

Dec 11, 2022 – 12:48 pm GMT

| I             | PDB ID   | :   | 6SPE                                                                       |
|---------------|----------|-----|----------------------------------------------------------------------------|
| $\mathrm{EN}$ | IDB ID   | :   | EMD-10283                                                                  |
|               | Title    | :   | Pseudomonas aeruginosa 30s ribosome from a clinical isolate                |
| 1             | Authors  | :   | Halfon, Y.; Jimenez-Fernande, A.; La Ros, R.; Espinos, R.; Krogh Johansen, |
|               |          |     | H.; Matzov, D.; Eyal, Z.; Bashan, A.; Zimmerman, E.; Belousoff, M.; Molin, |
|               |          |     | S.; Yonath, A.                                                             |
| Depos         | sited on | :   | 2019-09-01                                                                 |
| Res           | solution | :   | 3.60  Å(reported)                                                          |
|               |          |     |                                                                            |
|               | This is  | a I | Full wwPDB EM Validation Report for a publicly released PDB entry.         |

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev43                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.3                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f EM} {f structures} \ (\#{f Entries})$ |  |  |
|-----------------------|----------------------------------------------------------------------|-------------------------------------------|--|--|
| Clashscore            | 158937                                                               | 4297                                      |  |  |
| Ramachandran outliers | 154571                                                               | 4023                                      |  |  |
| Sidechain outliers    | 154315                                                               | 3826                                      |  |  |
| RNA backbone          | 4643                                                                 | 859                                       |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |   |
|-----|-------|--------|------------------|---|
| 1   | a     | 1526   | 74% 25%          | • |
| 2   | b     | 239    | 97%              | · |
| 3   | с     | 205    | 100%             |   |
| 4   | d     | 205    | 99%              | • |
| 5   | е     | 156    | 98%              | • |
| 6   | f     | 105    | 99%              | • |
| 7   | g     | 154    | 99%              | • |



| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
| 8   | h     | 129    | 100%             |
| 9   | i     | 126    | 98% •            |
| 10  | j     | 96     | •<br>96% •       |
| 11  | k     | 115    | 100%             |
| 12  | 1     | 121    | 97% •            |
| 13  | m     | 110    | 96% •            |
| 14  | n     | 98     | 100%             |
| 15  | 0     | 86     | 100%             |
| 16  | р     | 78     | 100%             |
| 17  | q     | 76     | 96% •            |
| 18  | r     | 71     | 97% .            |
| 19  | s     | 80     | 99% .            |
| 20  | t     | 85     | 99%              |
| 21  | u     | 63     | 97% ••           |



# 2 Entry composition (i)

There are 21 unique types of molecules in this entry. The entry contains 51429 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S ribosomal RNA.

| Mol | Chain | Residues |                | I          | AltConf   | Trace      |           |   |   |
|-----|-------|----------|----------------|------------|-----------|------------|-----------|---|---|
| 1   | a     | 1526     | Total<br>32744 | C<br>14606 | N<br>6011 | O<br>10602 | Р<br>1525 | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference     |
|-------|---------|----------|--------|----------|---------------|
| a     | 72      | А        | G      | conflict | GB 1353913695 |

• Molecule 2 is a protein called 30S ribosomal protein S2.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 2   | b     | 234      | Total<br>1822 | C<br>1145 | N<br>329 | O<br>338 | S<br>10 | 0 | 0 |

• Molecule 3 is a protein called 30S ribosomal protein S3.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |            |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|------------|---|---|
| 3   | С     | 205      | Total<br>1627 | C<br>1028 | N<br>307 | 0<br>287 | ${f S}{5}$ | 0 | 0 |

• Molecule 4 is a protein called 30S ribosomal protein S4.

| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 4   | d     | 205      | Total<br>1603 | C<br>991 | N<br>311 | O<br>296 | $\frac{S}{5}$ | 0       | 0     |

• Molecule 5 is a protein called 30S ribosomal protein S5.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 5   | е     | 156      | Total<br>1145 | C<br>720 | N<br>209 | O<br>210 | S<br>6 | 0 | 0 |

• Molecule 6 is a protein called 30S ribosomal protein S6.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---|---|
| 6   | f     | 105      | Total<br>853 | C<br>531 | N<br>158 | O<br>159 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 7 is a protein called 30S ribosomal protein S7.

| Mol | Chain | Residues |       | At  | oms | AltConf | Trace |   |   |
|-----|-------|----------|-------|-----|-----|---------|-------|---|---|
| 7   | ď     | 154      | Total | С   | Ν   | Ο       | S     | 0 | 0 |
|     | g     | 104      | 1190  | 747 | 227 | 211     | 5     | 0 | 0 |

• Molecule 8 is a protein called 30S ribosomal protein S8.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 8   | h     | 129      | Total<br>982 | C<br>618 | N<br>173 | 0<br>185 | S<br>6 | 0 | 0 |

• Molecule 9 is a protein called 30S ribosomal protein S9.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 9   | i     | 126      | Total<br>994 | C<br>616 | N<br>198 | O<br>179 | S<br>1 | 0       | 0     |

• Molecule 10 is a protein called 30S ribosomal protein S10.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 10  | j     | 96       | Total<br>765 | C<br>479 | N<br>143 | 0<br>142 | S<br>1 | 0 | 0 |

• Molecule 11 is a protein called 30S ribosomal protein S11.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 11  | k     | 115      | Total<br>838 | C<br>517 | N<br>163 | 0<br>156 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 12 is a protein called 30S ribosomal protein S12.

| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 12  | 1     | 121      | Total<br>949 | C<br>582 | N<br>196 | 0<br>167 | ${S \atop 4}$ | 0       | 0     |

• Molecule 13 is a protein called 30S ribosomal protein S13.



| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 13  | m     | 110      | Total<br>859 | C<br>524 | N<br>174 | O<br>157 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 14 is a protein called 30S ribosomal protein S14.

| Mol | Chain | Residues |              | At                                               | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|-----------------|---|---|
| 14  | n     | 98       | Total<br>778 | $\begin{array}{c} \mathrm{C} \\ 479 \end{array}$ | N<br>163 | O<br>133 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 15 is a protein called 30S ribosomal protein S15.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 15  | О     | 86       | Total<br>686 | C<br>425 | N<br>134 | 0<br>126 | S<br>1 | 0 | 0 |

• Molecule 16 is a protein called 30S ribosomal protein S16.

| Mol | Chain | Residues |       | Ato | ms  |     | AltConf                                 | Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-------|----------|-------|-----|-----|-----|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | р     | 78       | Total | С   | N   | 0   | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | г     |          | 610   | 381 | 121 | 108 | , i i i i i i i i i i i i i i i i i i i | , in the second s |

• Molecule 17 is a protein called 30S ribosomal protein S17.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace                                                   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------------------------------------------------|---|---|
| 17  | q     | 76       | Total<br>619 | C<br>387 | N<br>120 | 0<br>110 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0 | 0 |

