

wwPDB EM Validation Summary Report (i)

Sep 22, 2022 - 06:25 am BST

PDB ID	:	7QSO
EMDB ID	:	EMD-14140
Title	:	Bovine complex I in lipid nanodisc, State 3 (Slack)
Authors	:	Chung, I.; Bridges, H.R.; Hirst, J.
Deposited on	:	2022-01-13
Resolution	:	3.02 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev8
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.30

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.02 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${ m EM~structures} \ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	115	92%	• 7%
2	В	216	73%	27%
3	С	266	79%	21%
4	D	463	84%	16%
5	Е	249	86%	14%
6	F	464	93%	7%
7	G	727	96%	·
8	Н	318	99%	·
9	Ι	212	83%	17%

Mol	Chain	Length	Quality of chain	
10	J	175	90%	• 8%
11	K	98	88%	12%
12	L	606	90%	10%
13	М	459	• 100%	
14	N	347	100%	
15	0	343	93%	7%
16	P	380	6% 	16%
17	0	175	710/	200/
10	Q D	104	71%	29%
10	n	124	77%	23%
19	S	99	88%	12%
20	Т	156	53% • 46%	
20	U	156	56% 44%	
21	V	116	97%	·
22	W	128	90%	10%
23	Х	172	99%	.
24	Y	141	15% 23% 77%	
25	Ζ	144	99%	
26	a	70	100%	
27	b	84	99%	
28	с	76	• 63% 37	%
29	d	120	98%	
30	e	106	• •	70/
91	ſ	57	19%	1 70
31	1) 6	96%	•
32	g	154	58% 42%	
33	h	189	75% .	24%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	i	127	97%	••
35	j	108	5% 65%	35%
36	k	98	83%	17%
37	1	186	84%	16%
38	m	129	98%	·
39	n	179	96%	·
40	О	137	87%	• 12%
41	р	176	98%	·
42	q	145	100%	
43	r	113	84%	• 15%
44	S	109	41% 59%	

Continued from previous page...

2 Entry composition (i)

There are 59 unique types of molecules in this entry. The entry contains 66112 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	107	Total 864	C 587	N 125	0 147	${ m S}{ m 5}$	0	0

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	158	Total 1260	C 803	N 227	0 216	S 14	0	0

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	210	Total 1743	C 1123	N 299	0 318	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	388	Total 3110	C 1984	N 538	0 564	$\begin{array}{c} \mathrm{S} \\ \mathrm{24} \end{array}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	129	ARG	GLN	variant	UNP P17694

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	214	Total 1659	C 1059	N 278	O 312	S 10	0	0

• Molecule 6 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	432	Total 3324	C 2094	N 594	0 616	S 20	0	0

• Molecule 7 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial.

Mol	Chain	Residues		A	AltConf	Trace			
7	G	700	Total 5360	C 3356	N 934	O 1030	S 40	0	0

• Molecule 8 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	318	Total 2509	C 1681	N 385	0 420	S 23	0	0

• Molecule 9 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial.

Mol	Chain	Residues		A	AltConf	Trace			
9	Ι	176	Total 1414	C 889	N 243	0 270	S 12	0	0

• Molecule 10 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		A	AltConf	Trace			
10	J	161	Total 1226	C 827	N 173	0 214	S 12	0	0

• Molecule 11 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues		At	AltConf	Trace			
11	K	86	Total 647	C 425	N 96	0 111	S 15	0	0

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues		At	AltConf	Trace			
12	L	547	Total 4334	C 2880	N 667	O 746	S 41	0	0

• Molecule 13 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	AltConf	Trace			
13	М	459	Total 3654	C 2436	N 570	O 609	S 39	0	0

• Molecule 14 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues		At	AltConf	Trace			
14	Ν	347	Total 2733	C 1817	N 416	O 457	S 43	0	0

• Molecule 15 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
15	О	320	Total 2589	C 1662	N 429	0 488	S 10	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	255	LYS	ASN	variant	UNP P34942

• Molecule 16 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	Р	320	Total 2560	C 1652	N 452	0 451	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Q	125	Total 1016	C 641	N 181	0 191	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	R	96	Total 740	$\begin{array}{c} \mathrm{C} \\ 454 \end{array}$	N 140	0 143	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	87	Total 701	C 439	N 133	O 127	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Т	84	Total	С	Ν	0	S	0	0
20	T	04	681	439	100	137	5	0	0
20	II	<u> </u>	Total	С	Ν	0	S	0	0
20	U	00	707	454	104	144	5	0	

• Molecule 21 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	V	113	Total 919	$\begin{array}{c} \mathrm{C} \\ 595 \end{array}$	N 155	0 166	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	W	115	Total 977	C 625	N 181	0 167	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8.

Mol	Chain	Residues		A	AltConf	Trace			
23	Х	171	Total 1402	C 887	N 253	O 252	S 10	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
24	Y	33	Total 248	C 162	N 39	O 46	S 1	0	0

• Molecule 25 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	7	149	Total	С	Ν	Ο	\mathbf{S}	0	0
2.0		142	1157	743	202	203	9	0	0

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
26	a	70	Total 569	C 365	N 104	O 95	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	b	83	Total 651	C 425	N 109	0 115	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
28	с	48	Total	С	N	0	0	0
			405	268	69	68		

• Molecule 29 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
29	d	120	Total 999	C 650	N 172	0 172	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	е	99	Total 829	C 523	N 158	0 142	S 6	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
31	f	57	Total 492	C 322	N 86	O 82	${f S}{2}$	0	0

• Molecule 32 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	g	90	Total 750	C 483	N 124	0 139	${S \over 4}$	0	0

• Molecule 33 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	h	143	Total 1186	C 776	N 203	O 205	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	i	127	Total 1097	C 722	N 191	0 183	S 1	0	0

• Molecule 35 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
35	j	70	Total 592	C 387	N 98	0 106	S 1	0	0

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	k	81	Total 653	C 427	N 110	0 114	$\frac{S}{2}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	1	156	Total 1314	C 850	N 216	O 240	S 8	0	0

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	m	127	Total 1061	C 681	N 187	O 193	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
39	n	171	Total 1487	C 952	N 272	O 256	${f S}7$	0	0

• Molecule 40 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	О	120	Total 1035	C 645	N 199	0 183	S 8	0	0

• Molecule 41 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10.

