

Jun 24, 2024 – 01:10 PM EDT

PDB ID	:	8T9D
EMDB ID	:	EMD-41107
Title	:	CryoEM structure of TR-TRAP
Authors	:	Zhao, H.; Asturias, F.
Deposited on	:	2023-06-23
Resolution	:	4.66 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.66 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# {\rm Entries})$	$(\# {\rm Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of ch	ain		
1	А	1581	29% •	70%		
2	В	270	57% •	41%		
3	С	246	49% 21	% • 28%		
4	D	233	69%	31%		
5	Е	268	66%	• 32%		
6	F	146	47% •	50%		
7	G	135	23%	10%		
8	Н	117	78%	9% •• 10%		

Mol	Chain	Length	Quality of chain	Quality of chain								
9	Ι	1454	66%	10%	24%							
10	J	788	16% 5% 79%									
11	K	877	60%	23%	17%							
12	L	651	71%	12%	17%							
13	М	208	79%		7% 13%							
14	0	212	75%	7%	0 18%							
15	Р	144	79%		21%							
16	Q	200	58% 8%		34%							
17	R	1368	70%		24% 5%							
18	S	989	78%		13% 9%							
19	Т	747	23% • 74%	, ,								
20	V	311	77%		10% 13%							
21	W	178	• 58% 8%		34%							
22	Х	200	48% 13%	38	3%							
23	Y	178	65%	10%	26%							
24	Z	131	78%	•	21%							
25	a	20	100%									
26	9	2174	• 99%									

2 Entry composition (i)

There are 26 unique types of molecules in this entry. The entry contains 49136 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Mediator of RNA polymerase II transcription subunit 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	А	467	Total 2354	C 1405	N 476	0 473	0	0

• Molecule 2 is a protein called Mediator of RNA polymerase II transcription subunit 4.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	В	158	Total	С	Ν	Ο	0	0
	D	100	793	475	158	160	0	0

• Molecule 3 is a protein called Mediator of RNA polymerase II transcription subunit 6.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	С	178	Total 931	C 564	N 185	O 182	0	0

• Molecule 4 is a protein called Mediator of RNA polymerase II transcription subunit 7.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	D	161	Total 801	C 479	N 161	O 161	0	0

• Molecule 5 is a protein called Mediator of RNA polymerase II transcription subunit 8.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	181	Total 902	C 537	N 181	0 183	S 1	0	0

• Molecule 6 is a protein called Mediator of RNA polymerase II transcription subunit 9.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	73	Total 379	C 228	N 74	O 76	S 1	0	0

• Molecule 7 is a protein called Mediator of RNA polymerase II transcription subunit 10.

Mol	Chain	Residues	Atoms				AltConf	Trace
7	G	122	Total 608	C 362	N 123	O 123	0	0

• Molecule 8 is a protein called Mediator of RNA polymerase II transcription subunit 11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	Н	105	Total 583	C 354	N 116	0 112	S 1	0	0

• Molecule 9 is a protein called Mediator of RNA polymerase II transcription subunit 14.

Mol	Chain	Residues		Α		AltConf	Trace		
9	Ι	1102	Total 6855	C 4319	N 1271	0 1245	S 20	0	0

• Molecule 10 is a protein called Mediator of RNA polymerase II transcription subunit 15.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
10	J	167	Total 1176	C 753	N 216	O 203	${S \atop 4}$	0	0

• Molecule 11 is a protein called Mediator of RNA polymerase II transcription subunit 16.

Mol	Chain	Residues		At	AltConf	Trace			
11	K	732	Total 5037	$\begin{array}{c} \mathrm{C} \\ 3245 \end{array}$	N 903	O 866	S 23	0	0

• Molecule 12 is a protein called Mediator of RNA polymerase II transcription subunit 17.

Mol	Chain	Residues		Ate	AltConf	Trace			
12	L	543	Total 3393	C 2134	N 632	O 622	${f S}{5}$	0	0

• Molecule 13 is a protein called Mediator of RNA polymerase II transcription subunit 18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	М	180	Total 1146	C 729	N 218	0 197	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called Mediator of RNA polymerase II transcription subunit 20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	О	174	Total 1022	C 645	N 180	O 193	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called Mediator of RNA polymerase II transcription subunit 21.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	Р	114	Total 568	C 340	N 114	0 114	0	0

• Molecule 16 is a protein called Mediator of RNA polymerase II transcription subunit 22.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
16	Q	131	Total 759	C 467	N 145	0 147	0	0

• Molecule 17 is a protein called Mediator of RNA polymerase II transcription subunit 23.

Mol	Chain	Residues		A	AltConf	Trace			
17	R	1294	Total 9758	C 6300	N 1684	0 1721	S 53	0	0

• Molecule 18 is a protein called Mediator of RNA polymerase II transcription subunit 24.

Mol	Chain	Residues		Α	toms			AltConf	Trace
18	S	901	Total 5888	C 3751	N 1061	O 1049	S 27	0	0

• Molecule 19 is a protein called Mediator of RNA polymerase II transcription subunit 25.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Т	192	Total 1302	C 837	N 223	0 237	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called Mediator of RNA polymerase II transcription subunit 27.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
20	V	270	Total 1683	C 1067	N 307	O 306	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called Mediator of RNA polymerase II transcription subunit 28.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	W	118	Total 781	C 489	N 146	0 144	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called Mediator of RNA polymerase II transcription subunit 29.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	Х	123	Total 842	C 530	N 150	0 159	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called Mediator of RNA polymerase II transcription subunit 30.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Y	132	Total 839	C 523	N 167	0 146	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called Mediator of RNA polymerase II transcription subunit 31.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
24	Z	103	Total 516	C 308	N 103	O 105	0	0

• Molecule 25 is a protein called Unknown Peptide.

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
25	a	20	Total 100	C 60	N 20	O 20	0	0

• Molecule 26 is a protein called Mediator of RNA polymerase II transcription subunit 13.

Mol	Chain	Residues	1	Ator	\mathbf{ns}		AltConf	Trace
26	9	24	Total 120	С 72	N 24	O 24	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Mediator of RNA polymerase II transcription subunit 1

ASP ALA ALA LEU CYS VAL LEU TLEU TLEU ASP GLU ASP GLU ARG PRO

• Molecule 5: Mediator of RNA polymerase II transcription subunit 8

Chain E:	66%	• 32%	
MET GIN R1 R111 K112 P114 P114 GIU GIU SER	SER GLY CLU CLY LLEU ARO ARO ARO ARO ARO ARO ARO ARO ARO ARO	GLY GLY GLN GLN GLY GLY GLY GLY GLY THR TLE TLE CLEU GLN GLN GLN	GLN GLN MET ALA GLY ALA
PRO SER GLN GLN GLN GLN PRO FRO SER CLV CLU CLN MET	ALA ALA GLN GLN GLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	MET PRO TYRO GLN ARG	
• Molecule 6: Me	diator of RNA polymerase II	transcription subunit 9	
Chain F:	47% ·	50%	1
MET ALA SER GLY GLY GLY GLY GLN GLU	ASP VAL VAL PRO PRO PRO ASP PRO ASP PRO LEU LYS LEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	PRO PRO PRO VAL PRO PRO PRO GLN GLN GLN GLN GLN GRN GRN GRN GRN GRN GRN GRN GRN GRN GR	ARG ALA ARG GLU GLU
GLU ASN TYR SER SER 172 172 172 172 172 172 173 173 173 173 173 173 173 173 173 173	HIS Q85 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q115 Q		
• Molecule 7: Me	ediator of RNA polymerase II	transcription subunit 10	
Chain G:	3% 90%	10%	
MET ALA ALA CIU CIU CIU ASP H7 L22 C122 A30 Q30 Q30 Q30 Q30 Q30 Q30 Q30 Q30 Q30 Q	S32 S33 Q34 Q36 H59 H59 B60 F66 F66 F66 F66 F66 F66 F66	171 D72 073 674 876 977 977 977 977 977 778 978 778 778 778	A88 L89 A90 K91 N92 R128 GLY GLY GLY ASP HIS PR0
SER			
• Molecule 8: Me	diator of RNA polymerase II	transcription subunit 11	
Chain H:	78%	9% •• 10%	
MET ALA THR THR SER SER ALA ALA V3 V3 THA	ASN ASN GLU R43 885 885 885 885 885 885 885 885 885 88	L104 L115 GLU ASN	
• Molecule 9: Me	diator of RNA polymerase II	transcription subunit 14	
Chain I:	66%	10% 24%	
MET ALA ALA PRO PRO CLN GLN GLN GLN CLU CLU CLU CLU CLU	PRO GLY GLY GLY GLY GLY GLY SER PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	R61 A62 S64 E65 L66
M67 V68 L69 T10 D71 L12 L12 F14 F13 R15 K15 K15	E80 E80 R81 R81 P86 R11 E119 S119 S119 C1122 MET MET CLY	ASP PR0 PR0 PR0 PR0 PR0 PR0 C124 ASP C125 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	M222 Y2293 N294 N294 12301 12302 12303 12303 12305

Chain L:

71%

17%

12%

MET LYS VAL

GLU GLY GLY GLU GLU GLY GLY FHR PRO

DE DATA BANK

• Molecule 17: Mediator of RNA polymerase II transcription subunit 23

ASP LEU ILE

• Molecule 20: Mediator of RNA polymerase II transcription subunit 27

Chain V:

77%

10% 13%

MET ALA ASP VAL ILE ASN VAL S8 S8 S8 S4 S1 S4 S1 S1	H55 F56 L70 L70 VAL ASP ASP ASP ASP THR F10 F10 F11	H120 H120 GLN M138 GLN MET ALA ALA ALA ARG ARG	PRU LIYS ALA ALA PRO PRO THR THR VAL LEU PISS PRO	R182 M189
V192 1193 1194 1194 1198 1198 V200 V200 V215 K215	7216 7216 7218 6219 1220 7239 7239 7239 7239 1270 7239 1270 7239	F299 R300 A304 PHE H15 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP		
• Molecule 21: N	fediator of RNA polym	erase II transcript	ion subunit 28	
Chain W:	58%	8%	34%	I
MET ALA ALA ALA PRO CLY GLY PHE SER SER SER SER SLN	PRO PRO GLY PRO PRO CLA PRO PRO PRO PRO PRO CLA SER SER SER SER SER	LEU GLN A3 C A3 C A3 C A3 C A5 C C 55 B C 55 B C 155 V 65 1 86 1	186 187 187 188 189 199 196 196 196 196 196 196 137	q140 L143
<mark>q149</mark> HIS LYS LYS PRO ASP ASP PIC PLA GLY SER	LEU ALA TYR LEU GLU GLU GLU GLU GLU GLA ASR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ТНК		
• Molecule 22: N	lediator of RNA polym	erase II transcript	tion subunit 29	
Chain X:	48%	13%	38%	
MET ALA ALA SER GLN GLN GLN GLN ALA ALA ALA ALA SER SER	SER ALA ALA ALA ALA CLY SER SER SER SER ALA CLY CLY CLY CLY CLY CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	GLN GLN PRO OLN PRO PRO PRO ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ot.n SER GLY GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	T64 P65 Q66
L67 K76 A78 A78 A79 A79 A79 A81 180 183 183 183 N85	D89 N90 N90 199 0100 1101 1102 1102 1103 1136 1136 1136 1138 1148 1148 1148 1148 1148 1148 1148	PRO ASP ASP ALA VAL VAL PIS PIS PIS PIS PIS	410 CLY CLY CLY CLY FIR FIR FIR FIR FIR FIR FIR FIR	GLY THR LEU
• Molecule 23: M	fediator of RNA polym	erase II transcript	ion subunit 30	
Chain Y:	65%	10%	26%	I
MET SER THR PRO PRO LEU LEU ALA ALA MET ALA	PRO PRO PHE PHE PRO PRO GLN GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	148 151 151 151 151 151 151 151 170 170 170 172	L78 N81 A1178 GLU GLU GLU GLU GLU GLU	ASN ASP ASP ARG
ALA GLY PRO PRO PRO PRC PRC CLY CLJ CLJ CLJ CLJ CLJ	N160 R164 1167 W168 D169 D169 N178			
• Molecule 24: N	fediator of RNA polym	erase II transcript	ion subunit 31	
Chain Z:	78%		• 21%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA CLU THR THR THR DGO	R12 MET MET ARG CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	THR SER GLY LYS		
• Molecule 25: U	Jnknown Peptide			
Chain a:		100%		
There are no out	lier residues recorded f	or this chain.		
• Molecule 26: M	Iediator of RNA polym	erase II transcript	tion subunit 13	