• Molecule 18 is a protein called 30S ribosomal protein S18.

| Mol | Chain | Residues |              | Ate                                              | oms      |         |        | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|---------|--------|---------|-------|
| 18  | r     | 71       | Total<br>556 | $\begin{array}{c} \mathrm{C} \\ 355 \end{array}$ | N<br>103 | O<br>97 | S<br>1 | 0       | 0     |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference      |
|-------|---------|----------|--------|----------|----------------|
| r     | 9       | ARG      | LYS    | conflict | UNP A0A2V3DLV3 |

• Molecule 19 is a protein called 30S ribosomal protein S19.



| Mol | Chain | Residues | Atoms        |                                                  |          |          | AltConf         | Trace |   |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|-----------------|-------|---|
| 19  | s     | 80       | Total<br>635 | $\begin{array}{c} \mathrm{C} \\ 405 \end{array}$ | N<br>121 | O<br>106 | ${ m S} { m 3}$ | 0     | 0 |

• Molecule 20 is a protein called 30S ribosomal protein S20.

| Mol | Chain | Residues | Atoms        |          |          |          |                                                         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------------------------------------------------|---------|-------|
| 20  | t     | 85       | Total<br>655 | C<br>404 | N<br>135 | 0<br>114 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

• Molecule 21 is a protein called 30S ribosomal protein S21.

| Mol | Chain | Residues | Atoms        |          |          |         | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|----------|---------|---------|-------|---|
| 21  | u     | 62       | Total<br>519 | C<br>320 | N<br>112 | O<br>86 | S<br>1  | 0     | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment                   | Reference      |
|-------|---------|----------|--------|---------------------------|----------------|
| u     | 28      | ALA      | VAL    | $\operatorname{conflict}$ | UNP A0A069QC99 |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S ribosomal RNA





| C1377<br>C1388<br>C1388<br>C1388<br>C1388<br>C1388<br>C1388<br>C1387<br>C1387<br>C1387<br>C1387<br>C1387<br>C1387<br>C1387<br>C1387<br>C1478<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>A1446<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1448<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C14888<br>C1488<br>C1488<br>C1488<br>C14888<br>C1488<br>C1488<br>C1488<br>C1488<br>C1488<br>C148 |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| • Molecule 2: 30S ribosomal protein S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '                                    |
| Chain b: 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| q3         43           R7         8           R35         461           R36         461           R36         461           R36         4120           R3121         4122           Q122         4123           A29         4226           Q205         4226           A228         4228           A233         4232           P167         4233           P167         4233           P167         4233           P167         4233           P167         4233           P167         4233           P1633         9233           P233         9233           P233         9233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •∠30<br>E237<br>E238<br>A239<br>P240 |
| • Molecule 3: 30S ribosomal protein S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Chain c: 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                    |
| There are no outlier residues recorded for this chain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| • Molecule 4: 30S ribosomal protein S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Chain d: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                    |
| A2<br>R62<br>W206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| $\bullet$ Molecule 5: 30S ribosomal protein S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
| Chain e: 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| 011<br>K27<br>N133<br>A158<br>↓166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| • Molecule 6: 30S ribosomal protein S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Chain f: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| $\bullet$ Molecule 7: 30S ribosomal protein S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
| Chain g: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                    |
| R3<br>R5<br>R5<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R5<br>R1<br>R1<br>R5<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| • Molecule 8: 30S ribosomal protein S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Chain h: 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                    |



There are no outlier residues recorded for this chain.

• Molecule 9: 30S ribosomal protein S9

Chain i: 98% • Molecule 10: 30S ribosomal protein S10 Chain j: 96% • Molecule 11: 30S ribosomal protein S11 Chain k: 100% There are no outlier residues recorded for this chain. • Molecule 12: 30S ribosomal protein S12 Chain l: 97% • Molecule 13: 30S ribosomal protein S13 Chain m: 96% N4C • Molecule 14: 30S ribosomal protein S14 Chain n: 100% There are no outlier residues recorded for this chain. • Molecule 15: 30S ribosomal protein S15 Chain o: 100% There are no outlier residues recorded for this chain. • Molecule 16: 30S ribosomal protein S16 Chain p: 100%



There are no outlier residues recorded for this chain.

• Molecule 17: 30S ribosomal protein S17

| Chain q:                                           | 96% • |
|----------------------------------------------------|-------|
| R R R R R R R R R R R R R R R R R R R              |       |
| • Molecule 18: 30S ribosomal protein S             | 518   |
| Chain r:                                           | 97% . |
| F4<br>R8<br>R8<br>R8<br>H7 4                       |       |
| • Molecule 19: 30S ribosomal protein S             | 519   |
| Chain s:                                           | 99% . |
| <b>R</b><br>88<br>1<br>88<br>1<br>88               |       |
| • Molecule 20: 30S ribosomal protein S             | 520   |
| Chain t:                                           | 99%   |
|                                                    |       |
| • Molecule 21: 30S ribosomal protein S             | 521   |
| Chain u:                                           | 97%   |
| K4<br>E7<br>ASN<br>E10<br>R65<br>R65<br>R65<br>R65 |       |



