

wwPDB X-ray Structure Validation Summary Report (i)

Aug 8, 2023 – 02:51 PM EDT

PDB ID	:	1Q9X
Title	:	Crystal structure of Enterobacteria phage RB69 gp43 DNA polymerase com-
		plexed with tetrahydrofuran containing DNA
Authors	:	Freisinger, E.; Grollman, A.P.; Miller, H.; Kisker, C.
Deposited on	:	2003-08-26
Resolution	:	2.69 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.69 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2808 (2.70-2.70)
Clashscore	141614	3122 (2.70-2.70)
Ramachandran outliers	138981	3069 (2.70-2.70)
Sidechain outliers	138945	3069 (2.70-2.70)
RSRZ outliers	127900	2737 (2.70-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chair	1
1	Е	18	28%	33%	44%
		10	17%	5578	1170
	F'	18	33%	33%	33%
1	G	18	28%	33%	39%
1	Н	18	33%	44%	22%
	Ŧ	10			
2	l	13	8%	54%	38%

Mol	Chain	Length	Quality of chain							
2	J	13	31%	38%	3	1%				
2	Κ	13	8%	62%		31%				
2	L	13	46%		38%	15%				
3	А	903	60	%	32%	7% •				
3	В	903	7%	54%	29%	6% •				
3	С	903	3%	67%	25%	7% •				
3	D	903	2% 	3%	29%	7% •				

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	DGP	F	908	-	-	-	Х
6	DGP	G	908	-	-	-	Х
6	DGP	K	955	-	-	-	Х

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 32756 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Б	10	Total	С	Ν	Ο	Р	0	0	0
	E	10	370	175	74	104	17	0	0	0
1	Б	10	Total	С	Ν	Ο	Р	0	0	0
	Г	18	370	175	74	104	17	0		0
1	C	10	Total	С	Ν	0	Р	0	0	0
	I G	10	370	175	74	104	17	0	0	0
1	п	19	Total	С	Ν	0	Р	0	0	0
ГП	18	370	175	74	104	17	0	0	0	

• Molecule 1 is a DNA chain called 5'-GCGGACTGCTTAC(dideoxycytidine)-3'.

• Molecule 2 is a DNA chain called 5'-AC(tetrahydrofuran)GGTAAGCAGTCCGCGG-3'.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	т	12	Total	С	Ν	Ο	Р	0	0	0
	1	13	263	126	48	77	12	0	0	0
0	т	13	Total	С	Ν	Ο	Р	0	0	0
	1		263	126	48	77	12	0	0	0
0	K	12	Total	С	Ν	Ο	Р	0	0	0
	2 K	15	263	126	48	77	12	0		0
0) т	12	Total	С	Ν	Ο	Р	0	0	0
	13	263	126	48	77	12	0	0	0	

• Molecule 3 is a protein called DNA polymerase.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace	
3	Λ	003	Total	С	Ν	Ο	S	0	0	0	
5	Л	905	7365	4730	1226	1376	33	0	0		
3	В	002	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
5	D 905	900	7365	4730	1226	1376	33	0	0		
2	C	002	Total	С	Ν	Ο	S	0	0	0	
5	3 0	905	7365	4730	1226	1376	33	0	0	0	
2	D 00	003	Total	С	Ν	Ο	S	0	0	0	
3 D	903	7365	4730	1226	1376	33	0	0	0		

1	Q9X	
-	an r	

Chain	Residue	Modelled	Actual	Comment	Reference
А	222	ALA	ASP	engineered mutation	UNP Q38087
А	327	ALA	ASP	engineered mutation	UNP Q38087
В	222	ALA	ASP	engineered mutation	UNP Q38087
В	327	ALA	ASP	engineered mutation	UNP Q38087
С	222	ALA	ASP	engineered mutation	UNP Q38087
С	327	ALA	ASP	engineered mutation	UNP Q38087
D	222	ALA	ASP	engineered mutation	UNP Q38087
D	327	ALA	ASP	engineered mutation	UNP Q38087

There are 8 discrepancies between the modelled and reference sequences:

• Molecule 4 is 1',2'-DIDEOXYRIBOFURANOSE-5'-PHOSPHATE (three-letter code: 3DR) (formula: C₅H₁₁O₆P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Е	1	Total C O P 11 5 5 1	0	0
4	F	1	Total C O P 11 5 5 1	0	0
4	G	1	Total C O P 11 5 5 1	0	0
4	Н	1	Total C O P 11 5 5 1	0	0

