	17,19,21	0.93	1 (5%)
5	NAG	Ν	1	5,1	14,14,15	0.72	1 (7%)	17,19,21	0.87	1 (5%)
5	NAG	Ν	2	5	14,14,15	0.68	0	17,19,21	1.02	1 (5%)
5	NAG	0	1	5,1	14,14,15	0.66	0	17,19,21	1.10	1 (5%)
5	NAG	0	2	5	14,14,15	0.72	1 (7%)	17,19,21	0.87	1 (5%)
5	NAG	Р	1	5,1	14,14,15	0.69	0	17,19,21	0.92	1 (5%)
5	NAG	Р	2	5	14,14,15	0.72	1 (7%)	17,19,21	0.77	1 (5%)
5	NAG	Q	1	5,1	14,14,15	0.78	1 (7%)	17,19,21	0.91	1 (5%)
5	NAG	Q	2	5	14,14,15	0.66	0	17,19,21	0.97	1 (5%)
6	NAG	R	1	6,1	14,14,15	0.87	1 (7%)	17,19,21	1.80	4 (23%)
6	NAG	R	2	6	14,14,15	0.70	0	17,19,21	1.16	1 (5%)
6	BMA	R	3	6	11,11,12	0.70	0	15,15,17	0.98	1 (6%)
5	NAG	S	1	5,1	14,14,15	0.66	0	17,19,21	0.81	1 (5%)
5	NAG	S	2	5	14,14,15	0.75	1 (7%)	17,19,21	0.98	1 (5%)
5	NAG	Т	1	5,1	14,14,15	0.65	0	17,19,21	1.21	2 (11%)
5	NAG	Т	2	5	14,14,15	0.77	1 (7%)	17,19,21	1.01	1 (5%)
5	NAG	U	1	5,1	14,14,15	0.79	0	17,19,21	1.44	3 (17%)

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	NAG	U	2	5	14,14,15	0.69	1 (7%)	$17,\!19,\!21$	0.98	1 (5%)
5	NAG	V	1	5,1	14,14,15	0.79	1 (7%)	$17,\!19,\!21$	1.00	1 (5%)
5	NAG	V	2	5	14,14,15	0.66	0	17,19,21	0.97	1 (5%)
7	NAG	W	1	1,7	14,14,15	0.70	0	17,19,21	0.90	1 (5%)
7	NAG	W	2	7	14,14,15	0.72	0	17,19,21	0.79	0
7	BMA	W	3	7	11,11,12	0.61	0	$15,\!15,\!17$	0.96	1 (6%)
7	MAN	W	4	7	11,11,12	0.58	0	$15,\!15,\!17$	0.95	1 (6%)
5	NAG	Х	1	5,1	14,14,15	0.79	0	$17,\!19,\!21$	1.52	4 (23%)
5	NAG	Х	2	5	14,14,15	0.75	1 (7%)	$17,\!19,\!21$	0.96	1 (5%)
5	NAG	Y	1	5,1	14,14,15	0.67	0	17,19,21	0.99	1 (5%)
5	NAG	Y	2	5	14,14,15	0.77	1 (7%)	17,19,21	0.88	1 (5%)
5	NAG	Z	1	5,1	14,14,15	0.70	0	17,19,21	1.22	3 (17%)
5	NAG	Z	2	5	14,14,15	0.78	1 (7%)	17,19,21	0.93	1 (5%)
5	NAG	a	1	5,1	14,14,15	0.72	1 (7%)	17,19,21	0.87	1 (5%)
5	NAG	a	2	5	14,14,15	0.67	0	17,19,21	1.02	1 (5%)
5	NAG	b	1	5,1	14,14,15	0.68	0	17,19,21	1.09	1 (5%)
5	NAG	b	2	5	14,14,15	0.74	1 (7%)	17,19,21	0.87	1 (5%)
5	NAG	с	1	5,1	14,14,15	0.68	0	17,19,21	0.92	1 (5%)
5	NAG	с	2	5	14,14,15	0.73	1 (7%)	17,19,21	0.77	1 (5%)
5	NAG	d	1	5,1	14,14,15	0.77	1 (7%)	17,19,21	0.91	1 (5%)
5	NAG	d	2	5	14,14,15	0.65	0	17,19,21	0.97	1 (5%)
6	NAG	е	1	6,1	14,14,15	0.87	1 (7%)	17,19,21	1.81	4 (23%)
6	NAG	е	2	6	14,14,15	0.70	0	17,19,21	1.16	1 (5%)
6	BMA	e	3	6	11,11,12	0.69	0	15,15,17	0.98	1 (6%)
5	NAG	f	1	5,1	14,14,15	0.66	0	17,19,21	0.82	1 (5%)
5	NAG	f	2	5	14,14,15	0.75	1 (7%)	17,19,21	0.99	1 (5%)
5	NAG	g	1	5,1	14,14,15	0.64	0	17,19,21	1.22	2 (11%)
5	NAG	g	2	5	14,14,15	0.78	1 (7%)	17,19,21	1.01	1 (5%)
5	NAG	h	1	5,1	14,14,15	0.78	0	17,19,21	1.45	3 (17%)
5	NAG	h	2	5	14,14,15	0.68	0	17,19,21	0.98	1 (5%)
5	NAG	i	1	5,1	14,14,15	0.78	1 (7%)	17,19,21	1.00	1 (5%)
5	NAG	i	2	5	14,14,15	0.68	0	17,19,21	0.98	1 (5%)
7	NAG	j	1	1,7	14,14,15	0.71	0	17,19,21	0.91	1 (5%)
7	NAG	j	2	7	14,14,15	0.71	0	17,19,21	0.80	0
7	BMA	j	3	7	11,11,12	0.59	0	15, 15, 17	0.96	1 (6%)