Laguir

Chain 9: •	99%
MET SER ALA SER ALA SER PHE PHE AL AL ALA ALA ALA ALA ALA ALA ALA ALA	ASP LEU TIRP LLEU TIRP LLYS LLYS LLYS LLYS LLYS LLYS LLYS LLY
LEU LYS ASP ASP ASP ASP GLY GLY ARG ARG ARG ARG ARG CLU ARG CLU CLU CLU CLU CLU	TRP TRP TRP GLV GLV GLV GLV ASP PRO ASP ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
LYS ALA ALA ALA HIS ASN ASN CYS GLU ASN ASS ASS ASS ASS CYS CYS CYS CYS CYS CYS CYS CYS CYS C	VAL VAL TYR TYR TYR CUU CUU CUU CUU CUU CUU CUU CUU CUU CU
ASN GLN GLN GLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PHE CTEU VAL CTEU CTEU CTEU CTEU CTEU CTEU CTEU ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
PRO TILE SER CYS CYS CYS CYS CYS CYS GLU GLU MET ASP ASP ASP ASP ASP SER	LEU ALA ALA ALA ALA CUU CAL VAL LEU VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA
CFS SER SER SER SER CYS CYS CYS CYS CHU VAL ALA ALA ALA ALA ALA ALA ALA ALA SER SER SER VAL	THR THR PRO PRO PRO PRO PRO PRO PRO GLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
SER HIS GLY GLY GLY CLY CLY ARG ASP ASP ASP ASP ASP ASP ASP CVS GLN GLN	MET MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
ARG THR ASN CYS SER SER CYS CYS CYS CYS CYS ASN LLEU LLY SER ASN ASN ASN CLY GLN GLN GLN GLN	PRIO SPRID CLIV CLIN CLIN CLIN CLIN CLIN CLIN CLIN CLIN
SER VAL SER ASP ASP ASP ASP CLA ASP ASP ALA ALA ALA ALA ARG CLA VAL ARG CLA ARG ARG CLA ARG ARG ARG ARG ARG ARD ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	SER GLN VALL VALL PARG SER SER SER ASP VAL ARD ASP VAL ARD ASP CLU VAL ARD ASP ASP ASP ASP CLU MET HIS CLU HIS C CLU HIS C C C C C C C
CYS ASP VAL ASP CASP CASP CASP CASP CASP CASP CASP	THR THR ASP ASP ASP ASP ASP ASP VAL TTR TTR ASP ANC ALU SER SER ANC ALU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
GLY THR ALA ASN VAL ASN CLU GLU GLU GLU GLU GLU GLU FS2 FS2 FS2 FS2 FS2 FS2 FS2 FS2 FS2 FS2	F628 F628 F650 F650 F650 F650 F650 F650 F650 F650
SER ASP GLU CLEU CLEU CLEU CLN GLN GLN GLN GLN ALA ALA ALA ALA ALA ALA ALA ALA CCVS GLU GLU	GLN GLN LYS LYS ASP PRO PRO PRO ASP ALA ALA ALA GLU CLU CLU CLU CLU ASP ASP ASP ASP ASP CLU CLU ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
VAL ASP ASP ASP ASP ASP VAL THR THR VAL SER ASP ASP ASP ASP ASP SER SER SER SER SER SER SER SER SER SER	SER ILLE LVS GLN ALA ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
ASN ASP ASP ASP ASP ASP ASP THR THR THR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	CYS CYS CYS CYS CYS CYS CIT AGP AGP AGP AGP AGP AGP AGP AGP AGP AGP
SER PRO MET MET ASN ASN ASN ASN CLY CLU CLU CLY CLY CLY CLY CLU CLU	GLY ASIN SER SER SER SER TLA ALLA ALLA ALLA ALLA ALLA ALLA ASP PHE CYS SER CYS SER CYS SER CYS SER CYS SER CYS SER CYS SER CYS SER CYS SER CYS CYS SER CYS CYS CYS SER CYS CYS SER CYS CYS CYS SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS
CYS CYS CLLE LLLE LLLE LLLE CLZY CYS CYS CYS SER MET PHE PHE LEU LYS CYS CYS CYS CYS CYS CYS CYS CYS CYS C	TLE LYS PRO GLU GLU GLU GLU GLU GLU VAL TTRP TTRP TTRP TTRP GLU CYS GLU VAL LEU CITYS SER SER SER SER SER SER CITYS GLU CITYS SER CITYS GLU VAL CYS GLU VAL CYS GLU VAL TTRP GLU VAL CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS GLU VAS CYS CYS CYS CYS CYS CYS CYS CYS CYS CY
MET ASP GLU GLU GLU TYR CLY CLY CLY THR THR THR THR THR THR THR THR CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA ALA PRO SER ASN SER ASN SER ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
ALA ALA ALA ALA ALN GLN GLN GLN CLN ALA ASR ASR ASR ASR ASR ASR ASR ASR ASR AS	CVS CVS ARG ASN ASN ASN ASN ASN ASN CVAL CVAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
CYS ASN ASP ASP ASP SER ASP TLE CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	11.1.E PR0 PR0 CJ.N CJ.N CJ.N CJ.N CJ.N CJ.N PRE CJ.N VAL ARG CJ.Y VAL ARG CJ.Y VAL ARG CJ.Y VAL ARG CJ.Y VAL ARG CJ.Y VAL ARG CJ.N ARG CJ.N VAL ARG CJ.N VAL ARG CJ.N C C C C C C C C C C C C C C C C C C C

ILE	ILE	GLY	ASN	THR	ASP	GLY	LYS	GLU ATA	GLU	LYS	ARG	111D	ALA	LEU	ARG	THR	SER	ALA	SIH	VAL	ASN	GLY GLY	LEU	LYS	GLU	GLU	LYS	LEU SER	ASP	ASP	ILE	LEU	LEU	GLN	GLN	CYS	THR	LEU	PHE	PRO	PHE	ALA	ALA ASP
GLN	ASP	PRO	PRO	LYS	SER	VAL	ILE	ASN	TRP	VAL	ARG	CLIT	GLU	ARG	ASP	CYS	ASN	ASP	TYR	TEU	ALA	CELU GLU	HIS	GLY	ARG	PHE	MET	ASP	MET	SER	GLY	LYS	ASP	GLU	ALA LEU	VAL	LYS	SER	CYS	HIS	PRO	SER	LYS ARG
ASN	ASP	VAL	MET	GLN	CYS	GLN	ASP	TLEI	ARG	MET	LEU	CER SFR	TEU	GLN	PRO	LEU	GLN	ASP AT A	ALA ILE	GLN	LYS	LYS ARG	THR	VAL	ARG	TRP	GLY	VAL GLN	GLY	PRO I EU	THR	TRP	0TD	PHE	STH	MET	ALA CI V	ARG	GLY	TYR	GLY	ASP	GLU SER
PRO	GLU	PRO TEIT	PRO	ILE	PRO	PHE	LEU	0.ELV	TYR	ASP	TYR	TVR	TEU	VAL	LEU	PRO	PHE	ALA	PRO	TYR	TRP	GLU ARG	LEU	MET	LEU	PRO	TYR	GLY SER	GLN	ARG	ILE	ALA	VAL	VAL	CYS	PRO	GLU	GLU	ALA	LEU	ASN	ALA	LYS SER
PHE	PHE	ARG	LEU	THR	ALA	TYR	GLU	SER	ARG	LEU	GLY	UTS HTS	ARG	PRO	VAL	ARG	LEU	LEU	ASP	GLY	ILE	MET ARG	VAL	GLY	SER	ALA	SER	LYS	LEU	SER	TAS	LEU	VAL ALA	GLU	PHE	SER	GLN	ALA ALA	ASP	ASN	ASN	ALA	PHE SER
LYS	LEU	LYS	TYR	ALA	GLN	CYS	ARG	A'YR A'SP	LEU	GLY	PRO	LEII	ALA	SER	LEU	LEU	ASP	SER	LEU	LEU	SER	GLN	ASN	LEU	VAL	PRO	THR	SER. GLN	SER	LEU	THR	PRO	GLN	MET	ASN	THR	GLY	ALA	ASN	PRO	SER	THR	LEU ALA
SER	ALA	ALA	SER	THR	MET	VAL	THR	N IS	VAL	ALA	ILE	THR	SER	VAL	ALA	ALA	ASN	SER	LEU	THR	THR	ALA SFR	THR	SER	SER	SER	SER	SER	LEU	ASN	GLY	VAL	SER	ASN	LEU	PRO	SER	PR0 PR0	PRO DUE	GLY	SER	ASN	SER
ALA	ALA	GLY	MET	SER	THR	ALA	ASN	VAL.	GLN	SER	GLY	UTI CTU	GLY	GLY	GLN GLN	THR	SER	ALA	GLN	THR	ALA	GL Y TL.F.	SER	GLY	GLU	SER	SER	LEU PRO	THR	GLN	HIS	PRO	VAL	SER	GLU	THR	MET	ASP	ASP	VAL	GLY	PRO	THR ASP
GLY	ASP	SER	ALA	VAL	THR	L TR PRO	PRO	ALA TLF	VAL	VAL	TYR	ULTE TTE	ASP	PRO	PHE	TYR	GLU	ASN	ASP	GLU	SER	ASN	SER	SER	SER	TRP	THR	LEU GLV	LEU	LEU	CYS	PHE	GLU	MET	GLN	THR	LEU	PRO	HIS	TYS	SER	VAL	SER VAL
GLN	ILE	ILE	CYS	GLN	TYR 	LEU	GLN	VAL.	LYS	SIH	GLU	ASP	GLU	ILE	TYR	GLN	HIS	LEU	SER	LEU	ALA	PHE	ALA	PHE	THR	CYS	ARG	ARG	LEU	PRO THB	SER	THR	VAL	LYS	LEU	THR	GLY	GLY	PRO	LEU	ALA	GLU	THR ALA
LEU	ARG	SER	ASP	ARG	PRO	CYS	ILE	AKG	TYR	ALA	PRO	PHF	ILE	LEU	ALA	VAL	LYS	ASP	GLN	THR	GLU	GL.Y	GLU	THR	PHE	CLU GLU	ALA	GLY	LYS	TYR	VAL	LEU	VAL	GLY	CYS	LEU	SER	ASP	GLN	TRP	ILE	ALA	SER CYS
THR	ASP	LEU	GLY	GLU	LEU	GLU	THR	CYS	ILE	ASN	ILE	VAL	PRO	ASN	ARG	ALA ARG	ARG	LYS	SER	SER	ALA	ARG LYS	PHE	GLY	LEU	LYS	LEU	TRP GLII	TRP	CYS	GLY	LEU	GLN	MET	SER	LEU	PRO TED	ARG	VAL	VAL ILE	GLY	LEU	GL Y ARG
ILE	GLY	HIS	GLU	LEU	LYS	TRP	SER	CYS LEII	LEU	SER	ARG	ARU	LEU	GLN	SER	SER	LYS	ARG	LYS	ASP	MET	CYS ARG	MET	CYS	GLY	SER	ALA	ALA	SER	PRO SFD	ILE	LEU	ALA	CYS	VAL	ALA	MET	PRO	GLN	SER	PHE	ILE	MET PRO
ASP	SER	VAL	THR	GLY	SER	VAL PHE	GLY	ARG	THR	THR	LEU	MET	GLN	THR	SER	LEU	ASN	THR	GLN	ASP	THR	SER	THR	SIH	ILE	VAL	PHE	PRO THR	SER	ALA	VAL	GLN	VAL ALA	SER	ALA THR	TYR	THR	GLU	ASN T ETT	ASP	LEU	PHE	ASN PRO
ASN	ASN	ASP	ALA	ASP	GLY	GLY	ILE	ASP	TEU	LEU	ASP	UHK CL V	ASP	ASP	LEU	PRO	ASP	ILE	ASN	ILE	LEU	PRO ALA	SER	PRO	THR	SER	PRO	VAL HTS	SER	PRO CI V	SER	SIH	TYK PRO	SIH	GLY	ASP	ALA er v	LYS	GLY GLY	SER	THR	ARG	LEU
SER	THR	GLU	HIS	GLU	GLU	PRO	ASN	TEIL	GLN	GLN	PRO T TTT	AT.A	TEU	GLY	TYR	VAL	SER	THR	ALA LYS	ALA	GLY	PRO LEU	PRO	ASP	TRP	TRP	SER	ALA CVS	PRO	GLN AT A	GLN	TYR	CYS	PRO 1 EU	DHE	TEU	LYS	ALA SER	LEU	LEU	SIH	PRO	SER VAL
GLN	SER	ASP	GLU LEU	LEU	SIH	LYS	HIS	NEK	PRO	LEU	ASP	ASN	GLN	THR	SER	VAL	LEU	ARG	VAL.	LEU	GLU	GLN	ASN	ALA	LEU	TRP	LEU	THR	ASP	PRO ATA	THR	GLN	ASP ARG	ARG	CYS	LEU	PRU	HIS	PHE	VAL	LEU	GLN	LEU TYR

ASN PHE ILE MET ASN MET LEU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	31505	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TECNAI ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	100	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	35000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.563	Depositor
Minimum map value	-0.198	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.04	Depositor
Map size (Å)	621.60004, 621.60004, 621.60004	wwPDB
Map dimensions	560, 560, 560	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.11, 1.11, 1.11	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.23	0/2348	0.42	1/3260~(0.0%)	
2	В	0.23	0/791	0.34	0/1100	
3	С	0.68	2/933~(0.2%)	0.73	3/1289~(0.2%)	
4	D	0.23	0/800	0.34	0/1116	
5	Е	0.23	0/900	0.40	0/1252	
6	F	0.22	0/377	0.33	0/521	
7	G	0.23	0/607	0.33	0/845	
8	Н	0.22	0/585	0.43	0/805	
9	Ι	0.24	0/6977	0.43	4/9621~(0.0%)	
10	J	0.24	0/1212	0.46	1/1678~(0.1%)	
11	Κ	0.24	0/5145	0.48	4/7058~(0.1%)	
12	L	0.25	0/3451	0.44	3/4749~(0.1%)	
13	М	0.23	0/1169	0.42	0/1598	
14	0	0.25	0/1036	0.40	0/1424	
15	Р	0.22	0/566	0.31	0/788	
16	Q	0.22	0/763	0.38	0/1053	
17	R	0.24	0/10006	0.43	5/13665~(0.0%)	
18	S	0.24	0/6009	0.42	2/8258~(0.0%)	
19	Т	0.27	0/1340	0.48	1/1842~(0.1%)	
20	V	0.23	0/1721	0.39	0/2377	
21	W	0.23	0/793	0.37	0/1086	
22	Х	0.23	0/855	0.39	0/1172	
23	Y	0.22	0/848	0.35	0/1160	
24	Ζ	0.22	0/515	0.46	1/718~(0.1%)	
26	9	0.82	0/119	1.02	3/165~(1.8%)	
All	All	0.26	2/49866~(0.0%)	0.44	$28/\overline{68600}~(0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
		-	
Mol	Chain	#Chirality outliers	#Planarity outliers

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	С	189	PRO	N-CA	13.28	1.69	1.47
3	С	188	PHE	C-N	6.00	1.45	1.34

All (28) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	168	PRO	CA-N-CD	-9.16	98.68	111.50
19	Т	209	PRO	CA-N-CD	-8.76	99.24	111.50
17	R	1175	PRO	CA-N-CD	-8.64	99.41	111.50
12	L	32	PRO	CA-N-CD	-8.49	99.61	111.50
12	L	364	PRO	CA-N-CD	-8.48	99.62	111.50
11	Κ	77	PRO	CA-N-CD	-8.43	99.69	111.50
9	Ι	379	PRO	CA-N-CD	-8.34	99.82	111.50
11	Κ	835	PRO	CA-N-CD	-8.12	100.13	111.50
3	С	197	PRO	CA-N-CD	-7.60	100.86	111.50
3	С	170	SER	C-N-CA	7.35	140.07	121.70
26	9	634	PRO	N-CA-CB	5.90	110.38	103.30
26	9	631	PRO	N-CA-CB	5.87	110.35	103.30
26	9	621	PRO	N-CA-CB	5.61	110.03	103.30
10	J	668	ASP	CB-CG-OD2	5.26	123.04	118.30
17	R	1064	ASP	CB-CG-OD2	5.24	123.01	118.30
18	S	327	ASP	CB-CG-OD2	5.24	123.01	118.30
9	Ι	789	ASP	CB-CG-OD2	5.22	123.00	118.30
17	R	1018	ASP	CB-CG-OD2	5.21	122.99	118.30
17	R	775	ASP	CB-CG-OD2	5.21	122.99	118.30
24	Ζ	60	ASP	CB-CG-OD2	5.20	122.98	118.30
18	S	44	ASP	CB-CG-OD2	5.20	122.98	118.30
12	L	48	ASP	CB-CG-OD2	5.18	122.97	118.30
11	Κ	72	ASP	CB-CG-OD2	5.18	122.96	118.30
17	R	439	ASP	CB-CG-OD2	5.17	122.96	118.30
9	Ι	476	ASP	CB-CG-OD2	5.17	122.95	118.30
1	A	148	ASP	CB-CG-OD2	5.17	122.95	118.30
11	К	836	ASP	CB-CG-OD2	5.16	122.95	118.30
9	Ι	382	ASP	CB-CG-OD2	5.15	122.94	118.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
8	Н	82	SER	Peptide
8	Н	85	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2354	0	1078	12	0
2	В	793	0	374	7	0
3	С	931	0	479	94	0
4	D	801	0	327	0	0
5	Е	902	0	408	15	0
6	F	379	0	182	6	0
7	G	608	0	260	0	0
8	Н	583	0	357	15	0
9	Ι	6855	0	5052	109	0
10	J	1176	0	1036	36	0
11	Κ	5037	0	4491	183	0
12	L	3393	0	2495	73	0
13	М	1146	0	845	10	0
14	0	1022	0	684	7	0
15	Р	568	0	286	0	0
16	Q	759	0	459	30	0
17	R	9758	0	9145	239	0
18	S	5888	0	4727	105	0
19	Т	1302	0	1025	20	0
20	V	1683	0	1190	23	0
21	W	781	0	618	10	0
22	Х	842	0	710	31	0
23	Y	839	0	637	17	0
24	Ζ	516	0	227	0	0
25	a	100	0	23	0	0
26	9	120	0	43	8	0
All	All	49136	0	37158	949	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 11.