Mol	Chain	Residues	Atoms					AltConf	Trace
41	р	173	Total 1455	C 912	N 268	0 267	S 8	0	0

• Molecule 42 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues	Atoms					AltConf	Trace
42	q	145	Total 1209	C 778	N 216	0 210	${S \atop 5}$	0	0

• Molecule 43 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	r	96	Total 785	C 496	N 146	0 140	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	S	45	Total	С	Ν	0	\mathbf{S}	0	0
11	G	10	380	238	67	74	1		0

• Molecule 45 is 1,2-Distearoyl-sn-glycerophosphoethanolamine (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$).

Mol	Chain	Residues		Ato	oms			AltConf
45	А	1	Total 124	C 94	N 3	0 24	Р 3	0
45	А	1	Total 124	C 94	N 3	0 24	Р 3	0
45	А	1	Total 124	C 94	N 3	0 24	Р 3	0
45	Н	1	Total 33	C 23	N 1	0 8	Р 1	0
45	Ι	1	Total 84	C 64	N 2	O 16	Р 2	0
45	Ι	1	Total 84	C 64	N 2	O 16	Р 2	0
45	L	1	Total 77	C 57	N 2	O 16	Р 2	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
45	т	1	Total C N O P	0
40		L	77 57 2 16 2	0
45	М	1	Total C N O P	0
40	111	L	38 28 1 8 1	0
45	N	1	Total C N O P	0
40	IN	L	84 64 2 16 2	0
45	N	1	Total C N O P	0
40	IN	L	84 64 2 16 2	0
45	v	1	Total C N O P	0
40	1	T	39 29 1 8 1	0
45	h	1	Total C N O P	0
40	11	T	32 22 1 8 1	0
45	r	1	Total C N O P	0
40		L	49 39 1 8 1	0

• Molecule 46 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$).

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	
46	В	1	Total	С	Ν	Ο	Р	0	
40	D	D	L	101	81	2	16	2	0
46	В	1	Total	С	Ν	Ο	Р	0	
40	D	L	101	81	2	16	2	0	
46	т	1	Total	С	Ν	Ο	Р	0	
40	1	L	43	33	1	8	1	0	
46	М	1	Total	С	Ν	Ο	Р	0	
40	IVI	L	46	36	1	8	1	U	

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf
46	d	1	Total	С	Ν	0	Р	0
40	u	1	33	23	1	8	1	0
46	a	1	Total	С	Ν	0	Р	0
40	q		37	27	1	8	1	U

Mol	Chain	Residues	Atoms	AltConf
47	В	1	Total Fe S 8 4 4	0
47	F	1	TotalFeS844	0
47	G	1	TotalFeS1688	0
47	G	1	Total Fe S 16 8 8	0
47	Ι	1	TotalFeS1688	0
47	Ι	1	Total Fe S 16 8 8	0

• Molecule 48 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
18	F	1	Total Fe S	0
40	Ľ	1	4 2 2	0
18	С	1	Total Fe S	0
40	G		4 2 2	0

 $\bullet \ \ \ Molecule \ 49 \ is \ FLAVIN \ MONONUCLEOTIDE \ (three-letter \ code: \ FMN) \ (formula: \ C_{17}H_{21}N_4O_9P).$

Mol	Chain	Residues	Atoms					AltConf
40	Б	1	Total	С	Ν	Ο	Р	0
49	Г	T	31	17	4	9	1	0

 $\bullet\,$ Molecule 50 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
50	G	1	Total K 1 1	0

• Molecule 51 is CHOLIC ACID (three-letter code: CHD) (formula: $C_{24}H_{40}O_5$).

Mol	Chain	Residues	Atoms	AltConf
51	Н	1	Total C O 29 24 5	0
51	L	1	Total C O 29 24 5	0

• Molecule 52 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	A	Aton	ns		AltConf
52	т	1	Total	С	Ο	Р	0
52	L	I	75	56	17	2	0
52	N	1	Total	С	Ο	Р	0
52	IN	I	73	54	17	2	0
52	x	1	Total	С	Ο	Р	0
52	Λ		79	60	17	2	0
52	d	1	Total	С	Ο	Р	0
52	u	1	65	46	17	2	0
52	h	1	Total	С	Ο	Р	0
52	11	1	77	58	17	2	0
52	r	1	Total	С	Ō	Р	0
52	1	1	60	41	17	2	

• Molecule 53 is UBIQUINONE-10 (three-letter code: U10) (formula: $C_{59}H_{90}O_4$).

Mol	Chain	Residues	Atoms	AltConf
53	М	1	Total C O 63 59 4	0

• Molecule 54 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
54	0	1	Total	С	Ν	Ο	Р	0
- 54	0	0 1	32	10	5	14	3	0

• Molecule 55 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
55	О	1	Total Mg 1 1	0

• Molecule 56 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: $C_{21}H_{30}N_7O_{17}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
56	D	1	Total	С	Ν	Ο	Р	0
50	L_	1	48	21	7	17	3	0

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	R	1	Total Zn 1 1	0

• Molecule 58 is $\{S\}$ -[2-[3-[[(2 $\{R\})$)-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]ami no]propanoylamino]ethyl] (3 $\{S\}$)-3-oxidanyltetradecanethioate (three-letter code: EHZ) (formula: $C_{25}H_{49}N_2O_9PS$).

