

wwPDB X-ray Structure Validation Summary Report (i)

Mar 4, 2024 - 10:27 am GMT

PDB ID	:	8RKG
Title	:	Crystal structure of tetrameric collagenase-cleaved Xenopus ZP2-N2N3
		(cleaved xZP2-N2N3)
Authors	:	Nishio, S.; de Sanctis, D.; Jovine, L.
Deposited on	:	2023-12-25
Resolution	:	2.90 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	1957 (2.90-2.90)
Clashscore	141614	2172 (2.90-2.90)
Ramachandran outliers	138981	2115 (2.90-2.90)
Sidechain outliers	138945	2117 (2.90-2.90)
RSRZ outliers	127900	1906 (2.90-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of c	hain	
1	L	31	58%	19%	• 19%
1	М	31	58%	13%	29%
1	Ν	31	3% 65%	6%	29%
1	0	31	74%		13% • 10%
1	Р	31	3%		6% 19%

Mol Chain Length Quality of chain 3% Q 31 1 65% 10% 26% R 311 74% 6% 19% 1 \mathbf{S} 3181% 10% 10% 2188А 81% 9% 10% $\mathbf{2}$ В 18875% 14% 11% .% С 218880% 10% 10% 3% 2D 18877% 11% 13% .% Е 218880% 10% 10% • 2% F 218878% 11% 11% 3% \mathbf{G} 218876% 15% 10% .% 2Η 18871% 16% 13% Ι 23 50% 50% 3 J 2100% Κ 23 100%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 12316 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
1	т	25	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1		20	184	111	32	39	2	0	0	0
1	М	22	Total	С	Ν	0	S	0	0	0
	111		166	102	29	33	2	0	0	0
1	N	22	Total	С	Ν	0	S	0	0	0
1	11		166	102	29	33	2	0	0	0
1	0	20	Total	С	Ν	0	S	0	0	0
1	0	20	208	127	35	44	2	0	0	0
1	D	25	Total	С	Ν	0	S	0	0	0
1	1	20	189	114	32	41	2	0	0	0
1	0	02	Total	С	Ν	Ο	S	0	0	0
	Q	23	174	106	30	36	2	0	0	0
1	D	95	Total	С	Ν	0	S	0	0	0
	n	20	191	117	32	40	2	0	0	0
1	C	20	Total	С	Ν	Ο	S	0	0	0
	3	20	208	127	35	44	2		U	0

• Molecule 1 is a protein called XlZPA protein.

• Molecule 2 is a protein called XIZPA protein.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	Δ	170	Total	С	Ν	0	S	0	0	0
	Л	170	1337	853	227	251	6	0	0	0
9	В	168	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	D	100	1317	839	224	248	6	0	0	0
0	C	160	Total	С	Ν	Ο	S	0	0	0
	U	109	1333	851	226	250	6	0	0	0
0	Л	164	Total	С	Ν	0	S	0	0	0
	D	104	1292	826	217	243	6	0	0	0
9	F	170	Total	С	Ν	Ο	S	0	0	0
	Ľ	170	1337	853	227	251	6	0	0	0
9	F	168	Total	С	Ν	0	S	0	0	0
	T,	100	1324	846	225	247	6			U

001000	naca ji en	v proceso de pa	.ge							
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	С	170	Total	С	Ν	Ο	S	0	0	0
	G	170	1339	854	227	252	6	0	0	0
0	п	164	Total	С	Ν	0	\mathbf{S}	0	0	0
	11	104	1297	829	220	242	6			U

Continued from previous page...

