

wwPDB EM Validation Summary Report (i)

Dec 14, 2023 – 04:24 pm GMT

PDB ID	:	8PV1
EMDB ID	:	EMD-17950
Title	:	Chaetomium thermophilum pre-60S State 6 - pre-5S rotation - L1 intermediate - composite structure
Authors	:	Thoms, M.; Cheng, J.; Denk, T.; Berninghausen, O.; Beckmann, R.
Deposited on	:	2023-07-17
Resolution	:	2.56 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.56 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	C1	3342	74%	17% • 8%
2	C2	156	86%	13% •
3	C3	162	9% 36% 14% • 49%	
4	C4	119	7%	22%
5	CB	391	5% 67% ·	32%
6	CF	270	90%	9%
7	CH	661	95%	5%
8	CI	414	3 6% 63%	

Mol	Chain	Length	Quality of chain	
9	CJ	679	56% 44%	
10	CK	261	91%	9%
11	CL	558	14% 86%	
12	СМ	249	87%	13%
12	LF	249	100%	
13	CN	246	100%	
14	СО	120	5 2% 48%	
15	CQ	225	<u>6%</u> 81%	19%
16	Cb	117	86%	14%
17	Cd	627	74%	26%
18	Се	443	• 59% 41%	
19	Cf	350	81%	19%
20	Cg	202	93%	7%
21	Ch	517	<mark>6%</mark> 94%	6%
22	Cz	123	82%	18%
23	LA	254	• 75%	25%
24	LB	392	99%	
25	LC	365	99%	
26	LD	304	5% 94%	6%
27	LE	200	95%	•
28	LG	262	90%	10%
29	LH	229	83%	17%
30	LI	173	• • •	
31	LK	165	050%	•
32	LL	213	05%	۰ • 50/
			5570	570

Mol	Chain	Length	Quality of chain	
33	LM	142	99%	
34	LN	203	100%	
35	LO	204	100%	
36	LP	187	91%	9%
37	LQ	213	70%	30%
38	LR	2898	5% 95%	
39	LS	174	100%	
40	LT	160	81%	19%
41	LU	127	83%	17%
42	LV	139	97%	•
43	LX	156	93%	7%
44	LY	138	96%	· ·
45	LZ	135	100%	
46	La	149	72%	28%
47	Lc	108	88%	12%
48	Ld	120	92%	8%
49	Le	131	96%	· ·
50	Lf	109	99%	
51	Lg	119	8%	
52	Lh	935	13% 87%	
53	Li	110	92%	8%
54	Lj	95	93%	7%
55	Lk	94	81%	19%
56	Ll	51	98%	
57	Lp	92	99%	

Mol	Chain	Length	Quality of chain	
58	Lq	147	95%	5%

2 Entry composition (i)

There are 62 unique types of molecules in this entry. The entry contains 157250 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 26S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	C1	3078	Total 65888	C 29429	N 11926	O 21455	Р 3078	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	C2	156	Total 3319	C 1484	N 589	O 1090	Р 156	0	0

• Molecule 3 is a RNA chain called ITS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	C3	82	Total 1754	C 780	N 316	O 576	Р 82	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	C4	119	Total 2536	C 1131	N 453	O 833	Р 119	0	0

• Molecule 5 is a protein called Utp30.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	СВ	265	Total 2107	C 1351	N 371	O 382	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein uL10.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
6	CF	245	Total 1934	C 1215	N 350	O 360	S 9	0	0

• Molecule 7 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	СН	627	Total 5063	C 3181	N 924	O 939	S 19	0	0

• Molecule 8 is a protein called Putative RNA-binding protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	CI	152	Total 1234	C 791	N 230	O 208	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	CJ	382	Total 3116	C 2008	N 548	O 550	S 10	0	0

• Molecule 10 is a protein called Ribosome biogenesis protein NSA2 homolog.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
10	CK	237	Total 1903	C 1198	N 368	O 333	${S \atop 4}$	0	0

• Molecule 11 is a protein called Putative GTP binding protein.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
11	CL	79	Total 622	C 389	N 125	O 108	0	0

• Molecule 12 is a protein called 60S ribosomal protein l7-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
19	CM	217	Total	С	Ν	0	\mathbf{S}	0	0
12	UNI	211	1773	1144	329	297	3	0	0
19	ΙF	248	Total	С	Ν	0	\mathbf{S}	0	0
		240	2023	1297	377	346	3		U

• Molecule 13 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
13	CN	246	Total 1853	C 1156	N 322	O 368	${f S}{7}$	0	0

• Molecule 14 is a protein called DUF2423 domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
14	СО	62	Total 468	C 290	N 94	O 82	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues		A	toms			AltConf	Trace
15	CQ	183	Total 1480	C 925	N 304	0 241	S 10	0	0

• Molecule 16 is a protein called Zinc finger domain-containing protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	Cb	101	Total 830	C 517	N 161	0 148	S 4	0	0

• Molecule 17 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
17	Cd	462	Total 3691	C 2350	N 671	O 659	S 11	0	0

• Molecule 18 is a protein called Ribosome biogenesis protein NOP53.

