

Jun 20, 2024 – 02:27 pm BST

PDB ID	:	8QRL
EMDB ID	:	EMD-18439
Title	:	mt-SSU assembly intermediate in GTPBP8 knock-out cells, state 2
Authors	:	Valentin Gese, G.; Cipullo, M.; Rorbach, J.; Hallberg, B.M.
Deposited on	:	2023-10-09
Resolution	:	3.34 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.34 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	955	• 81%		18% •
2	В	296	71% 5	%	24%
3	С	167	8%	5%	21%
4	D	430	9% 76%	•	20%
5	Е	125	18%		• 6%
6	F	242	29%	•	15%
7	G	396	18%	•	17%

Mol	Chain	Length	Quality of chain								
8	Н	201	19% 66% ·	30%							
9	Ι	194	5% 65% 5% •	29%							
10	J	138	78%	• 22%							
11	K	128	15%	7% 21%							
12	L	257	9% 63% 5%	32%							
13	М	137	7%	• 13%							
14	N	130	5%	• 15%							
15	0	258	73%	• 25%							
16	Р	142	66% ·	32%							
17	Ω	86	13%	7%							
18	B	360	•	. 18%							
10	S	190	6% 660/	200/							
20	Т	173	7%	29%							
20	I	205	7%	0% •							
21	V	414	26%	• 14%							
22	V XX7	107	83%	5% 13%							
20	VV	107	52% • 40%	47%							
24	A	398	83%	5% 12%							
25	Y	395	36% • 62% 33%								
26	Z	106	93%	• 6%							
27	0	218	94%	5% •							
28	1	323	84%	• 14%							
29	3	199	35% • 64%								
30	4	689	80%	6% 14%							
31	8	407	72%	8% 20%							

2 Entry composition (i)

There are 40 unique types of molecules in this entry. The entry contains 70955 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 12S mitochondrial rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
1	А	951	Total 20198	C 9060	N 3636	O 6551	Р 951	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	709	G	А	conflict	GB OM714795.1

• Molecule 2 is a protein called 28S ribosomal protein S2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
2	В	225	Total 1828	C 1164	N 331	O 323	S 10	0	0

• Molecule 3 is a protein called 28S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	132	Total 1083	C 699	N 195	0 185	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 4 is a protein called 28S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	343	Total 2731	C 1713	N 518	0 487	S 13	0	0

• Molecule 5 is a protein called 28S ribosomal protein S6, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	118	Total 936	C 592	N 168	0 172	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called 28S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	205	Total 1804	C 1158	N 324	0 311	S 11	15	0

• Molecule 7 is a protein called 28S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
7	G	327	Total 2688	C 1710	N 477	0 487	S 14	0	0

• Molecule 8 is a protein called 28S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	140	Total 1152	C 745	N 194	0 210	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 28S ribosomal protein S11, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
9	Ι	137	Total 1020	C 642	N 192	0 182	${S \atop 4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	184	5F0	ASN	conflict	UNP P82912

• Molecule 10 is a protein called 28S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	J	108	Total 839	C 521	N 169	0 143	S 6	0	0

• Molecule 11 is a protein called 28S ribosomal protein S14, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	K	101	Total 862	C 537	N 179	0 141	${f S}{5}$	0	0

• Molecule 12 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L	174	Total 1453	C 925	N 270	O 251	${ m S} 7$	0	0

• Molecule 13 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	М	119	Total 942	C 594	N 185	0 157	S 6	0	0

• Molecule 14 is a protein called 28S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
14	Ν	110	Total 868	C 562	N 156	0 147	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	О	193	Total 1592	C 1014	N 294	0 277	${ m S} 7$	0	0

• Molecule 16 is a protein called 28S ribosomal protein S18c, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Р	97	Total 781	C 501	N 134	0 138	S 8	0	0

• Molecule 17 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Q	86	Total 744	C 460	N 150	O 126	S 8	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	50	ARG	CYS	variant	UNP P82921

• Molecule 18 is a protein called 28S ribosomal protein S22, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
18	R	295	Total 2409	C 1533	N 413	O 455	S 8	0	0

• Molecule 19 is a protein called 28S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	S	135	Total 1111	C 716	N 198	0 196	S 1	0	0

• Molecule 20 is a protein called 28S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues		A	AltConf	Trace			
20	Т	168	Total 1371	C 877	N 239	0 244	S 11	0	0

• Molecule 21 is a protein called 28S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	U	176	Total 1488	C 916	N 301	O 267	${S \atop 4}$	0	0

• Molecule 22 is a protein called 28S ribosomal protein S27, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	V	362	Total 2969	C 1904	N 495	O 558	S 12	0	0

• Molecule 23 is a protein called 28S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	W	100	Total 789	C 498	N 141	0 146	${f S}$ 4	0	0

• Molecule 24 is a protein called 28S ribosomal protein S29, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
24	Х	352	Total 2849	C 1822	N 499	0 517	S 11	0	0

• Molecule 25 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Y	149	Total 1246	C 801	N 207	0 234	${f S}$ 4	0	0

• Molecule 26 is a protein called 28S ribosomal protein S33, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Ζ	100	Total 839	C 534	N 153	0 148	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called 28S ribosomal protein S34, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
27	0	215	Total 1787	C 1130	N 339	0 313	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called 28S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	1	278	Total 2256	C 1430	N 386	0 429	S 11	0	0

• Molecule 29 is a protein called Aurora kinase A-interacting protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
29	3	71	Total 629	C 403	N 135	O 90	S 1	0	0

• Molecule 30 is a protein called Pentatricopeptide repeat domain-containing protein 3, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
30	4	590	Total 4775	C 3056	N 809	0 882	S 28	0	0

• Molecule 31 is a protein called 12S rRNA N4-methylcytidine (m4C) methyltransferase.

Mol	Chain	Residues		At	AltConf	Trace			
31	8	326	Total 2546	C 1610	N 456	O 466	S 14	0	0

• Molecule 32 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$).

Mol	Chain	Residues	Atoms					AltConf
32	А	1	Total	С	Ν	0	Р	0
52	11	I	44	21	7	14	2	0

• Molecule 33 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
33	А	61	Total Mg 61 61	0
33	В	1	Total Mg 1 1	0
33	Х	1	Total Mg 1 1	0
33	3	1	Total Mg 1 1	0

• Molecule 34 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
34	А	16	Total K 16 16	0

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
35	О	1	Total Zn 1 1	0

• Molecule 36 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
36	Р	1	TotalFeS422	0
36	Т	1	TotalFeS422	0

• Molecule 37 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
37	Х	1	Total 31	C 10	N 5	0 13	Р 3	0

• Molecule 38 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues	Atoms				AltConf	
38	Х	1	Total 28	C 10	N 5	0 11	Р 2	0

• Molecule 39 is S-ADENOSYL-L-HOMOCYSTEINE (three-letter code: SAH) (formula: $C_{14}H_{20}N_6O_5S$).

Mol	Chain	Residues	Atoms				AltConf	
39	8	1	Total	C 14	N 6	05	S 1	0

• Molecule 40 is water.