• Molecule 5 is 2',3'-DIDEOXYCYTIDINE-5'-MONOPHOSPHATE (three-letter code: DOC) (formula: $C_9H_{14}N_3O_6P$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
Б	Т	1	Total	С	Ν	0	Р	0	0
0	1	L	18	9	3	5	1	0	0
5	т	1	Total	С	Ν	0	Р	0	0
0	J	1	18	9	3	5	1	0	0
5	K	1	Total	С	Ν	0	Р	0	0
0	Γ	L	18	9	3	5	1	0	0
5	т	1	Total	С	Ν	Ο	Р	0	0
5			18	9	3	5	1		U

• Molecule 6 is 2'-DEOXYGUANOSINE-5'-MONOPHOSPHATE (three-letter code: DGP) (formula: $C_{10}H_{14}N_5O_7P$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	F	1	Total C N O 19 10 5 4	0	0
6	G	1	Total O 1 1	0	0
6	G	1	Total C N O P 22 10 5 6 1	0	0
6	K	1	Total C N O P 22 10 5 6 1	0	0
6	Н	1	Total C N O 19 10 5 4	0	0
6	L	1	Total C N O P 22 10 5 6 1	0	0

• Molecule 7 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	2	Total Ca 2 2	0	0
7	В	2	Total Ca 2 2	0	0
7	С	2	Total Ca 2 2	0	0
7	D	2	Total Ca 2 2	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	Е	11	Total O 11 11	0	0
8	Ι	11	Total O 11 11	0	0
8	F	8	Total O 8 8	0	0
8	J	6	Total O 6 6	0	0
8	G	7	Total O 7 7	0	0
8	К	3	Total O 3 3	0	0
8	Н	8	Total O 8 8	0	0
8	L	3	Total O 3 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	112	Total O 112 112	0	0
8	В	129	Total O 129 129	0	0
8	С	126	Total O 126 126	0	0
8	D	111	Total O 111 111	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 5'-GCGGACTGCTTAC(dideoxycytidine)-3'

• Molecule 2: 5'-AC(tetrahydrofuran)GGTAAGCAGTCCGCGG-3'