# 4 Experimental information (i)

| Property                           | Value                       | Source    |
|------------------------------------|-----------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE             | Depositor |
| Imposed symmetry                   | POINT, C1                   | Depositor |
| Number of particles used           | 128795                      | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF           | Depositor |
| CTF correction method              | NONE                        | Depositor |
| Microscope                         | FEI TITAN KRIOS             | Depositor |
| Voltage (kV)                       | 300                         | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 1.0                         | Depositor |
| Minimum defocus (nm)               | Not provided                |           |
| Maximum defocus (nm)               | Not provided                |           |
| Magnification                      | Not provided                |           |
| Image detector                     | FEI FALCON II $(4k \ge 4k)$ | Depositor |
| Maximum map value                  | 0.351                       | Depositor |
| Minimum map value                  | -0.120                      | Depositor |
| Average map value                  | 0.001                       | Depositor |
| Map value standard deviation       | 0.008                       | Depositor |
| Recommended contour level          | 0.028                       | Depositor |
| Map size (Å)                       | 440.0, 440.0, 440.0         | wwPDB     |
| Map dimensions                     | 400, 400, 400               | wwPDB     |
| Map angles $(^{\circ})$            | 90.0, 90.0, 90.0            | wwPDB     |
| Pixel spacing (Å)                  | 1.1, 1.1, 1.1               | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |      | Bond | lengths  | Bond angles |                  |  |  |
|-----------|------|------|----------|-------------|------------------|--|--|
|           | Unam | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5         |  |  |
| 1         | a    | 0.86 | 0/36667  | 1.02        | 112/57202~(0.2%) |  |  |
| 2         | b    | 0.30 | 0/1850   | 0.53        | 0/2486           |  |  |
| 3         | с    | 0.36 | 0/1656   | 0.58        | 0/2232           |  |  |
| 4         | d    | 0.40 | 0/1622   | 0.55        | 0/2171           |  |  |
| 5         | е    | 0.44 | 0/1159   | 0.63        | 0/1559           |  |  |
| 6         | f    | 0.38 | 0/867    | 0.53        | 0/1167           |  |  |
| 7         | g    | 0.30 | 0/1207   | 0.52        | 0/1616           |  |  |
| 8         | h    | 0.42 | 0/993    | 0.54        | 0/1332           |  |  |
| 9         | i    | 0.36 | 0/1006   | 0.57        | 0/1347           |  |  |
| 10        | j    | 0.35 | 0/775    | 0.58        | 1/1046~(0.1%)    |  |  |
| 11        | k    | 0.36 | 0/854    | 0.51        | 0/1159           |  |  |
| 12        | 1    | 0.42 | 0/963    | 0.65        | 2/1292~(0.2%)    |  |  |
| 13        | m    | 0.29 | 0/867    | 0.54        | 0/1165           |  |  |
| 14        | n    | 0.35 | 0/788    | 0.53        | 0/1048           |  |  |
| 15        | 0    | 0.37 | 0/693    | 0.50        | 0/926            |  |  |
| 16        | р    | 0.46 | 0/621    | 0.57        | 0/837            |  |  |
| 17        | q    | 0.44 | 0/627    | 0.59        | 0/844            |  |  |
| 18        | r    | 0.40 | 0/566    | 0.55        | 0/763            |  |  |
| 19        | s    | 0.30 | 0/649    | 0.54        | 0/874            |  |  |
| 20        | t    | 0.35 | 0/662    | 0.50        | 0/881            |  |  |
| 21        | u    | 0.35 | 0/524    | 0.48        | 0/689            |  |  |
| All       | All  | 0.73 | 0/55616  | 0.90        | 115/82636~(0.1%) |  |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 10  | j     | 0                   | 1                   |

There are no bond length outliers.

All (115) bond angle outliers are listed below:



| Mol | Chain | Res  | Type | Atoms      | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------|-------|---------------------------|---------------|
| 1   | a     | 104  | С    | C2-N1-C1'  | 9.77  | 129.54                    | 118.80        |
| 1   | a     | 975  | U    | N1-C2-O2   | 8.85  | 129.00                    | 122.80        |
| 1   | a     | 806  | G    | N3-C4-N9   | 8.75  | 131.25                    | 126.00        |
| 1   | a     | 203  | U    | C2-N1-C1'  | 8.73  | 128.17                    | 117.70        |
| 1   | a     | 975  | U    | N3-C2-O2   | -8.67 | 116.13                    | 122.20        |
| 1   | a     | 203  | U    | N1-C2-O2   | 8.52  | 128.76                    | 122.80        |
| 1   | a     | 203  | U    | N3-C2-O2   | -8.51 | 116.25                    | 122.20        |
| 1   | a     | 806  | G    | N3-C4-C5   | -8.25 | 124.47                    | 128.60        |
| 1   | a     | 104  | С    | C6-N1-C2   | -7.76 | 117.20                    | 120.30        |
| 1   | a     | 6    | G    | C4-N9-C1'  | 7.39  | 136.11                    | 126.50        |
| 1   | a     | 6    | G    | N3-C4-N9   | 7.31  | 130.38                    | 126.00        |
| 1   | а     | 975  | U    | C2-N1-C1'  | 7.18  | 126.31                    | 117.70        |
| 1   | a     | 266  | С    | C5-C6-N1   | 7.16  | 124.58                    | 121.00        |
| 1   | a     | 130  | С    | N3-C2-O2   | -7.10 | 116.93                    | 121.90        |
| 1   | a     | 104  | С    | N3-C2-O2   | -7.10 | 116.93                    | 121.90        |
| 1   | a     | 130  | С    | N1-C2-O2   | 7.02  | 123.11                    | 118.90        |
| 1   | a     | 6    | G    | N3-C4-C5   | -7.01 | 125.09                    | 128.60        |
| 1   | a     | 266  | С    | C6-N1-C2   | -7.01 | 117.50                    | 120.30        |
| 12  | 1     | 24   | LEU  | CA-CB-CG   | 6.96  | 131.30                    | 115.30        |
| 1   | a     | 963  | А    | P-O3'-C3'  | 6.88  | 127.96                    | 119.70        |
| 1   | a     | 130  | С    | C6-N1-C2   | -6.81 | 117.58                    | 120.30        |
| 1   | a     | 806  | G    | C2-N3-C4   | 6.70  | 115.25                    | 111.90        |
| 1   | a     | 987  | G    | C4-N9-C1'  | 6.64  | 135.13                    | 126.50        |
| 1   | a     | 104  | С    | N1-C2-O2   | 6.60  | 122.86                    | 118.90        |
| 1   | a     | 1250 | U    | N3-C2-O2   | -6.60 | 117.58                    | 122.20        |
| 1   | a     | 1195 | А    | P-O3'-C3'  | 6.56  | 127.57                    | 119.70        |
| 1   | a     | 6    | G    | C8-N9-C1'  | -6.47 | 118.59                    | 127.00        |
| 1   | a     | 319  | А    | C2-N3-C4   | 6.45  | 113.83                    | 110.60        |
| 1   | a     | 759  | G    | C6-C5-N7   | -6.45 | 126.53                    | 130.40        |
| 1   | a     | 963  | А    | OP1-P-O3'  | 6.44  | 119.37                    | 105.20        |
| 1   | a     | 176  | С    | N1-C2-O2   | 6.44  | 122.76                    | 118.90        |
| 1   | a     | 1341 | G    | P-O3'-C3'  | 6.36  | 127.34                    | 119.70        |
| 1   | a     | 383  | А    | N1-C6-N6   | 6.36  | 122.42                    | 118.60        |
| 1   | a     | 104  | С    | C6-N1-C1'  | -6.28 | 113.26                    | 120.80        |
| 1   | a     | 1308 | С    | N1-C2-O2   | 6.27  | 122.66                    | 118.90        |
| 1   | a     | 984  | С    | N1-C2-O2   | 6.25  | 122.65                    | 118.90        |
| 1   | a     | 585  | С    | N1-C2-O2   | 6.22  | 122.63                    | 118.90        |
| 1   | a     | 4    | С    | C6-N1-C2   | -6.07 | 117.87                    | 120.30        |
| 1   | a     | 759  | G    | C8-N9-C4   | -6.03 | 103.99                    | 106.40        |
| 1   | a     | 987  | G    | N3-C4-N9   | 6.03  | 129.62                    | 126.00        |
| 1   | a     | 370  | G    | O4'-C1'-N9 | 6.00  | 113.00                    | 108.20        |
| 1   | a     | 893  | С    | P-O3'-C3'  | 5.95  | 126.84                    | 119.70        |
| 1   | a     | 319  | А    | N3-C4-C5   | -5.93 | 122.65                    | 126.80        |