Mol	Chain	Residues	Atoms	AltConf
40	А	1296	Total O 1296 1296	0
40	В	81	Total O 81 81	0
40	С	60	Total O 60 60	0
40	D	72	Total O 72 72	0
40	Е	4	Total O 4 4	0
40	F	24	Total O 24 24	0
40	G	60	Total O 60 60	0
40	Н	32	Total O 32 32	0
40	Ι	14	Total O 14 14	0
40	J	28	Total O 28 28	0
40	К	45	Total O 45 45	0
40	L	23	TotalO2323	0
40	М	44	Total O 44 44	0
40	Ν	28	TotalO2828	0
40	0	56	Total O 56 56	0
40	Р	9	Total O 9 9	0
40	Q	14	Total O 14 14	0
40	R	45	Total O 45 45	0
40	S	25	Total O 25 25	0

Mol	Chain	Residues	Atoms	AltConf
40	Т	40	Total O 40 40	0
40	U	15	Total O 15 15	0
40	V	2	Total O 2 2	0
40	W	13	Total O 13 13	0
40	Х	32	$\begin{array}{cc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0
40	Y	3	Total O 3 3	0
40	Ζ	19	Total O 19 19	0
40	0	26	Total O 26 26	0
40	1	26	$\begin{array}{cc} \text{Total} & \text{O} \\ 26 & 26 \end{array}$	0
40	3	9	Total O 9 9	0
40	4	7	Total O 7 7	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 12S mitochondrial rRNA

• Molecule 3: 28S rib	osomal protein S24, mitocho	ondrial		
Chain C:	74%	5%	21%	
MET ALA ALA ALA ALA ALA CYS SER CYS CYS CYS CYS CUS CUS CUS CUS CUS CUS CUS CUS CUS CU	TTRE TTRE SEER ARIG GLU ELEU TTRE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	N37 R38 A58 P59 D77 A82	D89 M96 L104 A105 D106 L108 L108 R112	N1 15
V132 V136 S139 E140 K148 K161 K161				
• Molecule 4: 28S rib	osomal protein S5, mitochor	ndrial		
Chain D:	76%		20%	
MET ALA ALA ALA ALA ALA ALA CYS CYS PRO CYS CYS SFR SFR	GLY THR HIS GLY GLY GLY GLY GLY GLY ALA ALA ALA ALA ALA ALA	ILE LEU ALA TRP LYS SER VAL LEU GLY GLY	HIS LEU SER SER LEU GLY THR ARG ASP HIS PRO	TYR
ALA SER SER ARG ARG ARG ARG CUN CUN CUN CUN SER SER SER SER	SER HIS MET MET SER CLM CLM CLM CLM B86 B96 A104 A104 CLO CLM CLM CLM CLM CLM CLM CLM CLM CLM CLM	410/ 4108 4110 4111 6111 6113 6113 6113 6115	K116 R117 T118 K119 K120 K121 K122 L126	1132 6133 6133 1134
G152 A153 A153 V154 A 157 A 1157 A 1173 A R176 A	K183 K186 P210 C211 C211 C211 C211 F215 F215 F215 K234 K234 K234 V243	L244 V245 K260 F268 A271 V276	⁷²⁸⁵ 1296 3339 1347 €372 €372	S420 V421 T430
• Molecule 5: 28S rib	osomal protein S6, mitochor	ndrial		
Chain E:	92%		• 6%	
MET P2 P16 E17 T18 A28 A28 B38 E39 E30 E30	Y49 L65 E76 E76 S83 S83 S83 S83 S13 P P S13 S14 S14<	P110 V111 P112 P112 L113 A114 E115 K116 Y118	S119	
• Molecule 6: 28S rib	osomal protein S7, mitochor	ndrial		
Chain F:	81%	•	15%	
MET ALA ALA ALA PRO PRO VAL LYS ALA ARG GLY TRP SER SER SER ALA ALA	LEU LEU VAL VAL ARG ARG ALA ALA ALA ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	P39 E40 F41 K42 P43 P44 L45 L45 D47	K48 E49 Y50 F54 V55 E55 E57 L58	T59 E61 E62 K63
Y64 E57 L68 L68 q72 L73 q72 L73 A79 A79 A79 A79 A79 A78 A78 K81	T82 883 884 V85 V85 F86 R108 R114 Q122 K125 K125 A128	A131 E132 E133 Q134 A135 A135 T136 E138 E138	H146 + K150 + K150 + K150 + K150 + K150 + K155 + K1	K163 G164 G165 G165 F167 F167 Y168 Q169 Q170 P171
R178 ← E190 ← K194 K194 H214 ← H224 ←	K228 M229 A230 A231 A232 A235 A235 A235 A235 A235 A235 A235			
• Molecule 7: 28S rib	osomal protein S9, mitochor	ndrial		
Chain G:	78%	•	17%	
	PROTEIN D/			

	•	• •• • ••	• ••• •	· ••• ••
MET ALA ALA PHE MET CEU CLV CLEU CLEU CLEU LEU LEU THR THR	LYNE LYNE GLN WET WET VAL FRO SER SER AIA GLY VAL CLN VAL CLN VAL CLN VAL CLN VAL CLN VAL CLN	D31 M34 M34 M34 M34 D49 D49 N55 S56	L57 R58 161 P64 K65 K65 L67 L67 C68	D69 V70 A71 D72 E73 E73 E73 I75 A76
P79 882 882 810 8112 112 112	1123 W126			
• Molecule 12: 28	8S ribosomal protein S15	, mitochondrial		
Chain L:	63%	5%	32%	
MET LEU ARG VAL ARG ARG TRP ARG SER LEU LEU LEU	THR ARG ALA ALA ALA ALA VAL THR VAL LEU VAL LEU VAL LEU VAL CLY CLY CLY CLY ALA	LYS LYS PHE PHE ASN GLN TRP GLN CLU CLU CLU ARG	SER LEU LEU LEU LEU GLN ALA ALA ARG GLY TYR VAL	VAL ARG LYS PRO ALA GLN
SER ARG D65 D66 D66 D66 D66 D66 D66 D66 D66 D66	187 1987 1987 1986 1104 1104 1104 1108 1112	1143 Y155 D161 V213 T217	1220 R223 R224 R224 K228 K228 A230 A230	A232 A233 A233 A235 A235 A235 A235 A235
ASP SER PRO ALA LYS ALA ILE PRO LYS LYS LYS LYS CAP	SER GLN			
• Molecule 13: 28	8S ribosomal protein S16	, mitochondrial		
Chain M:	85%		• 13%	-
MET VAL VAL HIR THR THR THR LEU CIEU CIEU CIEU	A67 481 482 482 483 494 695 F96 F96 F96 f123 d126 d123	E128 ALA THR ASP ASP CHU ALA ALA THR THR THR		
• Molecule 14: 28	8S ribosomal protein S17	, mitochondrial		
Chain N:	82%		• 15%	-
MET SER VAL VAL S6 S6 S6 S7 C58 C58	L81 882 882 882 882 148 148 148 148 148 148 148 148 148 148	ASN SER SER SER ALA GLN		
• Molecule 15: 28	8S ribosomal protein S18	b, mitochondrial		
Chain O:	73%	•	25%	-
MET ALA ALA ALA SER VAL UAL LEU VAL ARG ARG	PRLO MET MET LEU SER PHE ARG GLY VAL VAL VAL CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	LEUN CYS CYS CYS CYS ALA PRO PRO SER CLU CLU SER SER	SER VAL 148 148 148 148 148 148 148 148 148 148	2212 2213 2214 8215 1215
L219 L219 E233 P239 PR0 PR0 ARC ARC ALA ALA GLU	ALA SER SER SER SER CLY CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN			
• Molecule 16: 28	8S ribosomal protein S18	c, mitochondrial		
Chain P:	66%	•	32%	-