All (949) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:130:PHE:CE2	16:Q:62:HIS:CB	1.82	1.57
19:T:209:PRO:CD	19:T:210:PRO:HD2	1.19	1.57
3:C:189:PRO:N	3:C:189:PRO:CA	1.69	1.53
19:T:209:PRO:HD2	19:T:210:PRO:CD	1.08	1.53
3:C:118:ARG:HA	5:E:112:LYS:CB	1.03	1.50
3:C:118:ARG:CA	5:E:112:LYS:CB	1.96	1.43
17:R:1233:GLU:OE2	17:R:1234:VAL:HG23	1.26	1.34
16:Q:123:ILE:HG21	23:Y:167:ILE:CB	1.56	1.33
3:C:141:PRO:CB	12:L:170:SER:O	1.77	1.32
3:C:117:SER:CB	5:E:111:THR:CB	2.10	1.29
3:C:130:PHE:CD2	16:Q:62:HIS:CB	2.17	1.25
3:C:140:HIS:CB	12:L:170:SER:CB	2.14	1.24
20:V:215:LYS:CB	20:V:220:ASN:ND2	2.06	1.18
17:R:1233:GLU:CD	17:R:1234:VAL:HG23	1.66	1.15
16:Q:123:ILE:CG2	23:Y:167:ILE:CB	2.24	1.15
3:C:130:PHE:HE2	16:Q:62:HIS:CB	1.31	1.14
8:H:31:VAL:HG11	8:H:48:GLN:CB	1.79	1.13
8:H:31:VAL:CG1	8:H:48:GLN:CB	2.28	1.11
8:H:31:VAL:HG11	8:H:48:GLN:CA	1.79	1.10
3:C:116:ASN:CB	16:Q:52:THR:O	2.01	1.09
9:I:569:TYR:HA	9:I:593:GLU:OE2	1.52	1.08
3:C:130:PHE:CE2	16:Q:62:HIS:CA	2.37	1.06
18:S:363:LEU:HD11	18:S:386:LYS:CE	1.86	1.05
3:C:121:THR:HA	5:E:114:ASP:CB	1.86	1.05
11:K:383:ALA:HA	11:K:393:ILE:HG23	1.37	1.01
2:B:89:ILE:HG23	6:F:118:LEU:CB	1.90	1.00
12:L:168:THR:O	12:L:172:THR:HG21	1.61	1.00
3:C:148:HIS:O	12:L:230:LEU:HD23	1.60	0.99
17:R:1233:GLU:OE2	17:R:1234:VAL:CG2	2.11	0.99
22:X:99:ILE:HG22	22:X:100:GLN:H	1.25	0.99
9:I:270:GLN:CB	26:9:631:PRO:O	2.11	0.98
3:C:175:GLN:O	3:C:178:ASP:N	1.95	0.98
11:K:796:LYS:HA	11:K:812:ARG:NH2	1.79	0.97
3:C:196:LYS:CB	26:9:620:PHE:O	2.11	0.97
17:R:56:HIS:HD1	17:R:60:ILE:HG13	1.27	0.97
18:S:363:LEU:CD1	18:S:386:LYS:HE2	1.94	0.97
9:I:554:MET:CB	9:I:567:LYS:HE3	1.94	0.96
9:I:270:GLN:HB2	26:9:631:PRO:O	1.65	0.96

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:K:350:ARG:N	11:K:387:HIS:NE2	2.00	0.96
18:S:363:LEU:HD11	18:S:386:LYS:HE2	0.99	0.95
2:B:89:ILE:CG2	6:F:118:LEU:CB	2.44	0.95
18:S:943:VAL:HG22	18:S:949:PHE:HZ	1.30	0.95
17:R:106:THR:OG1	17:R:144:LYS:HE2	1.64	0.95
20:V:215:LYS:CB	20:V:220:ASN:HD21	1.74	0.94
22:X:99:ILE:HG22	22:X:100:GLN:N	1.81	0.94
9:I:569:TYR:CA	9:I:593:GLU:OE2	2.16	0.93
18:S:247:VAL:HG23	18:S:770:SER:OG	1.67	0.91
18:S:370:GLN:HE22	18:S:382:MET:HG2	1.34	0.91
17:R:1088:PRO:HB2	17:R:1092:TRP:HE1	1.34	0.91
13:M:142:LYS:NZ	13:M:144:MET:SD	2.44	0.91
19:T:209:PRO:CD	19:T:210:PRO:CD	2.01	0.90
3:C:191:LYS:CB	9:I:284:ALA:HB2	2.01	0.90
17:R:56:HIS:ND1	17:R:60:ILE:HG13	1.86	0.90
9:I:379:PRO:HG2	9:I:411:GLN:CB	2.02	0.90
12:L:168:THR:O	12:L:172:THR:CG2	2.20	0.90
17:R:17:VAL:HG12	17:R:18:ILE:N	1.88	0.88
18:S:943:VAL:HG12	18:S:943:VAL:O	1.73	0.88
22:X:99:ILE:CG2	22:X:100:GLN:H	1.86	0.88
3:C:167:GLU:OE2	9:I:268:SER:CA	2.19	0.87
18:S:306:THR:OG1	18:S:310:PHE:HE2	1.57	0.87
3:C:148:HIS:O	12:L:230:LEU:CD2	2.23	0.86
3:C:130:PHE:CZ	16:Q:62:HIS:O	2.28	0.86
17:R:520:ILE:HG22	17:R:520:ILE:O	1.76	0.86
22:X:80:GLN:HB3	22:X:99:ILE:CD1	2.05	0.85
11:K:454:VAL:HG12	11:K:455:LEU:N	1.90	0.85
8:H:31:VAL:HG11	8:H:48:GLN:HA	1.55	0.85
11:K:577:GLY:O	11:K:581:THR:HG23	1.77	0.85
11:K:76:ILE:HG23	11:K:77:PRO:HD3	1.58	0.84
17:R:448:PRO:O	17:R:452:ARG:HG3	1.77	0.84
3:C:140:HIS:CA	12:L:170:SER:CB	2.55	0.83
11:K:39:TRP:HB2	11:K:44:LEU:HA	1.57	0.83
8:H:31:VAL:HG12	8:H:48:GLN:CB	2.08	0.83
12:L:17:LYS:CB	12:L:32:PRO:HG2	2.08	0.83
3:C:130:PHE:HZ	16:Q:62:HIS:O	1.61	0.83
11:K:16:ALA:HB3	11:K:456:ARG:HE	1.44	0.81
10:J:633:VAL:CG2	11:K:812:ARG:HD3	2.10	0.81
11:K:383:ALA:CA	11:K:393:ILE:HG23	2.10	0.80
9:I:270:GLN:HB3	26:9:631:PRO:O	1.80	0.80
19:T:209:PRO:HD2	19:T:210:PRO:N	1.97	0.80

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
9:I:568:TYR:O	9:I:593:GLU:CD	2.21	0.80
1:A:226:VAL:HG12	1:A:226:VAL:O	1.81	0.79
3:C:116:ASN:CB	16:Q:52:THR:C	2.50	0.79
3:C:46:ASN:N	3:C:66:ILE:O	2.15	0.79
11:K:454:VAL:HG12	11:K:455:LEU:H	1.46	0.79
11:K:76:ILE:CG2	11:K:77:PRO:CD	2.61	0.78
17:R:525:MET:HG2	17:R:565:GLU:HB3	1.65	0.78
22:X:77:VAL:HG23	22:X:99:ILE:HG21	1.65	0.78
1:A:265:VAL:HG22	1:A:300:PRO:HA	1.65	0.78
20:V:221:VAL:HG12	20:V:221:VAL:O	1.83	0.78
17:R:17:VAL:HG12	17:R:18:ILE:H	1.46	0.77
9:I:568:TYR:C	9:I:593:GLU:OE2	2.22	0.77
11:K:234:SER:H	11:K:278:PRO:HD2	1.50	0.77
12:L:395:PRO:HG2	12:L:399:PRO:HD2	1.65	0.77
11:K:796:LYS:HA	11:K:812:ARG:HH22	1.50	0.76
9:I:344:VAL:HG12	9:I:344:VAL:O	1.84	0.76
11:K:471:LEU:HB2	11:K:503:LEU:HD21	1.67	0.76
18:S:306:THR:O	18:S:310:PHE:HD2	1.68	0.76
9:I:333:LYS:O	9:I:334:CYS:SG	2.43	0.76
3:C:171:ILE:HA	26:9:635:SER:CB	2.15	0.76
11:K:42:ARG:HD3	11:K:831:GLU:HG2	1.66	0.76
18:S:224:SER:HA	18:S:227:THR:CG2	2.16	0.75
9:I:907:LEU:HD23	9:I:915:ARG:HB3	1.67	0.75
12:L:363:CYS:HB3	12:L:364:PRO:HD3	1.69	0.75
18:S:943:VAL:HG22	18:S:949:PHE:CZ	2.19	0.75
17:R:840:GLY:HA2	17:R:843:LEU:HD13	1.68	0.74
11:K:454:VAL:CG1	11:K:455:LEU:H	2.00	0.74
20:V:200:VAL:HG22	20:V:214:VAL:HG23	1.69	0.74
9:I:334:CYS:SG	9:I:360:LYS:CB	2.76	0.74
10:J:643:VAL:O	10:J:647:THR:HG23	1.87	0.74
17:R:487:CYS:HB3	17:R:491:PRO:HG2	1.70	0.74
11:K:284:LYS:HE3	11:K:290:MET:HB3	1.70	0.73
18:S:378:VAL:HG12	18:S:378:VAL:O	1.87	0.73
12:L:31:LEU:N	12:L:32:PRO:HD3	2.03	0.73
18:S:370:GLN:HE22	18:S:382:MET:CG	2.01	0.73
22:X:77:VAL:HG23	22:X:99:ILE:CG2	2.18	0.73
17:R:904:VAL:HG13	17:R:905:LYS:HD2	1.70	0.73
3:C:148:HIS:C	12:L:229:ASP:O	2.28	0.72
10:J:633:VAL:HG23	11:K:812:ARG:HD3	1.71	0.72
12:L:257:ILE:HG13	12:L:345:LEU:HB3	1.71	0.72
17:R:17:VAL:CG1	17:R:18:ILE:H	2.02	0.72

A 4 1	A 4 arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:449:HIS:HA	17:R:452:ARG:NE	2.05	0.72
3:C:121:THR:CA	5:E:114:ASP:CB	2.67	0.71
12:L:363:CYS:HB3	12:L:364:PRO:CD	2.19	0.71
3:C:195:LEU:O	3:C:197:PRO:HD3	1.90	0.71
11:K:383:ALA:HB1	11:K:393:ILE:HG12	1.72	0.71
9:I:568:TYR:O	9:I:593:GLU:OE2	2.08	0.71
17:R:17:VAL:CG1	17:R:18:ILE:N	2.54	0.71
9:I:379:PRO:HD2	9:I:380:ALA:H	1.55	0.71
11:K:76:ILE:HG23	11:K:77:PRO:CD	2.20	0.71
17:R:1175:PRO:HD2	17:R:1176:SER:N	2.06	0.70
18:S:224:SER:HA	18:S:227:THR:HG23	1.72	0.70
18:S:378:VAL:HG13	18:S:381:LEU:HB3	1.72	0.70
3:C:130:PHE:HE2	16:Q:62:HIS:CA	1.91	0.70
3:C:171:ILE:N	26:9:635:SER:CB	2.55	0.70
17:R:230:VAL:O	17:R:1099:ASN:ND2	2.24	0.70
11:K:454:VAL:CG1	11:K:455:LEU:N	2.54	0.70
20:V:197:VAL:HB	20:V:217:TYR:HA	1.74	0.70
3:C:34:SER:HA	3:C:47:ASN:HA	1.74	0.70
11:K:441:LEU:HB2	11:K:459:PRO:HA	1.75	0.69
23:Y:51:ILE:HD11	23:Y:78:LEU:HD23	1.75	0.69
11:K:19:CYS:SG	11:K:20:GLU:N	2.65	0.69
11:K:76:ILE:HG22	11:K:77:PRO:HD2	1.72	0.69
11:K:751:GLN:NE2	11:K:789:ALA:HB3	2.07	0.69
17:R:1175:PRO:HD2	17:R:1176:SER:H	1.57	0.69
2:B:89:ILE:HG21	6:F:118:LEU:CB	2.21	0.69
9:I:379:PRO:HD2	9:I:380:ALA:N	2.07	0.69
10:J:626:LEU:HD21	22:X:83:ILE:HB	1.74	0.69
11:K:827:CYS:H	11:K:830:VAL:CB	2.06	0.69
17:R:56:HIS:CE1	17:R:60:ILE:HG13	2.27	0.69
3:C:167:GLU:OE2	9:I:269:MET:N	2.25	0.69
8:H:101:ARG:NH2	21:W:143:LEU:O	2.26	0.68
11:K:35:LEU:HD11	11:K:49:MET:SD	2.34	0.68
11:K:444:VAL:HA	11:K:454:VAL:HG13	1.76	0.68
22:X:99:ILE:HG23	22:X:100:GLN:OE1	1.93	0.68
9:I:569:TYR:N	9:I:593:GLU:OE2	2.26	0.68
11:K:248:VAL:HG11	11:K:254:ARG:HB2	1.73	0.68
17:R:770:MET:HA	17:R:773:GLU:HG2	1.74	0.68
18:S:306:THR:OG1	18:S:310:PHE:CE2	2.41	0.68
9:I:393:ASP:O	9:I:394:HIS:ND1	2.27	0.68
17:R:1302:LYS:HA	17:R:1306:THR:HG22	1.76	0.68
3:C:140:HIS:HA	12:L:170:SER:CB	2.23	0.68