| Mol | Chain | Res  | Type | Atoms                  | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------------------|-------|------------------|---------------|
| 1   | a     | 954  | U    | P-O3'-C3'              | 5.92  | 126.80           | 119.70        |
| 1   | a     | 1250 | U    | C2-N1-C1'              | 5.90  | 124.78           | 117.70        |
| 1   | a     | 617  | С    | C6-N1-C2               | -5.90 | 117.94           | 120.30        |
| 1   | a     | 851  | С    | N1-C2-O2               | 5.89  | 122.43           | 118.90        |
| 1   | a     | 1250 | U    | N1-C2-O2               | 5.87  | 126.91           | 122.80        |
| 1   | a     | 759  | G    | N3-C4-C5               | -5.87 | 125.67           | 128.60        |
| 1   | a     | 748  | С    | C2-N1-C1'              | 5.86  | 125.25           | 118.80        |
| 1   | a     | 65   | А    | C2-N3-C4               | 5.85  | 113.53           | 110.60        |
| 1   | a     | 347  | А    | O4'-C1'-N9             | 5.84  | 112.88           | 108.20        |
| 1   | a     | 924  | С    | C6-N1-C2               | -5.84 | 117.97           | 120.30        |
| 1   | a     | 987  | G    | C8-N9-C1'              | -5.79 | 119.48           | 127.00        |
| 1   | a     | 370  | G    | C8-N9-C4               | -5.77 | 104.09           | 106.40        |
| 1   | a     | 265  | С    | OP1-P-O3'              | 5.76  | 117.87           | 105.20        |
| 1   | a     | 976  | U    | N3-C2-O2               | -5.72 | 118.19           | 122.20        |
| 1   | a     | 100  | С    | C6-N1-C2               | -5.70 | 118.02           | 120.30        |
| 1   | a     | 319  | А    | C4-N9-C1'              | 5.68  | 136.53           | 126.30        |
| 1   | a     | 322  | С    | P-O3'-C3'              | 5.66  | 126.49           | 119.70        |
| 1   | a     | 806  | G    | C5-C6-N1               | 5.65  | 114.32           | 111.50        |
| 1   | a     | 512  | С    | P-O3'-C3'              | 5.63  | 126.45           | 119.70        |
| 1   | a     | 349  | С    | C6-N1-C2               | -5.60 | 118.06           | 120.30        |
| 1   | a     | 976  | U    | P-O3'-C3'              | 5.60  | 126.42           | 119.70        |
| 1   | a     | 837  | U    | C2-N1-C1'              | 5.58  | 124.40           | 117.70        |
| 1   | a     | 1233 | А    | P-O3'-C3'              | 5.58  | 126.40           | 119.70        |
| 1   | a     | 956  | С    | C6-N1-C2               | -5.55 | 118.08           | 120.30        |
| 1   | a     | 1377 | С    | N1-C2-O2               | 5.54  | 122.22           | 118.90        |
| 1   | a     | 319  | А    | N3-C4-N9               | 5.54  | 131.83           | 127.40        |
| 1   | a     | 1024 | U    | C2-N1-C1'              | 5.50  | 124.30           | 117.70        |
| 1   | a     | 348  | G    | C4-N9-C1'              | 5.49  | 133.64           | 126.50        |
| 1   | a     | 617  | С    | C5-C6-N1               | 5.47  | 123.74           | 121.00        |
| 1   | a     | 204  | С    | C2-N1-C1'              | 5.46  | 124.81           | 118.80        |
| 1   | a     | 265  | С    | P-O3'-C3'              | 5.45  | 126.24           | 119.70        |
| 1   | a     | 203  | U    | C6-N1-C1'              | -5.44 | 113.58           | 121.20        |
| 1   | a     | 311  | U    | N3-C2-O2               | -5.43 | 118.40           | 122.20        |
| 1   | a     | 359  | U    | C2-N1-C1'              | 5.42  | 124.21           | 117.70        |
| 1   | a     | 829  | G    | O4'-C1'-N9             | 5.42  | 112.53           | 108.20        |
| 1   | a     | 18   | C    | C6-N1-C2               | -5.39 | 118.14           | 120.30        |
| 1   | a     | 467  | G    | O4'-C1'-N9             | 5.39  | 112.51           | 108.20        |
| 1   | a     | 176  | C    | C2-N1-C1'              | 5.37  | 124.71           | 118.80        |
| 1   | a     | 1308 | C    | N3-C2-O2               | -5.36 | 118.15           | 121.90        |
| 1   | a     | 987  | G    | N3-C4-C5               | -5.36 | 125.92           | 128.60        |
| 1   | a     | 1316 | C    | $C2-N1-\overline{C1'}$ | 5.35  | 124.69           | 118.80        |
| 1   | a     | 585  | С    | C6-N1-C2               | -5.33 | 118.17           | 120.30        |



| Mol | Chain | Res  | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------|-------|------------------|---------------|
| 1   | a     | 930  | С    | N1-C2-O2   | 5.33  | 122.10           | 118.90        |
| 1   | a     | 1266 | U    | N1-C2-O2   | 5.33  | 126.53           | 122.80        |
| 1   | a     | 102  | G    | C4-C5-N7   | 5.32  | 112.93           | 110.80        |
| 1   | a     | 1357 | A    | C4-N9-C1'  | 5.31  | 135.86           | 126.30        |
| 1   | a     | 661  | G    | C4-N9-C1'  | 5.30  | 133.38           | 126.50        |
| 1   | a     | 319  | А    | N7-C8-N9   | 5.29  | 116.45           | 113.80        |
| 1   | a     | 1024 | U    | N1-C2-O2   | 5.29  | 126.50           | 122.80        |
| 1   | a     | 1523 | G    | C4-N9-C1'  | 5.27  | 133.36           | 126.50        |
| 1   | a     | 102  | G    | C4-N9-C1'  | 5.26  | 133.34           | 126.50        |
| 1   | a     | 260  | G    | P-O3'-C3'  | 5.24  | 125.98           | 119.70        |
| 1   | a     | 759  | G    | N3-C4-N9   | 5.23  | 129.14           | 126.00        |
| 1   | a     | 100  | С    | N1-C2-O2   | 5.20  | 122.02           | 118.90        |
| 1   | a     | 491  | U    | P-O3'-C3'  | 5.20  | 125.94           | 119.70        |
| 1   | a     | 104  | С    | O4'-C1'-N1 | 5.17  | 112.34           | 108.20        |
| 12  | 1     | 24   | LEU  | CB-CG-CD2  | -5.16 | 102.22           | 111.00        |
| 1   | a     | 585  | С    | C5-C6-N1   | 5.16  | 123.58           | 121.00        |
| 1   | a     | 956  | С    | C5-C6-N1   | 5.14  | 123.57           | 121.00        |
| 1   | a     | 319  | А    | C8-N9-C4   | -5.13 | 103.75           | 105.80        |
| 1   | a     | 851  | С    | N3-C2-O2   | -5.13 | 118.31           | 121.90        |
| 1   | a     | 311  | U    | N1-C2-O2   | 5.12  | 126.39           | 122.80        |
| 1   | a     | 130  | С    | C2-N1-C1'  | 5.12  | 124.43           | 118.80        |
| 1   | a     | 1075 | G    | C4-C5-N7   | 5.12  | 112.85           | 110.80        |
| 1   | a     | 118  | С    | C5-C6-N1   | 5.10  | 123.55           | 121.00        |
| 1   | a     | 806  | G    | C4-N9-C1'  | 5.10  | 133.13           | 126.50        |
| 1   | a     | 806  | G    | C8-N9-C1'  | -5.09 | 120.38           | 127.00        |
| 1   | a     | 104  | С    | C5-C6-N1   | 5.08  | 123.54           | 121.00        |
| 10  | j     | 92   | LEU  | CA-CB-CG   | 5.07  | 126.96           | 115.30        |
| 1   | a     | 984  | С    | N3-C2-O2   | -5.04 | 118.37           | 121.90        |
| 1   | a     | 102  | G    | C6-C5-N7   | -5.04 | 127.38           | 130.40        |
| 1   | a     | 828  | U    | N3-C2-O2   | -5.02 | 118.69           | 122.20        |