WORLDWIDE PROTEIN DATA BANK

MET ALA ALA ALA ALA VAL VAL ALA VAL ALA CVS CVS CVS CVS CLY CLY CLY CLY CLY CLY CLY CLY ARG CLY CLY CLY CLY CLY CLY CLS CLY CLS CLY CLS CLS CLS CLS CLS CLS CLS CLS CLS CLS	VAL VAL THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	TRP TRP ARG ARG CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	L62 K63 K75 T108 Q115	Y140 R141
er 42				
• Molecule 17: 28S ribos	omal protein S21, mite	ochondrial		
Chain Q:	93%		7%	
A2 R10 E16 033 139 K40 K40 Y44 Y44	Por Ber Kr1 R77 P83 P83 C86 C87			
• Molecule 18: 28S ribos	omal protein S22, mit	ochondrial		
Chain R:	78%		18%	
MET PALA PALA PALA CLEU LEU LEU LEU LEU LEU LEU LEU LEU SER SER SER SER	GLY VAL ARG GLU CYS PHE ARG ARG ARG ARG ARG ARG CVS PHE FRO TLE CIN	GLY LEU LEU CLN GLN PRO CYS SER PHE GLU GLU GLU	PRO ARG ARG ARG ARG PHE SER SER SER SER ALA ALA GLU	SER
CLY REC PRO E844 1655 1655 1655 1656 1700 16170 1613 1	1156 1204 7219 7219 7216 0302 0302 1307 1307	A358		
• Molecule 19: 28S ribose	omal protein S23, mite	ochondrial		
Chain S:	66%	5% 2'	9%	
MET A2 B7 G10 G10 A22 A22 A22 A22 A22 A25 A22 A25 A22 A25 A22 A25 A22 A22	LI 17	L126 V130 V130 V133 R134 V135 C136 C136 C136 ALA ARG	11HK CLIV CLIY CLIY CLIY CLIY CLIY CLIY SER ARC LLYS SER SER	GLU HIS LEU SER
VAL ARG PRO GLN GLN CLU CLU ASN CLU ASN CLU CLU CLU VAL PRO CLU VAL	ALM HIS LEU CLU CLU CLU ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU	ONA		
• Molecule 20: 28S ribos	omal protein S25, mit	ochondrial		
Chain T:	91%		6% ·	
MET P2 N33 133 133 133 133 133 133 145 145 145 176 192 192	E117 E118 K121 Q122 L123 H125 K132 K132 L136	R160 1167 1167 1168 1168 A169 A169 A169 A169 A16 A16 A16 A16 A16 A16 A16 A16		
• Molecule 21: 28S ribose	omal protein S26, mite	ochondrial		
Chain U:	83%		. 14%	
MET NET ARG ARG ALA SER ALA ALA ARG CTS PRO PRO ARG ARG ARG	LFMU LEU VAL VAL FRO FRO ARG ALY ALY A51 A51	V78 V82 A85 R86 L1116 E127	R134 E138 R141 E156 I168	N172 D182

• Molecule 22: 28S ribosomal protein S27, mitochondrial

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	32577	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	48	Depositor
Minimum defocus (nm)	200	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.621	Depositor
Minimum map value	-0.187	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.025	Depositor
Recommended contour level	0.125	Depositor
Map size (Å)	517.12, 517.12, 517.12	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.01, 1.01, 1.01	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MA6, 5MC, NAD, SAH, 5MU, 5F0, ATP, MG, B8T, FES, AYA, GDP, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	$\mathbf{lengths}$	Bond	l angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.26	0/22468	0.68	0/34978
2	В	0.25	0/1871	0.42	0/2531
3	С	0.26	0/1113	0.41	0/1505
4	D	0.25	0/2783	0.42	0/3724
5	Е	0.24	0/953	0.42	0/1289
6	F	0.24	0/1846	0.37	0/2482
7	G	0.25	0/2746	0.40	0/3681
8	Н	0.25	0/1178	0.42	0/1598
9	Ι	0.25	0/1030	0.44	0/1386
10	J	0.26	0/855	0.46	0/1148
11	Κ	0.23	0/880	0.41	0/1182
12	L	0.24	0/1477	0.37	0/1974
13	М	0.25	0/963	0.42	0/1295
14	N	0.26	0/886	0.45	0/1199
15	0	0.25	0/1648	0.40	0/2243
16	Р	0.27	0/798	0.42	0/1070
17	Q	0.24	0/748	0.38	0/994
18	R	0.25	0/2456	0.38	0/3317
19	S	0.26	0/1138	0.40	0/1533
20	Т	0.25	0/1402	0.40	0/1883
21	U	0.23	0/1510	0.37	0/2025
22	V	0.23	0/3030	0.35	0/4093
23	W	0.25	0/801	0.41	0/1079
24	Х	0.25	0/2921	0.39	0/3954
25	Y	0.24	0/1280	0.37	0/1725
26	Ζ	0.25	0/857	0.38	0/1141
27	0	0.24	0/1834	0.41	0/2484
28	1	0.25	0/2304	0.38	0/3117
29	3	0.24	0/640	0.38	0/844
30	4	0.24	0/4883	0.36	0/6608
31	8	0.24	0/2590	0.40	0/3492
All	All	0.25	0/71889	0.51	0/101574