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:K:827:CYS:SG	11:K:830:VAL:CB	2.82	0.68
11:K:620:TRP:HZ3	11:K:751:GLN:OE1	1.77	0.68
12:L:311:LEU:HD13	12:L:331:ILE:HD13	1.75	0.68
3:C:114:VAL:O	5:E:111:THR:HA	1.94	0.67
3:C:189:PRO:N	3:C:189:PRO:CB	2.55	0.67
11:K:385:ALA:HA	11:K:391:VAL:HG23	1.75	0.67
17:R:458:LEU:HG	17:R:459:GLN:HG2	1.74	0.67
11:K:75:SER:O	11:K:76:ILE:HG13	1.95	0.67
3:C:141:PRO:N	12:L:170:SER:O	2.27	0.67
3:C:176:ARG:O	3:C:179:ALA:N	2.26	0.67
18:S:311:LEU:HD11	18:S:457:ALA:HA	1.77	0.67
9:I:880:ASN:OD1	9:I:884:LYS:NZ	2.28	0.67
11:K:29:HIS:ND1	18:S:907:LEU:CD1	2.58	0.67
17:R:1224:LEU:HD11	17:R:1263:ARG:HG3	1.75	0.67
3:C:140:HIS:H	3:C:143:LYS:HA	1.59	0.67
11:K:796:LYS:CA	11:K:812:ARG:NH2	2.56	0.67
3:C:130:PHE:HD2	16:Q:62:HIS:CB	2.02	0.67
11:K:751:GLN:NE2	11:K:788:GLY:O	2.26	0.67
11:K:743:GLN:O	11:K:746:GLN:NE2	2.27	0.67
19:T:209:PRO:CG	19:T:210:PRO:CD	2.72	0.67
3:C:141:PRO:CA	12:L:170:SER:O	2.43	0.67
3:C:148:HIS:C	12:L:230:LEU:HD23	2.14	0.66
3:C:191:LYS:CB	9:I:284:ALA:CB	2.72	0.66
11:K:48:THR:O	11:K:49:MET:HG2	1.95	0.66
3:C:181:LEU:O	3:C:183:ASP:N	2.27	0.66
9:I:442:ILE:HG12	9:I:500:LEU:HD21	1.78	0.66
11:K:614:LEU:HA	11:K:618:LEU:HB2	1.76	0.66
16:Q:103:GLN:O	16:Q:107:THR:HG23	1.96	0.66
19:T:192:ARG:HG3	19:T:193:LEU:HD12	1.78	0.66
18:S:306:THR:O	18:S:310:PHE:CD2	2.49	0.66
22:X:80:GLN:HB3	22:X:99:ILE:HD12	1.76	0.66
11:K:835:PRO:O	11:K:836:ASP:OD1	2.13	0.65
17:R:1275:TYR:HA	17:R:1278:LEU:HD12	1.78	0.65
20:V:198:LEU:HA	20:V:216:GLY:HA2	1.78	0.65
11:K:304:SER:O	11:K:305:ILE:HG13	1.95	0.65
3:C:171:ILE:CA	26:9:635:SER:CB	2.75	0.65
17:R:283:VAL:HA	17:R:286:MET:HG2	1.78	0.65
20:V:182:ARG:HG2	20:V:189:MET:H	1.62	0.65
17:R:482:SER:HA	17:R:487:CYS:HB2	1.79	0.65
20:V:290:ASP:HB3	20:V:300:ARG:HA	1.77	0.65
10:J:630:ARG:HH12	10:J:637:SER:HB3	1.61	0.65

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
18:S:740:GLY:H	18:S:743:TRP:HE1	1.44	0.65
11:K:29:HIS:ND1	18:S:907:LEU:HD11	2.11	0.65
11:K:76:ILE:HG22	11:K:77:PRO:CD	2.25	0.65
16:Q:61:MET:O	16:Q:66:ALA:N	2.30	0.65
19:T:164:CYS:SG	19:T:165:THR:N	2.69	0.65
17:R:549:LYS:HA	17:R:552:HIS:HD2	1.62	0.65
11:K:65:LEU:HD22	11:K:73:LEU:CD2	2.27	0.65
11:K:535:LYS:HE2	11:K:757:THR:HB	1.78	0.65
17:R:1103:HIS:O	17:R:1106:HIS:ND1	2.30	0.65
17:R:1112:LEU:HD13	17:R:1117:VAL:HG21	1.79	0.64
20:V:218:ASN:O	20:V:221:VAL:HG23	1.97	0.64
3:C:118:ARG:N	5:E:112:LYS:CB	2.59	0.64
11:K:94:SER:HB3	11:K:105:ILE:HG13	1.80	0.64
11:K:141:VAL:HG12	11:K:161:ARG:HB3	1.77	0.64
17:R:790:LEU:HD22	17:R:822:HIS:HB3	1.77	0.64
11:K:32:SER:O	11:K:33:VAL:HG23	1.96	0.64
17:R:1001:PRO:HA	17:R:1004:TYR:HB3	1.80	0.64
20:V:215:LYS:CB	20:V:220:ASN:CG	2.65	0.64
18:S:247:VAL:HG23	18:S:770:SER:HG	1.62	0.64
12:L:206:ASP:HA	12:L:222:PHE:HE2	1.62	0.64
9:I:504:ARG:HE	9:I:636:ALA:HB2	1.61	0.64
11:K:65:LEU:HD22	11:K:73:LEU:HD22	1.78	0.64
11:K:795:CYS:O	11:K:812:ARG:NH1	2.30	0.64
22:X:81:ASN:O	22:X:85:ASN:ND2	2.31	0.63
8:H:86:SER:O	8:H:90:CYS:N	2.31	0.63
11:K:77:PRO:HD2	11:K:77:PRO:O	1.99	0.63
17:R:1233:GLU:CD	17:R:1234:VAL:CG2	2.57	0.63
9:I:718:ARG:NH1	9:I:752:LEU:O	2.31	0.63
3:C:116:ASN:CB	16:Q:52:THR:CB	2.77	0.63
12:L:393:PRO:HB2	12:L:395:PRO:HD3	1.79	0.63
17:R:1219:SER:HB2	17:R:1223:GLN:HE21	1.64	0.63
11:K:180:ILE:HD11	11:K:193:LEU:HB2	1.81	0.63
17:R:158:GLN:HA	17:R:161:LEU:HD12	1.81	0.63
17:R:448:PRO:O	17:R:452:ARG:CG	2.46	0.63
17:R:869:LEU:HD11	17:R:886:ILE:HG12	1.82	0.62
17:R:1087:PHE:HB2	17:R:1088:PRO:HD3	1.81	0.62
10:J:739:ARG:O	10:J:743:TYR:HB2	1.98	0.62
11:K:827:CYS:N	11:K:830:VAL:CB	2.62	0.62
3:C:167:GLU:OE2	9:I:268:SER:HA	1.97	0.62
17:R:1238:ILE:O	17:R:1238:ILE:HG22	1.99	0.62
3:C:130:PHE:CE2	16:Q:62:HIS:C	2.72	0.62

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
11:K:376:PHE:H	11:K:473:HIS:HE1	1.48	0.62
11:K:193:LEU:O	11:K:201:THR:OG1	2.17	0.62
19:T:188:LEU:HD12	19:T:192:ARG:HD3	1.81	0.62
10:J:633:VAL:HB	11:K:812:ARG:NH1	2.15	0.61
10:J:677:VAL:HG23	10:J:678:LEU:HD12	1.82	0.61
10:J:736:TRP:HB3	10:J:739:ARG:HB2	1.82	0.61
17:R:609:SER:HB2	17:R:651:ARG:HD2	1.82	0.61
5:E:186:ALA:O	13:M:71:ARG:NH1	2.33	0.61
18:S:415:PRO:O	18:S:419:ASN:ND2	2.34	0.61
12:L:223:GLU:H	12:L:237:PRO:HD2	1.66	0.61
10:J:630:ARG:HH22	10:J:637:SER:H	1.47	0.61
17:R:520:ILE:O	17:R:520:ILE:CG2	2.47	0.61
3:C:142:SER:O	3:C:145:TYR:N	2.34	0.61
11:K:137:LEU:HD23	11:K:138:HIS:HD2	1.65	0.61
10:J:776:TRP:O	10:J:780:VAL:HG23	2.00	0.60
14:O:73:LEU:HA	14:O:87:ALA:HA	1.83	0.60
17:R:270:LEU:HA	17:R:273:VAL:HG12	1.83	0.60
17:R:682:GLU:HG3	17:R:867:LEU:HD23	1.81	0.60
17:R:173:ARG:O	17:R:177:LEU:N	2.31	0.60
18:S:737:HIS:O	18:S:834:LYS:NZ	2.34	0.60
1:A:364:TYR:HA	1:A:373:CYS:HA	1.84	0.60
17:R:1020:ALA:HA	17:R:1023:LYS:HB3	1.84	0.60
9:I:690:CYS:CB	9:I:771:ASN:OD1	2.49	0.60
18:S:72:MET:HB3	18:S:75:TYR:HD2	1.66	0.60
19:T:209:PRO:HD3	19:T:210:PRO:HD2	1.62	0.60
11:K:168:LEU:HD13	11:K:246:VAL:HG23	1.82	0.60
17:R:1016:LEU:O	17:R:1020:ALA:N	2.26	0.60
18:S:712:THR:O	18:S:717:LYS:NZ	2.35	0.60
3:C:140:HIS:N	3:C:144:GLY:H	2.00	0.60
3:C:175:GLN:O	3:C:177:VAL:N	2.35	0.60
18:S:733:ASP:OD1	18:S:830:THR:HG21	2.02	0.59
11:K:664:ILE:HD12	11:K:667:LEU:HD12	1.83	0.59
12:L:198:LYS:HE3	12:L:205:GLY:H	1.67	0.59
18:S:943:VAL:O	18:S:943:VAL:CG1	2.45	0.59
3:C:180:LEU:O	3:C:183:ASP:N	2.34	0.59
16:Q:130:LEU:HD11	23:Y:156:LEU:HD11	1.84	0.59
1:A:265:VAL:HG11	1:A:298:ASP:CB	2.32	0.59
9:I:386:VAL:HG12	9:I:386:VAL:O	2.02	0.59
9:I:916:LEU:O	9:I:924:ILE:N	2.34	0.59
17:R:975:LEU:HD21	17:R:1019:ARG:HG3	1.84	0.59
17:R:977:LEU:HG	17:R:979:PRO:HD2	1.84	0.59

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
17:R:1149:ILE:O	17:R:1153:ILE:HG12	2.02	0.59
17:R:1256:LEU:HA	17:R:1259:PHE:HD2	1.68	0.59
8:H:82:SER:O	8:H:84:TYR:N	2.36	0.59
17:R:647:SER:HB2	17:R:651:ARG:HH21	1.68	0.59
12:L:197:ARG:HH21	16:Q:89:ASN:HA	1.68	0.59
9:I:344:VAL:O	9:I:344:VAL:CG1	2.50	0.59
18:S:782:VAL:O	18:S:786:HIS:ND1	2.33	0.59
3:C:148:HIS:CA	12:L:229:ASP:O	2.51	0.58
18:S:370:GLN:NE2	18:S:378:VAL:HG12	2.18	0.58
10:J:633:VAL:HG21	11:K:812:ARG:HD3	1.82	0.58
11:K:835:PRO:O	11:K:835:PRO:HD2	2.02	0.58
12:L:364:PRO:HD2	12:L:364:PRO:O	2.04	0.58
10:J:673:SER:OG	10:J:674:ILE:N	2.36	0.58
18:S:72:MET:SD	18:S:75:TYR:CE2	2.96	0.58
2:B:26:THR:N	6:F:107:ILE:O	2.37	0.58
12:L:572:ALA:HA	12:L:581:SER:HA	1.86	0.58
23:Y:164:ARG:HH21	23:Y:168:TRP:HE1	1.52	0.58
9:I:831:PHE:H	9:I:860:ASN:HD21	1.51	0.58
9:I:897:THR:HG23	9:I:899:THR:H	1.69	0.58
11:K:48:THR:O	11:K:49:MET:CG	2.51	0.58
11:K:305:ILE:HG12	11:K:346:ASN:HA	1.86	0.58
17:R:161:LEU:O	17:R:165:GLU:N	2.32	0.58
17:R:1276:ASP:O	17:R:1280:ASN:ND2	2.37	0.58
9:I:935:ALA:HA	9:I:1174:PRO:HA	1.86	0.58
17:R:1173:SER:O	17:R:1244:GLN:NE2	2.37	0.58
22:X:80:GLN:HB3	22:X:99:ILE:HD13	1.84	0.58
22:X:80:GLN:CB	22:X:99:ILE:HD13	2.34	0.58
17:R:123:ARG:O	17:R:123:ARG:NH2	2.37	0.57
17:R:770:MET:HG3	17:R:777:ILE:HD12	1.86	0.57
11:K:459:PRO:HB2	11:K:493:LEU:HD13	1.85	0.57
17:R:1233:GLU:OE1	17:R:1234:VAL:HG23	2.03	0.57
17:R:1302:LYS:NZ	17:R:1332:ILE:O	2.34	0.57
3:C:181:LEU:C	3:C:183:ASP:H	2.07	0.57
9:I:1343:PRO:HG2	9:I:1346:ALA:HB2	1.87	0.57
11:K:35:LEU:CD1	11:K:49:MET:SD	2.92	0.57
10:J:725:VAL:HG22	10:J:731:ALA:HB2	1.85	0.57
11:K:600:LYS:NZ	11:K:603:GLU:O	2.26	0.57
17:R:1203:MET:O	17:R:1206:SER:OG	2.22	0.57
10:J:767:HIS:H	10:J:771:ALA:HB3	1.70	0.57
17:R:1288:LEU:HD21	17:R:1294:ILE:HD11	1.87	0.57
18:S:946:PHE:HB3	18:S:948:PRO:HD2	1.86	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:991:LEU:HD23	17:R:994:LEU:HD22	1.87	0.57
11:K:102:ASP:OD1	11:K:102:ASP:N	2.37	0.57
17:R:123:ARG:HB2	17:R:166:VAL:HG12	1.87	0.57
17:R:718:THR:O	17:R:721:SER:OG	2.18	0.57
11:K:288:ARG:NH2	11:K:311:LEU:O	2.35	0.56
3:C:140:HIS:CB	3:C:145:TYR:H	2.18	0.56
17:R:592:VAL:HA	17:R:597:ALA:HB2	1.87	0.56
18:S:378:VAL:O	18:S:378:VAL:CG1	2.52	0.56
23:Y:51:ILE:HD13	23:Y:81:ASN:HD22	1.69	0.56
11:K:32:SER:O	11:K:33:VAL:CG2	2.53	0.56
17:R:1023:LYS:HD3	17:R:1026:LEU:HB2	1.87	0.56
18:S:277:PRO:HG2	18:S:280:LEU:HB2	1.86	0.56
20:V:51:ALA:O	20:V:55:HIS:CD2	2.58	0.56
23:Y:51:ILE:CD1	23:Y:81:ASN:HD22	2.18	0.56
12:L:477:VAL:HG13	12:L:492:GLN:HE21	1.71	0.56
13:M:142:LYS:NZ	13:M:143:ILE:O	2.35	0.56
11:K:212:ARG:HE	18:S:738:MET:HA	1.68	0.56
12:L:322:VAL:HG12	12:L:322:VAL:O	2.05	0.56
11:K:76:ILE:CG2	11:K:77:PRO:HD2	2.30	0.56
17:R:85:MET:HA	17:R:88:GLU:HG2	1.88	0.56
17:R:1075:LEU:O	17:R:1078:THR:OG1	2.22	0.56
17:R:1175:PRO:CD	17:R:1176:SER:N	2.69	0.56
17:R:1181:THR:HG23	17:R:1182:GLU:H	1.69	0.56
18:S:917:ALA:HA	18:S:920:HIS:CE1	2.40	0.56
10:J:682:VAL:HA	10:J:685:LEU:HD23	1.86	0.56
9:I:569:TYR:HA	9:I:593:GLU:CD	2.24	0.56
9:I:470:LEU:H	9:I:499:TRP:HZ2	1.54	0.56
11:K:132:VAL:HB	11:K:181:ALA:HB1	1.88	0.56
12:L:168:THR:O	12:L:172:THR:HG23	2.04	0.56
17:R:442:LYS:HG2	19:T:57:PHE:CZ	2.41	0.56
18:S:504:ALA:O	18:S:508:GLY:N	2.36	0.56
22:X:82:LEU:HA	22:X:85:ASN:HD21	1.70	0.56
2:B:89:ILE:HD13	6:F:115:GLN:HA	1.88	0.56
11:K:16:ALA:HB2	11:K:764:THR:HA	1.87	0.56
11:K:114:LEU:HD22	11:K:835:PRO:CD	2.35	0.56
11:K:789:ALA:O	11:K:790:CYS:SG	2.63	0.56
12:L:605:PRO:O	12:L:609:VAL:N	2.38	0.56
17:R:67:ILE:HD12	17:R:79:LEU:HD13	1.88	0.56
9:I:379:PRO:CD	9:I:380:ALA:H	2.18	0.55
11:K:468:GLY:O	11:K:472:ARG:HG3	2.06	0.55
12:L:31:LEU:N	12:L:32:PRO:CD	2.68	0.55