Mol	Chain	Residues		Α	tom	ıs			AltConf
58	т	1	Total	С	Ν	0	Р	S	0
	1	37	25	2	8	1	1	0	
59	EQ II	U 1	Total	С	Ν	Ο	Р	S	0
- 30	U		37	25	2	8	1	1	0

• Molecule 59 is MYRISTIC ACID (three-letter code: MYR) (formula: $C_{14}H_{28}O_2$).

Mol	Chain	Residues	Atoms	AltConf
59	О	1	Total C O 15 14 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 3

• Molecule 11: NADH-ubiquinone oxidoreductase chain 4L

Chain K:	88%	12%	
M Y85 C86 C86 C86 ASP ASN ASN LEU	ASN LEU GLN CYS		
• Molecule 12: 1	NADH-ubiquinone oxidoreductase chain	5	
Chain L:	90%	10%	
M1 T26 Y27 K28 B208 D393	L525 K547 SER ALA SER ALA SER LEU LEU LEU LEU LEU LEU LEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU SER SER SER SER SER SER SER SER SER SER	LEU VAL VAL THR THR GLN GLN GLN CLN LVS LVS TVR TYR PHE CUS CUS CUS CUS CUS CUS CUS CUS CUS CUS	PHE LEU TILE THR
ILE LEU ILEU ILE RET MET ILEU LEU PHE ASN PHE RIU GLU			
• Molecule 13: 1	NADH-ubiquinone oxidoreductase chain	4	
Chain M:	100%		
M1 N138 Q139 C140 E141 R142 L143 N144	GSBFA		
• Molecule 14: 1	NADH-ubiquinone oxidoreductase chain	2	
Chain N:	100%		
There are no ou	tlier residues recorded for this chain.		
• Molecule 15: drial	NADH dehydrogenase [ubiquinone] 1 a	lpha subcomplex sub	ounit 10, mitochon-
Chain O:	93%	7%	
MET ALA LEU ARG LEU LEU LEU LEU VAL PRO PRO ARG	VAL GLY GLY GLY GLY THR SER CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	w226 ◆ 2336 ◆ 2336 ◆ 1241 ◆ 1241 ◆ 1243 × 243 × 243 × 244 ◆ 8245 ◆	20 20 20
• Molecule 16: drial	NADH dehydrogenase [ubiquinone] 1	alpha subcomplex su	bunit 9, mitochon-
Chain P:	84%	16%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LLEU NECT NECT NECT NECT NECT NECT NECT NECT	M1.87 F188 G190 G190 V191 K198 F253 F255 Y256	LEU PRO PRO HHE ALA ALA TYR
ARG TRP TLF TLF GLY ARG LEU E271 E271 S273	F275 F275 F275 F281 ARG R281 ARG R281 ARG R281 ARG R281 ARG R283 ARG R283 ARG R283 ARG R283 ARG R284 ARG R294		

• Molecule 17: NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial

Chain Q:	71%	29%
MET ALA ALA ALA ALA SER MET SER VAL ALA ALA ALA ALA ALA ALA ALA	LEU TRP TRP ARG ARG ARG ARG ARA ALA ALA ALA ALA ALA ALA ALA ALA ALA	TTR TTR TTR ARG ARG ARG ALA ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
• Molecule 18: N	ADH dehydrogenase [ubiquinon	e] iron-sulfur protein 6, mitochondrial
Chain R:	77%	23%
MET ALA ALA ALA VAL LEU PHE PHE CLEU CLEU CLEU CLEU	ANU GLY ALA ALA ALA ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 19: N	ADH dehydrogenase [ubiquinon	ne] 1 alpha subcomplex subunit 2
Chain S:	88%	12%
MET ALA ALA ALA ALA ALA ALA ALA ALA CLY VAL CLY VAL G11	K12 L13 S96 LYS ALA	
• Molecule 20: A	cyl carrier protein, mitochondri	al
Chain T:	53% .	46%
MET ALA VAL VAL ARG VAL LEU CYS CYS ALA ALA ARG ARG	PRO PRO ALA ALA PRO PRO LEU PRO LEU PRO LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHE ALA ALA ALA ALA ALA ALA ARG PRO PRO PRO PRO PLEU VAL LLEU LLEU LLEU LLEU VAL LLEU VAL CLA ALA ALA ALA ALA ALA ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
VAL THR GLN CYS CYS CYS GLN GLN SER ASP ALA ALA	PS C10 C10 C125	▶ Pa
• Molecule 20: A	cyl carrier protein, mitochondri	al
Chain U:	56%	44%
MET ALA VAL VAL VAL UAL CYS CYS CYS CYS VAL ARG ARG	PR0 THR ALA PR0 PR0 FR0 FR0 FR0 FR0 FR0 FR0 FR0 FR0 FR0 F	PHE ALA ALA ALA ALA ALA ALA ARG PRO PRO PRO PRO PLEU VAL LLEU VAL LLEU VAL LLEU VAL CLA VAL ALA ALA ALA ALA ARG ALA ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
VAL THR GLIN GLIN LEU CYS GLIN GLIN GLIN B2 A3		
• Molecule 21: N	ADH dehydrogenase [ubiquinon	ie] 1 alpha subcomplex subunit 5
Chain V:	97%	
MET ALA GLY LC3 K5 K5 K5 K1115		