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	Ι	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
9	Ι	184	$5\mathrm{F0}$	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	20198	0	10253	55	0
2	В	1828	0	1815	10	0
3	С	1083	0	1088	6	0
4	D	2731	0	2804	13	0
5	Е	936	0	954	3	0
6	F	1804	0	1868	5	0
7	G	2688	0	2687	15	0
8	Н	1152	0	1183	8	0
9	Ι	1020	0	1053	7	0
10	J	839	0	887	1	0
11	K	862	0	885	6	0
12	L	1453	0	1540	7	0
13	М	942	0	965	2	0
14	N	868	0	928	3	0
15	0	1592	0	1557	3	0
16	Р	781	0	806	3	0
17	Q	744	0	758	6	0
18	R	2409	0	2428	9	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
10	S	1111		1115		
$\frac{13}{20}$		1371	0	1110	8	0
20 21	I	1/188	0	1/00	5	0
$\frac{21}{22}$	V	2060	0	2061	11	0
22	V W	2303	0	802	2	0
$\frac{23}{24}$	VV V	2840	0	28/3	17	0
24		1946	0	1107	6	0
$\frac{20}{26}$		830	0	858	1	0
$\frac{20}{27}$		1787	0	1706	1	0
21	1	2256	0	2288	6	0
$\frac{20}{20}$	2	620	0	702	0	0
30		4775	0	4779	25	0
31	4	2546	0	2615	20	0
20		2040	0	2015	0	0
32	A 2	1	0	20	0	0
- <u></u>		1 61	0	0	0	0
	A P	1	0	0	0	0
		1	0	0	0	0
24		16	0	0	0	0
- 04 - 25	A	10	0	0	0	0
- 30 - 26		1	0	0	0	0
		4	0	0	0	0
30		4 91	0	10	0	0
31			0	12	0	0
20		20	0	12	0	0
39	0	20	0	19	1	0
40	0	20	0	0	0	0
40	1	20	0	0	1	0
40	3	9 7	0	0	0	0
40	4 Λ	1206	0	0	10	0
40	A P	1290 91	0	0	10	0
40	D C	60	0	0	1	0
40		72	0	0	1	0
40	E D	12	0	0	0	0
40	E F	24	0	0	0	0
40	r C	60	0	0	0	0
40	- U - Ц	20	0	0		0
40	T		0	0	1	0
40	I T	14 28	0	0	0	0
40	J K	45	0	0	1	0
40	I	40 92	0	0	1 0	0
40			0		0	0
40	1/1	44	U	U	U	U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
40	Ν	28	0	0	0	0
40	0	56	0	0	0	0
40	Р	9	0	0	0	0
40	Q	14	0	0	1	0
40	R	45	0	0	0	0
40	S	25	0	0	2	0
40	Т	40	0	0	2	0
40	U	15	0	0	0	0
40	V	2	0	0	0	0
40	W	13	0	0	0	0
40	Х	32	0	0	0	0
40	Y	3	0	0	0	0
40	Ζ	19	0	0	0	0
All	All	70955	0	59376	231	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (231) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
12:L:112:MET:O	12:L:116:VAL:HG22	1.82	0.78
1:A:1353:A:N1	40:A:1805:HOH:O	2.18	0.76
30:4:200:ASP:OD2	30:4:243:ASN:N	2.20	0.75
30:4:451:ASP:OD1	30:4:454:ARG:NH1	2.22	0.73
1:A:1217:G:O6	40:A:1801:HOH:O	2.07	0.72
1:A:1217:G:N7	40:A:1820:HOH:O	2.27	0.67
17:Q:87:CYS:O	40:Q:101:HOH:O	2.16	0.63
1:A:1294:A:OP1	2:B:201:ASN:ND2	2.32	0.63
1:A:1321:A:OP2	40:A:1803:HOH:O	2.16	0.62
19:S:42:ARG:NH2	40:S:202:HOH:O	2.32	0.62
27:0:41:LEU:HD13	27:0:55:TRP:CG	2.35	0.61
2:B:211:ASP:OD2	40:B:401:HOH:O	2.16	0.61
31:8:163:PHE:O	31:8:310:LEU:HD12	2.00	0.61
19:S:10:GLY:O	40:S:201:HOH:O	2.16	0.60
1:A:942:A:N6	1:A:1047:A:OP2	2.33	0.59
4:D:420:SER:O	40:D:501:HOH:O	2.17	0.59
21:U:70:LEU:CD2	27:0:191:LEU:HD11	2.33	0.59
24:X:153:LEU:HD21	24:X:244:LEU:HD22	1.83	0.59
31:8:86:PRO:HB3	31:8:113:ILE:HD12	1.84	0.59
1:A:1078:A:O2'	31:8:326:ASP:OD2	2.18	0.59

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
18:R:70:PHE:O	18:R:76:GLN:NE2	2.36	0.59
20:T:33:ASN:OD1	40:T:301:HOH:O	2.17	0.58
1:A:700:A:N1	1:A:709:G:O2'	2.32	0.58
7:G:312:GLN:NE2	40:G:404:HOH:O	2.37	0.58
1:A:1272:A:N1	1:A:1303:G:O2'	2.30	0.58
22:V:236:LEU:HD12	22:V:290:LEU:HD13	1.87	0.57
1:A:1346:A:OP2	40:A:1804:HOH:O	2.16	0.57
1:A:1038:C:HO2'	12:L:155:TYR:HH	1.51	0.57
24:X:151:LEU:HD23	24:X:247:LEU:HD22	1.85	0.57
4:D:285:TYR:OH	4:D:372:GLU:OE2	2.17	0.57
28:1:304:GLU:OE1	28:1:309:ILE:HD11	2.04	0.57
1:A:702:C:OP1	1:A:848:U:O2'	2.22	0.56
1:A:948:U:OP2	1:A:1045:G:N1	2.37	0.56
4:D:347:GLN:NE2	40:D:505:HOH:O	2.39	0.56
1:A:843:G:N2	1:A:846:A:OP2	2.35	0.56
1:A:1066:C:O2'	9:I:187:ARG:O	2.23	0.56
7:G:115:GLY:O	40:G:401:HOH:O	2.18	0.56
20:T:132:ARG:NH1	20:T:136:LEU:O	2.39	0.56
12:L:86:ASP:OD1	12:L:87:ASP:N	2.39	0.55
1:A:1046:A:O2'	1:A:1048:C:OP2	2.17	0.55
31:8:196:MET:SD	31:8:293:ASN:ND2	2.80	0.55
25:Y:259:PHE:HB2	30:4:363:ILE:HD11	1.89	0.55
30:4:151:ASP:OD1	30:4:152:ILE:N	2.40	0.54
31:8:229:GLU:OE1	31:8:270:ARG:NH1	2.40	0.54
25:Y:258:ILE:HD11	30:4:317:LEU:HD22	1.88	0.54
15:O:208:PRO:HG2	15:O:213:LEU:HD21	1.89	0.54
30:4:631:VAL:HG21	30:4:649:VAL:HG21	1.90	0.54
1:A:1084:C:H1'	31:8:346:VAL:HG11	1.90	0.54
17:Q:83:PRO:HA	23:W:108:VAL:HG21	1.89	0.54
31:8:119:ASP:O	31:8:143:LEU:HD12	2.07	0.54
1:A:1434:A:OP1	7:G:389:ARG:NE	2.41	0.53
3:C:115:ASN:ND2	25:Y:309:LYS:O	2.39	0.53
6:F:158[A]:LEU:HD23	6:F:171[A]:PRO:HA	1.90	0.53
1:A:760:A:N1	1:A:780:C:O2'	2.36	0.53
2:B:156:GLU:OE1	7:G:163:HIS:ND1	2.41	0.53
7:G:229:LEU:HD21	7:G:241:VAL:HG11	1.90	0.53
15:O:185:SER:O	18:R:183:LYS:NZ	2.41	0.53
1:A:1333:G:N7	40:A:1830:HOH:O	2.33	0.53
1:A:1598:G:OP2	17:Q:57:TYR:OH	2.26	0.52
31:8:318:ALA:O	31:8:319:LEU:HD12	2.09	0.52
24:X:151:LEU:CD2	24:X:247:LEU:HD22	2.39	0.52