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
17:R:449:HIS:N	17:R:452:ARG:HE	2.04	0.55
18:S:366:GLU:HB3	18:S:382:MET:SD	2.45	0.55
21:W:137:ARG:HD3	21:W:140:GLN:HE21	1.71	0.55
18:S:224:SER:HA	18:S:227:THR:HG21	1.88	0.55
18:S:378:VAL:HG13	18:S:381:LEU:HD23	1.89	0.55
19:T:75:ASP:OD1	19:T:76:CYS:N	2.39	0.55
22:X:61:LYS:HA	22:X:64:ILE:HD12	1.88	0.55
13:M:58:PHE:HA	13:M:125:MET:HA	1.87	0.55
17:R:865:LEU:HD12	17:R:889:LEU:HD11	1.88	0.55
17:R:1088:PRO:HB2	17:R:1092:TRP:NE1	2.13	0.55
18:S:730:HIS:O	18:S:734:THR:HG23	2.06	0.55
11:K:305:ILE:HG23	11:K:345:THR:O	2.07	0.55
11:K:796:LYS:CB	11:K:812:ARG:CZ	2.85	0.55
12:L:540:LEU:O	21:W:89:ARG:NH2	2.37	0.55
13:M:131:ALA:HB2	13:M:148:ILE:HD13	1.88	0.55
3:C:142:SER:H	3:C:145:TYR:CB	2.20	0.55
12:L:530:SER:O	12:L:534:VAL:HG23	2.07	0.55
18:S:768:LEU:HA	18:S:771:ILE:HG22	1.88	0.55
8:H:92:MET:O	8:H:96:ARG:HG3	2.06	0.55
17:R:44:PHE:HE2	17:R:92:LEU:HD21	1.71	0.55
3:C:130:PHE:CE2	16:Q:62:HIS:HA	2.35	0.55
11:K:443:LEU:HB2	11:K:457:LEU:HD12	1.88	0.55
17:R:113:GLN:O	17:R:117:LEU:HG	2.08	0.54
17:R:1063:PRO:O	17:R:1066:THR:OG1	2.22	0.54
13:M:53:ASP:HA	13:M:75:SER:HA	1.88	0.54
16:Q:123:ILE:HG21	23:Y:167:ILE:CA	2.32	0.54
17:R:624:LEU:HD12	17:R:652:LEU:HD11	1.88	0.54
20:V:216:GLY:O	20:V:219:GLU:HG3	2.08	0.54
23:Y:160:MET:O	23:Y:164:ARG:HG2	2.08	0.54
11:K:383:ALA:CB	11:K:393:ILE:HG23	2.37	0.54
17:R:984:LEU:HD11	17:R:1026:LEU:HD22	1.90	0.54
9:I:692:GLY:O	9:I:694:THR:HG23	2.08	0.54
9:I:722:ALA:HB3	9:I:747:LEU:HB2	1.90	0.54
11:K:16:ALA:HB1	11:K:765:LEU:H	1.71	0.54
17:R:1023:LYS:HA	17:R:1026:LEU:HB2	1.90	0.54
17:R:635:GLN:OE1	17:R:817:ARG:NH2	2.41	0.53
9:I:776:LEU:HD21	9:I:803:TYR:HE1	1.73	0.53
12:L:331:ILE:N	12:L:342:SER:OG	2.37	0.53
17:R:847:ILE:HA	17:R:851:ASN:HD21	1.74	0.53
18:S:293:LEU:HB3	18:S:305:TRP:HB3	1.90	0.53
18:S:757:ARG:HD2	18:S:760:HIS:HD2	1.74	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:56:HIS:CE1	17:R:60:ILE:CG1	2.92	0.53
17:R:91:LEU:HG	17:R:92:LEU:HD12	1.91	0.53
9:I:895:GLN:HG2	9:I:1296:ALA:H	1.73	0.53
9:I:312:THR:O	9:I:316:ILE:HG12	2.09	0.53
11:K:391:VAL:HG11	11:K:457:LEU:CD1	2.39	0.53
18:S:95:GLN:O	18:S:98:LEU:HG	2.09	0.53
18:S:216:GLU:O	18:S:220:THR:HG23	2.09	0.53
22:X:60:TYR:CZ	22:X:64:ILE:HD11	2.44	0.53
9:I:379:PRO:CD	9:I:380:ALA:N	2.68	0.52
11:K:736:ASP:O	11:K:740:SER:OG	2.22	0.52
11:K:796:LYS:CB	11:K:812:ARG:NH2	2.72	0.52
18:S:310:PHE:HE1	18:S:365:GLN:HB2	1.74	0.52
9:I:592:LYS:O	9:I:595:ILE:N	2.38	0.52
11:K:63:HIS:HA	11:K:75:SER:HA	1.91	0.52
11:K:134:LEU:HB3	11:K:219:ALA:HB2	1.91	0.52
11:K:244:VAL:HB	11:K:255:ILE:HG23	1.92	0.52
17:R:1175:PRO:CD	17:R:1176:SER:H	2.22	0.52
11:K:349:ASP:C	11:K:387:HIS:NE2	2.61	0.52
11:K:659:MET:HA	11:K:662:ILE:HG12	1.92	0.52
9:I:402:ILE:HG21	12:L:327:VAL:HG12	1.92	0.52
11:K:284:LYS:NZ	11:K:286:LEU:O	2.42	0.52
17:R:244:ASP:OD1	17:R:244:ASP:N	2.43	0.52
20:V:269:TRP:HE3	20:V:270:LEU:HD22	1.75	0.52
11:K:19:CYS:SG	11:K:769:GLY:N	2.82	0.52
17:R:449:HIS:HA	17:R:452:ARG:CD	2.39	0.52
21:W:92:GLU:O	21:W:96:LEU:HG	2.10	0.52
3:C:163:LYS:O	3:C:164:ARG:HG3	2.10	0.52
11:K:313:LYS:HG3	11:K:337:LEU:HD13	1.92	0.52
11:K:478:LEU:HD22	11:K:507:LEU:HD11	1.91	0.52
18:S:310:PHE:HE1	18:S:365:GLN:CB	2.23	0.52
9:I:573:VAL:HA	9:I:585:ALA:HB3	1.91	0.52
17:R:14:LYS:HA	17:R:75:ARG:HH22	1.75	0.52
17:R:449:HIS:CA	17:R:452:ARG:NE	2.72	0.52
18:S:370:GLN:NE2	18:S:382:MET:HG2	2.15	0.52
22:X:156:PRO:HB2	22:X:158:PRO:HD2	1.91	0.52
3:C:113:SER:HA	16:Q:52:THR:CB	2.39	0.52
11:K:692:LEU:O	11:K:696:LEU:HG	2.10	0.52
17:R:757:LYS:O	17:R:761:GLU:HG2	2.09	0.52
17:R:824:ARG:HA	17:R:868:CYS:SG	2.49	0.52
9:I:855:LEU:O	9:I:858:MET:HG3	2.10	0.51
11:K:38:ALA:HB3	11:K:87:LEU:HD11	1.91	0.51

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
11:K:104:GLN:HB2	11:K:122:VAL:HA	1.91	0.51
11:K:114:LEU:HD22	11:K:835:PRO:HD2	1.92	0.51
22:X:101:ARG:HG3	22:X:103:ASP:HB3	1.92	0.51
1:A:511:ILE:HA	1:A:515:ALA:HB3	1.93	0.51
3:C:166:GLU:O	3:C:167:GLU:HG3	2.10	0.51
11:K:218:ILE:HD12	11:K:283:LEU:HB3	1.91	0.51
12:L:168:THR:C	12:L:172:THR:HG23	2.31	0.51
17:R:1049:LEU:HG	17:R:1053:MET:HE3	1.91	0.51
11:K:48:THR:O	11:K:49:MET:SD	2.69	0.51
17:R:1215:VAL:O	17:R:1219:SER:OG	2.17	0.51
17:R:1236:LEU:HB2	17:R:1237:PRO:HD3	1.91	0.51
11:K:229:ALA:HB1	11:K:239:VAL:HB	1.93	0.51
17:R:565:GLU:O	17:R:568:SER:OG	2.27	0.51
1:A:265:VAL:CG1	1:A:298:ASP:CB	2.89	0.51
11:K:656:ARG:O	11:K:660:VAL:HG13	2.11	0.51
9:I:1241:MET:HA	9:I:1246:ALA:HB3	1.92	0.51
18:S:247:VAL:CG2	18:S:770:SER:OG	2.50	0.51
18:S:370:GLN:NE2	18:S:382:MET:CG	2.72	0.51
22:X:99:ILE:CG2	22:X:100:GLN:OE1	2.59	0.51
10:J:635:ASN:HD21	10:J:638:LEU:HD12	1.76	0.51
11:K:396:ARG:HG3	11:K:397:LEU:HG	1.92	0.51
17:R:591:THR:HA	17:R:594:LYS:HB3	1.92	0.51
3:C:82:ARG:O	3:C:84:GLN:N	2.44	0.50
11:K:455:LEU:HD12	11:K:456:ARG:H	1.75	0.50
11:K:570:ASN:HD21	11:K:577:GLY:HA3	1.75	0.50
11:K:697:TRP:CE2	11:K:701:ARG:HD2	2.46	0.50
23:Y:75:LEU:HA	23:Y:78:LEU:HD12	1.92	0.50
9:I:724:LEU:O	9:I:745:VAL:N	2.43	0.50
17:R:999:ASP:N	17:R:999:ASP:OD1	2.45	0.50
22:X:64:ILE:O	22:X:67:LEU:HG	2.12	0.50
11:K:76:ILE:CG2	11:K:77:PRO:HD3	2.27	0.50
11:K:132:VAL:HG21	11:K:182:VAL:HB	1.93	0.50
11:K:248:VAL:HG21	11:K:254:ARG:HG2	1.94	0.50
3:C:81:ILE:CB	3:C:98:TYR:H	2.24	0.50
3:C:130:PHE:HE2	16:Q:62:HIS:C	2.11	0.50
9:I:402:ILE:HD13	12:L:327:VAL:HG11	1.93	0.50
9:I:589:GLN:CB	9:I:593:GLU:OE1	2.59	0.50
11:K:553:LEU:HD13	11:K:624:PHE:CE1	2.47	0.50
17:R:118:THR:O	17:R:121:LEU:HG	2.11	0.50
11:K:507:LEU:HD21	11:K:526:ILE:HD11	1.93	0.50
17:R:374:TRP:O	17:R:378:GLN:HG2	2.10	0.50

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:1247:TYR:O	17:R:1251:LEU:HG	2.12	0.50
11:K:16:ALA:HA	11:K:766:GLN:HG2	1.93	0.50
16:Q:62:HIS:HA	16:Q:66:ALA:HB3	1.94	0.50
1:A:226:VAL:O	1:A:226:VAL:CG1	2.55	0.50
9:I:592:LYS:HA	17:R:25:MET:H	1.77	0.50
9:I:433:THR:HA	9:I:438:LEU:HA	1.93	0.49
17:R:1024:ARG:HG3	17:R:1114:ALA:HB1	1.93	0.49
3:C:175:GLN:C	3:C:177:VAL:N	2.64	0.49
20:V:178:ILE:HG22	20:V:192:VAL:HG23	1.93	0.49
22:X:89:ASP:OD1	22:X:90:ASN:N	2.44	0.49
1:A:221:ASN:O	1:A:222:LEU:HG	2.13	0.49
11:K:383:ALA:HB1	11:K:393:ILE:CG1	2.42	0.49
17:R:1198:GLN:HG3	17:R:1200:TYR:H	1.77	0.49
18:S:385:ARG:NH1	18:S:385:ARG:O	2.45	0.49
22:X:80:GLN:CB	22:X:99:ILE:CD1	2.84	0.49
8:H:85:SER:O	8:H:87:ARG:N	2.44	0.49
12:L:259:VAL:HB	12:L:367:HIS:CD2	2.47	0.49
17:R:988:LEU:HD21	17:R:1029:ALA:HB1	1.94	0.49
18:S:783:LEU:O	18:S:787:ILE:HG12	2.12	0.49
18:S:814:VAL:HG21	18:S:931:CYS:HA	1.94	0.49
3:C:181:LEU:C	3:C:183:ASP:N	2.66	0.49
9:I:387:GLU:HB2	9:I:391:LYS:HA	1.94	0.49
14:O:127:GLY:N	14:O:137:GLY:O	2.45	0.49
17:R:808:TYR:OH	17:R:933:TYR:O	2.30	0.49
18:S:490:ALA:HB1	18:S:574:TRP:HE1	1.77	0.49
3:C:197:PRO:HD2	3:C:197:PRO:O	2.12	0.49
9:I:291:ASP:HA	9:I:294:ASN:ND2	2.27	0.49
9:I:372:ILE:HD12	9:I:387:GLU:OE2	2.13	0.49
9:I:831:PHE:O	9:I:856:GLN:NE2	2.45	0.49
17:R:731:THR:HB	17:R:973:ARG:HH22	1.77	0.49
18:S:74:SER:HA	18:S:120:LEU:HD12	1.95	0.49
1:A:265:VAL:HG12	1:A:265:VAL:O	2.13	0.49
9:I:310:SER:O	9:I:314:MET:HG2	2.13	0.49
17:R:622:GLN:O	17:R:626:HIS:ND1	2.31	0.49
17:R:755:ASN:HA	17:R:758:LYS:HD3	1.94	0.49
20:V:70:LEU:O	22:X:61:LYS:NZ	2.33	0.49
3:C:175:GLN:O	3:C:176:ARG:C	2.50	0.48
10:J:637:SER:O	10:J:641:THR:HG23	2.13	0.48
17:R:1028:HIS:HA	17:R:1031:ILE:HG12	1.94	0.48
18:S:78:VAL:HG12	18:S:123:ALA:HB2	1.95	0.48
3:C:139:TYR:HA	3:C:144:GLY:N	2.28	0.48