 \bullet Molecule 22: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6

Chain W:	90%	10%
MET ALA ALA ALA SER GLY GLN ALA ALA VAL	ALA ALA AL12 P128	
• Molecule 23:	NADH dehydrogenase [ubiquinone] 1 alpha subcomp	plex subunit 8
Chain X:	99%	
MET P1 D112 E148 E152 M171		
• Molecule 24:	NADH dehydrogenase [ubiquinone] 1 alpha subcomp	plex subunit 11
Chain Y:	% 23% 77%	
MET AYA LYS LYS THR VAL LEU LEU ARG GLN TYR TRP ASP	TILE TILE TILE TILE TILE TILE TILE TILE	GLY GLY ALA ARG ARG CLY GLY TYR TYR THR
	** * ****	••
PHE THR ALA ALA ALA ILE GLY GLY GLY	THEU THEU CYS SER SER SER CYS SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	TYR TYR GLY GLY GLY GLY ALA ALA ALA ALA ALA ALA CYS TYR TYR G113
1120	E130 F138 K139 K139	
• Molecule 25:	NADH dehydrogenase [ubiquinone] 1 alpha subcomp	plex subunit 13
Chain Z:	99%	
MET ALA A3 S4 K5 C14 C14	E131 104	
• Molecule 26:	NADH dehydrogenase [ubiquinone] 1 alpha subcomp	plex subunit 1
Chain a:	100%	
M1 D70		
• Molecule 27:	NADH dehydrogenase [ubiquinone] 1 alpha subcomp	plex subunit 3
Chain b:	99%	
MET A1 E2 B5 D55 G50 C50 L83		

WORLDWIDE PROTEIN DATA BANK

• Molecule 28: NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial Chain c: 63% 37% • Molecule 29: NADH dehydrogenase [ubiquinone] 1 subunit C2 Chain d: 98% • Molecule 30: NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 Chain e: 93% 7% GLU GLU GLU PRO ARG • Molecule 31: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 19% Chain f: 96% • Molecule 32: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial Chain g: 58% 42% • Molecule 33: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial Chain h: 75% 24% 23

• Molecule 34: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6

Cha	ain	i:		1	2%	_										97	'%)				•••
	•	•	•	•		•				•	•	•		•	•	•		•	•			
S1 G2	EG	P36	Q37	R38	V39	R44	L5U	ղ51 թոր	7.9 0	L55	W56	160	Y61	K62	E111	D124		H127				

 \bullet Molecule 35: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial

Chain j:	5%65%	35%
_		•••
MET ALA GLY MET SER ALA LEU	LYS ALA ALA ALA PRO PRO PRO PHE CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	G2 G4 D70 E7 1 ASP

• Molecule 36: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3

 \bullet Molecule 37: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial

Chain l:	84%	16%
MET ALA ALA ALA ALA ALA ALA CLC VAL CLCU VAL ARG	TRP LEBU GLM GLM ALA ALA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA ALA ARA AR	

• Molecule 38: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4

• Molecule 39: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9

• Molecule 40: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7

Chain o:	87%		• 12%
MET G1 A12 A12 E32 Q116	R117 E118 A119 D120 D120 CLY GLY GLY GLY GLY GLY GLY CLU GLY CLU CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL		
• Molecule 41	: NADH dehydrogenase [ubiqu	uinone] 1 beta subc	omplex subunit 10
Chain p:	98%		
MET P1 D2 K6 D72 D72	A173 A173 ALA ALA		
• Molecule 42	: NADH dehydrogenase [ubiqu	uinone] 1 alpha sub	complex subunit 12
Chain q:	100%	2	
M1 1142 7144 7144 K145			
• Molecule 43	: NADH dehydrogenase [ubiqu	uinone] 1 alpha sub	complex subunit 7
Chain r:	84%		• 15%
MET A1 K73 VAL LEU LEU ALA GLY LYS	PRO ALA GLU GLU SER SER ALA ALA ALA SER L11 2		
• Molecule 44	: NADH dehydrogenase [ubiquestion]	uinone] flavoprotein	3, mitochondrial
Chain s:	41%	59%	
MET ALA ALA SER LEU LEU LEU ARG GLN GLY	ARG ALA ALA ALA ALA ALA THR THR THR THR THR ALU ALU ALA ALA ALA ALA ALA ALA ALA ALA	SER LEU SER ALA GLU GLY GLY CLYS GLY CLYS CLY SPRO	PRU PRU LYS CLYS CLYS GLN PRO PRO PRO LYS PRO PRO VAL SER
ALA ALA ALA PRO FRO F32 F33 H75			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	22019	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.5	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2400	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	34.528	Depositor
Minimum map value	-14.853	Depositor
Average map value	-0.001	Depositor
Map value standard deviation	0.958	Depositor
Recommended contour level	5.5	Depositor
Map size (Å)	479.744, 479.744, 479.744	wwPDB
Map dimensions	640, 640, 640	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.7496, 0.7496, 0.7496	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CDL, ZN, MG, FME, NDP, FMN, FES, 3PE, AME, K, MYR, SAC, SF4, PC1, EHZ, 2MR, U10, CHD, GTP, AYA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles			
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.32	0/876	0.42	0/1199		
2	В	0.42	0/1292	0.47	0/1747		
3	С	0.38	0/1794	0.44	0/2443		
4	D	0.38	0/3170	0.46	0/4285		
5	Е	0.35	0/1699	0.44	0/2312		
6	F	0.34	0/3398	0.45	0/4591		
7	G	0.34	0/5450	0.46	1/7388~(0.0%)		
8	Н	0.35	0/2571	0.46	2/3513~(0.1%)		
9	Ι	0.41	0/1445	0.46	0/1956		
10	J	0.36	0/1246	0.60	6/1687~(0.4%)		
11	Κ	0.41	0/646	0.48	0/872		
12	L	0.32	0/4443	0.42	2/6047~(0.0%)		
13	М	0.33	0/3738	0.44	1/5097~(0.0%)		
14	Ν	0.31	0/2792	0.43	0/3800		
15	0	0.30	0/2651	0.39	0/3587		
16	Р	0.33	0/2626	0.44	0/3557		
17	Q	0.35	0/1039	0.46	0/1404		
18	R	0.37	0/753	0.43	0/1014		
19	S	0.30	0/712	0.44	0/957		
20	Т	0.29	0/692	0.49	1/932~(0.1%)		
20	U	0.31	0/719	0.42	0/971		
21	V	0.29	0/939	0.36	0/1272		
22	W	0.32	0/1001	0.39	0/1345		
23	Х	0.35	0/1439	0.44	0/1942		
24	Y	0.24	0/252	0.37	0/340		
25	Ζ	0.36	0/1186	0.42	0/1599		
26	a	0.34	0/584	0.40	0/786		
27	b	0.33	0/672	0.39	0/923		
28	с	0.32	0/418	0.37	0/567		
29	d	0.37	0/1018	0.41	0/1375		
30	е	0.33	0/850	0.45	$0/1\overline{136}$		