There are 80 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	339	LEU	-	expression tag	UNP A1L3D9
А	340	GLU	-	expression tag	UNP A1L3D9
А	341	HIS	-	expression tag	UNP A1L3D9
А	342	HIS	-	expression tag	UNP A1L3D9
А	343	HIS	_	expression tag	UNP A1L3D9
А	344	HIS	-	expression tag	UNP A1L3D9
А	345	HIS	-	expression tag	UNP A1L3D9
А	346	HIS	-	expression tag	UNP A1L3D9
А	347	HIS	-	expression tag	UNP A1L3D9
А	348	HIS	-	expression tag	UNP A1L3D9
В	339	LEU	-	expression tag	UNP A1L3D9
В	340	GLU	-	expression tag	UNP A1L3D9
В	341	HIS	-	expression tag	UNP A1L3D9
В	342	HIS	-	expression tag	UNP A1L3D9
В	343	HIS	-	expression tag	UNP A1L3D9
В	344	HIS	-	expression tag	UNP A1L3D9
В	345	HIS	-	expression tag	UNP A1L3D9
В	346	HIS	-	expression tag	UNP A1L3D9
В	347	HIS	-	expression tag	UNP A1L3D9
В	348	HIS	-	expression tag	UNP A1L3D9
С	339	LEU	-	expression tag	UNP A1L3D9
С	340	GLU	_	expression tag	UNP A1L3D9
С	341	HIS	_	expression tag	UNP A1L3D9
С	342	HIS	-	expression tag	UNP A1L3D9
С	343	HIS	-	expression tag	UNP A1L3D9
С	344	HIS	-	expression tag	UNP A1L3D9
С	345	HIS	-	expression tag	UNP A1L3D9
С	346	HIS	-	expression tag	UNP A1L3D9
С	347	HIS	-	expression tag	UNP A1L3D9
С	348	HIS	-	expression tag	UNP A1L3D9
D	339	LEU	-	expression tag	UNP A1L3D9
D	340	GLU	-	expression tag	UNP A1L3D9
D	341	HIS	-	expression tag	UNP A1L3D9
D	342	HIS	-	expression tag	UNP A1L3D9

00.000.00	ji o ni pi o	ero de page			
Chain	Residue	Modelled	Actual	Comment	Reference
D	343	HIS	-	expression tag	UNP A1L3D9
D	344	HIS	-	expression tag	UNP A1L3D9
D	345	HIS	-	expression tag	UNP A1L3D9
D	346	HIS	-	expression tag	UNP A1L3D9
D	347	HIS	-	expression tag	UNP A1L3D9
D	348	HIS	-	expression tag	UNP A1L3D9
Е	339	LEU	-	expression tag	UNP A1L3D9
Е	340	GLU	-	expression tag	UNP A1L3D9
Е	341	HIS	-	expression tag	UNP A1L3D9
Е	342	HIS	-	expression tag	UNP A1L3D9
Е	343	HIS	-	expression tag	UNP A1L3D9
Е	344	HIS	-	expression tag	UNP A1L3D9
Е	345	HIS	-	expression tag	UNP A1L3D9
Е	346	HIS	-	expression tag	UNP A1L3D9
Е	347	HIS	-	expression tag	UNP A1L3D9
Е	348	HIS	-	expression tag	UNP A1L3D9
F	339	LEU	-	expression tag	UNP A1L3D9
F	340	GLU	-	expression tag	UNP A1L3D9
F	341	HIS	-	expression tag	UNP A1L3D9
F	342	HIS	-	expression tag	UNP A1L3D9
F	343	HIS	-	expression tag	UNP A1L3D9
F	344	HIS	-	expression tag	UNP A1L3D9
F	345	HIS	-	expression tag	UNP A1L3D9
F	346	HIS	-	expression tag	UNP A1L3D9
F	347	HIS	-	expression tag	UNP A1L3D9
F	348	HIS	-	expression tag	UNP A1L3D9
G	339	LEU	-	expression tag	UNP A1L3D9
G	340	GLU	-	expression tag	UNP A1L3D9
G	341	HIS	-	expression tag	UNP A1L3D9
G	342	HIS	-	expression tag	UNP A1L3D9
G	343	HIS	-	expression tag	UNP A1L3D9
G	344	HIS	-	expression tag	UNP A1L3D9
G	345	HIS	-	expression tag	UNP A1L3D9
G	346	HIS	-	expression tag	UNP A1L3D9
G	347	HIS	-	expression tag	UNP A1L3D9
G	348	HIS	-	expression tag	UNP A1L3D9
Н	339	LEU	-	expression tag	UNP A1L3D9
Н	340	GLU	-	expression tag	UNP A1L3D9
Н	341	HIS	-	expression tag	UNP A1L3D9
Н	342	HIS	-	expression tag	UNP A1L3D9
Н	343	HIS	-	expression tag	UNP A1L3D9
Н	344	HIS	-	expression tag	UNP A1L3D9

Continued from previous page...