Mol	Chain	Residues		At	AltConf	Trace			
18	Ce	262	Total 2148	C 1337	N 413	0 394	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called Ribosome production factor 2 homolog.

Mol	Chain	Residues		At	AltConf	Trace			
19	Cf	285	Total 2282	C 1443	N 417	0 401	S 21	0	0

• Molecule 20 is a protein called Ribosome biogenesis regulatory protein.

Mol	Chain	Residues		At	AltConf	Trace			
20	Cg	188	Total 1478	C 924	N 283	0 270	S 1	0	0

• Molecule 21 is a protein called Ribosome assembly protein 4.

Mol	Chain	Residues		At	AltConf	Trace			
21	Ch	485	Total 3812	C 2396	N 696	O 710	S 10	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ch	117	ASP	GLU	engineered mutation	UNP G0SC29

• Molecule 22 is a protein called rRNA-processing protein.

Mol	Chain	Residues		At	AltConf	Trace			
22	Cz	101	Total 869	С 541	N 180	0 144	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L2-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
23	LA	191	Total 1454	C 917	N 278	O 256	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L3-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
24	LB	389	Total 3104	C 1973	N 579	O 539	S 13	0	0

• Molecule 25 is a protein called 60S ribosomal protein L4-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
25	LC	363	Total 2751	C 1737	N 527	0 478	S 9	0	0

• Molecule 26 is a protein called 60S ribosomal protein 15-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
26	LD	286	Total 2266	C 1434	N 407	0 422	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	LE	191	Total 1477	C 944	N 267	O 263	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		Ate	AltConf	Trace			
28	LG	235	Total 1889	C 1210	N 350	0 324	${f S}{5}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein l9-like protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
29	LH	190	Total 1495	C 949	N 268	0 272	S 6	0	0

• Molecule 30 is a protein called Putative ribosomal protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	LJ	169	Total 1357	C 850	N 266	O 235	S 6	0	0

• Molecule 31 is a protein called 60S ribosomal protein L12-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	LK	158	Total 1184	С 743	N 215	O 224	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	LL	203	Total 1587	C 989	N 325	0 271	${ m S} { m 2}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L14-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	LM	141	Total 1126	C 714	N 216	0 195	S 1	0	0

• Molecule 34 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
34	LN	202	Total 1704	C 1062	N 360	O 278	$\frac{S}{4}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L16-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
35	LO	203	Total 1611	C 1034	N 305	O 267	${f S}{5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein 117-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	LP	171	Total 1343	C 834	N 274	0 232	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called Ribosomal protein L18-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	LQ	150	Total 1200	C 759	N 239	O 200	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
38	LR	155	Total 1241	С 772	N 262	O 203	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 39 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	LS	174	Total 1426	C 917	N 266	0 238	${f S}{5}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein l21-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	LT	129	Total 1027	C 651	N 195	0 179	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L22-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	LU	105	Total 846	$\begin{array}{c} \mathrm{C} \\ 548 \end{array}$	N 146	0 151	S 1	0	0

• Molecule 42 is a protein called 60S ribosomal protein l23-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
42	LV	135	Total 991	C 630	N 184	0 170	${f S}7$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L25-like protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
43	LX	145	Total 1133	C 723	N 211	O 199	0	0

• Molecule 44 is a protein called 60S ribosomal protein L26-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
44	LY	133	Total 1056	C 658	N 213	0 183	${S \over 2}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	AltConf	Trace			
45	LZ	135	Total 1112	C 713	N 207	0 188	S 4	0	0

• Molecule 46 is a protein called 60S ribosomal protein L28-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
46	La	108	Total 872	C 556	N 168	0 147	S 1	0	0

• Molecule 47 is a protein called 60S ribosomal protein l30-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	Lc	95	Total 705	C 449	N 122	0 129	${f S}{5}$	0	0

• Molecule 48 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	Ld	110	Total 875	C 555	N 171	0 148	S 1	0	0

• Molecule 49 is a protein called 60S ribosomal protein L32-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
49	Le	126	Total 1017	C 640	N 208	0 163	S 6	0	0

• Molecule 50 is a protein called 60S ribosomal protein l33-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
50	Lf	108	Total 862	С 546	N 171	0 144	S 1	0	0

• Molecule 51 is a protein called Ribosomal protein l34-like protein.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
51	Lg	118	Total 914	C 567	N 186	0 157	${f S}$ 4	0	0

• Molecule 52 is a protein called dolichyl-diphosphooligosaccharide--protein glycotransferase.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
52	Lh	122	Total 1003	$\begin{array}{c} \mathrm{C} \\ 637 \end{array}$	N 198	O 168	0	0

• Molecule 53 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
53	Li	101	Total 827	C 509	N 181	0 136	S 1	0	0

• Molecule 54 is a protein called Ribosomal protein L37.