Chain J:	31%	38	%	31%	-
C940 C941 C941 C943 C943 C945 C945 C945 C948 C948 C948 C948 C948 C948 C948	695 1 C95 2				
• Molecule 2: 5	'-AC(tetrahy	vdrofuran)GG	FAAGCAGT	CCGCGG-3'	
Chain K: 8%		62%		31%	
6940 6942 6942 6943 6943 6943 7946 7946 6947 6947 7949 7950	C952				
• Molecule 2: 5	'-AC(tetrahy	vdrofuran)GG	FAAGCAGT	CCGCGG-3'	
Chain L:	46%		38%	15%	-
G940 C941 C945 C945 T946 G947 T950 A951 A951 C952					
• Molecule 3: D	NA polyme	rase			
Chain A:		60%		32% 7%	6 •
M1 K2 E3 E3 E3 E3 E3 E3 E2 E2 E2 E2 E2 E2 E2 E2 E2 E2 E2 E2 E2	R27 E32 K34 F38	E43 544 645 645 645 745 745 745 745 745 75 75 75	R59 R66 Q70 K73 K73 M74 M76 E76	177 178 178 180 180 186 180 186 180 187 198 180 180 180	N98 E100 1101 H105 T106
N112 N112 0121 6122 6122 8127 8126 8127 8128 8127 8129 8129	1130 1132 1132 1140 1140	N153 N153 N158 N158 N158 N158 N158 S163 E165	L170 q171 E172 q173 q173 c175 E177 E177 E177	E181 1182 1183 1183 1183 0192 E196 E196 L198 M198	L202 Q206 V211 I212 L213
1214 6215 W217 V218 1223 1223 F224 F224 V226	I 230 E 236 2237 1238 A 239 K 240	M446 K247 V250 V255 V252 I253 R255 R255 N255 N255	q258 \$259 \$259 \$260 \$260 \$260 \$269 \$269 \$269	K279 K279 1283 0285 P286 D291 E295	L298 (301 (302 (303 (303 (304 (304
1309 1312 1312 1313 15 1313 15 1315 1315 131	1326 1326 1328 1333 1333 1333	1340 1341 1343 1343 1345 1345 1345 1345 1346 1348 1348 1349 13349	q3 ⁵⁴ 1355 3356 7357 8357 8360 7361 7361 1362 7361 7361 7361	1369 1369 1373 1375 1375 1375 1375 1375 1375 1375	V388 Q389 Y391 P392
F335 V336 K337 F338 K336 K336 K336 K403 K403 K403 K403 K405 K405	D411 8414 1415 1415 7416 7417 1420	1425 5426 5426 7429 7429 7435 7435 7435 7438	H440 D441 E448 R449 R449 V453 V453 V453 S455	Y463 Y464 X465 D466 D466 E474 E474 E475 Y475 Y475	N480 Q481 K482 K483 Y488 M489 ●
1490 4491 4491 4493 8493 8495 6495 1499 1499 1499 1498	L501 L502 L503 H504 N505 P506 N505 L508 L508 L508	0511 0511 1511 1514 1514 1514 1514 1514	1521 1522 1523 1524 1525 1525 1526 1528 1528 1530	K631 K532 K533 K533 A533 A535 K536 K536 S537 K536 S537 K536 S537 K536 K536 S537 K536 S547 K538 K539 K539 K539 K539 K533 K535 K532 K532 K532 K532 K532 K533 K532 K533 K533	F544 R544 Q545 R547 T548 E549
V550 4551 4553 4553 1554 1554 N558 R559 R559 R559	N572 N572 N572 N572 A583 1584	A505 (4501 (4592 (4593 (4594 (1594 (1594 (1594 (1594 (1594 (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1594) (1592) (1594) (1592) (1594) (1592) (1594) (1592) (1594) (1592)	E607 V608 C609 C609 C609 C609 V607 V617 V617 V617 V617	T622 D623 S624 T625 V626 N629 D630 D630 D630 D635	V635 6637 8639 8639 8640 8641 8642
D643 H646 H646 V647 V648 D649 F650 E651 D652	R658 1663 1664 1664 1664 1672 1676	No/ / M683 M685 R685 R685 A689 G690 G699	4702 1703 1703 6705 8705 8705 8707 8707 1710	D714 L725 L725 N728 M728 C729 E731 E731 E731	5/36 1737 A740 K743 A744

K844 D714 K599 184-5 77.20 16.03 184-5 77.20 16.03 184-5 77.24 16.18 186-5 77.24 16.18 186-5 77.39 76.03 186-5 77.39 76.04 1867 7.33 77.34 16.03 1867 7.33 77.34 16.03 1867 7.33 77.35 16.03 1867 7.33 77.35 16.03 1867 7.33 77.35 16.03 1869 77.65 6.63 16.3 1887 77.65 6.63 16.3 1888 77.65 6.63 16.3 1889 77.65 6.63 16.3 1889 77.65 6.64 16.3 1889 77.65 6.64 16.3 1889 77.65 6.64 16.3 1889 77.65 6.64 16.3 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	131.95Å 122.24Å 165.36Å	Depositor
a, b, c, α , β , γ	90.00° 96.85° 90.00°	Depositor
Bosolution(A)	47.00 - 2.69	Depositor
Resolution (A)	45.07 - 2.70	EDS
% Data completeness	94.7 (47.00-2.69)	Depositor
(in resolution range)	$95.1 \ (45.07 - 2.70)$	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.11	Depositor
$< I/\sigma(I) > 1$	$2.48 (at 2.69 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.1.24	Depositor
B B.	0.215 , 0.288	Depositor
II, II free	0.208 , 0.273	DCC
R_{free} test set	6757 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	58.9	Xtriage
Anisotropy	0.324	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 45.6	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	32756	wwPDB-VP
Average B, all atoms $(Å^2)$	63.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.88% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DOC, 3DR, DGP, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	E	Bond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Е	1.19	0/415	2.02	23/637~(3.6%)
1	F	1.07	0/415	1.77	8/637~(1.3%)
1	G	1.28	2/415~(0.5%)	2.14	18/637~(2.8%)
1	Н	1.43	4/415~(1.0%)	1.90	13/637~(2.0%)
2	Ι	1.06	0/294	1.78	9/452~(2.0%)
2	J	1.15	0/294	1.90	7/452~(1.5%)
2	Κ	1.20	0/294	1.89	9/452~(2.0%)
2	L	1.25	1/294~(0.3%)	1.84	6/452~(1.3%)
3	А	0.56	0/7545	0.83	32/10196~(0.3%)
3	В	0.62	0/7545	0.83	28/10196~(0.3%)
3	С	0.65	0/7545	0.87	26/10196~(0.3%)
3	D	0.60	0/7545	0.83	27/10196~(0.3%)
All	All	0.68	7/33016~(0.0%)	0.99	206/45140~(0.5%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	В	0	1
3	С	0	1
All	All	0	2