	A t arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:C:195:LEU:C	3:C:197:PRO:HD3	2.33	0.48
9:I:478:MET:O	9:I:482:VAL:HG23	2.13	0.48
11:K:750:LEU:HB3	11:K:752:PHE:CE2	2.48	0.48
12:L:569:ILE:O	12:L:584:ASN:N	2.44	0.48
18:S:264:VAL:O	18:S:268:THR:HG23	2.13	0.48
19:T:127:ASP:OD1	19:T:128:PHE:N	2.47	0.48
10:J:717:SER:OG	10:J:718:VAL:N	2.46	0.48
12:L:374:ASN:HA	12:L:377:LEU:HD12	1.94	0.48
17:R:496:VAL:HG23	17:R:523:LEU:HD21	1.94	0.48
18:S:65:LYS:HA	18:S:68:ILE:HG12	1.94	0.48
18:S:699:ASN:ND2	18:S:701:LEU:H	2.10	0.48
10:J:674:ILE:HD11	10:J:679:GLN:HB3	1.95	0.48
10:J:625:VAL:O	10:J:629:ILE:HG12	2.14	0.48
11:K:685:SER:O	11:K:689:LEU:HG	2.14	0.48
17:R:149:PRO:HG2	17:R:152:VAL:HB	1.94	0.48
17:R:653:ILE:HD12	17:R:656:LEU:HD21	1.96	0.48
10:J:645:ALA:O	10:J:649:ILE:HG22	2.13	0.48
10:J:722:GLU:HA	10:J:733:SER:HB3	1.94	0.48
11:K:129:ASP:N	11:K:185:SER:OG	2.46	0.48
11:K:160:SER:OG	11:K:161:ARG:N	2.47	0.48
17:R:1130:VAL:HG12	17:R:1207:TYR:HB3	1.96	0.48
17:R:1238:ILE:O	17:R:1238:ILE:CG2	2.61	0.48
17:R:1248:VAL:O	17:R:1252:VAL:HG22	2.13	0.48
9:I:534:SER:OG	9:I:552:VAL:HB	2.13	0.48
17:R:117:LEU:HA	17:R:120:LYS:HD2	1.95	0.48
17:R:636:THR:H	17:R:817:ARG:HH22	1.60	0.48
11:K:288:ARG:HA	11:K:311:LEU:HD12	1.96	0.48
11:K:310:SER:HB3	11:K:342:LEU:HD11	1.94	0.48
12:L:201:ASP:OD1	12:L:202:LYS:N	2.42	0.48
12:L:308:PHE:HA	12:L:311:LEU:HG	1.95	0.48
17:R:180:ALA:O	17:R:184:VAL:HG23	2.13	0.48
11:K:219:ALA:HA	11:K:226:ILE:HG23	1.96	0.48
17:R:641:LEU:HD23	17:R:641:LEU:H	1.79	0.48
9:I:570:PHE:O	9:I:587:LEU:HB2	2.13	0.47
9:I:701:LEU:O	9:I:705:LEU:N	2.47	0.47
9:I:859:PHE:HE1	9:I:865:VAL:HG12	1.79	0.47
14:O:158:LEU:O	14:O:162:GLN:HG2	2.13	0.47
16:Q:97:ALA:O	16:Q:101:ARG:NE	2.46	0.47
18:S:757:ARG:HD2	18:S:760:HIS:CD2	2.49	0.47
1:A:372:HIS:HA	1:A:437:LEU:H	1.78	0.47
11:K:210:ARG:CZ	11:K:211:GLY:H	2.27	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
12:L:31:LEU:H	12:L:32:PRO:HD3	1.78	0.47
17:R:340:PHE:CZ	17:R:572:VAL:HB	2.50	0.47
11:K:237:SER:N	11:K:238:PRO:HD3	2.28	0.47
12:L:327:VAL:HG23	12:L:328:LYS:H	1.78	0.47
17:R:764:TYR:O	17:R:768:LYS:HG2	2.14	0.47
18:S:161:CYS:O	18:S:165:LEU:HG	2.15	0.47
3:C:21:ILE:HA	3:C:32:TYR:CB	2.44	0.47
9:I:442:ILE:HD11	9:I:497:LYS:HD3	1.97	0.47
11:K:206:LEU:HD12	11:K:208:ARG:H	1.80	0.47
13:M:53:ASP:OD1	13:M:53:ASP:N	2.43	0.47
17:R:1145:TRP:O	17:R:1149:ILE:HG13	2.14	0.47
23:Y:168:TRP:O	23:Y:170:ILE:N	2.48	0.47
9:I:409:ALA:HB1	9:I:456:VAL:HG11	1.97	0.47
12:L:371:LEU:HA	12:L:374:ASN:HD21	1.80	0.47
12:L:384:LYS:HG3	12:L:385:GLN:HG2	1.95	0.47
17:R:616:GLN:HE22	17:R:618:HIS:HB3	1.79	0.47
17:R:969:ILE:O	17:R:973:ARG:HB3	2.15	0.47
20:V:280:PRO:HG2	20:V:299:PHE:HA	1.97	0.47
17:R:63:ILE:O	17:R:67:ILE:HG12	2.15	0.47
17:R:184:VAL:HG22	17:R:208:PHE:HE2	1.79	0.47
17:R:1035:LYS:O	17:R:1038:ARG:NH2	2.47	0.47
3:C:130:PHE:CE2	16:Q:62:HIS:O	2.64	0.47
3:C:184:LEU:C	3:C:186:GLN:N	2.66	0.47
8:H:31:VAL:CG1	8:H:48:GLN:CA	2.69	0.47
11:K:75:SER:C	11:K:76:ILE:HG13	2.34	0.47
17:R:136:ASP:O	17:R:140:VAL:HG23	2.15	0.47
17:R:184:VAL:HG22	17:R:208:PHE:CE2	2.49	0.47
17:R:618:HIS:O	17:R:622:GLN:HG2	2.14	0.47
17:R:1229:LYS:O	17:R:1233:GLU:HG3	2.15	0.47
9:I:831:PHE:N	9:I:860:ASN:HD21	2.13	0.47
17:R:311:ALA:HB1	17:R:331:TRP:CD1	2.50	0.47
17:R:1224:LEU:HD13	17:R:1259:PHE:CE1	2.49	0.47
3:C:121:THR:CB	5:E:114:ASP:CB	2.93	0.47
11:K:155:PHE:HE1	11:K:479:GLU:HB3	1.79	0.47
11:K:304:SER:C	11:K:305:ILE:HG13	2.35	0.47
18:S:42:LEU:HD12	18:S:43:ALA:N	2.30	0.47
17:R:329:LEU:O	17:R:333:HIS:ND1	2.32	0.47
17:R:804:ASN:O	17:R:805:GLN:HG3	2.15	0.47
18:S:835:ARG:HD3	18:S:835:ARG:O	2.15	0.47
1:A:258:THR:H	1:A:305:LEU:HA	1.80	0.46
9:I:655:VAL:HG23	9:I:658:ARG:HH11	1.79	0.46

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:K:661:VAL:O	11:K:664:ILE:HG22	2.15	0.46
17:R:1024:ARG:HD3	17:R:1025:LYS:HE2	1.98	0.46
23:Y:70:THR:O	23:Y:74:ARG:HG2	2.15	0.46
11:K:787:LEU:HD23	11:K:787:LEU:H	1.79	0.46
17:R:528:LEU:HA	17:R:532:THR:HB	1.98	0.46
18:S:541:ASN:O	18:S:545:PRO:HD2	2.15	0.46
3:C:139:TYR:HA	3:C:144:GLY:H	1.81	0.46
17:R:1158:GLU:O	17:R:1162:ILE:HG12	2.16	0.46
23:Y:45:VAL:O	23:Y:48:THR:OG1	2.29	0.46
10:J:743:TYR:CE1	10:J:753:HIS:HB2	2.51	0.46
11:K:206:LEU:HB2	11:K:209:LEU:HD23	1.97	0.46
17:R:56:HIS:ND1	17:R:60:ILE:CG1	2.70	0.46
17:R:300:LEU:HD23	17:R:304:LEU:HD23	1.97	0.46
17:R:1016:LEU:HD11	17:R:1019:ARG:CZ	2.45	0.46
18:S:282:VAL:HA	18:S:285:ILE:HG22	1.97	0.46
18:S:287:LYS:O	18:S:291:VAL:HG13	2.15	0.46
3:C:118:ARG:N	5:E:111:THR:O	2.30	0.46
11:K:685:SER:O	11:K:688:LEU:HG	2.16	0.46
17:R:923:ASN:O	17:R:927:LYS:HG2	2.16	0.46
17:R:1130:VAL:HG11	17:R:1211:LEU:HD23	1.97	0.46
17:R:1273:ALA:O	17:R:1277:MET:HG2	2.16	0.46
19:T:94:PHE:O	19:T:98:LEU:HG	2.16	0.46
9:I:595:ILE:O	9:I:599:VAL:HG23	2.16	0.46
11:K:563:LEU:HD22	11:K:822:ARG:HD2	1.96	0.46
18:S:141:ARG:HA	18:S:141:ARG:HD3	1.65	0.46
9:I:425:ALA:HA	9:I:430:SER:HA	1.68	0.46
18:S:980:GLN:O	18:S:984:LYS:HG2	2.15	0.46
3:C:168:PRO:HD2	3:C:169:SER:N	2.31	0.46
9:I:490:ILE:N	9:I:491:PRO:HD2	2.31	0.46
16:Q:123:ILE:HD13	23:Y:167:ILE:HA	1.97	0.46
17:R:1002:VAL:O	17:R:1006:TYR:HB2	2.16	0.46
18:S:95:GLN:NE2	18:S:99:ASP:OD2	2.48	0.46
11:K:391:VAL:CG1	11:K:457:LEU:HD13	2.46	0.46
16:Q:117:ILE:HD12	16:Q:120:ARG:HH21	1.80	0.46
17:R:1308:ASP:HB2	17:R:1311:LYS:HD2	1.96	0.46
22:X:142:PRO:HG3	22:X:156:PRO:HA	1.98	0.46
11:K:99:ALA:HA	11:K:129:ASP:HA	1.97	0.46
11:K:211:GLY:HA2	11:K:240:GLN:HE22	1.81	0.46
12:L:436:LYS:HE3	12:L:471:TYR:O	2.16	0.46
16:Q:98:ILE:HA	16:Q:101:ARG:HH11	1.80	0.46
17:R:1107:VAL:O	17:R:1111:GLU:HG3	2.15	0.46

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
17:R:1208:THR:O	17:R:1211:LEU:HG	2.16	0.46
19:T:71:PHE:CZ	19:T:82:VAL:HG23	2.51	0.46
3:C:180:LEU:O	3:C:181:LEU:C	2.52	0.45
12:L:190:LEU:HD12	12:L:291:TRP:HD1	1.80	0.45
12:L:301:VAL:HA	12:L:304:CYS:SG	2.55	0.45
17:R:677:SER:HA	17:R:684:ASN:HD21	1.81	0.45
17:R:1296:ASP:HA	17:R:1299:TYR:HB2	1.98	0.45
12:L:398:ALA:N	12:L:399:PRO:HD3	2.31	0.45
17:R:810:VAL:HA	17:R:813:ARG:HH21	1.81	0.45
17:R:1193:PHE:O	17:R:1194:THR:OG1	2.31	0.45
3:C:194:GLN:O	3:C:195:LEU:HG	2.16	0.45
8:H:84:TYR:CZ	13:M:45:ASN:HA	2.52	0.45
9:I:379:PRO:CG	9:I:411:GLN:CB	2.83	0.45
17:R:229:PRO:HG3	17:R:1218:HIS:NE2	2.32	0.45
18:S:186:ALA:O	18:S:190:THR:HG23	2.15	0.45
3:C:81:ILE:O	3:C:97:ASP:HA	2.16	0.45
10:J:667:GLU:O	10:J:668:ASP:OD1	2.35	0.45
10:J:756:MET:O	10:J:760:LEU:HG	2.16	0.45
12:L:466:ASN:HD22	16:Q:124:SER:HB2	1.81	0.45
12:L:551:PHE:HE1	12:L:572:ALA:HB3	1.80	0.45
17:R:98:CYS:O	17:R:102:ILE:HB	2.17	0.45
18:S:74:SER:O	18:S:78:VAL:HG13	2.16	0.45
9:I:647:MET:HA	9:I:650:THR:HG22	1.98	0.45
11:K:29:HIS:ND1	18:S:907:LEU:HD13	2.29	0.45
11:K:580:LEU:O	11:K:583:ILE:HG12	2.16	0.45
12:L:259:VAL:O	12:L:367:HIS:NE2	2.50	0.45
16:Q:123:ILE:HG22	23:Y:167:ILE:CB	2.37	0.45
17:R:904:VAL:HG23	17:R:993:GLY:HA3	1.98	0.45
18:S:110:CYS:SG	18:S:111:HIS:N	2.90	0.45
23:Y:68:THR:HA	23:Y:71:TYR:HE1	1.82	0.45
9:I:291:ASP:OD1	9:I:292:MET:N	2.49	0.45
9:I:402:ILE:HA	9:I:405:VAL:HG22	1.98	0.45
11:K:491:ILE:HA	11:K:494:HIS:CD2	2.52	0.45
17:R:716:LEU:O	17:R:720:MET:HG2	2.17	0.45
18:S:130:TRP:HA	18:S:133:ARG:HE	1.82	0.45
20:V:31:VAL:HG22	20:V:55:HIS:HB3	1.99	0.45
2:B:71:HIS:O	2:B:75:GLU:HG3	2.17	0.45
9:I:683:ARG:HH12	10:J:684:ARG:NH1	2.15	0.45
14:O:114:GLY:O	14:O:125:LYS:NZ	2.38	0.45
18:S:984:LYS:HA	18:S:984:LYS:HD3	1.84	0.45
19:T:209:PRO:CG	19:T:210:PRO:HD3	2.47	0.45