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	I J

Chain	Residue	Modelled	Actual	Comment	Reference
Н	345	HIS	-	expression tag	UNP A1L3D9
Н	346	HIS	-	expression tag	UNP A1L3D9
Н	347	HIS	-	expression tag	UNP A1L3D9
Н	348	HIS	-	expression tag	UNP A1L3D9

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Ι	2	Total C N O 28 16 2 10	0	0	0
3	J	2	Total C N O 28 16 2 10	0	0	0
3	K	2	Total C N O 28 16 2 10	0	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
4	А	1	Total 14	C 8	N 1	O 5	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
4	В	1	Total	С	Ν	Ο	0	0
4	D	1	14	8	1	5	0	0
4	Л	1	Total	С	Ν	Ο	0	0
4	D	1	14	8	1	5	0	0
4	F	1	Total	С	Ν	Ο	0	0
4	Ľ	1	14	8	1	5	0	0
4	Ц	1	Total	С	Ν	0	0	0
4	11	I	14	8	1	5	0	0

• Molecule 5 is NITRATE ION (three-letter code: NO3) (formula: NO₃).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	TotalNO413	0	0
5	О	1	Total N O 4 1 3	0	0
5	Ε	1	$\begin{array}{ccc} \text{Total} & \text{N} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
5	G	1	$\begin{array}{ccc} \text{Total} & \text{N} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} & \text{N} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
5	Н	1	Total N O 4 1 3	0	0

• Molecule 6 is BICINE (three-letter code: BCN) (formula: $C_6H_{13}NO_4$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
6	С	1	Total 11	С 6	N 1	0 4	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	L	1	Total O 1 1	0	0
7	А	10	Total O 10 10	0	0
7	М	1	Total O 1 1	0	0
7	В	4	Total O 4 4	0	0
7	С	5	Total O 5 5	0	0
7	D	8	Total O 8 8	0	0
7	Р	1	Total O 1 1	0	0
7	Е	7	Total O 7 7	0	0
7	F	7	Total O 7 7	0	0
7	R	1	Total O 1 1	0	0
7	G	9	Total O 9 9	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	Н	11	Total O 11 11	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: XlZPA protein

<mark>S334</mark>

Chain Q:	65%	10%	26%
ASP GLU CLU CLU CLX SELX SELX C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C136 C139 C139 C139 C139 C139 C139 C139 C139	P157 GLU TLLE FRO		
• Molecule 1: XlZP	A protein		
Chain R:	74%	6%	19%
ASP BRO GLU GLV GLY SELY SELX SI35 L152 L153 PRO			
• Molecule 1: XlZP	A protein		
Chain S:	81%		10% 10%
ASP GLU 6133 6133 6133 6133 6133 6133 6133 1132 1152 1152 1152			
• Molecule 2: XlZP	'A protein		
Chain A:	81%		9% 10%
VAL ALA ALA ALA PRO F166 F172 F173 F174 G175 G175 G175 G176 T174 T177	R186 Y190 D224 L225 R226 R226 R235 S248 S248 S248 S253 S253 S253 S253 V325	P326 1329 CLY SER ASN LEU CLY FIS HIS HIS	HIS HIS HIS HIS HIS
• Molecule 2: XlZP	'A protein		
Chain B:	75%	14	11%
VAL ALA ALA ALA PALA PALA PALA PALA PALA	7190 (1911 (1912) (1912) (1992) (1993) (2009 (2009) (200) (2009)	L259 L259 T270 N271 1277 L277 L277 L278 S280 S281 S281	2283 L284 H287 H287 T305 V315 V315
C3335 CLY SER ASR ASR ASR ALY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU			
• Molecule 2: XlZP	A protein		
Chain C:	80%		10% 10%
VAL ALA ALA PRO SER F173 T174 M182 S194 S194	L1199 (2209 L210 N211 N211 N211 N211 N235 N235 N271 N271 N292 N295	R298 V313 L1314 L1314 1328 1329 3334 GLY	SER LASN ASN CLU CLU CLU CLU CLU HIS HIS HIS HIS
• Molecule 2: XlZP	A protein		
Chain D:	77%	1	1% 13%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	50%	50%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K: 100%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	88.21Å 70.31Å 149.86Å	Deperitor
a, b, c, α , β , γ	90.00° 90.04° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	38.00 - 2.90	Depositor
Resolution (A)	38.00 - 2.90	EDS
% Data completeness	99.1 (38.00-2.90)	Depositor
(in resolution range)	99.0 (38.00-2.90)	EDS
R _{merge}	0.23	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.29 (at 2.90 \text{\AA})$	Xtriage
Refinement program	PHENIX $1.19.2_{4158+SVN}$	Depositor
D D.	0.212 , 0.247	Depositor
Π, Π_{free}	0.213 , 0.235	DCC
R_{free} test set	1670 reflections (4.10%)	wwPDB-VP
Wilson B-factor $(Å^2)$	52.9	Xtriage
Anisotropy	0.218	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.37 , 40.2	EDS
L-test for twinning ²	$< L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	0.358 for h,-k,-l	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	12316	wwPDB-VP
Average B, all atoms $(Å^2)$	48.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.60% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, NO3, BCN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	L	0.29	0/185	0.58	0/249
1	М	0.25	0/167	0.60	0/225
1	N	0.29	0/167	0.58	0/225
1	0	0.31	0/210	0.59	0/284
1	Р	0.28	0/190	0.58	0/256
1	Q	0.28	0/175	0.59	0/236
1	R	0.28	0/192	0.58	0/259
1	S	0.28	0/210	0.57	0/284
2	А	0.32	0/1365	0.57	0/1852
2	В	0.33	0/1343	0.56	0/1821
2	С	0.30	0/1361	0.55	0/1847
2	D	0.31	0/1319	0.53	0/1790
2	Е	0.31	0/1365	0.55	0/1852
2	F	0.31	0/1351	0.53	0/1831
2	G	0.30	0/1367	0.53	0/1855
2	Н	0.31	0/1324	0.55	0/1796
All	All	0.31	0/12291	0.55	0/16662