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
19:S:106:LEU:HB2	19:S:117:LEU:HD11	1.90	0.52	
11:K:120:LEU:HB3	11:K:123:ILE:HD12	1.92	0.52	
17:Q:77:ARG:NH1	23:W:166:ASN:OD1	2.43	0.51	
6:F:48:LYS:NZ	7:G:321:ASP:OD1	2.36	0.51	
27:0:42:THR:HG22	27:0:49:ARG:HG2	1.92	0.51	
27:0:54:ALA:O	27:0:58:VAL:HG23	2.10	0.51	
24:X:380:LEU:HD23	24:X:394:HIS:CD2	2.45	0.51	
1:A:706:C:OP1	27:0:43:ARG:NE	2.41	0.51	
1:A:1530:A:N1	1:A:1531:C:N4	2.59	0.51	
30:4:615:MET:HG3	30:4:645:LEU:HD11	1.92	0.51	
21:U:70:LEU:HD21	27:0:191:LEU:HD11	1.93	0.51	
31:8:208:ALA:O	31:8:212:ASN:ND2	2.44	0.50	
31:8:390:VAL:HG13	31:8:397:ARG:HB2	1.93	0.50	
24:X:108:LEU:HD23	24:X:141:VAL:HG21	1.94	0.50	
30:4:239:ARG:O	30:4:242:ASN:ND2	2.44	0.50	
31:8:318:ALA:C	31:8:319:LEU:HD12	2.32	0.49	
22:V:35:VAL:HG12	22:V:35:VAL:O	2.12	0.49	
1:A:1398:U:OP1	26:Z:29:LYS:NZ	2.30	0.49	
6:F:170[B]:VAL:HG13	6:F:237:ALA:HA	1.94	0.49	
22:V:360:VAL:HG13	22:V:364:LEU:HD22	1.95	0.49	
1:A:662:U:OP2	4:D:339:SER:OG	2.30	0.49	
18:R:276:VAL:HG11	18:R:307:LEU:HD12	1.94	0.49	
30:4:567:THR:HG22	30:4:568:ALA:N	2.28	0.49	
30:4:615:MET:HE1	30:4:649:VAL:HG22	1.95	0.49	
1:A:887:G:N7	40:A:1839:HOH:O	2.35	0.49	
1:A:1392:A:N7	40:A:1837:HOH:O	2.35	0.49	
9:I:179:THR:HG21	17:Q:39:ILE:HD13	1.95	0.49	
1:A:1057:G:H4'	1:A:1578:A:H4'	1.94	0.49	
11:K:31:ASP:OD2	40:K:201:HOH:O	2.20	0.49	
31:8:216:GLN:CG	31:8:240:VAL:HG21	2.42	0.49	
1:A:664:G:O2'	1:A:1166:A:N1	2.41	0.48	
20:T:56:GLN:OE1	40:T:302:HOH:O	2.20	0.48	
30:4:380:ASP:HB2	30:4:422:ILE:HD11	1.95	0.48	
24:X:108:LEU:HD21	24:X:307:VAL:CG1	2.44	0.48	
18:R:219:TYR:O	18:R:256:ARG:NH1	2.46	0.48	
12:L:213:VAL:O	12:L:217:THR:HG23	2.13	0.48	
11:K:58:ARG:NE	11:K:72:ASP:OD1	2.39	0.48	
24:X:380:LEU:HD21	24:X:398:LEU:CD1	2.44	0.48	
27:0:119:THR:OG1	27:0:124:THR:HG22	2.14	0.47	
9:I:190:LYS:NZ	40:I:202:HOH:O	2.47	0.47	
30:4:564:ILE:HG22	30:4:564:ILE:O	2.13	0.47	

	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
30:4:256:GLU:HG3	30:4:287:LEU:HD22	1.96	0.47	
1:A:929:A:O4'	4:D:421:VAL:HG13	2.14	0.47	
30:4:372:TYR:CE2	30:4:400:LEU:HD21	2.49	0.47	
1:A:1429:C:OP1	7:G:388:ARG:NH2	2.45	0.47	
20:T:32:VAL:HG22	20:T:76:LEU:HD22	1.96	0.47	
31:8:100:GLY:N	39:8:501:SAH:O	2.47	0.47	
24:X:206:GLU:OE2	24:X:249:ARG:NH2	2.46	0.47	
30:4:58:VAL:HG23	30:4:58:VAL:O	2.14	0.47	
7:G:318:HIS:NE2	24:X:379:GLU:OE2	2.47	0.47	
14:N:58:CYS:SG	14:N:81:LEU:HD22	2.55	0.47	
22:V:225:LEU:HD21	22:V:280:LEU:HD23	1.96	0.47	
1:A:1431:G:O2'	1:A:1457:G:O6	2.26	0.46	
18:R:162:SER:O	18:R:170:ARG:NH2	2.45	0.46	
30:4:618:ALA:O	30:4:622:ASN:N	2.48	0.46	
31:8:272:ASP:OD1	31:8:273:LEU:N	2.45	0.46	
2:B:220:VAL:HG22	2:B:234:TYR:HB2	1.97	0.46	
2:B:172:ARG:O	2:B:175:MET:HG2	2.15	0.46	
1:A:1125:A:N1	40:A:1845:HOH:O	2.36	0.46	
1:A:1259:U:H6	1:A:1326:A:HO2'	1.61	0.46	
5:E:40:GLU:OE1	21:U:187:TYR:OH	2.31	0.46	
8:H:148:LEU:H	8:H:148:LEU:HD23	1.79	0.46	
31:8:120:ARG:NH2	31:8:293:ASN:O	2.49	0.46	
7:G:248:VAL:O	7:G:250:LEU:N	2.47	0.46	
13:M:19:ILE:HB	13:M:83:LEU:HD23	1.96	0.46	
22:V:225:LEU:HD11	22:V:283:LEU:HD22	1.97	0.46	
1:A:1263:G:N7	40:A:1847:HOH:O	2.36	0.46	
25:Y:264:VAL:HG12	25:Y:265:THR:N	2.30	0.46	
1:A:1017:A:O2'	16:P:108:THR:OG1	2.30	0.45	
18:R:302:GLN:O	18:R:306:VAL:HG23	2.16	0.45	
30:4:631:VAL:CG2	30:4:649:VAL:HG21	2.46	0.45	
31:8:216:GLN:HG3	31:8:240:VAL:HG21	1.98	0.45	
1:A:894:C:H41	10:J:78:ARG:NH1	2.15	0.45	
3:C:89:ASP:OD1	3:C:112:ARG:NH2	2.42	0.45	
6:F:193:ASP:OD1	6:F:194:LYS:N	2.50	0.45	
15:O:214:SER:OG	22:V:319:ILE:HG23	2.17	0.45	
30:4:615:MET:CE	30:4:649:VAL:HG22	2.46	0.45	
21:U:169:THR:N	21:U:172:ASN:OD1	2.46	0.45	
1:A:738:A:H2'	1:A:740:G:C4	2.52	0.45	
1:A:1102:A:H5'	1:A:1576:G:H4'	1.99	0.45	
11:K:70:VAL:HG11	25:Y:383:LYS:HE3	1.97	0.45	
1:A:1523:A:O2'	1:A:1527:A:N1	2.39	0.45	