Mal	T a	Chain	Dec	T :1.	Bo	ond leng	ths	Bond angles		
IVI01	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
7	MAN	j	4	7	$11,\!11,\!12$	0.59	0	$15,\!15,\!17$	0.95	1 (6%)
5	NAG	k	1	5,1	14,14,15	0.78	0	17,19,21	1.52	4 (23%)
5	NAG	k	2	5	14,14,15	0.75	1 (7%)	17,19,21	0.96	1 (5%)
5	NAG	1	1	5,1	14,14,15	0.66	0	17,19,21	0.99	1 (5%)
5	NAG	1	2	5	14,14,15	0.79	1 (7%)	17,19,21	0.89	1 (5%)
5	NAG	m	1	5,1	14,14,15	0.70	0	17,19,21	1.22	3 (17%)
5	NAG	m	2	5	14,14,15	0.78	1 (7%)	17,19,21	0.93	1 (5%)
5	NAG	n	1	5,1	14,14,15	0.72	1 (7%)	17,19,21	0.86	1 (5%)
5	NAG	n	2	5	14,14,15	0.68	0	17,19,21	1.02	1 (5%)
5	NAG	0	1	5,1	14,14,15	0.66	0	17,19,21	1.10	1 (5%)
5	NAG	0	2	5	14,14,15	0.72	1 (7%)	17,19,21	0.87	1 (5%)
5	NAG	р	1	5,1	14,14,15	0.68	0	17,19,21	0.92	1 (5%)
5	NAG	р	2	5	14,14,15	0.72	1 (7%)	17,19,21	0.77	1(5%)
5	NAG	q	1	5,1	14,14,15	0.76	1 (7%)	17,19,21	0.91	1(5%)
5	NAG	q	2	5	14,14,15	0.65	0	17,19,21	0.97	1 (5%)
6	NAG	r	1	6,1	14,14,15	0.85	1 (7%)	17,19,21	1.81	4 (23%)
6	NAG	r	2	6	14,14,15	0.69	0	17,19,21	1.16	1 (5%)
6	BMA	r	3	6	11,11,12	0.72	0	15,15,17	0.98	1 (6%)
5	NAG	s	1	5,1	14,14,15	0.67	0	17,19,21	0.81	1 (5%)
5	NAG	S	2	5	14,14,15	0.75	1 (7%)	17,19,21	0.99	1 (5%)
5	NAG	t	1	5,1	14,14,15	0.64	0	17,19,21	1.21	2 (11%)
5	NAG	t	2	5	14,14,15	0.79	1 (7%)	17,19,21	1.01	1 (5%)
5	NAG	u	1	5,1	14,14,15	0.79	0	17,19,21	1.44	3 (17%)
5	NAG	u	2	5	14,14,15	0.67	0	17,19,21	0.98	1 (5%)
5	NAG	v	1	5,1	14,14,15	0.78	1 (7%)	17,19,21	1.00	1 (5%)
5	NAG	v	2	5	14,14,15	0.68	0	17,19,21	0.98	1 (5%)
7	NAG	W	1	1,7	14,14,15	0.70	0	17,19,21	0.90	1 (5%)
7	NAG	W	2	7	14,14,15	0.70	0	17,19,21	0.80	0
7	BMA	W	3	7	11,11,12	0.60	0	$15,\!15,\!17$	0.96	1 (6%)
7	MAN	W	4	7	11,11,12	0.60	0	15,15,17	0.95	1 (6%)
5	NAG	x	1	5,1	14,14,15	0.78	0	17,19,21	1.52	4 (23%)
5	NAG	x	2	5	14,14,15	0.74	1 (7%)	17,19,21	0.95	1 (5%)
5	NAG	У	1	5,1	14,14,15	0.65	0	17,19,21	0.99	1 (5%)
5	NAG	У	2	5	14,14,15	0.78	1 (7%)	17,19,21	0.88	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	М	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	М	2	5	-	1/6/23/26	0/1/1/1
5	NAG	N	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	N	2	5	-	2/6/23/26	0/1/1/1
5	NAG	0	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	0	2	5	-	1/6/23/26	0/1/1/1
5	NAG	Р	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	Р	2	5	-	1/6/23/26	0/1/1/1
5	NAG	Q	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	Q	2	5	-	2/6/23/26	0/1/1/1
6	NAG	R	1	6,1	-	1/6/23/26	0/1/1/1
6	NAG	R	2	6	-	0/6/23/26	0/1/1/1
6	BMA	R	3	6	-	1/2/19/22	0/1/1/1
5	NAG	S	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	S	2	5	-	2/6/23/26	0/1/1/1
5	NAG	Т	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	Т	2	5	-	2/6/23/26	0/1/1/1
5	NAG	U	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	U	2	5	-	2/6/23/26	0/1/1/1
5	NAG	V	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	V	2	5	-	1/6/23/26	0/1/1/1
7	NAG	W	1	1,7	-	1/6/23/26	0/1/1/1
7	NAG	W	2	7	-	1/6/23/26	0/1/1/1
7	BMA	W	3	7	-	1/2/19/22	0/1/1/1
7	MAN	W	4	7	-	1/2/19/22	0/1/1/1
5	NAG	Х	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	Х	2	5	-	2/6/23/26	0/1/1/1
5	NAG	Y	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	Y	2	5	-	1/6/23/26	0/1/1/1
5	NAG	Z	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	Z	2	5	-	1/6/23/26	0/1/1/1
5	NAG	a	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	a	2	5	-	2/6/23/26	0/1/1/1
5	NAG	b	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	b	2	5	-	1/6/23/26	0/1/1/1
5	NAG	с	1	5,1	-	0/6/23/26	0/1/1/1