Continued from previous page...

There are no chirality outliers.

All (1) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 10  | j     | 56  | HIS  | Peptide |

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen



| Mol | Chain        | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|--------------|-------|----------|----------|---------|--------------|
| 1   | а            | 32744 | 0        | 16477    | 0       | 0            |
| 2   | b            | 1822  | 0        | 1847     | 0       | 0            |
| 3   | с            | 1627  | 0        | 1657     | 0       | 0            |
| 4   | d            | 1603  | 0        | 1624     | 0       | 0            |
| 5   | е            | 1145  | 0        | 1192     | 0       | 0            |
| 6   | f            | 853   | 0        | 828      | 0       | 0            |
| 7   | g            | 1190  | 0        | 1227     | 0       | 0            |
| 8   | h            | 982   | 0        | 1036     | 0       | 0            |
| 9   | i            | 994   | 0        | 1031     | 0       | 0            |
| 10  | j            | 765   | 0        | 801      | 0       | 0            |
| 11  | k            | 838   | 0        | 830      | 0       | 0            |
| 12  | 1            | 949   | 0        | 996      | 0       | 0            |
| 13  | m            | 859   | 0        | 898      | 0       | 0            |
| 14  | n            | 778   | 0        | 818      | 0       | 0            |
| 15  | 0            | 686   | 0        | 709      | 0       | 0            |
| 16  | р            | 610   | 0        | 612      | 0       | 0            |
| 17  | q            | 619   | 0        | 659      | 0       | 0            |
| 18  | r            | 556   | 0        | 556      | 0       | 0            |
| 19  | s            | 635   | 0        | 662      | 0       | 0            |
| 20  | $\mathbf{t}$ | 655   | 0        | 699      | 0       | 0            |
| 21  | u            | 519   | 0        | 551      | 0       | 0            |
| All | All          | 51429 | 0        | 35710    | 0       | 0            |

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 2   | b     | 230/239~(96%)   | 211 (92%)  | 19 (8%)  | 0        | 100   | 100    |
| 3   | с     | 203/205~(99%)   | 179 (88%)  | 24 (12%) | 0        | 100   | 100    |
| 4   | d     | 203/205~(99%)   | 185 (91%)  | 18 (9%)  | 0        | 100   | 100    |
| 5   | е     | 154/156~(99%)   | 132 (86%)  | 22 (14%) | 0        | 100   | 100    |
| 6   | f     | 103/105~(98%)   | 92 (89%)   | 11 (11%) | 0        | 100   | 100    |
| 7   | g     | 152/154~(99%)   | 141 (93%)  | 11 (7%)  | 0        | 100   | 100    |
| 8   | h     | 127/129~(98%)   | 117 (92%)  | 10 (8%)  | 0        | 100   | 100    |
| 9   | i     | 124/126~(98%)   | 119 (96%)  | 5 (4%)   | 0        | 100   | 100    |
| 10  | j     | 94/96~(98%)     | 85 (90%)   | 9 (10%)  | 0        | 100   | 100    |
| 11  | k     | 113/115 (98%)   | 103 (91%)  | 10 (9%)  | 0        | 100   | 100    |
| 12  | 1     | 119/121 (98%)   | 101 (85%)  | 18 (15%) | 0        | 100   | 100    |
| 13  | m     | 108/110 (98%)   | 100 (93%)  | 8 (7%)   | 0        | 100   | 100    |
| 14  | n     | 96/98~(98%)     | 91 (95%)   | 5 (5%)   | 0        | 100   | 100    |
| 15  | 0     | 84/86~(98%)     | 81 (96%)   | 3 (4%)   | 0        | 100   | 100    |
| 16  | р     | 76/78~(97%)     | 70 (92%)   | 6 (8%)   | 0        | 100   | 100    |
| 17  | q     | 74/76~(97%)     | 69~(93%)   | 5 (7%)   | 0        | 100   | 100    |
| 18  | r     | 69/71~(97%)     | 65~(94%)   | 4 (6%)   | 0        | 100   | 100    |
| 19  | S     | 78/80~(98%)     | 71 (91%)   | 7 (9%)   | 0        | 100   | 100    |
| 20  | t     | 83/85~(98%)     | 81 (98%)   | 2 (2%)   | 0        | 100   | 100    |
| 21  | u     | 58/63~(92%)     | 57 (98%)   | 1 (2%)   | 0        | 100   | 100    |
| All | All   | 2348/2398 (98%) | 2150 (92%) | 198 (8%) | 0        | 100   | 100    |

There are no Ramachandran outliers to report.

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric  | Outliers | Percentiles |
|-----|-------|---------------|------------|----------|-------------|
| 2   | b     | 191/197~(97%) | 190 (100%) | 1 (0%)   | 88 95       |