Mal	Chain	Bo	nd lengths	В	ond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
31	f	0.33	0/505	0.50	2/681~(0.3%)
32	g	0.35	0/772	0.39	0/1046
33	h	0.33	0/1221	0.40	0/1651
34	i	0.31	0/1127	0.51	3/1534~(0.2%)
35	j	0.30	0/619	0.39	0/848
36	k	0.29	0/672	0.38	0/906
37	1	0.33	0/1369	0.39	0/1873
38	m	0.31	0/1088	0.42	0/1472
39	n	0.31	0/1540	0.38	0/2085
40	0	0.34	1/1060~(0.1%)	0.40	0/1420
41	р	0.34	0/1489	0.40	0/2008
42	q	0.37	0/1250	0.45	0/1698
43	r	0.34	0/798	0.42	0/1079
44	s	0.32	0/392	0.43	0/531
All	All	0.34	1/66013~(0.0%)	0.44	18/89476~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
34	i	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
40	0	1	GLY	CA-C	5.13	1.60	1.51

The worst 5 of 18 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	J	94	VAL	CG1-CB-CG2	7.03	122.14	110.90
20	Т	86	VAL	CG1-CB-CG2	7.02	122.14	110.90
34	i	39	VAL	CG1-CB-CG2	6.91	121.96	110.90
10	J	115	VAL	CG1-CB-CG2	6.82	121.81	110.90
7	G	698	VAL	CG1-CB-CG2	6.64	121.52	110.90

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
34	i	1	SAC	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles		
1	А	103/115~(90%)	97~(94%)	6 (6%)	0	100	100	
2	В	156/216~(72%)	149 (96%)	7 (4%)	0	100	100	
3	С	208/266~(78%)	202 (97%)	6 (3%)	0	100	100	
4	D	385/463~(83%)	368~(96%)	17 (4%)	0	100	100	
5	Е	212/249~(85%)	204 (96%)	7 (3%)	1 (0%)	29	66	
6	F	430/464~(93%)	410 (95%)	20 (5%)	0	100	100	
7	G	698/727~(96%)	676~(97%)	22 (3%)	0	100	100	
8	Н	316/318~(99%)	301~(95%)	15 (5%)	0	100	100	
9	Ι	174/212~(82%)	170 (98%)	4 (2%)	0	100	100	
10	J	157/175~(90%)	144 (92%)	13 (8%)	0	100	100	
11	K	84/98~(86%)	82 (98%)	2 (2%)	0	100	100	
12	L	545/606~(90%)	515 (94%)	30 (6%)	0	100	100	
13	М	457/459~(100%)	449 (98%)	7 (2%)	1 (0%)	47	81	
14	Ν	345/347~(99%)	336~(97%)	9 (3%)	0	100	100	
15	Ο	318/343~(93%)	309~(97%)	9 (3%)	0	100	100	
16	Р	314/380~(83%)	299~(95%)	14 (4%)	1 (0%)	41	75	
17	Q	123/175~(70%)	122 (99%)	1 (1%)	0	100	100	
18	R	94/124~(76%)	89 (95%)	5 (5%)	0	100	100	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
19	S	85/99~(86%)	84 (99%)	1 (1%)	0	100	100
20	Т	82/156~(53%)	78~(95%)	4(5%)	0	100	100
20	U	86/156~(55%)	81 (94%)	5~(6%)	0	100	100
21	V	111/116 (96%)	107 (96%)	4 (4%)	0	100	100
22	W	113/128 (88%)	108 (96%)	5 (4%)	0	100	100
23	Х	169/172~(98%)	164 (97%)	5(3%)	0	100	100
24	Y	29/141~(21%)	26 (90%)	3 (10%)	0	100	100
25	Ζ	140/144~(97%)	136 (97%)	4 (3%)	0	100	100
26	a	68/70~(97%)	67~(98%)	1 (2%)	0	100	100
27	b	81/84~(96%)	79~(98%)	2(2%)	0	100	100
28	с	46/76~(60%)	45 (98%)	1 (2%)	0	100	100
29	d	118/120 (98%)	116 (98%)	1 (1%)	1 (1%)	19	55
30	е	97/106~(92%)	93~(96%)	4 (4%)	0	100	100
31	f	55/57~(96%)	53~(96%)	2(4%)	0	100	100
32	g	88/154~(57%)	84 (96%)	4 (4%)	0	100	100
33	h	141/189~(75%)	137 (97%)	4 (3%)	0	100	100
34	i	125/127~(98%)	119~(95%)	5 (4%)	1 (1%)	19	55
35	j	68/108~(63%)	66~(97%)	2(3%)	0	100	100
36	k	79/98~(81%)	79~(100%)	0	0	100	100
37	1	154/186~(83%)	144 (94%)	10 (6%)	0	100	100
38	m	125/129~(97%)	115~(92%)	10 (8%)	0	100	100
39	n	169/179~(94%)	161~(95%)	8 (5%)	0	100	100
40	О	118/137~(86%)	114 (97%)	4(3%)	0	100	100
41	р	171/176~(97%)	166~(97%)	5(3%)	0	100	100
42	q	143/145~(99%)	141 (99%)	2(1%)	0	100	100
43	r	92/113~(81%)	87~(95%)	5(5%)	0	100	100
44	s	$\overline{43/109}(39\%)$	41 (95%)	2(5%)	0	100	100
All	All	7915/9212 (86%)	7613 (96%)	297 (4%)	5 (0%)	54	85