A 4 1	A targe 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:865:VAL:O	9:I:869:LEU:HG	2.17	0.45
9:I:922:TYR:HB3	9:I:957:PRO:HG3	1.98	0.45
11:K:835:PRO:O	11:K:835:PRO:CD	2.65	0.45
17:R:663:PRO:HB2	17:R:664:GLN:HE21	1.81	0.45
17:R:985:GLU:O	17:R:988:LEU:HG	2.17	0.45
17:R:1198:GLN:NE2	17:R:1201:SER:OG	2.35	0.45
1:A:265:VAL:HG13	1:A:298:ASP:C	2.38	0.45
3:C:141:PRO:N	12:L:170:SER:CB	2.80	0.45
9:I:291:ASP:HA	9:I:294:ASN:HD21	1.81	0.45
11:K:795:CYS:O	11:K:812:ARG:NH2	2.49	0.45
18:S:246:ALA:O	18:S:249:LEU:HG	2.16	0.45
3:C:184:LEU:C	3:C:186:GLN:H	2.20	0.45
9:I:693:ILE:O	9:I:697:THR:OG1	2.35	0.45
10:J:620:PRO:HG2	20:V:56:PHE:HE1	1.81	0.45
11:K:65:LEU:CD2	11:K:73:LEU:HD22	2.44	0.44
11:K:383:ALA:CB	11:K:393:ILE:CG2	2.96	0.44
17:R:560:ALA:N	17:R:561:PRO:HD2	2.32	0.44
17:R:962:ARG:O	17:R:966:VAL:HG23	2.17	0.44
17:R:1031:ILE:O	17:R:1035:LYS:HG3	2.17	0.44
12:L:209:TYR:O	12:L:213:GLY:N	2.51	0.44
18:S:245:HIS:NE2	18:S:291:VAL:HG21	2.32	0.44
22:X:78:ALA:HB2	22:X:102:PHE:CE1	2.52	0.44
9:I:504:ARG:HG2	9:I:638:ASN:HD21	1.83	0.44
11:K:276:LYS:O	11:K:296:LEU:N	2.31	0.44
19:T:16:ALA:HB1	19:T:47:PHE:HE1	1.82	0.44
9:I:490:ILE:HG13	9:I:491:PRO:HD3	2.00	0.44
11:K:246:VAL:HG12	11:K:255:ILE:HG13	1.99	0.44
17:R:183:ALA:O	17:R:187:ILE:HG12	2.18	0.44
17:R:258:TYR:CE1	17:R:262:LEU:HD22	2.52	0.44
17:R:1149:ILE:HA	17:R:1152:ILE:HD12	1.99	0.44
3:C:114:VAL:HA	5:E:111:THR:HA	2.00	0.44
11:K:77:PRO:CD	11:K:77:PRO:O	2.64	0.44
12:L:32:PRO:HD2	12:L:32:PRO:O	2.18	0.44
12:L:496:ASN:HA	12:L:502:ILE:HG12	1.99	0.44
17:R:846:CYS:HA	17:R:850:LEU:HB2	1.99	0.44
18:S:674:CYS:O	18:S:679:GLN:NE2	2.50	0.44
18:S:901:LEU:O	18:S:904:LEU:HG	2.17	0.44
8:H:31:VAL:HG11	8:H:48:GLN:N	2.28	0.44
8:H:100:ALA:O	8:H:104:LEU:HG	2.18	0.44
9:I:1254:SER:N	9:I:1255:PRO:HD2	2.33	0.44
11:K:188:VAL:HG23	11:K:189:THR:H	1.81	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:R:648:THR:O	17:R:651:ARG:HG2	2.17	0.44
17:R:773:GLU:HB2	17:R:776:ILE:HB	2.00	0.44
17:R:1241:THR:OG1	17:R:1242:GLU:N	2.50	0.44
22:X:99:ILE:CG2	22:X:100:GLN:N	2.48	0.44
3:C:170:SER:C	26:9:635:SER:CB	2.86	0.44
11:K:672:CYS:O	11:K:674:PRO:HD3	2.18	0.44
17:R:540:ILE:HG13	17:R:541:HIS:H	1.83	0.44
9:I:643:HIS:CE1	12:L:558:GLY:HA2	2.53	0.44
11:K:37:CYS:HB2	11:K:46:ALA:HB3	1.99	0.44
17:R:785:SER:HB2	17:R:788:LEU:HB3	1.99	0.44
17:R:856:LYS:HA	17:R:857:TYR:HA	1.60	0.44
17:R:941:VAL:HG22	17:R:943:PRO:HD3	2.00	0.44
17:R:1234:VAL:O	17:R:1238:ILE:HD12	2.18	0.44
17:R:1276:ASP:O	17:R:1279:LEU:HG	2.18	0.44
18:S:788:LEU:HB2	18:S:789:PRO:HD3	2.00	0.44
3:C:176:ARG:O	3:C:179:ALA:HB3	2.18	0.44
9:I:402:ILE:HG13	9:I:403:ASP:N	2.33	0.44
9:I:652:MET:HA	9:I:655:VAL:HG12	2.00	0.44
9:I:877:ALA:HB3	9:I:878:PRO:HD3	2.00	0.44
10:J:623:ASP:OD1	10:J:623:ASP:N	2.50	0.44
11:K:193:LEU:HG	11:K:195:PRO:HD3	2.00	0.44
17:R:257:PRO:HD2	17:R:263:PHE:HZ	1.83	0.44
18:S:221:LEU:O	18:S:225:ILE:HG12	2.18	0.44
18:S:305:TRP:O	18:S:309:THR:HG23	2.18	0.44
11:K:391:VAL:HG22	11:K:393:ILE:HG13	2.00	0.43
17:R:102:ILE:HG13	17:R:140:VAL:HG11	2.00	0.43
17:R:738:PRO:HB2	17:R:741:ALA:HB2	1.98	0.43
17:R:745:GLN:CD	17:R:745:GLN:H	2.21	0.43
17:R:803:ILE:HG13	17:R:804:ASN:H	1.82	0.43
18:S:416:THR:HA	18:S:419:ASN:HD21	1.83	0.43
14:O:38:THR:HA	14:O:115:THR:HA	2.00	0.43
17:R:118:THR:O	17:R:122:VAL:HG23	2.18	0.43
9:I:302:SER:O	9:I:305:LEU:HG	2.18	0.43
9:I:683:ARG:HA	9:I:709:THR:HA	2.00	0.43
9:I:1351:PRO:HA	9:I:1352:PRO:HD3	1.89	0.43
10:J:626:LEU:HD23	22:X:79:ALA:HB1	1.99	0.43
11:K:187:LEU:HD12	11:K:188:VAL:HG13	2.00	0.43
17:R:66:PHE:O	17:R:70:GLN:NE2	2.46	0.43
18:S:362:PHE:O	18:S:365:GLN:HG3	2.17	0.43
9:I:489:ILE:HG13	9:I:490:ILE:N	2.34	0.43
9:I:668:HIS:H	9:I:668:HIS:HD1	1.66	0.43

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:673:VAL:O	9:I:674:GLU:HG2	2.18	0.43
10:J:643:VAL:HG22	10:J:644:PRO:HD3	2.01	0.43
11:K:32:SER:C	11:K:33:VAL:HG23	2.37	0.43
11:K:231:ALA:HB3	11:K:238:PRO:HG2	2.00	0.43
18:S:768:LEU:HD22	18:S:812:LEU:HD11	1.99	0.43
20:V:111:TYR:CE2	22:X:136:HIS:HB2	2.52	0.43
3:C:74:GLN:CB	3:C:79:PHE:HA	2.49	0.43
9:I:682:ILE:O	9:I:710:PHE:N	2.46	0.43
11:K:765:LEU:HD12	11:K:765:LEU:HA	1.89	0.43
17:R:490:LEU:HB3	17:R:491:PRO:HD3	2.00	0.43
17:R:1233:GLU:OE1	17:R:1234:VAL:CG2	2.63	0.43
20:V:111:TYR:HE2	22:X:136:HIS:HB2	1.83	0.43
11:K:192:LEU:HD13	11:K:202:SER:HA	1.99	0.43
11:K:569:LEU:HD11	19:T:31:TYR:HE2	1.84	0.43
17:R:866:ILE:HG12	17:R:966:VAL:HG22	2.00	0.43
11:K:74:HIS:CD2	11:K:114:LEU:HD23	2.53	0.43
11:K:530:LYS:O	11:K:533:LEU:HG	2.19	0.43
11:K:550:LYS:O	11:K:553:LEU:HG	2.19	0.43
17:R:540:ILE:HG13	17:R:541:HIS:N	2.34	0.43
20:V:120:HIS:CE1	21:W:59:LEU:HD11	2.53	0.43
21:W:57:ALA:O	21:W:61:SER:OG	2.35	0.43
2:B:45:ILE:CB	6:F:72:ILE:CG2	2.97	0.43
8:H:84:TYR:HB3	8:H:85:SER:H	1.51	0.43
12:L:341:LEU:HD23	12:L:341:LEU:HA	1.90	0.43
17:R:260:LYS:HA	17:R:263:PHE:HD2	1.82	0.43
17:R:348:SER:O	17:R:348:SER:OG	2.37	0.43
17:R:1184:VAL:HG13	18:S:340:PHE:HB3	2.00	0.43
17:R:1255:PHE:HA	17:R:1257:GLN:HE22	1.83	0.43
18:S:734:THR:HA	18:S:737:HIS:ND1	2.33	0.43
20:V:194:LEU:HD23	20:V:194:LEU:HA	1.93	0.43
3:C:121:THR:CB	5:E:112:LYS:O	2.67	0.43
12:L:417:GLU:O	12:L:421:LEU:HG	2.19	0.43
14:O:161:LEU:CB	14:O:169:THR:HG21	2.49	0.43
17:R:1150:GLY:O	17:R:1154:THR:HG23	2.19	0.43
18:S:576:GLU:O	18:S:580:SER:N	2.51	0.43
21:W:86:ASP:O	21:W:90:GLN:HG2	2.18	0.43
11:K:468:GLY:O	11:K:471:LEU:HG	2.18	0.43
12:L:168:THR:C	12:L:172:THR:CG2	2.85	0.43
12:L:364:PRO:CD	12:L:364:PRO:O	2.67	0.43
17:R:1292:ASP:HB3	17:R:1293:PRO:HD3	2.00	0.43
11:K:48:THR:C	11:K:49:MET:HG2	2.39	0.42

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:K:189:THR:HG21	11:K:205:SER:HB2	2.01	0.42
19:T:209:PRO:HG2	19:T:210:PRO:HD3	2.00	0.42
11:K:391:VAL:HG11	11:K:457:LEU:HD13	2.01	0.42
11:K:481:CYS:HA	11:K:484:THR:HG22	2.00	0.42
17:R:245:PRO:HG2	17:R:287:LEU:HD11	2.00	0.42
17:R:927:LYS:HG3	17:R:928:TYR:N	2.33	0.42
17:R:1142:ILE:O	17:R:1146:MET:HG2	2.19	0.42
18:S:247:VAL:HG22	18:S:770:SER:HA	2.02	0.42
11:K:262:SER:N	18:S:629:ARG:O	2.50	0.42
17:R:1106:HIS:CE1	17:R:1107:VAL:HG12	2.54	0.42
18:S:128:LEU:O	18:S:132:LEU:HG	2.18	0.42
9:I:593:GLU:HA	9:I:594:ASN:HA	1.52	0.42
17:R:260:LYS:HA	17:R:263:PHE:HB2	2.02	0.42
17:R:873:SER:HA	17:R:882:CYS:SG	2.60	0.42
18:S:319:LYS:O	18:S:323:TYR:N	2.42	0.42
9:I:398:GLU:O	9:I:402:ILE:HG23	2.19	0.42
10:J:630:ARG:NH2	10:J:637:SER:H	2.14	0.42
12:L:626:GLN:O	12:L:628:ASN:N	2.51	0.42
13:M:194:LYS:N	13:M:195:PRO:HD2	2.34	0.42
20:V:214:VAL:HG13	20:V:239:PHE:HB3	2.02	0.42
21:W:88:ALA:O	21:W:92:GLU:HG2	2.19	0.42
12:L:198:LYS:HB3	12:L:204:LEU:HA	2.00	0.42
17:R:756:LEU:HA	17:R:759:ASN:ND2	2.35	0.42
17:R:960:CYS:HB2	17:R:994:LEU:HG	2.02	0.42
17:R:1158:GLU:HA	17:R:1161:TRP:NE1	2.35	0.42
9:I:962:PHE:O	9:I:965:MET:HG2	2.19	0.42
11:K:618:LEU:HD23	11:K:618:LEU:HA	1.88	0.42
13:M:52:LEU:HA	13:M:132:LYS:HB2	2.02	0.42
17:R:768:LYS:O	17:R:771:SER:OG	2.30	0.42
19:T:199:ALA:HB3	19:T:200:PRO:HD3	2.00	0.42
9:I:384:LYS:O	9:I:386:VAL:HG23	2.19	0.42
9:I:897:THR:OG1	9:I:898:ASN:N	2.52	0.42
18:S:66:TYR:O	18:S:69:SER:OG	2.38	0.42
18:S:141:ARG:HG3	18:S:155:GLU:N	2.35	0.42
18:S:244:VAL:O	18:S:248:ILE:HG12	2.20	0.42
3:C:140:HIS:O	3:C:141:PRO:C	2.58	0.42
17:R:1065:ASP:OD1	17:R:1066:THR:N	2.53	0.42
17:R:1120:LYS:HE2	17:R:1120:LYS:HB2	1.95	0.42
9:I:831:PHE:HD2	9:I:859:PHE:HE2	1.68	0.41
11:K:42:ARG:CD	11:K:831:GLU:HG2	2.43	0.41
11:K:458:SER:HA	11:K:459:PRO:HD3	1.87	0.41