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	Н	926	DC	C4-C5	9.24	1.50	1.43
1	G	926	DC	C4-C5	6.59	1.48	1.43
1	Н	926	DC	N1-C2	6.51	1.46	1.40
1	Н	926	DC	N1-C6	6.47	1.41	1.37

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	G	926	DC	N1-C2	5.28	1.45	1.40

The worst 5 of 206 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	G	911	DC	C1'-O4'-C4'	-13.14	96.96	110.10
1	G	911	DC	O4'-C1'-N1	12.56	116.80	108.00
1	Е	918	DG	O4'-C1'-N9	12.30	116.61	108.00
2	K	943	DG	O4'-C1'-N9	11.64	116.15	108.00
1	Е	919	DC	O4'-C1'-N1	10.99	115.69	108.00

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	В	640	LYS	Peptide
3	С	252	VAL	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Ε	370	0	202	16	0
1	F	370	0	202	13	0
1	G	370	0	202	11	0
1	Н	370	0	202	10	0
2	Ι	263	0	147	16	0
2	J	263	0	147	9	0
2	Κ	263	0	147	6	0
2	L	263	0	147	3	0
3	А	7365	0	7257	191	0
3	В	7365	0	7258	158	0
3	С	7365	0	7258	172	0
3	D	7365	0	7258	188	0
4	Е	11	0	8	1	0
4	F	11	0	8	3	0
4	G	11	0	8	3	0

1Q9X	
------	--

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	Н	11	0	8	0	0
5	Ι	18	0	12	2	0
5	J	18	0	12	1	0
5	Κ	18	0	12	1	0
5	L	18	0	12	0	0
6	F	19	0	12	0	0
6	G	23	0	12	2	0
6	Н	19	0	12	3	0
6	Κ	22	0	12	1	0
6	L	22	0	12	1	0
7	А	2	0	0	0	0
7	В	2	0	0	0	0
7	С	2	0	0	0	0
7	D	2	0	0	0	0
8	А	112	0	0	16	0
8	В	129	0	0	18	0
8	С	126	0	0	21	0
8	D	111	0	0	18	0
8	Е	11	0	0	3	0
8	F	8	0	0	0	0
8	G	7	0	0	2	0
8	Н	8	0	0	2	0
8	Ι	11	0	0	3	0
8	J	6	0	0	0	0
8	Κ	3	0	0	0	0
8	L	3	0	0	0	0
All	All	32756	0	30567	769	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

The worst 5 of 769 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:A:253:ILE:HG22	3:A:261:GLU:HB3	1.28	1.13
3:C:514:LEU:H	3:C:541:MET:HE2	1.11	1.12
3:C:171:GLN:NE2	3:C:177:GLU:HB2	1.66	1.10
3:C:89:LYS:HE2	3:C:354:GLN:HE22	1.13	1.06
3:A:253:ILE:HG22	3:A:261:GLU:CB	1.91	1.01

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	А	901/903~(100%)	805~(89%)	81 (9%)	15 (2%)	9	23
3	В	901/903~(100%)	830 (92%)	62~(7%)	9 (1%)	15	37
3	С	901/903~(100%)	827~(92%)	60 (7%)	14 (2%)	9	24
3	D	901/903~(100%)	823 (91%)	64 (7%)	14 (2%)	9	24
All	All	3604/3612~(100%)	3285 (91%)	267 (7%)	52 (1%)	11	28