Continued from previous page...

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
5	Ε	158	ASP
	a	7	

Continued from previous page...

Mol	Chain	Res	Type
34	i	2	GLY
13	М	142	ARG
16	Р	279	THR
29	d	2	MET

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	es
1	А	94/100~(94%)	94 (100%)	0	100 100)
2	В	134/175~(77%)	134 (100%)	0	100 100)
3	С	190/228~(83%)	190 (100%)	0	100 100)
4	D	334/392~(85%)	334 (100%)	0	100 100)
5	Ε	183/205~(89%)	183 (100%)	0	100 100)
6	F	345/368~(94%)	345 (100%)	0	100 100)
7	G	586/608~(96%)	586 (100%)	0	100 100)
8	Н	274/274~(100%)	272~(99%)	2 (1%)	84 94	
9	Ι	151/175~(86%)	151 (100%)	0	100 100)
10	J	128/141~(91%)	128 (100%)	0	100 100)
11	Κ	73/85~(86%)	73~(100%)	0	100 100)
12	L	479/533~(90%)	479 (100%)	0	100 100)
13	М	412/412~(100%)	412 (100%)	0	100 100)
14	Ν	315/315~(100%)	315 (100%)	0	100 100)
15	Ο	283/303~(93%)	283 (100%)	0	100 100)
16	Р	276/327~(84%)	276 (100%)	0	100 100)
17	Q	112/153~(73%)	112 (100%)	0	100 100)
18	R	79/97~(81%)	79 (100%)	0	100 100)
19	S	77/82~(94%)	77 (100%)	0	100 100)
20	Т	78/135~(58%)	77~(99%)	1 (1%)	69 88	

Continued	from	previous	page
Contentaca	JION	precious	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
20	U	81/135~(60%)	81 (100%)	0	100	100
21	V	101/102~(99%)	101 (100%)	0	100	100
22	W	108/114~(95%)	108 (100%)	0	100	100
23	Х	154/155~(99%)	154 (100%)	0	100	100
24	Y	25/102~(24%)	25 (100%)	0	100	100
25	Z	120/121 (99%)	120 (100%)	0	100	100
26	a	59/59~(100%)	59 (100%)	0	100	100
27	b	71/72~(99%)	71 (100%)	0	100	100
28	с	44/68~(65%)	44 (100%)	0	100	100
29	d	105/105~(100%)	104 (99%)	1 (1%)	76	91
30	е	89/96~(93%)	89 (100%)	0	100	100
31	f	54/54~(100%)	53~(98%)	1 (2%)	57	83
32	g	81/131 (62%)	81 (100%)	0	100	100
33	h	124/158~(78%)	123 (99%)	1 (1%)	81	93
34	i	120/120~(100%)	120 (100%)	0	100	100
35	j	61/84~(73%)	61 (100%)	0	100	100
36	k	63/76~(83%)	63 (100%)	0	100	100
37	1	140/159~(88%)	140 (100%)	0	100	100
38	m	113/115~(98%)	113 (100%)	0	100	100
39	n	156/161~(97%)	156 (100%)	0	100	100
40	0	109/120 (91%)	109 (100%)	0	100	100
41	р	156/157~(99%)	156 (100%)	0	100	100
42	q	131/131 (100%)	131 (100%)	0	100	100
43	r	86/97~(89%)	86 (100%)	0	100	100
44	s	44/92 (48%)	44 (100%)	0	100	100
All	All	6998/7892~(89%)	6992 (100%)	6 (0%)	93	98

5 of 6 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
29	d	5	ARG
31	f	30	ASN
33	h	6	LYS

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
8	Н	54	LYS
8	Н	5	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 7 such sidechains are listed below:

Mol	Chain	Res	Type
12	L	514	HIS
29	d	88	HIS
33	h	143	ASN
30	е	96	HIS
12	L	248	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

11 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	nin Pos		Bo	ond leng	$_{\rm ths}$	E	Bond ang	gles
	Type	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
12	FME	L	1	12	8,9,10	0.96	0	7,9,11	0.91	0
8	FME	Н	1	8	8,9,10	0.98	0	7,9,11	0.88	0
10	FME	J	1	10	8,9,10	0.91	0	7,9,11	0.90	0
43	AYA	r	1	43	6,7,8	1.25	1 (16%)	5,8,10	1.39	1 (20%)
1	FME	А	1	1	8,9,10	0.96	1 (12%)	7,9,11	0.76	0
11	FME	K	1	11	8,9,10	0.92	0	7,9,11	0.97	0
34	SAC	i	1	34	7,8,9	1.84	1 (14%)	8,9,11	1.62	1 (12%)
29	AME	d	1	29	9,10,11	1.42	2 (22%)	9,11,13	2.55	2 (22%)
4	2MR	D	85	4	10,12,13	0.51	0	5,13,15	1.26	1 (20%)
14	FME	N	1	14	8,9,10	0.96	0	7,9,11	0.85	0