001000	nucu jio	ne precese	io page	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	с	2	5	-	1/6/23/26	0/1/1/1
5	NAG	d	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	d	2	5	-	2/6/23/26	0/1/1/1
6	NAG	е	1	6,1	-	1/6/23/26	0/1/1/1
6	NAG	е	2	6	-	0/6/23/26	0/1/1/1
6	BMA	е	3	6	-	1/2/19/22	0/1/1/1
5	NAG	f	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	f	2	5	-	2/6/23/26	0/1/1/1
5	NAG	g	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	g	2	5	-	2/6/23/26	0/1/1/1
5	NAG	h	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	h	2	5	-	2/6/23/26	0/1/1/1
5	NAG	i	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	i	2	5	-	1/6/23/26	0/1/1/1
7	NAG	j	1	1,7	-	1/6/23/26	0/1/1/1
7	NAG	j	2	7	-	1/6/23/26	0/1/1/1
7	BMA	j	3	7	-	1/2/19/22	0/1/1/1
7	MAN	j	4	7	_	1/2/19/22	0/1/1/1
5	NAG	k	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	k	2	5	_	2/6/23/26	0/1/1/1
5	NAG	1	1	5,1	_	0/6/23/26	0/1/1/1
5	NAG	1	2	5	-	1/6/23/26	0/1/1/1
5	NAG	m	1	5,1	_	2/6/23/26	0/1/1/1
5	NAG	m	2	5	_	1/6/23/26	0/1/1/1
5	NAG	n	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	n	2	5	-	2/6/23/26	0/1/1/1
5	NAG	0	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	0	2	5	-	1/6/23/26	0/1/1/1
5	NAG	р	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	p	2	5	-	1/6/23/26	0/1/1/1
5	NAG	q	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	q	2	5	-	2/6/23/26	0/1/1/1
6	NAG	r	1	6,1	-	1/6/23/26	0/1/1/1
6	NAG	r	2	6	-	0/6/23/26	0/1/1/1
6	BMA	r	3	6	_	1/2/19/22	0/1/1/1
5	NAG	s	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	s	2	5	-	2/6/23/26	0/1/1/1
5	NAG	t	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	t	2	5	_	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	u	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	u	2	5	-	2/6/23/26	0/1/1/1
5	NAG	V	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	V	2	5	-	1/6/23/26	0/1/1/1
7	NAG	W	1	1,7	-	1/6/23/26	0/1/1/1
7	NAG	W	2	7	-	1/6/23/26	0/1/1/1
7	BMA	W	3	7	-	1/2/19/22	0/1/1/1
7	MAN	W	4	7	-	1/2/19/22	0/1/1/1
5	NAG	х	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	х	2	5	-	2/6/23/26	0/1/1/1
5	NAG	У	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	У	2	5	-	1/6/23/26	0/1/1/1

All (34) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
6	R	1	NAG	C1-C2	2.82	1.56	1.52
6	е	1	NAG	C1-C2	2.81	1.56	1.52
6	r	1	NAG	C1-C2	2.76	1.56	1.52
5	Ζ	2	NAG	C1-C2	2.50	1.56	1.52
5	V	1	NAG	C1-C2	2.47	1.56	1.52
5	t	2	NAG	C1-C2	2.46	1.56	1.52
5	m	2	NAG	C1-C2	2.46	1.56	1.52
5	g	2	NAG	C1-C2	2.45	1.56	1.52
5	V	1	NAG	C1-C2	2.44	1.56	1.52
5	М	2	NAG	C1-C2	2.43	1.56	1.52
5	1	2	NAG	C1-C2	2.42	1.56	1.52
5	Т	2	NAG	C1-C2	2.42	1.55	1.52
5	i	1	NAG	C1-C2	2.42	1.55	1.52
5	k	2	NAG	C1-C2	2.39	1.55	1.52
5	Х	2	NAG	C1-C2	2.38	1.55	1.52
5	Х	2	NAG	C1-C2	2.38	1.55	1.52
5	у	2	NAG	C1-C2	2.37	1.55	1.52
5	b	2	NAG	C1-C2	2.37	1.55	1.52
5	Y	2	NAG	C1-C2	2.32	1.55	1.52
5	S	2	NAG	C1-C2	2.30	1.55	1.52
5	0	2	NAG	C1-C2	2.29	1.55	1.52
5	s	2	NAG	C1-C2	2.29	1.55	1.52
5	f	2	NAG	C1-C2	2.28	1.55	1.52
5	0	2	NAG	C1-C2	2.28	1.55	1.52
5	с	2	NAG	$\overline{\text{C1-C2}}$	2.21	1.55	1.52
5	Р	2	NAG	C1-C2	2.19	1.55	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	р	2	NAG	C1-C2	2.18	1.55	1.52
5	n	1	NAG	C1-C2	2.17	1.55	1.52
5	Ν	1	NAG	C1-C2	2.17	1.55	1.52
5	a	1	NAG	C1-C2	2.14	1.55	1.52
5	Q	1	NAG	C1-C2	2.11	1.55	1.52
5	q	1	NAG	C1-C2	2.06	1.55	1.52
5	d	1	NAG	C1-C2	2.06	1.55	1.52
5	U	2	NAG	C1-C2	2.06	1.55	1.52