	A 4 arra 0	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
4:D:245:VAL:HG22	4:D:271:ALA:HB1	1.99	0.45	
1:A:705:C:OP2	27:0:136:TYR:OH	2.30	0.45	
22:V:74:ARG:O	22:V:78:ASN:ND2	2.46	0.45	
1:A:1519:A:N7	12:L:235:LYS:NZ	2.62	0.44	
25:Y:254:LYS:O	30:4:358:ARG:NH1	2.51	0.44	
3:C:96:MET:HB2	3:C:108:LEU:HD11	2.00	0.44	
9:I:97:ILE:HD11	9:I:161:ALA:HB1	2.00	0.44	
16:P:140:TYR:OH	17:Q:33:ASP:OD1	2.30	0.44	
1:A:1298:U:H2'	1:A:1299:A:C8	2.52	0.44	
1:A:1298:U:O2'	2:B:182:LEU:HD23	2.17	0.44	
20:T:92:THR:HG22	20:T:92:THR:O	2.18	0.44	
22:V:30:LEU:HD12	22:V:149:ASP:HB2	1.99	0.44	
1:A:875:U:O2'	1:A:882:A:N1	2.40	0.44	
1:A:1378:C:O2	24:X:389:SER:OG	2.30	0.44	
1:A:1478:A:C2	29:3:131:LEU:HD21	2.53	0.43	
7:G:70:THR:HG23	7:G:73:PHE:H	1.82	0.43	
4:D:103:LEU:HD11	4:D:123:ARG:HB2	2.00	0.43	
5:E:15:ARG:NH2	21:U:182:ASP:OD1	2.48	0.43	
24:X:112:LEU:CD1	24:X:141:VAL:HG13	2.49	0.43	
24:X:380:LEU:HD21	24:X:398:LEU:HD12	2.01	0.43	
4:D:96:ASP:OD1	4:D:123:ARG:NH1	2.51	0.43	
8:H:155:VAL:HG21	28:1:129:PHE:CB	2.48	0.43	
19:S:7:GLU:OE1	19:S:7:GLU:N	2.48	0.43	
30:4:637:PHE:O	30:4:638:SER:OG	2.29	0.43	
1:A:1003:A:O2'	9:I:96:GLN:OE1	2.36	0.43	
7:G:356:VAL:HG23	7:G:361:VAL:HG23	2.01	0.43	
8:H:184:ILE:O	8:H:184:ILE:HG22	2.18	0.43	
18:R:162:SER:O	18:R:170:ARG:NH1	2.52	0.43	
31:8:169:ASP:OD1	31:8:170:LEU:N	2.51	0.43	
1:A:1044:U:OP1	1:A:1110:A:O2'	2.32	0.43	
2:B:231:LEU:HD21	19:S:46:PHE:HB2	2.00	0.43	
4:D:243:VAL:HG11	4:D:268:PHE:CD1	2.54	0.43	
28:1:174:ARG:NH1	40:1:403:HOH:O	2.41	0.43	
3:C:112:ARG:NH1	40:C:205:HOH:O	2.51	0.43	
24:X:299:ASN:ND2	28:1:265:THR:OG1	2.51	0.43	
30:4:305:ILE:O	30:4:312:LYS:NZ	2.47	0.42	
30:4:616:ASP:O	30:4:620:VAL:HG23	2.19	0.42	
2:B:229:PRO:HA	2:B:232:ILE:HD12	2.00	0.42	
5:E:65:LEU:HD21	16:P:75:LYS:HD3	2.01	0.42	
31:8:229:GLU:OE2	31:8:270:ARG:NH2	2.52	0.42	
4:D:243:VAL:HG11	4:D:268:PHE:HD1	1.84	0.42	