Mol T	Turne	Chain	Chain	Dec	Tiple	Bo	ond leng	\mathbf{ths}	E	Bond ang	gles
	Type		an nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
13	FME	М	1	13	8,9,10	0.96	0	7,9,11	0.80	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	FME	L	1	12	-	5/7/9/11	-
8	FME	Н	1	8	-	0/7/9/11	-
10	FME	J	1	10	-	5/7/9/11	-
43	AYA	r	1	43	-	0/4/6/8	-
1	FME	А	1	1	-	1/7/9/11	-
11	FME	Κ	1	11	-	3/7/9/11	-
34	SAC	i	1	34	-	4/7/8/10	-
29	AME	d	1	29	-	4/9/10/12	-
4	2MR	D	85	4	-	3/10/13/15	-
14	FME	N	1	14	-	2/7/9/11	-
13	FME	М	1	13	-	1/7/9/11	-

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
34	i	1	SAC	O-C	4.22	1.36	1.19
29	d	1	AME	CT1-N	3.12	1.45	1.34
43	r	1	AYA	CA-N	-2.45	1.44	1.46
29	d	1	AME	OT-CT1	-2.14	1.18	1.23
1	А	1	FME	CA-N	-2.00	1.43	1.46

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
29	d	1	AME	C-CA-N	-6.48	98.04	109.73
34	i	1	SAC	O-C-CA	-3.99	114.33	124.78
29	d	1	AME	CE-SD-CG	2.99	110.66	100.40
43	r	1	AYA	CB-CA-N	2.82	112.75	109.61
4	D	85	2MR	NE-CZ-NH2	-2.64	117.06	119.48

There are no chirality outliers.

5 of 28 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1	FME	O1-CN-N-CA
4	D	85	2MR	O-C-CA-CB
4	D	85	2MR	NE-CZ-NH2-CQ2
4	D	85	2MR	NH1-CZ-NH2-CQ2
10	J	1	FME	O1-CN-N-CA

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 46 ligands modelled in this entry, 3 are monoatomic - leaving 43 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Dog	Tink	B	ond leng	gths	B	ond ang	les
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
45	3PE	Н	702	-	32,32,50	1.05	4 (12%)	$35,\!37,\!55$	1.24	2 (5%)
54	GTP	0	401	55	26,34,34	2.92	10 (38%)	32,54,54	1.77	9 (28%)
45	3PE	h	202	-	31,31,50	1.08	4 (12%)	34,36,55	1.05	2 (5%)
45	3PE	А	202	-	42,42,50	0.92	4 (9%)	45,47,55	1.13	2 (4%)
52	CDL	L	702	-	74,74,99	1.01	8 (10%)	80,86,111	1.12	4 (5%)
52	CDL	Х	201	-	78,78,99	0.98	8 (10%)	84,90,111	1.11	4 (4%)
52	CDL	h	201	-	76,76,99	0.99	8 (10%)	82,88,111	1.19	<mark>5 (6%)</mark>
45	3PE	Ι	201	-	50,50,50	0.86	3 (6%)	53,55,55	1.10	2 (3%)
52	CDL	d	202	-	64,64,99	1.06	8 (12%)	70,76,111	1.13	4 (5%)
59	MYR	0	201	40	14,14,15	0.96	0	13,13,15	0.68	0
47	SF4	G	801	7	$0,\!12,\!12$	-	-	-		
53	U10	М	701	-	63,63,63	2.68	17 (26%)	76,79,79	1.97	22 (28%)
48	FES	G	803	7	$0,\!4,\!4$	-	-	-		·