5 of 52 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	А	22	SER
3	А	45	GLN
3	А	639	SER
3	А	640	LYS
3	А	902	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
3	А	798/800~(100%)	636~(80%)	162 (20%)	1	3
3	В	798/800~(100%)	640 (80%)	158 (20%)	1	3
3	С	798/800~(100%)	669 (84%)	129 (16%)	2	6
3	D	798/800~(100%)	656~(82%)	142 (18%)	2	4
All	All	3192/3200~(100%)	2601 (82%)	591 (18%)	1	4

5 of 591 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	D	66	ARG
3	D	800	LYS
3	D	163	SER
3	D	61	LEU
3	D	402	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 78 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
3	С	558	ASN
3	D	495	ASN
3	С	818	ASN
3	D	333	GLN
3	D	679	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 22 ligands modelled in this entry, 1 is modelled with single atom and 8 are monoatomic - leaving 13 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bo	Bond lengths		Bond angles		
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	3DR	G	912	1	8,11,12	0.88	0	9,14,17	1.31	2 (22%)
5	DOC	L	953	2	16,19,20	0.52	0	20,26,29	1.07	1 (5%)
5	DOC	J	953	2	16,19,20	0.69	0	20,26,29	1.22	2 (10%)
4	3DR	F	912	1	8,11,12	0.48	0	9,14,17	0.96	0
6	DGP	K	955	-	18,24,25	1.19	3 (16%)	19,35,38	1.39	4 (21%)
5	DOC	K	953	2	16,19,20	0.49	0	20,26,29	1.95	3 (15%)
6	DGP	G	908	6,7	18,24,25	1.19	2 (11%)	19,35,38	0.86	0
4	3DR	Е	912	1	8,11,12	0.64	0	9,14,17	0.98	0
6	DGP	F	908	-	18,21,25	1.03	1 (5%)	19,31,38	1.35	3 (15%)
6	DGP	L	955	-	18,24,25	1.20	2 (11%)	19,35,38	0.69	0
6	DGP	Н	908	-	18,21,25	1.24	2 (11%)	19,31,38	1.14	1 (5%)
5	DOC	Ι	953	2	16,19,20	0.50	0	20,26,29	0.86	1 (5%)
4	3DR	Н	912	1	8,11,12	0.62	0	9,14,17	0.83	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	3DR	G	912	1	-	1/3/15/16	0/1/1/1
5	DOC	L	953	2	-	0/7/18/19	0/2/2/2
5	DOC	J	953	2	-	0/7/18/19	0/2/2/2
4	3DR	F	912	1	-	0/3/15/16	0/1/1/1
6	DGP	K	955	-	-	1/3/21/22	0/3/3/3
5	DOC	К	953	2	-	2/7/18/19	0/2/2/2
6	DGP	G	908	6,7	-	2/3/21/22	0/3/3/3
4	3DR	Е	912	1	-	2/3/15/16	0/1/1/1
6	DGP	F	908	-	-	2/2/18/22	0/3/3/3
6	DGP	L	955	-	-	1/3/21/22	0/3/3/3
6	DGP	Н	908	-	-	0/2/18/22	0/3/3/3
5	DOC	Ι	953	2	-	2/7/18/19	0/2/2/2
4	3DR	Н	912	1	-	2/3/15/16	0/1/1/1

The worst 5 of 10 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
6	L	955	DGP	C5-C6	-2.99	1.41	1.47
6	G	908	DGP	C8-N7	-2.90	1.30	1.35

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
6	Н	908	DGP	C8-N7	-2.78	1.30	1.35
6	L	955	DGP	C8-N7	-2.76	1.30	1.35
6	G	908	DGP	C5-C6	-2.61	1.42	1.47

Continued from previous page...

The worst 5 of 17 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Κ	953	DOC	C4'-O4'-C1'	-7.11	103.09	109.81
6	Κ	955	DGP	C4'-O4'-C1'	-3.21	101.71	109.45
5	Κ	953	DOC	O4'-C1'-C2'	-3.07	103.34	106.67
5	J	953	DOC	C4'-O4'-C1'	-3.07	106.91	109.81
6	F	908	DGP	O6-C6-N1	-2.95	117.17	120.65

There are no chirality outliers.

5 of 15 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Ι	953	DOC	C3'-C4'-C5'-O5'
5	Ι	953	DOC	O4'-C4'-C5'-O5'
5	Κ	953	DOC	O4'-C4'-C5'-O5'
6	F	908	DGP	C3'-C4'-C5'-O5'
6	F	908	DGP	O4'-C4'-C5'-O5'

There are no ring outliers.