| Mol | Chain | Analysed                   | Rotameric  | Outliers | Perce | entiles |
|-----|-------|----------------------------|------------|----------|-------|---------|
| 3   | с     | 165/171~(96%)              | 165 (100%) | 0        | 100   | 100     |
| 4   | d     | 166/173~(96%)              | 164 (99%)  | 2(1%)    | 71    | 87      |
| 5   | е     | 114/115~(99%)              | 111 (97%)  | 3(3%)    | 46    | 74      |
| 6   | f     | 88/90~(98%)                | 87~(99%)   | 1 (1%)   | 73    | 88      |
| 7   | g     | 116/120~(97%)              | 114 (98%)  | 2 (2%)   | 60    | 82      |
| 8   | h     | 108/108~(100%)             | 108 (100%) | 0        | 100   | 100     |
| 9   | i     | 102/102~(100%)             | 99~(97%)   | 3 (3%)   | 42    | 72      |
| 10  | j     | 85/85~(100%)               | 83 (98%)   | 2 (2%)   | 49    | 75      |
| 11  | k     | 84/87~(97%)                | 84 (100%)  | 0        | 100   | 100     |
| 12  | 1     | 105/105~(100%)             | 102 (97%)  | 3 (3%)   | 42    | 72      |
| 13  | m     | 92/92~(100%)               | 88 (96%)   | 4 (4%)   | 29    | 63      |
| 14  | n     | 78/80~(98%)                | 78 (100%)  | 0        | 100   | 100     |
| 15  | 0     | 73/73~(100%)               | 73 (100%)  | 0        | 100   | 100     |
| 16  | р     | 61/63~(97%)                | 61 (100%)  | 0        | 100   | 100     |
| 17  | q     | 70/70~(100%)               | 67~(96%)   | 3 (4%)   | 29    | 63      |
| 18  | r     | 54/61~(88%)                | 52~(96%)   | 2(4%)    | 34    | 66      |
| 19  | s     | 69/71~(97%)                | 68~(99%)   | 1 (1%)   | 67    | 85      |
| 20  | t     | $\overline{67/68}\ (98\%)$ | 66 (98%)   | 1 (2%)   | 65    | 84      |
| 21  | u     | 51/52~(98%)                | 50 (98%)   | 1 (2%)   | 55    | 79      |
| All | All   | 1939/1983 (98%)            | 1910 (98%) | 29 (2%)  | 66    | 84      |

All (29) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | b     | 86  | ARG  |
| 4   | d     | 26  | ARG  |
| 4   | d     | 62  | ARG  |
| 5   | е     | 27  | LYS  |
| 5   | е     | 133 | ASN  |
| 5   | е     | 158 | ARG  |
| 6   | f     | 9   | LEU  |
| 7   | g     | 5   | ARG  |
| 7   | g     | 148 | ASN  |
| 9   | i     | 12  | ARG  |
| 9   | i     | 41  | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 9   | i     | 106 | ARG  |
| 10  | j     | 16  | ARG  |
| 10  | j     | 82  | LYS  |
| 12  | l     | 14  | ARG  |
| 12  | l     | 15  | MET  |
| 12  | l     | 114 | ARG  |
| 13  | m     | 27  | ARG  |
| 13  | m     | 40  | ASN  |
| 13  | m     | 105 | ASN  |
| 13  | m     | 109 | ARG  |
| 17  | q     | 54  | ASN  |
| 17  | q     | 65  | ARG  |
| 17  | q     | 68  | ARG  |
| 18  | r     | 6   | ARG  |
| 18  | r     | 8   | ARG  |
| 19  | S     | 29  | LYS  |
| 20  | t     | 27  | MET  |
| 21  | u     | 45  | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | b     | 24  | ASN  |
| 3   | с     | 6   | HIS  |
| 4   | d     | 100 | ASN  |
| 5   | е     | 123 | ASN  |
| 5   | е     | 133 | ASN  |
| 6   | f     | 14  | GLN  |
| 6   | f     | 81  | ASN  |
| 11  | k     | 22  | HIS  |
| 11  | k     | 81  | ASN  |
| 12  | 1     | 72  | HIS  |
| 13  | m     | 40  | ASN  |
| 13  | m     | 58  | ASN  |
| 13  | m     | 91  | HIS  |
| 13  | m     | 105 | ASN  |
| 14  | n     | 8   | ASN  |
| 14  | n     | 45  | GLN  |
| 15  | 0     | 13  | ASN  |
| 17  | q     | 34  | HIS  |
| 17  | q     | 54  | ASN  |
| 19  | s     | 26  | ASN  |



Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 19  | s     | 52  | HIS  |
| 19  | s     | 53  | ASN  |
| 20  | t     | 68  | HIS  |

### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 1   | a     | 1525/1526~(99%) | 365~(23%)         | 0               |