A + a 1	At and 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:G:210:VAL:HG12	7:G:210:VAL:O	2.19	0.42
22:V:82:ARG:NH2	22:V:86:ASP:OD1	2.52	0.42
8:H:148:LEU:HD23	8:H:148:LEU:N	2.34	0.42
31:8:96:THR:HG21	31:8:169:ASP:O	2.19	0.42
7:G:137:ALA:O	7:G:138:ILE:C	2.57	0.42
8:H:59:THR:O	8:H:59:THR:HG23	2.18	0.42
30:4:305:ILE:HG22	30:4:306:ASN:N	2.35	0.42
7:G:250:LEU:O	7:G:250:LEU:HG	2.19	0.42
19:S:96:CYS:O	19:S:100:VAL:HG23	2.20	0.42
2:B:180:ARG:NH1	4:D:211:CYS:SG	2.87	0.42
1:A:1264:C:H1'	8:H:124:VAL:HG13	2.02	0.42
4:D:215:TYR:CD2	4:D:276:VAL:HG21	2.54	0.42
1:A:930:G:O2'	1:A:931:C:OP2	2.26	0.42
1:A:1286:A:OP1	4:D:260:LYS:NZ	2.51	0.42
9:I:111:SER:OG	9:I:114:THR:HG23	2.20	0.42
14:N:83:GLU:OE1	20:T:85:GLN:NE2	2.42	0.42
14:N:88:VAL:O	14:N:88:VAL:HG13	2.19	0.41
19:S:83:ARG:NH1	19:S:93:LYS:O	2.53	0.41
8:H:122:GLN:O	11:K:112:ARG:NH1	2.53	0.41
12:L:66:ASP:OD1	12:L:107:LYS:NZ	2.43	0.41
22:V:236:LEU:HD21	22:V:323:GLU:HB3	2.02	0.41
30:4:573:ALA:O	30:4:577:ASN:ND2	2.53	0.41
2:B:146:SER:O	2:B:168:THR:HA	2.20	0.41
22:V:36:ASP:OD1	22:V:38:HIS:ND1	2.53	0.41
1:A:683:G:OP1	20:T:160:ARG:NH1	2.54	0.41
6:F:158[A]:LEU:HD21	6:F:230:ALA:HA	2.03	0.41
11:K:79:PRO:O	11:K:82:SER:OG	2.26	0.41
1:A:1149:G:OP2	29:3:165:LYS:NZ	2.51	0.41
3:C:58:ALA:HB1	3:C:59:PRO:CD	2.51	0.41
13:M:67:ALA:HB2	18:R:196:TYR:CE1	2.56	0.41
18:R:191:ARG:HG3	18:R:204:ILE:HG23	2.03	0.41
19:S:106:LEU:CB	19:S:117:LEU:HD11	2.51	0.41
20:T:42:GLU:OE1	20:T:45:ARG:NH2	2.45	0.41
9:I:151:VAL:HG21	9:I:158:ARG:HG3	2.03	0.41
7:G:115:GLY:N	8:H:84:ASP:OD2	2.54	0.40
24:X:93:THR:HG21	24:X:365:TRP:CZ3	2.56	0.40
12:L:79:VAL:HG21	12:L:82:ILE:HD13	2.03	0.40
24:X:50:ARG:NH2	24:X:96:GLU:OE2	2.42	0.40
31:8:216:GLN:HG2	31:8:240:VAL:HG21	2.03	0.40
31:8:357:GLY:O	31:8:358:SER:C	2.59	0.40
3:C:132:TYR:O	3:C:136:VAL:HG23	2.21	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
24:X:108:LEU:HD21	24:X:307:VAL:HG13	2.03	0.40
24:X:127:TYR:OH	28:1:306:GLU:OE2	2.38	0.40
31:8:334:LEU:HD21	31:8:377:LEU:HD11	2.03	0.40
1:A:1064:C:HO2'	1:A:1065:C:H5	1.69	0.40
28:1:266:LEU:HD11	28:1:289:ILE:HD11	2.02	0.40
30:4:166:VAL:HG23	30:4:167:LYS:N	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	223/296~(75%)	222 (100%)	1 (0%)	0	100	100
3	\mathbf{C}	130/167~(78%)	127~(98%)	3~(2%)	0	100	100
4	D	341/430~(79%)	334~(98%)	7 (2%)	0	100	100
5	Ε	116/125~(93%)	116 (100%)	0	0	100	100
6	F	218/242~(90%)	212 (97%)	6 (3%)	0	100	100
7	G	323/396~(82%)	316~(98%)	7(2%)	0	100	100
8	Н	138/201~(69%)	136 (99%)	1 (1%)	1 (1%)	22	57
9	Ι	134/194~(69%)	131 (98%)	3(2%)	0	100	100
10	J	106/138~(77%)	104 (98%)	2(2%)	0	100	100
11	К	99/128~(77%)	98~(99%)	1 (1%)	0	100	100
12	L	172/257~(67%)	172 (100%)	0	0	100	100
13	М	117/137~(85%)	117 (100%)	0	0	100	100
14	Ν	108/130~(83%)	108 (100%)	0	0	100	100
15	Ο	191/258~(74%)	189 (99%)	2 (1%)	0	100	100
16	Р	95/142~(67%)	94 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
17	Q	84/86~(98%)	84 (100%)	0	0	100	100
18	R	293/360~(81%)	286 (98%)	7 (2%)	0	100	100
19	S	133/190 (70%)	132 (99%)	1 (1%)	0	100	100
20	Т	166/173~(96%)	164 (99%)	2 (1%)	0	100	100
21	U	174/205~(85%)	174 (100%)	0	0	100	100
22	V	358/414~(86%)	353 (99%)	5 (1%)	0	100	100
23	W	98/187~(52%)	97~(99%)	1 (1%)	0	100	100
24	Х	350/398~(88%)	345 (99%)	5 (1%)	0	100	100
25	Y	147/395~(37%)	146 (99%)	1 (1%)	0	100	100
26	Z	98/106~(92%)	97~(99%)	1 (1%)	0	100	100
27	0	213/218~(98%)	212 (100%)	1 (0%)	0	100	100
28	1	276/323~(85%)	273 (99%)	3 (1%)	0	100	100
29	3	69/199~(35%)	69 (100%)	0	0	100	100
30	4	586/689~(85%)	579 (99%)	7 (1%)	0	100	100
31	8	322/407~(79%)	316 (98%)	6 (2%)	0	100	100
All	All	5878/7591 (77%)	5803 (99%)	74 (1%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
8	Н	126	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	198/249~(80%)	198 (100%)	0	100	100
3	С	115/143~(80%)	115 (100%)	0	100	100
4	D	286/357~(80%)	284 (99%)	2 (1%)	84	91

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	Ε	100/107~(94%)	100 (100%)	0	100	100
6	\mathbf{F}	195/209~(93%)	195~(100%)	0	100	100
7	G	285/342~(83%)	284 (100%)	1 (0%)	91	95
8	Н	130/180~(72%)	130 (100%)	0	100	100
9	Ι	104/146~(71%)	104 (100%)	0	100	100
10	J	93/118~(79%)	93~(100%)	0	100	100
11	Κ	91/113~(80%)	91 (100%)	0	100	100
12	L	158/226~(70%)	158 (100%)	0	100	100
13	М	97/113~(86%)	97~(100%)	0	100	100
14	Ν	96/115~(84%)	96 (100%)	0	100	100
15	О	174/230~(76%)	174 (100%)	0	100	100
16	Р	88/123 (72%)	88 (100%)	0	100	100
17	Q	78/78~(100%)	78 (100%)	0	100	100
18	R	264/318~(83%)	264 (100%)	0	100	100
19	S	116/164 (71%)	116 (100%)	0	100	100
20	Т	153/157~(98%)	153 (100%)	0	100	100
21	U	152/174~(87%)	152 (100%)	0	100	100
22	V	325/364~(89%)	324 (100%)	1 (0%)	92	96
23	W	87/158~(55%)	87 (100%)	0	100	100
24	Х	311/351~(89%)	309 (99%)	2 (1%)	86	92
25	Y	137/357~(38%)	137 (100%)	0	100	100
26	Ζ	90/95~(95%)	90 (100%)	0	100	100
27	0	188/190~(99%)	188 (100%)	0	100	100
28	1	256/291 (88%)	256 (100%)	0	100	100
29	3	65/166~(39%)	65 (100%)	0	100	100
30	4	527/609~(86%)	527 (100%)	0	100	100
31	8	275/350~(79%)	275 (100%)	0	100	100
All	All	5234/6593~(79%)	5228 (100%)	6 (0%)	93	97

All (6) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	D	276	VAL
	a	7	

Continued from previous page...

Mol	Chain	Res	Type
4	D	296	LEU
7	G	389	ARG
22	V	226	TYR
24	Х	81	HIS
24	Х	394	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
6	F	113	GLN
6	F	146	HIS
9	Ι	96	GLN
9	Ι	98	GLN
12	L	162	GLN
20	Т	33	ASN
22	V	134	GLN
25	Y	290	ASN
28	1	185	HIS
30	4	129	GLN
30	4	285	ASN
31	8	343	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	947/955~(99%)	117 (12%)	0

All (117) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	651	A
1	А	680	U
1	А	688	А
1	А	704	U
1	А	721	U
1	А	722	С
1	А	737	С
1	А	739	С
1	А	753	А
1	А	761	А

Mol	Chain	Res	Type
1	А	766	G
1	А	777	G
1	А	791	G
1	А	796	G
1	А	830	U
1	А	832	U
1	А	835	С
1	А	860	А
1	А	868	С
1	А	890	С
1	А	902	G
1	А	919	А
1	А	929	А
1	А	931	С
1	А	932	С
1	А	938	А
1	А	939	А
1	А	942	А
1	А	954	С
1	А	955	А
1	А	956	С
1	А	958	С
1	А	960	С
1	А	961	U
1	А	962	С
1	А	967	А
1	А	1001	С
1	А	1002	С
1	А	1011	С
1	А	1015	A
1	А	1019	A
1	А	1020	С
1	А	1022	A
1	А	1042	U
1	А	1043	С
1	А	1065	С
1	А	1069	A
1	А	1098	С
1	А	1103	A
1	А	1105	С
1	А	1106	С
1	А	1107	U
	1	1	1