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	L	184	0	182	6	0
1	М	166	0	170	6	0
1	Ν	166	0	170	3	0
1	0	208	0	206	5	0
1	Р	189	0	185	2	0
1	Q	174	0	174	4	0
1	R	191	0	191	2	0
1	S	208	0	206	2	0
2	А	1337	0	1325	14	0
2	В	1317	0	1307	18	0
2	С	1333	0	1322	15	0
2	D	1292	0	1275	13	0
2	Е	1337	0	1325	13	0
2	F	1324	0	1312	14	0
2	G	1339	0	1327	16	0
2	Н	1297	0	1280	21	0
3	Ι	28	0	25	3	0
3	J	28	0	25	0	0
3	Κ	28	0	25	0	0
4	А	14	0	13	1	0
4	В	14	0	13	0	0
4	D	14	0	13	1	0
4	Ε	14	0	13	0	0
4	Н	14	0	13	0	0
5	С	4	0	0	0	0
5	Ε	4	0	0	0	0
5	G	4	0	0	0	0
5	Н	8	0	0	1	0
5	0	4	0	0	0	0
6	С	11	0	12	1	0
7	А	10	0	0	1	0
7	В	4	0	0	0	0
7	С	5	0	0	0	0
7	D	8	0	0	0	0
7	Ε	7	0	0	0	0
7	F	7	0	0	0	0
7	G	9	0	0	0	0
7	Н	11	0	0	0	0
7	L	1	0	0	0	0
7	М	1	0	0	0	0
7	Р	1	0	0	0	0
7	R	1	0	0	2	0
All	All	12316	0	12109	123	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 123 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:L:136:VAL:HG23	2:A:326:PRO:HB2	1.62	0.80
2:H:310:ARG:NH1	2:H:312:ASP:OD1	2.24	0.70
2:A:166:PHE:N	1:M:156:ASP:OD1	2.25	0.69
2:B:283:SER:O	2:B:287:HIS:ND1	2.21	0.65
2:H:278:GLN:NE2	5:H:902:NO3:O1	2.29	0.65

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	L	23/31~(74%)	23 (100%)	0	0	100	100
1	М	20/31~(64%)	19 (95%)	1 (5%)	0	100	100
1	Ν	20/31~(64%)	20 (100%)	0	0	100	100
1	Ο	26/31~(84%)	25~(96%)	1 (4%)	0	100	100
1	Р	23/31~(74%)	23 (100%)	0	0	100	100
1	Q	21/31~(68%)	21 (100%)	0	0	100	100
1	R	23/31~(74%)	23 (100%)	0	0	100	100
1	S	26/31~(84%)	23 (88%)	3 (12%)	0	100	100
2	А	168/188~(89%)	163~(97%)	5(3%)	0	100	100
2	В	164/188~(87%)	158 (96%)	6 (4%)	0	100	100
2	С	167/188~(89%)	162 (97%)	5 (3%)	0	100	100
2	D	160/188~(85%)	149 (93%)	11 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	avoured Allowed		Percentiles		
2	Ε	168/188~(89%)	161 (96%)	7~(4%)	0	100	100	
2	F	164/188~(87%)	155~(94%)	9~(6%)	0	100	100	
2	G	168/188~(89%)	163~(97%)	5(3%)	0	100	100	
2	Н	160/188~(85%)	151 (94%)	9~(6%)	0	100	100	
All	All	1501/1752~(86%)	1439 (96%)	62(4%)	0	100	100	