All (365) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 3   | А    |
| 1   | a     | 6   | G    |
| 1   | a     | 7   | А    |
| 1   | a     | 9   | G    |
| 1   | a     | 16  | А    |
| 1   | a     | 22  | G    |
| 1   | a     | 29  | U    |
| 1   | a     | 31  | G    |
| 1   | a     | 32  | А    |
| 1   | a     | 48  | С    |
| 1   | a     | 51  | А    |
| 1   | a     | 52  | С    |
| 1   | a     | 57  | G    |
| 1   | a     | 60  | А    |
| 1   | a     | 61  | G    |
| 1   | a     | 65  | А    |
| 1   | a     | 66  | G    |
| 1   | a     | 69  | G    |
| 1   | а     | 70  | А    |
| 1   | a     | 71  | U    |
| 1   | a     | 72  | A    |
| 1   | a     | 73  | А    |
| 1   | a     | 77  | G    |
| 1   | a     | 82  | U    |
| 1   | a     | 83  | G    |
| 1   | a     | 84  | С    |
| 1   | a     | 88  | U    |
| 1   | a     | 89  | G    |
| 1   | a     | 95  | А    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 98  | G    |
| 1   | a     | 100 | С    |
| 1   | a     | 106 | G    |
| 1   | a     | 115 | U    |
| 1   | a     | 118 | С    |
| 1   | a     | 121 | G    |
| 1   | a     | 123 | А    |
| 1   | a     | 124 | А    |
| 1   | a     | 125 | U    |
| 1   | a     | 133 | G    |
| 1   | a     | 135 | А    |
| 1   | a     | 138 | G    |
| 1   | a     | 139 | G    |
| 1   | a     | 143 | А    |
| 1   | a     | 148 | G    |
| 1   | a     | 157 | С    |
| 1   | a     | 176 | С    |
| 1   | a     | 177 | G    |
| 1   | a     | 178 | U    |
| 1   | a     | 179 | С    |
| 1   | a     | 182 | G    |
| 1   | a     | 191 | А    |
| 1   | a     | 192 | G    |
| 1   | a     | 193 | U    |
| 1   | a     | 204 | С    |
| 1   | a     | 205 | G    |
| 1   | a     | 206 | G    |
| 1   | a     | 222 | А    |
| 1   | a     | 231 | G    |
| 1   | a     | 239 | U    |
| 1   | a     | 241 | G    |
| 1   | a     | 244 | А    |
| 1   | a     | 253 | G    |
| 1   | a     | 256 | A    |
| 1   | a     | 260 | G    |
| 1   | a     | 261 | C    |
| 1   | a     | 265 | C    |
| 1   | a     | 266 | С    |
| 1   | a     | 273 | A    |
| 1   | a     | 275 | G    |
| 1   | a     | 281 | U    |
| 1   | a     | 283 | А    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 287 | G    |
| 1   | a     | 288 | U    |
| 1   | a     | 292 | А    |
| 1   | a     | 297 | A    |
| 1   | a     | 299 | G    |
| 1   | a     | 308 | С    |
| 1   | a     | 315 | А    |
| 1   | a     | 321 | A    |
| 1   | a     | 322 | С    |
| 1   | a     | 323 | А    |
| 1   | a     | 341 | G    |
| 1   | a     | 346 | С    |
| 1   | a     | 348 | G    |
| 1   | a     | 361 | U    |
| 1   | a     | 363 | G    |
| 1   | a     | 365 | A    |
| 1   | a     | 375 | А    |
| 1   | a     | 376 | А    |
| 1   | a     | 378 | G    |
| 1   | a     | 380 | С    |
| 1   | a     | 382 | G    |
| 1   | a     | 384 | U    |
| 1   | a     | 386 | C    |
| 1   | a     | 391 | А    |
| 1   | a     | 392 | U    |
| 1   | a     | 393 | G    |
| 1   | a     | 394 | С    |
| 1   | a     | 400 | G    |
| 1   | a     | 406 | A    |
| 1   | a     | 407 | G    |
| 1   | a     | 408 | A    |
| 1   | a     | 417 | G    |
| 1   | a     | 418 | G    |
| 1   | a     | 423 | U    |
| 1   | a     | 443 | G    |
| 1   | a     | 445 | A    |
| 1   | a     | 446 | A    |
| 1   | a     | 447 | G    |
| 1   | a     | 456 | G    |
| 1   | a     | 457 | U    |
| 1   | a     | 459 | A    |
| 1   | a     | 461 | U    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 475 | G    |
| 1   | a     | 478 | G    |
| 1   | a     | 480 | U    |
| 1   | a     | 490 | А    |
| 1   | a     | 491 | U    |
| 1   | a     | 492 | А    |
| 1   | a     | 493 | А    |
| 1   | a     | 494 | G    |
| 1   | a     | 502 | U    |
| 1   | a     | 505 | С    |
| 1   | a     | 507 | U    |
| 1   | a     | 511 | G    |
| 1   | a     | 512 | С    |
| 1   | a     | 513 | C    |
| 1   | a     | 515 | G    |
| 1   | a     | 521 | G    |
| 1   | a     | 526 | A    |
| 1   | a     | 527 | А    |
| 1   | a     | 539 | С    |
| 1   | a     | 540 | А    |
| 1   | a     | 541 | А    |
| 1   | a     | 542 | G    |
| 1   | a     | 543 | С    |
| 1   | a     | 545 | U    |
| 1   | a     | 549 | U    |
| 1   | a     | 553 | A    |
| 1   | a     | 556 | U    |
| 1   | a     | 557 | A    |
| 1   | a     | 562 | G    |
| 1   | a     | 566 | A    |
| 1   | a     | 567 | A    |
| 1   | a     | 569 | G    |
| 1   | a     | 570 | C    |
| 1   | a     | 571 | G    |
| 1   | a     | 573 | G    |
| 1   | a     | 582 | G    |
| 1   | a     | 585 | C    |
| 1   | a     | 591 | G    |
| 1   | a     | 601 | A    |
| 1   | a     | 609 | G    |
| 1   | a     | 616 | A    |
| 1   | a     | 627 | G    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 647 | А    |
| 1   | a     | 648 | G    |
| 1   | a     | 656 | U    |
| 1   | a     | 659 | А    |
| 1   | a     | 664 | G    |
| 1   | a     | 681 | А    |
| 1   | a     | 682 | G    |
| 1   | a     | 687 | G    |
| 1   | a     | 688 | А    |
| 1   | a     | 689 | A    |
| 1   | a     | 696 | А    |
| 1   | a     | 697 | G    |
| 1   | a     | 709 | A    |
| 1   | a     | 710 | A    |
| 1   | a     | 712 | А    |
| 1   | a     | 715 | A    |
| 1   | a     | 716 | G    |
| 1   | a     | 717 | U    |
| 1   | a     | 718 | G    |
| 1   | a     | 723 | А    |
| 1   | a     | 725 | G    |
| 1   | a     | 727 | G    |
| 1   | a     | 733 | С    |
| 1   | a     | 749 | А    |
| 1   | a     | 754 | G    |
| 1   | a     | 756 | U    |
| 1   | a     | 757 | G    |
| 1   | a     | 759 | G    |
| 1   | a     | 760 | A    |
| 1   | a     | 775 | A    |
| 1   | a     | 788 | A    |
| 1   | a     | 806 | G    |
| 1   | a     | 807 | U    |
| 1   | a     | 809 | A    |
| 1   | a     | 810 | A    |
| 1   | a     | 811 | C    |
| 1   | a     | 815 | G    |
| 1   | a     | 820 | C    |
| 1   | a     | 822 | A    |
| 1   | a     | 826 | G    |
| 1   | a     | 830 | G    |
| 1   | a     | 832 | A    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | a     | 835 | С    |
| 1   | a     | 836 | U    |
| 1   | a     | 838 | G    |
| 1   | a     | 840 | G    |
| 1   | a     | 845 | U    |
| 1   | a     | 854 | А    |
| 1   | a     | 858 | А    |
| 1   | a     | 861 | G    |
| 1   | a     | 863 | G    |
| 1   | a     | 865 | U    |
| 1   | a     | 866 | А    |
| 1   | a     | 867 | А    |
| 1   | a     | 879 | G    |
| 1   | a     | 883 | A    |
| 1   | a     | 884 | G    |
| 1   | a     | 887 | С    |
| 1   | a     | 894 | A    |
| 1   | a     | 896 | G    |
| 1   | a     | 916 | G    |
| 1   | a     | 921 | G    |
| 1   | a     | 928 | С    |
| 1   | a     | 929 | А    |
| 1   | a     | 932 | А    |
| 1   | a     | 936 | G    |
| 1   | a     | 939 | G    |
| 1   | a     | 954 | U    |
| 1   | a     | 955 | U    |
| 1   | a     | 956 | С    |
| 1   | a     | 960 | G    |
| 1   | a     | 963 | А    |
| 1   | a     | 964 | С    |
| 1   | a     | 965 | G    |
| 1   | a     | 967 | G    |
| 1   | a     | 968 | А    |
| 1   | a     | 969 | А    |
| 1   | a     | 970 | G    |
| 1   | a     | 971 | А    |
| 1   | a     | 977 | А    |
| 1   | a     | 981 | G    |
| 1   | a     | 988 | A    |
| 1   | a     | 990 | А    |
| 1   | a     | 997 | G    |