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
56	NDP	Р	501	_	$45,\!52,\!52$	<mark>2.23</mark>	6 (13%)	$53,\!80,\!80$	1.69	10 (18%)
46	PC1	d	201	-	32,32,53	1.22	4 (12%)	$38,\!40,\!61$	1.13	2 (5%)
45	3PE	А	203	-	38,38,50	0.97	4 (10%)	41,43,55	1.13	2 (4%)
51	CHD	Н	701	-	32,32,32	<mark>3.22</mark>	10 (31%)	51,51,51	2.58	21 (41%)
52	CDL	N	403	-	72,72,99	1.03	7 (9%)	78,84,111	1.09	4 (5%)
46	PC1	J	201	-	42,42,53	1.05	4 (9%)	48,50,61	1.03	2 (4%)
45	3PE	Ν	401	-	34,34,50	1.02	4 (11%)	37,39,55	1.06	2 (5%)
47	SF4	G	802	7	0,12,12	-	-	-		
45	3PE	Y	601	-	38,38,50	0.99	4 (10%)	41,43,55	1.12	2 (4%)
45	3PE	N	402	-	48,48,50	0.87	3 (6%)	$51,\!53,\!55$	1.09	2 (3%)
46	PC1	М	703	-	45,45,53	1.00	3 (6%)	51,53,61	1.04	2 (3%)
49	FMN	F	501	-	33,33,33	1.12	2 (6%)	48,50,50	1.25	6 (12%)
45	3PE	L	701	-	44,44,50	0.91	3 (6%)	47,49,55	1.10	2 (4%)
48	FES	Е	301	5	0,4,4	-	-	-		
45	3PE	L	703	-	31,31,50	1.07	3 (9%)	$34,\!36,\!55$	1.17	2 (5%)
47	SF4	Ι	202	9	0,12,12	-	-	-		
58	EHZ	Т	101	20	29,36,37	1.76	5 (17%)	$35,\!44,\!47$	1.52	5 (14%)
58	EHZ	U	101	20	29,36,37	1.69	5 (17%)	35,44,47	1.35	3 (8%)
45	3PE	А	201	-	41,41,50	0.94	4 (9%)	44,46,55	1.14	2 (4%)
45	3PE	r	202	-	48,48,50	0.87	4 (8%)	51,53,55	1.09	2 (3%)
47	SF4	F	502	6	0,12,12	-	-	-		
45	3PE	Ι	204	-	32,32,50	1.06	4 (12%)	$35,\!37,\!55$	1.11	2 (5%)
45	3PE	М	702	-	37,37,50	0.99	4 (10%)	40,42,55	1.05	2 (5%)
47	SF4	В	302	2	0,12,12	-	-	-		
46	PC1	В	301	-	49,49,53	0.98	4 (8%)	$55,\!57,\!61$	0.94	2 (3%)
47	SF4	Ι	203	9	0,12,12	-	-	-		
51	CHD	L	704	-	32,32,32	<mark>3.19</mark>	10 (31%)	$51,\!51,\!51$	2.31	20 (39%)
46	PC1	В	303	-	50,50,53	0.97	4 (8%)	56,58,61	1.03	2 (3%)
52	CDL	r	201	-	59,59,99	1.11	7 (11%)	65,71,111	1.17	4 (6%)
46	PC1	q	701	-	36,36,53	1.13	4 (11%)	42,44,61	1.07	2 (4%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
45	3PE	Н	702	-	-	17/36/36/54	-
54	GTP	0	401	55	-	6/18/38/38	0/3/3/3
45	3PE	h	202	-	-	23/35/35/54	-
45	3PE	А	202	-	-	20/46/46/54	-
52	CDL	L	702	-	-	43/85/85/110	-
52	CDL	Х	201	-	-	47/89/89/110	-
52	CDL	h	201	-	-	36/87/87/110	-
45	3PE	Ι	201	-	-	26/54/54/54	-
52	CDL	d	202	-	-	34/75/75/110	-
59	MYR	0	201	40	-	8/11/12/13	-
47	SF4	G	801	7	_	-	0/6/5/5
53	U10	М	701	-	-	28/63/87/87	0/1/1/1
48	FES	G	803	7	-	-	0/1/1/1
56	NDP	Р	501	-	-	6/30/77/77	0/5/5/5
46	PC1	d	201	-	-	14/36/36/57	-
45	3PE	А	203	-	-	20/42/42/54	-
51	CHD	Н	701	-	-	1/9/74/74	0/4/4/4
52	CDL	N	403	-	-	35/83/83/110	-
46	PC1	J	201	-	-	16/46/46/57	-
45	3PE	N	401	-	-	15/38/38/54	-
47	SF4	G	802	7	-	-	0/6/5/5
45	3PE	Y	601	-	-	14/42/42/54	-
45	3PE	Ν	402	-	-	25/52/52/54	-
46	PC1	М	703	-	-	14/49/49/57	-
49	FMN	F	501	-	-	5/18/18/18	0/3/3/3
45	3PE	L	701	-	-	27/48/48/54	-
48	FES	Е	301	5	-	-	0/1/1/1
45	3PE	L	703	-	-	20/35/35/54	-
47	SF4	Ι	202	9	-	-	0/6/5/5
58	EHZ	Т	101	20	-	14/42/44/45	-
58	EHZ	U	101	20	-	15/42/44/45	-
45	3PE	А	201	-	-	17/45/45/54	_
45	3PE	r	202	-	-	32/52/52/54	_
47	SF4	F	502	6	-	_	0/6/5/5
45	3PE	Ι	204	-	-	13/36/36/54	-
45	3PE	М	702	-	-	24/41/41/54	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
47	SF4	В	302	2	-	-	0/6/5/5
46	PC1	В	301	-	-	18/53/53/57	-
47	SF4	Ι	203	9	-	-	0/6/5/5
51	CHD	L	704	-	-	4/9/74/74	0/4/4/4
46	PC1	В	303	-	-	16/54/54/57	-
52	CDL	r	201	-	-	28/70/70/110	-
46	PC1	q	701	-	-	19/40/40/57	-

Continued from previous page...

The worst 5 of 186 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
56	Р	501	NDP	P2B-O2B	12.06	1.82	1.59
51	L	704	CHD	C11-C12	8.67	1.67	1.53
51	Н	701	CHD	C11-C12	8.67	1.67	1.53
54	0	401	GTP	O6-C6	8.26	1.40	1.23
51	Н	701	CHD	C16-C15	7.02	1.73	1.54

The worst 5 of 161 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
56	Р	501	NDP	PN-O3-PA	-7.08	108.53	132.83
51	Н	701	CHD	C17-C13-C12	6.37	123.48	117.67
51	L	704	CHD	C17-C13-C12	5.81	122.97	117.67
53	М	701	U10	C40-C39-C41	5.63	124.75	115.27
51	Н	701	CHD	C17-C13-C14	5.57	105.71	100.09

There are no chirality outliers.

5 of 700 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
45	А	201	3PE	O13-C11-C12-N
45	А	201	3PE	O11-C1-C2-O21
45	А	201	3PE	O22-C21-O21-C2
45	А	202	3PE	C1-O11-P-O12
45	А	202	3PE	C1-O11-P-O14

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-14140. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 320

Y Index: 320

Z Index: 320

6.2.2 Raw map

X Index: 320

Y Index: 320

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 334

Z Index: 405

6.3.2 Raw map

X Index: 334

Y Index: 322

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 5.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.5.1 emd_14140_msk_1.map (i)

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 362 $\rm nm^3;$ this corresponds to an approximate mass of 327 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.331 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.331 \AA^{-1}

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.02	-	-			
Author-provided FSC curve	3.01	3.65	3.11			
Unmasked-calculated*	4.27	8.34	4.42			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.27 differs from the reported value 3.02 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-14140 and PDB model 7QSO. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 5.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