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
11:K:553:LEU:HA	11:K:556:ILE:HG22	2.01	0.41
17:R:977:LEU:HD12	17:R:977:LEU:HA	1.81	0.41
18:S:378:VAL:CG1	18:S:381:LEU:HD23	2.49	0.41
3:C:114:VAL:HA	5:E:111:THR:CB	2.50	0.41
11:K:393:ILE:CD1	11:K:443:LEU:HD21	2.50	0.41
12:L:644:SER:HA	21:W:97:GLN:HE21	1.84	0.41
17:R:673:LYS:HD2	17:R:673:LYS:HA	1.76	0.41
17:R:1253:GLY:O	17:R:1256:LEU:HD13	2.20	0.41
17:R:1315:GLU:HA	17:R:1318:ILE:HG22	2.01	0.41
18:S:282:VAL:O	18:S:285:ILE:HG22	2.20	0.41
3:C:178:ASP:O	3:C:179:ALA:C	2.57	0.41
9:I:300:CYS:O	9:I:303:LEU:HG	2.20	0.41
9:I:688:PRO:HG2	9:I:767:LEU:HD11	2.01	0.41
11:K:500:VAL:HA	11:K:503:LEU:HD12	2.02	0.41
11:K:502:SER:O	11:K:505:GLU:HG2	2.20	0.41
12:L:293:THR:O	12:L:296:GLU:HG3	2.20	0.41
11:K:130:PRO:HA	11:K:184:VAL:H	1.86	0.41
12:L:460:ILE:HD13	12:L:460:ILE:HA	1.96	0.41
17:R:624:LEU:O	17:R:627:LEU:HG	2.19	0.41
17:R:891:LEU:HD23	17:R:891:LEU:HA	1.91	0.41
18:S:676:ASP:OD1	18:S:677:VAL:N	2.53	0.41
3:C:140:HIS:H	3:C:144:GLY:H	1.66	0.41
11:K:134:LEU:HD12	11:K:217:ASP:HB3	2.00	0.41
12:L:522:GLN:O	12:L:526:LEU:HG	2.20	0.41
17:R:167:ILE:HG23	17:R:204:LEU:HD11	2.02	0.41
9:I:1221:GLN:HA	9:I:1224:ILE:HG22	2.03	0.41
11:K:134:LEU:HB3	11:K:135:SER:H	1.72	0.41
17:R:101:LEU:HD23	17:R:121:LEU:HD11	2.01	0.41
17:R:680:SER:HB2	17:R:683:LEU:HD13	2.03	0.41
22:X:66:GLN:OE1	22:X:66:GLN:N	2.52	0.41
12:L:298:ALA:HA	12:L:301:VAL:HG12	2.03	0.41
17:R:665:PHE:HA	17:R:668:PHE:CE1	2.56	0.41
17:R:756:LEU:HD21	17:R:832:TYR:CZ	2.55	0.41
18:S:378:VAL:CG1	18:S:381:LEU:HB3	2.45	0.41
3:C:117:SER:O	5:E:112:LYS:O	2.39	0.41
3:C:180:LEU:C	3:C:182:LEU:N	2.72	0.41
11:K:474:LEU:HD21	11:K:493:LEU:HG	2.02	0.41
12:L:495:LEU:HD21	12:L:503:ARG:HD3	2.02	0.41
17:R:692:ALA:O	17:R:695:THR:OG1	2.39	0.41
17:R:926:LYS:HA	17:R:926:LYS:HD2	1.81	0.41
17:R:1142:ILE:H	17:R:1142:ILE:HD12	1.85	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
18:S:94:VAL:HA	18:S:97:LEU:HD12	2.02	0.41
19:T:73:THR:HG23	19:T:75:ASP:OD1	2.20	0.41
9:I:668:HIS:HB3	10:J:767:HIS:HD2	1.85	0.41
17:R:450:SER:OG	17:R:451:LEU:N	2.54	0.41
17:R:537:MET:SD	17:R:537:MET:N	2.92	0.41
17:R:680:SER:HB2	17:R:683:LEU:HB2	2.03	0.41
17:R:714:ASP:N	17:R:714:ASP:OD1	2.53	0.41
17:R:786:PRO:HB2	17:R:787:PRO:HD3	2.01	0.41
17:R:847:ILE:HD13	17:R:851:ASN:HD21	1.86	0.41
17:R:1269:GLU:HA	17:R:1272:VAL:HG22	2.03	0.41
17:R:1290:TYR:O	17:R:1293:PRO:HD2	2.21	0.41
17:R:1308:ASP:OD1	17:R:1308:ASP:N	2.53	0.41
10:J:639:TYR:O	10:J:643:VAL:HG22	2.20	0.41
11:K:621:VAL:O	11:K:625:VAL:HG13	2.21	0.41
11:K:654:MET:O	11:K:658:LEU:HG	2.21	0.41
17:R:229:PRO:HG3	17:R:1218:HIS:HE2	1.86	0.41
18:S:225:ILE:HD13	18:S:225:ILE:HA	1.92	0.41
9:I:536:ASN:HA	9:I:550:ILE:HA	2.03	0.40
9:I:586:LEU:HG	9:I:588:LEU:HG	2.03	0.40
9:I:902:GLN:O	9:I:919:ARG:HA	2.21	0.40
17:R:777:ILE:HA	17:R:780:PHE:HB3	2.02	0.40
17:R:927:LYS:HG3	17:R:928:TYR:H	1.86	0.40
17:R:931:LYS:HD2	17:R:931:LYS:HA	1.76	0.40
18:S:120:LEU:HD23	18:S:124:LEU:HD23	2.02	0.40
21:W:48:LEU:HD22	21:W:87:ILE:HD12	2.02	0.40
11:K:221:THR:OG1	11:K:222:GLY:N	2.53	0.40
14:O:22:GLU:O	14:O:26:ARG:HG3	2.20	0.40
17:R:820:VAL:HG13	17:R:821:ALA:H	1.86	0.40
17:R:1148:ALA:HA	17:R:1151:LEU:HD12	2.02	0.40
3:C:167:GLU:OE2	9:I:268:SER:C	2.59	0.40
9:I:967:VAL:HG21	9:I:1185:LEU:HD13	2.04	0.40
11:K:166:PRO:HG2	11:K:169:THR:HB	2.03	0.40
11:K:479:GLU:O	11:K:483:VAL:HG13	2.21	0.40
17:R:87:VAL:HA	17:R:91:LEU:O	2.22	0.40
17:R:157:VAL:O	17:R:161:LEU:HG	2.21	0.40
3:C:118:ARG:N	5:E:111:THR:C	2.74	0.40
3:C:176:ARG:C	3:C:179:ALA:H	2.25	0.40
11:K:750:LEU:HD22	11:K:752:PHE:CE1	2.56	0.40
12:L:303:LEU:HD21	12:L:375:LEU:HD21	2.03	0.40
12:L:477:VAL:HG13	12:L:492:GLN:NE2	2.35	0.40
17:R:448:PRO:C	17:R:452:ARG:HG3	2.38	0.40

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
17:R:1162:ILE:HD13	17:R:1162:ILE:HA	1.90	0.40
18:S:502:HIS:HA	18:S:670:LEU:HD21	2.02	0.40
22:X:167:GLN:HG3	23:Y:61:PRO:HD2	2.02	0.40
10:J:639:TYR:CE1	10:J:643:VAL:HG21	2.56	0.40
10:J:736:TRP:HD1	10:J:743:TYR:HE2	1.69	0.40
11:K:383:ALA:HB2	11:K:393:ILE:CG2	2.52	0.40
11:K:546:ASP:N	11:K:546:ASP:OD1	2.54	0.40
18:S:303:LEU:H	18:S:303:LEU:HD12	1.87	0.40
22:X:76:LYS:O	22:X:80:GLN:HG2	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	455/1581~(29%)	430~(94%)	25~(6%)	0	100	100
2	В	154/270~(57%)	151~(98%)	3 (2%)	0	100	100
3	С	174/246~(71%)	118 (68%)	51 (29%)	5(3%)	4	32
4	D	159/233~(68%)	153~(96%)	6 (4%)	0	100	100
5	Ε	177/268~(66%)	161 (91%)	16 (9%)	0	100	100
6	F	69/146~(47%)	67~(97%)	2 (3%)	0	100	100
7	G	120/135~(89%)	119~(99%)	1 (1%)	0	100	100
8	Н	101/117~(86%)	92~(91%)	6 (6%)	3~(3%)	4	31
9	Ι	1068/1454~(74%)	958~(90%)	110 (10%)	0	100	100
10	J	165/788~(21%)	144 (87%)	21 (13%)	0	100	100
11	Κ	710/877~(81%)	598~(84%)	109 (15%)	3~(0%)	34	72
12	L	527/651~(81%)	460 (87%)	66 (12%)	1 (0%)	47	81
13	М	176/208~(85%)	162 (92%)	14 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
14	Ο	164/212~(77%)	145~(88%)	19~(12%)	0	100	100
15	Р	110/144~(76%)	108 (98%)	2 (2%)	0	100	100
16	Q	129/200~(64%)	123~(95%)	6~(5%)	0	100	100
17	R	1284/1368~(94%)	1127 (88%)	155 (12%)	2~(0%)	47	81
18	S	889/989~(90%)	802 (90%)	86 (10%)	1 (0%)	51	85
19	Т	184/747~(25%)	171 (93%)	13 (7%)	0	100	100
20	V	264/311~(85%)	226 (86%)	37 (14%)	1 (0%)	34	72
21	W	116/178~(65%)	113 (97%)	3~(3%)	0	100	100
22	Х	119/200~(60%)	115 (97%)	4 (3%)	0	100	100
23	Y	128/178~(72%)	120 (94%)	8 (6%)	0	100	100
24	Z	101/131~(77%)	100 (99%)	1 (1%)	0	100	100
26	9	22/2174~(1%)	6 (27%)	7(32%)	9 (41%)	0	0
All	All	7565/13806~(55%)	6769 (90%)	771 (10%)	25~(0%)	44	76

All (25) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
3	С	168	PRO
3	С	176	ARG
8	Н	86	SER
11	K	835	PRO
26	9	621	PRO
26	9	626	VAL
26	9	629	LEU
26	9	630	PRO
26	9	631	PRO
26	9	634	PRO
3	С	145	TYR
26	9	636	ASP
3	С	173	GLN
8	Н	83	SER
8	Н	85	SER
26	9	627	GLU
3	С	172	PHE
12	L	31	LEU
11	K	830	VAL
17	R	1175	PRO
26	9	620	PHE

Continued from previous page...

	5	1	1 5
Mol	Chain	\mathbf{Res}	Type
20	V	293	PRO
17	R	945	VAL
18	S	919	PRO
11	K	305	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	13/1391~(1%)	13~(100%)	0	100	100
2	В	3/230~(1%)	3~(100%)	0	100	100
3	С	12/223~(5%)	11 (92%)	1 (8%)	11	36
5	Е	3/225~(1%)	3 (100%)	0	100	100
6	F	6/133~(4%)	6 (100%)	0	100	100
7	G	1/124~(1%)	1 (100%)	0	100	100
8	Н	14/98~(14%)	14 (100%)	0	100	100
9	Ι	401/1271 (32%)	400 (100%)	1 (0%)	93	96
10	J	104/697~(15%)	103 (99%)	1 (1%)	76	86
11	Κ	418/766~(55%)	417 (100%)	1 (0%)	93	96
12	L	199/577~(34%)	199 (100%)	0	100	100
13	М	62/183~(34%)	62 (100%)	0	100	100
14	Ο	47/178~(26%)	47 (100%)	0	100	100
16	Q	25/173~(14%)	25 (100%)	0	100	100
17	R	956/1232~(78%)	954 (100%)	2 (0%)	93	96
18	S	402/864~(46%)	399~(99%)	3~(1%)	84	90
19	Т	96/601~(16%)	96 (100%)	0	100	100
20	V	95/280~(34%)	95 (100%)	0	100	100
21	W	55/152~(36%)	55 (100%)	0	100	100
22	X	67/163~(41%)	67 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
23	Y	47/155~(30%)	47 (100%)	0	100	100
24	Ζ	1/115~(1%)	1 (100%)	0	100	100
All	All	3027/9831 (31%)	3018 (100%)	9 (0%)	92	95

All (9) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	С	192	PHE
9	Ι	896	ARG
10	J	739	ARG
11	Κ	754	ARG
17	R	536	LYS
17	R	1229	LYS
18	S	385	ARG
18	S	489	ARG
18	S	835	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (41) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
9	Ι	638	ASN
9	Ι	663	ASN
9	Ι	860	ASN
10	J	628	ASN
10	J	635	ASN
11	Κ	473	HIS
11	Κ	598	ASN
12	L	367	HIS
12	L	466	ASN
13	М	134	HIS
16	Q	102	ASN
17	R	103	ASN
17	R	276	GLN
17	R	552	HIS
17	R	664	GLN
17	R	684	ASN
17	R	696	HIS
17	R	726	ASN
17	R	874	HIS
17	R	918	HIS

Mol	Chain	Res	Type
17	R	1028	HIS
17	R	1054	ASN
17	R	1165	HIS
17	R	1223	GLN
17	R	1300	HIS
18	S	370	GLN
18	S	419	ASN
18	S	699	ASN
18	S	747	ASN
18	S	760	HIS
18	S	836	HIS
18	S	920	HIS
20	V	55	HIS
20	V	106	GLN
20	V	220	ASN
20	V	252	HIS
21	W	97	GLN
21	W	140	GLN
22	Х	84	GLN
22	Х	85	ASN
23	Y	81	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41107. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 280

Y Index: 280

Z Index: 280

6.2.2 Raw map

X Index: 280

Y Index: 280

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 286

Y Index: 270

Z Index: 297

6.3.2 Raw map

X Index: 285

Y Index: 270

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.04. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2101 nm^3 ; this corresponds to an approximate mass of 1898 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.215 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.215 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{ascolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	4.66	-	-	
Author-provided FSC curve	8.18	17.06	8.47	
Unmasked-calculated*	8.10	15.55	8.35	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from author-provided FSC intersecting FSC 0.143 CUT-OFF 8.18 differs from the reported value 4.66 by more than 10 %

The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 8.10 differs from the reported value 4.66 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41107 and PDB model 8T9D. Per-residue inclusion information can be found in section 3 on page 8.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.04 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.04).

9.4 Atom inclusion (i)

At the recommended contour level, 99% of all backbone atoms, 98% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.04) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9850	0.2150
9	1.0000	0.2220
А	0.9970	0.1740
В	0.9950	0.1190
С	0.9630	0.1290
D	0.9950	0.0790
E	0.9950	0.1370
F	1.0000	0.1670
G	0.7220	0.0500
Н	0.9970	0.1930
Ι	0.9800	0.2420
J	0.9910	0.2480
К	0.9890	0.2450
L	0.9880	0.2410
М	0.9990	0.2300
0	1.0000	0.2760
Р	0.9600	0.0750
Q	0.9930	0.1920
R	0.9840	0.1950
S	0.9920	0.2380
Т	0.9950	0.2050
V	0.9960	0.3020
W	0.9910	0.2380
Х	1.0000	0.2500
Y	0.9990	0.2570
Ζ	0.9940	0.0880
a	1.0000	0.2080