| Mol | Chain | Res               | Type |
|-----|-------|-------------------|------|
| 1   | a     | 998               | А    |
| 1   | a     | 1000              | С    |
| 1   | a     | 1002              | U    |
| 1   | a     | 1004              | С    |
| 1   | a     | 1009              | G    |
| 1   | a     | 1011              | U    |
| 1   | a     | 1015              | U    |
| 1   | a     | 1016              | U    |
| 1   | a     | 1017              | G    |
| 1   | a     | 1023              | U    |
| 1   | a     | 1025              | С    |
| 1   | a     | 1026              | G    |
| 1   | a     | 1027              | G    |
| 1   | a     | 1031              | C    |
| 1   | a     | 1039              | С    |
| 1   | a     | 1044              | G    |
| 1   | a     | 1049              | А    |
| 1   | a     | 1054              | U    |
| 1   | a     | 1058              | G    |
| 1   | a     | 1059              | U    |
| 1   | a     | 1075              | G    |
| 1   | a     | 1078              | G    |
| 1   | a     | 1079              | U    |
| 1   | a     | 1080              | U    |
| 1   | a     | 1086              | А    |
| 1   | a     | 1088              | G    |
| 1   | a     | 1089              | U    |
| 1   | a     | 1090              | С    |
| 1   | a     | 1095              | А    |
| 1   | a     | 1119              | U    |
| 1   | a     | 1120              | U    |
| 1   | a     | 1123              | С    |
| 1   | a     | 1124              | A    |
| 1   | a     | 1127              | А    |
| 1   | a     | 1130              | U    |
| 1   | a     | 1131              | С    |
| 1   | a     | 1132              | G    |
| 1   | a     | 1133              | G    |
| 1   | a     | $1\overline{1}37$ | G    |
| 1   | a     | 1141              | С    |
| 1   | a     | 1152              | С    |
| 1   | a     | 1153              | U    |



| Mol | Chain | Res               | Type |
|-----|-------|-------------------|------|
| 1   | a     | 1160              | G    |
| 1   | a     | 1162              | С    |
| 1   | a     | 1163              | А    |
| 1   | a     | 1164              | A    |
| 1   | a     | 1165              | A    |
| 1   | a     | 1168              | G    |
| 1   | a     | 1175              | G    |
| 1   | a     | 1176              | G    |
| 1   | a     | 1177              | U    |
| 1   | a     | 1178              | G    |
| 1   | a     | 1184              | G    |
| 1   | a     | 1190              | А    |
| 1   | a     | 1191              | А    |
| 1   | a     | 1196              | U    |
| 1   | a     | 1203              | С    |
| 1   | a     | 1214              | G    |
| 1   | a     | 1219              | А    |
| 1   | a     | 1221              | А    |
| 1   | a     | 1222              | С    |
| 1   | a     | 1226              | U    |
| 1   | a     | 1229              | U    |
| 1   | a     | 1230              | А    |
| 1   | a     | 1232              | А    |
| 1   | a     | 1234              | U    |
| 1   | a     | 1235              | G    |
| 1   | a     | 1241              | U    |
| 1   | a     | 1248              | G    |
| 1   | a     | 1250              | U    |
| 1   | a     | 1251              | U    |
| 1   | a     | 1252              | G    |
| 1   | a     | 1254              | С    |
| 1   | a     | 1264              | G    |
| 1   | a     | $127\overline{2}$ | U    |
| 1   | a     | 1273              | A    |
| 1   | a     | 1279              | A    |
| 1   | a     | 1281              | A    |
| 1   | a     | 1293              | A    |
| 1   | a     | 1294              | G    |
| 1   | a     | 1296              | C    |
| 1   | a     | 1297              | С    |
| 1   | a     | 1299              | G    |
| 1   | a     | 1314              | С    |



| Mol | Chain | Res               | Type |
|-----|-------|-------------------|------|
| 1   | a     | 1317              | G    |
| 1   | a     | 1330              | С    |
| 1   | a     | 1332              | G    |
| 1   | a     | 1334              | А    |
| 1   | a     | 1340              | А    |
| 1   | a     | 1341              | G    |
| 1   | a     | 1342              | U    |
| 1   | a     | 1347              | G    |
| 1   | a     | 1358              | U    |
| 1   | a     | 1372              | С    |
| 1   | a     | 1381              | G    |
| 1   | a     | 1383              | С    |
| 1   | a     | 1388              | А    |
| 1   | a     | 1391              | С    |
| 1   | a     | 1392              | А    |
| 1   | a     | 1395              | G    |
| 1   | a     | 1397              | С    |
| 1   | a     | 1413              | G    |
| 1   | a     | 1418              | U    |
| 1   | a     | 1419              | U    |
| 1   | a     | 1428              | А    |
| 1   | a     | 1434              | U    |
| 1   | a     | 1440              | А    |
| 1   | a     | 1445              | С    |
| 1   | a     | 1446              | А    |
| 1   | a     | 1448              | G    |
| 1   | a     | 1469              | G    |
| 1   | a     | 1473              | С    |
| 1   | a     | 1486              | А    |
| 1   | a     | 1487              | А    |
| 1   | a     | 1497              | A    |
| 1   | a     | 1498              | G    |
| 1   | a     | 1499              | G    |
| 1   | a     | 1500              | U    |
| 1   | a     | 1501              | A    |
| 1   | a     | 1511              | G    |
| 1   | a     | 1513              | А    |
| 1   | a     | 1514              | С    |
| 1   | a     | 1523              | G    |
| 1   | a     | 1524              | G    |
| 1   | a     | $15\overline{25}$ | A    |
| 1   | a     | 1526              | U    |



There are no RNA pucker outliers to report.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



#### 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10283. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

#### Orthogonal projections (i) 6.1

#### 6.1.1Primary map



The images above show the map projected in three orthogonal directions.

#### 6.2Central slices (i)

#### 6.2.1Primary map



X Index: 200

Y Index: 200



The images above show central slices of the map in three orthogonal directions.

### 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 228

Y Index: 188

Z Index: 271

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal surface views (i)

### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.028. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



## 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is  $853 \text{ nm}^3$ ; this corresponds to an approximate mass of 770 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.278  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10283 and PDB model 6SPE. Per-residue inclusion information can be found in section 3 on page 8.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.028 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.028).



## 9.4 Atom inclusion (i)



At the recommended contour level, 99% of all backbone atoms, 97% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.028) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| All   | 0.9670         | 0.4600  |
| a     | 0.9974         | 0.4700  |
| b     | 0.6865         | 0.3840  |
| С     | 0.9062         | 0.4390  |
| d     | 0.9606         | 0.4660  |
| е     | 0.9333         | 0.4690  |
| f     | 0.9156         | 0.4220  |
| g     | 0.9152         | 0.4020  |
| h     | 0.9491         | 0.4920  |
| i     | 0.9591         | 0.4150  |
| j     | 0.8954         | 0.4150  |
| k     | 0.9486         | 0.4670  |
| l     | 0.9266         | 0.4930  |
| m     | 0.9565         | 0.3770  |
| n     | 0.9411         | 0.4440  |
| 0     | 0.9595         | 0.4720  |
| р     | 0.9744         | 0.5090  |
| q     | 0.9532         | 0.4840  |
| r     | 0.9497         | 0.4530  |
| S     | 0.9549         | 0.4050  |
| t     | 0.9592         | 0.4780  |
| u     | 0.8462         | 0.4320  |