All (117) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	е	1	NAG	C2-N2-C7	4.40	129.17	122.90
6	r	1	NAG	C2-N2-C7	4.39	129.15	122.90
6	R	1	NAG	C2-N2-C7	4.37	129.12	122.90
6	R	1	NAG	C1-C2-N2	4.03	117.37	110.49
6	е	1	NAG	C1-C2-N2	4.02	117.36	110.49
6	r	1	NAG	C1-C2-N2	4.02	117.35	110.49
5	Y	1	NAG	C3-C4-C5	-3.51	103.98	110.24
5	1	1	NAG	C3-C4-C5	-3.51	103.98	110.24
5	h	1	NAG	C4-C3-C2	-3.50	105.89	111.02
5	у	1	NAG	C3-C4-C5	-3.49	104.01	110.24
5	k	1	NAG	O5-C5-C6	-3.48	101.75	107.20
5	U	1	NAG	C4-C3-C2	-3.48	105.92	111.02
5	Х	1	NAG	O5-C5-C6	-3.47	101.76	107.20
5	u	1	NAG	C4-C3-C2	-3.46	105.95	111.02
5	Х	1	NAG	O5-C5-C6	-3.45	101.79	107.20
6	R	2	NAG	C3-C4-C5	-3.24	104.45	110.24
6	е	2	NAG	C3-C4-C5	-3.24	104.45	110.24
6	r	2	NAG	C3-C4-C5	-3.23	104.47	110.24
5	g	1	NAG	C3-C4-C5	-3.10	104.71	110.24
5	${ m t}$	1	NAG	C3-C4-C5	-3.09	104.72	110.24
5	Т	1	NAG	C3-C4-C5	-3.09	104.72	110.24
5	V	1	NAG	C4-C3-C2	-2.96	106.68	111.02
5	V	1	NAG	C4-C3-C2	-2.95	106.69	111.02
5	i	1	NAG	C4-C3-C2	-2.94	106.71	111.02
5	g	2	NAG	C4-C3-C2	-2.92	106.73	111.02
5	a	2	NAG	C4-C3-C2	-2.91	106.75	111.02
5	n	2	NAG	C4-C3-C2	-2.91	106.75	111.02
5	t	2	NAG	C4-C3-C2	-2.91	106.76	111.02
5	Т	2	NAG	C4-C3-C2	-2.90	106.76	111.02
5	Ν	2	NAG	C4-C3-C2	-2.90	106.76	111.02

Mol	Chain	Res	Type	Atoms	$\mathbf{Z} = \mathbf{Observed}(^{o})$		$Ideal(^{o})$
7	j	3	BMA	C2-C3-C4	-2.89	105.89	110.89
7	W	3	BMA	C2-C3-C4	-2.89	105.89	110.89
7	W	3	BMA	C2-C3-C4	-2.86	105.94	110.89
7	W	1	NAG	C3-C4-C5	-2.82	105.21	110.24
7	j	1	NAG	C3-C4-C5	-2.81	105.22	110.24
7	W	1	NAG	C3-C4-C5	-2.80	105.24	110.24
5	Р	1	NAG	C3-C4-C5	-2.73	105.37	110.24
5	р	1	NAG	C3-C4-C5	-2.72	105.39	110.24
5	С	1	NAG	C3-C4-C5	-2.71	105.40	110.24
7	W	4	MAN	C2-C3-C4	-2.69	106.24	110.89
7	W	4	MAN	C2-C3-C4	-2.68	106.26	110.89
5	f	2	NAG	C4-C3-C2	-2.68	107.09	111.02
5	Ν	1	NAG	C3-C4-C5	-2.68	105.46	110.24
5	V	2	NAG	C4-C3-C2	-2.68	107.10	111.02
5	a	1	NAG	C3-C4-C5	-2.67	105.47	110.24
5	i	2	NAG	C4-C3-C2	-2.67	107.10	111.02
5	V	2	NAG	C4-C3-C2	-2.67	107.11	111.02
7	j	4	MAN	C2-C3-C4	-2.66	106.28	110.89
5	S	2	NAG	C4-C3-C2	-2.66	107.12	111.02
5	n	1	NAG	C3-C4-C5	-2.66	105.50	110.24
5	u	2	NAG	C4-C3-C2	-2.64	107.15	111.02
5	U	2	NAG	C4-C3-C2	-2.64	107.15	111.02
5	s	2	NAG	C4-C3-C2	-2.64	107.15	111.02
5	h	2	NAG	C4-C3-C2	-2.63	107.17	111.02
5	Q	2	NAG	C4-C3-C2	-2.62	107.18	111.02
5	d	2	NAG	C4-C3-C2	-2.61	107.19	111.02
5	q	2	NAG	C4-C3-C2	-2.61	107.19	111.02
5	Ζ	1	NAG	O5-C5-C6	-2.60	103.13	107.20
5	0	1	NAG	C4-C3-C2	-2.60	107.21	111.02
5	m	1	NAG	O5-C5-C6	-2.60	103.13	107.20
5	0	1	NAG	C4-C3-C2	-2.60	107.21	111.02
5	М	1	NAG	O5-C5-C6	-2.59	103.14	107.20
5	b	1	NAG	C4-C3-C2	-2.59	107.22	111.02
5	d	1	NAG	C3-C4-C5	-2.57	105.65	110.24
5	k	2	NAG	C4-C3-C2	-2.56	107.26	111.02
5	Q	1	NAG	C3-C4-C5	-2.56	105.67	110.24
5	Х	2	NAG	C4-C3-C2	-2.56	107.27	111.02
5	m	1	NAG	C4-C3-C2	-2.55	107.27	111.02
5	q	1	NAG	C3-C4-C5	-2.55	105.70	110.24
5	X	2	NAG	C4-C3-C2	-2.54	107.29	111.02
5	Z	1	NAG	C4-C3-C2	-2.54	107.29	111.02
5	l f	1	NAG	C3-C4-C5	-2.54	105.72	110.24