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	L	23/29~(79%)	22~(96%)	1 (4%)	29	62
1	М	21/29~(72%)	21 (100%)	0	100	100
1	Ν	21/29~(72%)	21 (100%)	0	100	100
1	Ο	26/29~(90%)	25~(96%)	1 (4%)	33	67
1	Р	24/29~(83%)	24 (100%)	0	100	100
1	Q	22/29~(76%)	22 (100%)	0	100	100
1	R	24/29~(83%)	24 (100%)	0	100	100
1	S	26/29~(90%)	26 (100%)	0	100	100
2	А	151/166~(91%)	151 (100%)	0	100	100
2	В	149/166~(90%)	149 (100%)	0	100	100
2	С	151/166~(91%)	150 (99%)	1 (1%)	84	95
2	D	147/166~(89%)	147 (100%)	0	100	100
2	Ε	151/166~(91%)	150 (99%)	1 (1%)	84	95
2	F	149/166~(90%)	149 (100%)	0	100	100
2	G	152/166~(92%)	150 (99%)	2 (1%)	69	90
2	Н	146/166 (88%)	146 (100%)	0	100	100
All	All	1383/1560 (89%)	1377 (100%)	6 (0%)	91	97

5 of 6 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	Ε	290	THR
2	G	173	PHE
2	G	304	SER
2	С	239	ASP
1	L	135	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

6 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dog	Link	Bo	ond leng	$_{\rm sths}$	Bond angles			
	Moi Type Cham	Chain	rtes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	NAG	Ι	1	3,2	14,14,15	0.23	0	17,19,21	0.60	0	
3	NAG	Ι	2	3	14,14,15	0.35	0	17,19,21	0.85	1 (5%)	
3	NAG	J	1	3,2	14,14,15	0.20	0	17,19,21	0.54	0	
3	NAG	J	2	3	14,14,15	0.27	0	17,19,21	0.53	0	
3	NAG	K	1	3,2	14,14,15	0.15	0	17,19,21	0.59	0	
3	NAG	K	2	3	14,14,15	0.26	0	17,19,21	0.55	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Ι	1	3,2	-	3/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	4/6/23/26	0/1/1/1
3	NAG	J	1	3,2	-	2/6/23/26	0/1/1/1
3	NAG	J	2	3	-	0/6/23/26	0/1/1/1
3	NAG	K	1	3,2	-	0/6/23/26	0/1/1/1
3	NAG	K	2	3	-	4/6/23/26	0/1/1/1

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Ι	2	NAG	C2-N2-C7	2.67	126.71	122.90

There are no chirality outliers.

5 of 13 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	Ι	1	NAG	C8-C7-N2-C2
3	Ι	1	NAG	O7-C7-N2-C2
3	Ι	2	NAG	C8-C7-N2-C2
3	Ι	2	NAG	O7-C7-N2-C2
3	J	1	NAG	C8-C7-N2-C2

There are no ring outliers.

1 monomer is involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Ι	2	NAG	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	s Link	Bond lengths			Bond angles			
WIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
5	NO3	0	201	-	1,3,3	0.69	0	0,3,3	-	-	
5	NO3	С	401	-	1,3,3	0.69	0	0,3,3	-	-	
6	BCN	С	402	-	10,10,10	0.66	0	11,11,11	0.68	0	
5	NO3	Н	902	-	1,3,3	0.71	0	0,3,3	-	-	

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	B	ond ang	les	
WIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	NAG	А	901	2	14,14,15	0.41	0	17,19,21	0.84	1 (5%)
4	NAG	Н	901	2	14,14,15	0.29	0	17,19,21	0.72	1 (5%)
5	NO3	Н	903	-	1,3,3	0.70	0	0,3,3	-	-
4	NAG	D	901	2	14,14,15	0.17	0	17,19,21	0.42	0
5	NO3	Е	902	-	1,3,3	0.78	0	0,3,3	-	-
4	NAG	В	901	2	14,14,15	0.15	0	17,19,21	0.55	0
5	NO3	G	401	-	1,3,3	0.72	0	0,3,3	-	-
4	NAG	Е	901	2	14,14,15	0.41	0	17,19,21	0.68	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	BCN	С	402	-	-	2/10/10/10	-
4	NAG	А	901	2	-	4/6/23/26	0/1/1/1
4	NAG	Н	901	2	-	0/6/23/26	0/1/1/1
4	NAG	D	901	2	-	2/6/23/26	0/1/1/1
4	NAG	В	901	2	-	4/6/23/26	0/1/1/1
4	NAG	Е	901	2	-	4/6/23/26	0/1/1/1

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
4	А	901	NAG	C1-O5-C5	2.78	115.97	112.19
4	Н	901	NAG	C1-O5-C5	2.50	115.57	112.19
4	Е	901	NAG	C1-O5-C5	2.16	115.11	112.19

There are no chirality outliers.