Mol	Chain	Res	Type
1	А	1109	А
1	А	1116	А
1	А	1118	А
1	А	1119	U
1	А	1120	С
1	А	1121	А
1	А	1126	А
1	А	1151	С
1	А	1167	А
1	А	1187	U
1	А	1188	А
1	А	1189	U
1	А	1215	U
1	A	1223	С
1	А	1225	С
1	A	1229	U
1	А	1247	G
1	А	1248	С
1	А	1250	С
1	А	1251	А
1	А	1261	С
1	А	1271	С
1	А	1273	G
1	А	1284	U
1	А	1290	С
1	А	1291	U
1	А	1326	А
1	А	1327	G
1	А	1343	А
1	A	1344	U
1	A	1354	A
1	A	1356	A
1	А	1376	С
1	A	1378	С
1	A	1390	А
1	A	1421	G
1	A	1422	G
1	A	1430	A
1	A	1447	G
1	A	1462	G
1	A	1474	G
1	А	1481	С

Mol	Chain	Res	Type
1	А	1492	А
1	А	1493	С
1	А	1503	G
1	А	1505	А
1	А	1507	А
1	А	1512	А
1	А	1519	А
1	А	1520	U
1	А	1522	U
1	А	1525	С
1	А	1526	U
1	А	1527	А
1	А	1533	С
1	А	1537	С
1	А	1539	С
1	А	1540	А
1	A	1558	А
1	А	1559	G
1	A	1568	U
1	А	1571	U
1	A	1594	G
1	А	1595	G
1	A	1598	G

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

7 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
WIOI	Type	Ullalli	ries		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	MA6	А	1583	1	18,26,27	0.72	0	19,38,41	0.61	0
1	5MU	А	1076	1	19,22,23	0.30	0	28,32,35	0.37	0
9	5F0	Ι	184	9	8,8,9	0.58	0	7,9,11	1.04	1 (14%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	B8T	A	1486	1	19,22,23	0.33	0	26,31,34	0.33	0
1	MA6	А	1584	1	18,26,27	0.74	0	19,38,41	0.56	0
1	5MC	A	1488	1	18,22,23	0.33	0	$26,\!32,\!35$	0.46	0
17	AYA	Q	2	17	6,7,8	0.76	0	5,8,10	0.48	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	MA6	А	1583	1	-	2/7/29/30	0/3/3/3
1	5MU	А	1076	1	-	0/7/25/26	0/2/2/2
9	5F0	Ι	184	9	-	0/9/9/10	-
1	B8T	А	1486	1	-	0/7/27/28	0/2/2/2
1	MA6	А	1584	1	-	1/7/29/30	0/3/3/3
1	5MC	А	1488	1	-	0/7/25/26	0/2/2/2
17	AYA	Q	2	17	-	0/4/6/8	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	Ι	184	5F0	O-C-CB	-2.33	118.63	125.43

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1584	MA6	C5-C6-N6-C9
1	А	1583	MA6	O4'-C4'-C5'-O5'
1	А	1583	MA6	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 87 ligands modelled in this entry, 81 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bond lengths			Bond angles		
INIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
32	NAD	А	1701	33	42,48,48	0.58	0	50,73,73	0.56	1 (2%)
37	ATP	Х	501	33	26,33,33	0.76	0	31,52,52	0.64	0
36	FES	Р	201	16,5	0,4,4	-	-	-		
39	SAH	8	501	-	24,28,28	0.70	0	$25,\!40,\!40$	0.79	1 (4%)
36	FES	Т	201	13,20	0,4,4	-	-	-		
38	GDP	Х	503	-	24,30,30	0.88	2 (8%)	30,47,47	0.65	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
32	NAD	А	1701	33	-	2/26/62/62	0/5/5/5
37	ATP	Х	501	33	-	0/18/38/38	0/3/3/3
36	FES	Р	201	16,5	-	-	0/1/1/1
39	SAH	8	501	-	-	4/11/31/31	0/3/3/3
36	FES	Т	201	13,20	-	-	0/1/1/1
38	GDP	Х	503	-	-	0/12/32/32	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
38	Х	503	GDP	C5-C6	-2.13	1.43	1.47
38	Х	503	GDP	C8-N7	-2.01	1.31	1.35

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
39	8	501	SAH	C5-C6-N6	2.32	123.88	120.35

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
32	А	1701	NAD	C5A-C6A-N6A	2.31	123.86	120.35

There are no chirality outliers.

All (6) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
39	8	501	SAH	OXT-C-CA-N
39	8	501	SAH	OXT-C-CA-CB
39	8	501	SAH	O-C-CA-CB
39	8	501	SAH	O-C-CA-N
32	А	1701	NAD	PA-O3-PN-O1N
32	А	1701	NAD	PA-O3-PN-O2N

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
39	8	501	SAH	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18439. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 272

Z Index: 239

6.3.2 Raw map

X Index: 0

Y Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.125. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.6.1 emd_18439_msk_1.map (i)

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 788 $\rm nm^3;$ this corresponds to an approximate mass of 712 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.299 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.299 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{ascolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.34	-	-		
Author-provided FSC curve	3.96	6.39	4.11		
Unmasked-calculated*	10.53	19.76	12.14		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from author-provided FSC intersecting FSC 0.143 CUT-OFF 3.96 differs from the reported value 3.34 by more than 10 %

The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 10.53 differs from the reported value 3.34 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18439 and PDB model 8QRL. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.125 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.125).

9.4 Atom inclusion (i)

At the recommended contour level, 69% of all backbone atoms, 71% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.125) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.7070	0.1830	
0	0.6840	0.1160	
1	0.5090	0.0940	
3	0.7230	0.2440	
4	0.3320	0.0530	
8	0.6200	0.1360	
А	0.8980	0.2480	
В	0.7720	0.2430	
С	0.7180	0.2240	
D	0.7090	0.2540	
Е	0.6650	0.1750	
F	0.5490	0.1250	
G	0.6120	0.1390	
Н	0.5810	0.1140	
Ι	0.7650	0.1900	
J	0.7680	0.2830	
K	0.6930	0.1030	
L	0.7120	0.2250	
М	0.8030	0.2390	
Ν	0.7840	0.2700	
О	0.8130	0.2650	
Р	0.7770	0.2070	
Q	0.6950	0.1770	
R	0.8150	0.2830	
S	0.7360	0.1940	
Т	0.7440	0.2930	
U	0.7370	0.1910	
V	0.6100	0.0280	
W	0.7220	0.1850	
X	0.4710	0.0460	
Y	0.4100	0.0350	
Z	0.5790	0.1110	

1.0