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
5	s	1	NAG	C3-C4-C5	-2.54	105.72	110.24
5	S	1	NAG	C3-C4-C5	-2.54	105.72	110.24
5	М	1	NAG	C4-C3-C2	-2.53	107.31	111.02
5	Х	1	NAG	C4-C3-C2	-2.51	107.34	111.02
5	Х	1	NAG	C4-C3-C2	-2.50	107.35	111.02
5	k	1	NAG	C4-C3-C2	-2.50	107.35	111.02
5	М	2	NAG	C4-C3-C2	-2.43	107.45	111.02
5	Ζ	2	NAG	C4-C3-C2	-2.42	107.47	111.02
5	m	2	NAG	C4-C3-C2	-2.41	107.48	111.02
6	R	1	NAG	C3-C4-C5	-2.38	105.99	110.24
6	r	1	NAG	C3-C4-C5	-2.36	106.02	110.24
6	е	1	NAG	C3-C4-C5	-2.35	106.04	110.24
5	с	2	NAG	C4-C3-C2	-2.33	107.61	111.02
5	Р	2	NAG	C4-C3-C2	-2.32	107.62	111.02
5	р	2	NAG	C4-C3-C2	-2.31	107.63	111.02
5	u	1	NAG	C2-N2-C7	-2.31	119.62	122.90
5	U	1	NAG	C2-N2-C7	-2.31	119.62	122.90
5	h	1	NAG	C2-N2-C7	-2.29	119.65	122.90
6	R	1	NAG	O5-C1-C2	-2.28	107.69	111.29
6	е	1	NAG	O5-C1-C2	-2.28	107.69	111.29
6	r	1	NAG	O5-C1-C2	-2.27	107.71	111.29
5	k	1	NAG	C3-C4-C5	-2.26	106.20	110.24
5	0	2	NAG	C4-C3-C2	-2.26	107.70	111.02
5	0	2	NAG	C4-C3-C2	-2.26	107.71	111.02
5	t	1	NAG	O4-C4-C3	-2.25	105.14	110.35
5	Х	1	NAG	C3-C4-C5	-2.25	106.22	110.24
5	Х	1	NAG	C3-C4-C5	-2.25	106.23	110.24
5	b	2	NAG	C4-C3-C2	-2.24	107.73	111.02
5	У	2	NAG	C4-C3-C2	-2.24	107.74	111.02
5	Т	1	NAG	O4-C4-C3	-2.24	105.18	110.35
5	g	1	NAG	O4-C4-C3	-2.24	105.18	110.35
5	Y	2	NAG	C4-C3-C2	-2.23	107.75	111.02
5	Ζ	1	NAG	C3-C4-C5	-2.23	106.26	110.24
5	m	1	NAG	C3-C4-C5	-2.23	106.27	110.24
5	1	2	NAG	C4-C3-C2	-2.22	107.76	111.02
5	М	1	NAG	C3-C4-C5	-2.21	106.30	110.24
6	r	3	BMA	C2-C3-C4	-2.18	107.13	110.89
5	X	1	NAG	C1-O5-C5	$2.1\overline{5}$	115.11	112.19
6	е	3	BMA	C2-C3-C4	-2.14	107.19	110.89
6	R	3	BMA	C2-C3-C4	-2.14	107.19	110.89
5	k	1	NAG	C1-O5-C5	$2.1\overline{3}$	$115.0\overline{8}$	112.19
5	X	1	NAG	C1-O5-C5	2.13	115.07	112 19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	U	1	NAG	C3-C4-C5	-2.11	106.47	110.24
5	u	1	NAG	C3-C4-C5	-2.10	106.50	110.24
5	h	1	NAG	C3-C4-C5	-2.09	106.51	110.24

There are no chirality outliers.