5 of 16 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	D	901	NAG	C4-C5-C6-O6
4	D	901	NAG	O5-C5-C6-O6
4	В	901	NAG	C4-C5-C6-O6
4	В	901	NAG	O5-C5-C6-O6
4	Е	901	NAG	O5-C5-C6-O6

There are no ring outliers.

4 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	С	402	BCN	1	0
5	Н	902	NO3	1	0
4	А	901	NAG	1	0
4	D	901	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	L	25/31~(80%)	-0.20	0 100 100	23, 38, 62, 74	0
1	М	22/31~(70%)	0.06	0 100 100	35, 44, 55, 61	0
1	Ν	22/31~(70%)	0.09	1 (4%) 33 29	35, 49, 65, 74	0
1	Ο	28/31~(90%)	-0.13	0 100 100	22, 44, 62, 73	0
1	Р	25/31~(80%)	0.39	1 (4%) 38 33	33, 47, 70, 72	0
1	Q	23/31~(74%)	0.34	1 (4%) 35 31	36, 52, 72, 76	0
1	R	25/31~(80%)	0.02	0 100 100	35, 49, 61, 79	0
1	S	28/31~(90%)	0.15	0 100 100	36, 49, 76, 86	0
2	А	170/188~(90%)	-0.18	0 100 100	18, 36, 54, 67	0
2	В	168/188~(89%)	-0.14	0 100 100	21, 43, 77, 96	0
2	С	169/188~(89%)	0.01	2 (1%) 79 79	23, 44, 66, 88	0
2	D	164/188~(87%)	0.13	6 (3%) 41 37	29, 46, 73, 98	0
2	Е	170/188~(90%)	0.08	2 (1%) 79 79	30, 48, 69, 80	0
2	F	168/188~(89%)	0.11	3 (1%) 68 67	29, 50, 74, 96	0
2	G	170/188~(90%)	0.34	5 (2%) 51 47	29, 53, 79, 97	0
2	Н	164/188~(87%)	0.07	1 (0%) 89 89	30, 45, 64, 92	0
All	All	1541/1752 (87%)	0.06	22 (1%) 75 75	18, 46, 73, 98	0

The worst 5 of 22 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	F	232	GLY	4.3
2	G	334	SER	4.1
2	G	291	LEU	3.0
2	Е	167	TRP	2.8
1	Q	154	GLY	2.6

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	NAG	Ι	2	14/15	0.77	0.29	80,100,114,115	0
3	NAG	J	1	14/15	0.89	0.17	44,79,87,92	0
3	NAG	K	2	14/15	0.89	0.18	43,85,94,98	0
3	NAG	K	1	14/15	0.90	0.23	62,90,98,98	0
3	NAG	Ι	1	14/15	0.92	0.21	52,82,93,95	0
3	NAG	J	2	14/15	0.92	0.12	41,58,75,81	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q < 0.9
5	NO3	0	201	4/4	0.87	0.15	$60,\!61,\!62,\!76$	0
4	NAG	D	901	14/15	0.90	0.16	49,69,94,104	0
6	BCN	С	402	11/11	0.90	0.27	44,52,65,70	0
4	NAG	Н	901	14/15	0.92	0.13	28,61,70,89	0
4	NAG	А	901	14/15	0.93	0.16	29,48,62,66	0
4	NAG	E	901	14/15	0.94	0.14	45,58,71,75	0
5	NO3	G	401	4/4	0.94	0.15	51,53,63,71	0
5	NO3	Н	903	4/4	0.94	0.11	46,46,51,57	0
4	NAG	В	901	14/15	0.94	0.17	54,61,75,119	0
5	NO3	Е	902	4/4	0.95	0.17	35,36,60,84	0
5	NO3	С	401	4/4	0.98	0.10	40,47,49,52	0
5	NO3	Н	902	4/4	0.98	0.20	31,47,51,64	0

6.5 Other polymers (i)

There are no such residues in this entry.