10 monomers are involved in 17 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	G	912	3DR	3	0
5	J	953	DOC	1	0
4	F	912	3DR	3	0
6	K	955	DGP	1	0
5	K	953	DOC	1	0
6	G	908	DGP	1	0
4	Е	912	3DR	1	0
6	L	955	DGP	1	0
6	Н	908	DGP	3	0
5	Ι	953	DOC	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	Н	1
1	G	1
1	Е	1
1	F	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Н	911:DC	O3'	913:DG	Р	7.44
1	G	911:DC	O3'	913:DG	Р	6.78
1	Е	911:DC	O3'	913:DG	Р	6.67
1	F	911:DC	O3'	913:DG	Р	6.67

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	Ε	18/18~(100%)	1.33	5~(27%) 0 0	76, 92, 130, 152	0
1	F	18/18~(100%)	0.68	$3\ (16\%)\ 1\ 1$	39, 75, 149, 176	0
1	G	18/18~(100%)	0.23	2(11%) 5 4	36, 54, 90, 102	0
1	Н	18/18~(100%)	0.25	1 (5%) 24 23	44, 67, 128, 131	0
2	Ι	13/13~(100%)	0.47	0 100 100	77, 95, 100, 102	0
2	J	13/13~(100%)	-0.05	0 100 100	41, 68, 121, 135	0
2	Κ	13/13~(100%)	-0.31	0 100 100	36, 55, 77, 83	0
2	L	13/13~(100%)	-0.19	0 100 100	43,65,95,102	0
3	А	903/903~(100%)	0.45	97 (10%) 6 4	30, 64, 147, 260	0
3	В	903/903~(100%)	0.15	59 (6%) 18 17	30, 53, 121, 222	0
3	С	903/903~(100%)	-0.05	23 (2%) 57 59	28, 47, 88, 138	0
3	D	903/903~(100%)	0.01	21 (2%) 60 62	30, 57, 93, 170	0
All	All	3736/3736~(100%)	0.15	211 (5%) 24 23	28, 56, 113, 260	0

The worst 5 of 211 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	А	510	VAL	14.7
3	В	508	LEU	12.9
3	А	509	SER	12.0
3	D	903	PHE	10.5
3	А	543	PHE	10.4

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
6	DGP	K	955	22/23	0.61	0.56	51,60,71,72	15
7	CA	В	1004	1/1	0.68	0.23	96,96,96,96	0
6	DGP	L	955	22/23	0.69	0.35	58,66,76,76	15
7	CA	D	1008	1/1	0.69	0.26	79,79,79,79	0
6	DGP	G	908	22/23	0.77	0.41	70,72,83,85	0
6	DGP	F	908	19/23	0.78	0.44	72,75,81,81	0
6	DGP	Н	908	19/23	0.81	0.39	69,71,75,75	0
7	CA	А	1001	1/1	0.82	0.14	91,91,91,91	0
7	CA	С	1005	1/1	0.83	0.14	75,75,75,75	0
7	CA	В	1003	1/1	0.84	0.08	54,54,54,54	0
4	3DR	Е	912	11/12	0.85	0.21	92,98,109,109	0
7	CA	С	1006	1/1	0.87	0.10	$57,\!57,\!57,\!57$	0
7	CA	D	1007	1/1	0.89	0.10	$55,\!55,\!55,\!55$	0
4	3DR	Н	912	11/12	0.93	0.21	$61,\!66,\!81,\!82$	0
5	DOC	Ι	953	18/19	0.93	0.14	74,81,85,89	0
6	DGP	G	907	1/23	0.94	0.61	84,84,84,84	0
4	3DR	G	912	11/12	0.94	0.17	$51,\!55,\!68,\!71$	0
4	3DR	F	912	11/12	0.96	0.17	57, 59, 74, 77	0
5	DOC	Κ	953	18/19	0.97	0.16	32,36,40,40	0
5	DOC	L	953	18/19	0.97	0.15	$3\overline{9,43,51,52}$	0
5	DOC	J	953	18/19	0.97	0.15	39,42,46,46	0
7	CA	A	1002	1/1	0.99	0.14	$6\overline{7,}67,\!67,\!67$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