All (90) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type Atoms	
6	R	1	NAG	C1-C2-N2-C7
6	е	1	NAG	C1-C2-N2-C7
6	r	1	NAG	C1-C2-N2-C7
5	U	2	NAG	C4-C5-C6-O6
5	h	2	NAG	C4-C5-C6-O6
5	u	2	NAG	C4-C5-C6-O6
5	М	1	NAG	O5-C5-C6-O6
5	Ζ	1	NAG	O5-C5-C6-O6
5	m	1	NAG	O5-C5-C6-O6
5	Q	1	NAG	O5-C5-C6-O6
5	d	1	NAG	O5-C5-C6-O6
5	q	1	NAG	O5-C5-C6-O6
5	Х	2	NAG	O5-C5-C6-O6
5	Х	2	NAG	O5-C5-C6-O6
5	k	2	NAG	O5-C5-C6-O6
5	U	2	NAG	O5-C5-C6-O6
5	h	2	NAG	O5-C5-C6-O6
5	u	2	NAG	O5-C5-C6-O6
5	М	1	NAG	C4-C5-C6-O6
5	Ζ	1	NAG	C4-C5-C6-O6
5	m	1	NAG	C4-C5-C6-O6
5	Ν	2	NAG	O5-C5-C6-O6
5	a	2	NAG	O5-C5-C6-O6
5	n	2	NAG	O5-C5-C6-O6
5	Q	2	NAG	O5-C5-C6-O6
5	S	2	NAG	O5-C5-C6-O6
5	Т	2	NAG	O5-C5-C6-O6
5	V	2	NAG	O5-C5-C6-O6
5	d	2	NAG	O5-C5-C6-O6
5	f	2	NAG	O5-C5-C6-O6
5	g	2	NAG	O5-C5-C6-O6
5	i	2	NAG	O5-C5-C6-O6
5	q	2	NAG	O5-C5-C6-O6
5	s	2	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	t	2	NAG	O5-C5-C6-O6
5	V	2	NAG	O5-C5-C6-O6
5	Q	1	NAG	C4-C5-C6-O6
5	d	1	NAG	C4-C5-C6-O6
5	q	1	NAG	C4-C5-C6-O6
5	0	2	NAG	O5-C5-C6-O6
5	b	2	NAG	O5-C5-C6-O6
5	0	2	NAG	O5-C5-C6-O6
5	М	2	NAG	O5-C5-C6-O6
5	Ζ	2	NAG	O5-C5-C6-O6
5	m	2	NAG	O5-C5-C6-O6
7	W	3	BMA	O5-C5-C6-O6
7	j	3	BMA	O5-C5-C6-O6
7	W	3	BMA	O5-C5-C6-O6
6	R	3	BMA	O5-C5-C6-O6
6	е	3	BMA	O5-C5-C6-O6
6	r	3	BMA	O5-C5-C6-O6
7	W	4	MAN	O5-C5-C6-O6
7	j	4	MAN	O5-C5-C6-O6
7	W	4	MAN	O5-C5-C6-O6
5	Y	2	NAG	O5-C5-C6-O6
5	l	2	NAG	O5-C5-C6-O6
5	У	2	NAG	O5-C5-C6-O6
5	Р	2	NAG	O5-C5-C6-O6
5	с	2	NAG	O5-C5-C6-O6
5	р	2	NAG	O5-C5-C6-O6
5	Х	2	NAG	C4-C5-C6-O6
5	k	2	NAG	C4-C5-C6-O6
7	W	2	NAG	O5-C5-C6-O6
7	j	2	NAG	O5-C5-C6-O6
7	W	2	NAG	O5-C5-C6-O6
5	Х	2	NAG	C4-C5-C6-O6
5	Х	1	NAG	O5-C5-C6-O6
5	i	1	NAG	O5-C5-C6-O6
5	V	1	NAG	O5-C5-C6-O6
5	х	1	NAG	O5-C5-C6-O6
5	V	1	NAG	O5-C5-C6-O6
5	k	1	NAG	O5-C5-C6-O6
5	X	1	NAG	C4-C5-C6-O6
5	k	1	NAG	C4-C5-C6-O6
5	х	1	NAG	$C4-C5-\overline{C6-O6}$
7	W	1	NAG	O5-C5-C6-O6

Continued from previous page...

Continued on next page...

Mol	Chain	Res	Type	Atoms
7	W	1	NAG	O5-C5-C6-O6
7	j	1	NAG	O5-C5-C6-O6
5	g	2	NAG	C4-C5-C6-O6
5	Т	2	NAG	C4-C5-C6-O6
5	t	2	NAG	C4-C5-C6-O6
5	f	2	NAG	C4-C5-C6-O6
5	s	2	NAG	C4-C5-C6-O6
5	S	2	NAG	C4-C5-C6-O6
5	n	2	NAG	C4-C5-C6-O6
5	Ν	2	NAG	C4-C5-C6-O6
5	a	2	NAG	C4-C5-C6-O6
5	d	2	NAG	C4-C5-C6-O6
5	q	2	NAG	C4-C5-C6-O6
5	Q	2	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

30 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bond lengths		Bond angles		les	
MOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
8	NAG	С	613	1	14,14,15	0.75	1 (7%)	17,19,21	0.98	1(5%)
8	NAG	Ι	701	2	14,14,15	0.84	1 (7%)	17,19,21	0.98	1 (5%)
8	NAG	Ι	702	2	14,14,15	0.83	1 (7%)	17,19,21	0.79	1 (5%)
8	NAG	А	606	1	14,14,15	0.76	1 (7%)	17,19,21	1.06	1 (5%)
8	NAG	G	601	1	14,14,15	0.88	1 (7%)	17,19,21	0.75	0
8	NAG	В	701	2	14,14,15	0.83	1 (7%)	17,19,21	0.99	1 (5%)
8	NAG	С	606	1	14,14,15	0.75	1 (7%)	17,19,21	1.05	1 (5%)
8	NAG	А	613	1	14,14,15	0.73	1 (7%)	17,19,21	0.99	1 (5%)
8	NAG	В	703	2	14,14,15	0.71	1 (7%)	17,19,21	0.95	1 (5%)
8	NAG	В	702	2	14,14,15	0.83	1 (7%)	17,19,21	0.79	1 (5%)
8	NAG	С	601	1	14,14,15	0.89	1 (7%)	17,19,21	0.75	0
8	NAG	С	618	1	14,14,15	0.88	1 (7%)	17,19,21	1.09	1 (5%)
8	NAG	В	704	2	14,14,15	0.86	1 (7%)	17,19,21	0.83	0
8	NAG	Ι	703	2	14,14,15	0.71	1 (7%)	17,19,21	0.96	1 (5%)
8	NAG	G	635	1	14,14,15	0.89	1 (7%)	17,19,21	0.73	0
8	NAG	G	614	1	14,14,15	0.92	1 (7%)	17,19,21	1.18	1 (5%)
8	NAG	G	618	1	14,14,15	0.87	1 (7%)	17,19,21	1.10	1 (5%)
8	NAG	А	635	1	14,14,15	0.89	1 (7%)	17,19,21	0.73	0
8	NAG	А	601	1	14,14,15	0.88	1 (7%)	17,19,21	0.75	0
8	NAG	А	614	1	14,14,15	0.93	1 (7%)	17,19,21	1.18	1 (5%)
8	NAG	Ι	704	2	14,14,15	0.84	1 (7%)	17,19,21	0.82	0
8	NAG	D	701	2	14,14,15	0.84	1 (7%)	17,19,21	0.98	1 (5%)
8	NAG	G	613	1	14,14,15	0.73	1 (7%)	17,19,21	0.99	1 (5%)
8	NAG	А	618	1	14,14,15	0.88	1 (7%)	17,19,21	1.10	1 (5%)
8	NAG	D	702	2	14,14,15	0.84	1 (7%)	17,19,21	0.79	1 (5%)
8	NAG	D	703	2	14,14,15	0.69	1 (7%)	17,19,21	0.95	1 (5%)
8	NAG	G	606	1	14,14,15	0.75	1 (7%)	17,19,21	1.05	1 (5%)
8	NAG	D	704	2	14,14,15	0.85	1 (7%)	17,19,21	0.82	0
8	NAG	С	635	1	14,14,15	0.89	1 (7%)	17,19,21	0.73	1 (5%)
8	NAG	С	614	1	14,14,15	0.92	1 (7%)	17,19,21	1.18	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	С	613	1	-	1/6/23/26	0/1/1/1
8	NAG	Ι	701	2	-	1/6/23/26	0/1/1/1
8	NAG	Ι	702	2	-	1/6/23/26	0/1/1/1
8	NAG	А	606	1	-	2/6/23/26	0/1/1/1
8	NAG	G	601	1	-	2/6/23/26	0/1/1/1
8	NAG	В	701	2	-	1/6/23/26	0/1/1/1
8	NAG	С	606	1	-	2/6/23/26	0/1/1/1
8	NAG	А	613	1	-	1/6/23/26	0/1/1/1
8	NAG	В	703	2	_	1/6/23/26	0/1/1/1
8	NAG	В	702	2	_	1/6/23/26	0/1/1/1
8	NAG	С	601	1	-	2/6/23/26	0/1/1/1
8	NAG	С	618	1	-	2/6/23/26	0/1/1/1
8	NAG	В	704	2	-	1/6/23/26	0/1/1/1
8	NAG	Ι	703	2	-	1/6/23/26	0/1/1/1
8	NAG	G	635	1	-	1/6/23/26	0/1/1/1
8	NAG	G	614	1	-	1/6/23/26	0/1/1/1
8	NAG	G	618	1	-	2/6/23/26	0/1/1/1
8	NAG	А	635	1	_	1/6/23/26	0/1/1/1
8	NAG	А	601	1	-	2/6/23/26	0/1/1/1
8	NAG	А	614	1	-	1/6/23/26	0/1/1/1
8	NAG	Ι	704	2	-	1/6/23/26	0/1/1/1
8	NAG	D	701	2	-	1/6/23/26	0/1/1/1
8	NAG	G	613	1	-	1/6/23/26	0/1/1/1
8	NAG	А	618	1	-	2/6/23/26	0/1/1/1
8	NAG	D	702	2	-	1/6/23/26	0/1/1/1
8	NAG	D	703	2	-	1/6/23/26	0/1/1/1
8	NAG	G	606	1	-	2/6/23/26	0/1/1/1
8	NAG	D	704	2	-	1/6/23/26	0/1/1/1
8	NAG	С	635	1	-	1/6/23/26	0/1/1/1
8	NAG	С	614	1	-	1/6/23/26	0/1/1/1

All (30) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
8	С	635	NAG	C1-C2	2.98	1.56	1.52
8	G	635	NAG	C1-C2	2.97	1.56	1.52
8	А	635	NAG	C1-C2	2.94	1.56	1.52

Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
8	С	618	NAG	C1-C2	2.86	1.56	1.52
8	А	618	NAG	C1-C2	2.85	1.56	1.52
8	G	618	NAG	C1-C2	2.82	1.56	1.52
8	С	601	NAG	C1-C2	2.81	1.56	1.52
8	А	601	NAG	C1-C2	2.75	1.56	1.52
8	D	702	NAG	C1-C2	2.73	1.56	1.52
8	G	601	NAG	C1-C2	2.72	1.56	1.52
8	Ι	702	NAG	C1-C2	2.72	1.56	1.52
8	В	702	NAG	C1-C2	2.71	1.56	1.52
8	Ι	701	NAG	C1-C2	2.69	1.56	1.52
8	D	701	NAG	C1-C2	2.69	1.56	1.52
8	В	704	NAG	C1-C2	2.67	1.56	1.52
8	D	704	NAG	C1-C2	2.64	1.56	1.52
8	В	701	NAG	C1-C2	2.64	1.56	1.52
8	Ι	704	NAG	C1-C2	2.64	1.56	1.52
8	А	614	NAG	C1-C2	2.33	1.55	1.52
8	А	606	NAG	C1-C2	2.32	1.55	1.52
8	С	614	NAG	C1-C2	2.29	1.55	1.52
8	G	614	NAG	C1-C2	2.29	1.55	1.52
8	С	606	NAG	C1-C2	2.27	1.55	1.52
8	В	703	NAG	C1-C2	2.27	1.55	1.52
8	G	606	NAG	C1-C2	2.26	1.55	1.52
8	Ι	703	NAG	C1-C2	2.26	1.55	1.52
8	С	613	NAG	C1-C2	2.25	1.55	1.52
8	D	703	NAG	C1-C2	2.19	1.55	1.52
8	A	613	NAG	C1-C2	2.19	1.55	1.52
8	G	613	NAG	C1-C2	2.16	1.55	1.52

Continued from previous page...

All (22) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
8	G	618	NAG	C4-C3-C2	-3.37	106.07	111.02
8	А	618	NAG	C4-C3-C2	-3.33	106.14	111.02
8	С	618	NAG	C4-C3-C2	-3.33	106.14	111.02
8	С	614	NAG	C4-C3-C2	-3.27	106.22	111.02
8	G	614	NAG	C4-C3-C2	-3.26	106.25	111.02
8	А	614	NAG	C4-C3-C2	-3.24	106.26	111.02
8	D	703	NAG	C4-C3-C2	-2.96	106.67	111.02
8	Ι	703	NAG	C4-C3-C2	-2.96	106.68	111.02
8	В	703	NAG	C4-C3-C2	-2.95	106.69	111.02
8	А	613	NAG	C4-C3-C2	-2.83	106.86	111.02
8	G	613	NAG	C4-C3-C2	-2.81	106.90	111.02

Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	С	613	NAG	C4-C3-C2	-2.78	106.94	111.02
8	А	606	NAG	C4-C3-C2	-2.68	107.10	111.02
8	В	701	NAG	C4-C3-C2	-2.64	107.15	111.02
8	С	606	NAG	C4-C3-C2	-2.62	107.17	111.02
8	Ι	701	NAG	C4-C3-C2	-2.62	107.18	111.02
8	G	606	NAG	C4-C3-C2	-2.62	107.19	111.02
8	D	701	NAG	C4-C3-C2	-2.61	107.20	111.02
8	Ι	702	NAG	C4-C3-C2	-2.30	107.64	111.02
8	В	702	NAG	C4-C3-C2	-2.30	107.65	111.02
8	D	702	NAG	C4-C3-C2	-2.28	107.67	111.02
8	C	635	NAG	C4-C3-C2	-2.00	108.09	111.02

Continued from previous page...

There are no chirality outliers.

All (39) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	А	606	NAG	O5-C5-C6-O6
8	С	606	NAG	O5-C5-C6-O6
8	G	606	NAG	O5-C5-C6-O6
8	А	618	NAG	O5-C5-C6-O6
8	С	618	NAG	O5-C5-C6-O6
8	G	618	NAG	O5-C5-C6-O6
8	А	614	NAG	O5-C5-C6-O6
8	В	701	NAG	O5-C5-C6-O6
8	С	614	NAG	O5-C5-C6-O6
8	D	701	NAG	O5-C5-C6-O6
8	G	614	NAG	O5-C5-C6-O6
8	Ι	701	NAG	O5-C5-C6-O6
8	D	703	NAG	O5-C5-C6-O6
8	Ι	703	NAG	O5-C5-C6-O6
8	В	703	NAG	O5-C5-C6-O6
8	В	704	NAG	O5-C5-C6-O6
8	D	704	NAG	O5-C5-C6-O6
8	Ι	704	NAG	O5-C5-C6-O6
8	А	613	NAG	O5-C5-C6-O6
8	С	613	NAG	O5-C5-C6-O6
8	G	613	NAG	O5-C5-C6-O6
8	А	606	NAG	C4-C5-C6-O6
8	С	606	NAG	C4-C5-C6-O6
8	В	702	NAG	O5-C5-C6-O6
8	D	702	NAG	O5-C5-C6-O6
8	Ι	702	NAG	O5-C5-C6-O6

Continued on next page...

Mol	Chain	Res	Type	Atoms
8	G	606	NAG	C4-C5-C6-O6
8	А	601	NAG	C1-C2-N2-C7
8	С	601	NAG	C1-C2-N2-C7
8	G	601	NAG	C1-C2-N2-C7
8	А	635	NAG	O5-C5-C6-O6
8	С	635	NAG	O5-C5-C6-O6
8	G	635	NAG	O5-C5-C6-O6
8	А	601	NAG	O5-C5-C6-O6
8	С	601	NAG	O5-C5-C6-O6
8	G	601	NAG	O5-C5-C6-O6
8	С	618	NAG	C4-C5-C6-O6
8	А	618	NAG	C4-C5-C6-O6
8	G	618	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-20642. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal surface views (i)

This section was not generated.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