Mol	Chain	Residues	Atoms				AltConf	Trace	
54	Lj	88	Total 698	C 427	N 154	0 112	${S \atop 5}$	0	0

• Molecule 55 is a protein called 60S ribosomal protein L38-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
55	Lk	76	Total 632	C 400	N 121	O 109	${ m S} { m 2}$	0	0

• Molecule 56 is a protein called Ribosomal protein eL39.

Mol	Chain	Residues	Atoms			AltConf	Trace	
56	Ll	50	Total 436	C 275	N 97	O 64	0	0

• Molecule 57 is a protein called 60S ribosomal protein L43-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
57	Lp	91	Total 698	C 430	N 138	0 124	S 6	0	0

• Molecule 58 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
58	Lq	139	Total 1073	C 672	N 213	O 188	0	0

• Molecule 59 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
50	СН	1	Total	С	Ν	0	Р	0
- 59	OII	1	32	10	5	14	3	0

Mol	Chain	Residues		Atoms				AltConf
50	Cd	1	Total	С	Ν	Ο	Р	0
0.0	Ou	1	32	10	5	14	3	0

• Molecule 60 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
60	CH	1	Total Mg 1 1	0
60	Cd	2	TotalMg22	0

• Molecule 61 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
61	CQ	1	Total Zn 1 1	0
61	Cb	1	Total Zn 1 1	0
61	Lg	1	Total Zn 1 1	0
61	Lj	1	Total Zn 1 1	0
61	Lp	1	Total Zn 1 1	0

• Molecule 62 is water.

Mol	Chain	Residues	Atoms	AltConf
62	СН	1	Total O 1 1	0
62	Cd	2	Total O 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain C1: 74% 17% 8%
- Molecule 1: 26S rRNA

WORLDWIDE PROTEIN DATA BANK

• Molecule 3:	ITS2			
Chain C3:	36%	14% •	49%	
U1 U2 C3 C3 C3 C10 C10 C15 C16	(19 (20 (20 (33 (33 (40 (41)	042 043 050 053 053 A57 A57 A59 A53 A53	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 D ひ < ひ < ひ ひ ひ o < つ ひ つ
しょらしょうょくいい		0050∢0000500	6 6 6 6 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 6 6 6	01 10 10 10 10 10 10 10 10 10 10 10 10 1
P C C C C C C C C C				
• Molecule 4:	5S rRNA			
Chain C4:		78%	2	2%
A1 C6 C15 A22 C29 C29	C42 U50 U54 A55 A64 A64 G65 G65 G65	688 109 109 109 109 109 109	690 491 497 698 6100 6100 6111 111 111	
• Molecule 5:	Utp30			
Chain CB:		67%	• 32%	
MET ALA PRO SER THR ALA ALA ALA LYS LYS	THR ALA ALA ALA VAL TAL PRO D19 D19 D19 D19	K28 K36 A37 A38 A39 A40 PR0 PR0 PR0 C17 C17	LYS CIN ASN LEU LEU LEU LEU LEU ES3 E53 E53 E54 E53 E54 E53	E93 D114 R188 GLU CLU CLV ASN CLV CLY CLY ARC
VAL PRO ALA PRD LYS GLY LYS LYS LYS E204	E210 E253 P297 ASP ASP GLV GLV GLV	PR0 ARG ARG ALA ALA PR0 GLY CLYS ALA ALA ASN	GLTE LYS LYS LYS LYS LYS CLU GLU GLU ALA ASP GLN SER ALA ALA ALA	LEU GLU GLU GLU CYS CLY ASP ARG PRO LYS
LYS LYS LYS ALA LYS LYS LYS LYS THR LEU PRO GLU SER	ASP ASP ASP LYS LYS ALA ALA ALA ALA ALA ALA ALA	GLU GLU GLN LYS LYS GLN LYS ALA ALA ALA ALA LYS UAL	ALA ALA ASP ILE	
• Molecule 6:	Large ribosomal	subunit protein ul	L10	
Chain CF:		90%		9%
MET P2 D202 D202 GLU GLU ARG ARG	ALM ALA AET AET ASP GLU ASP ASP ASP ASP ASP	SER SER ASP OLU ASP SER ASP		
• Molecule 7:	Nucleolar GTP-	binding protein 1		
Chain CH:		95%		5%
MET 12 5353 8353 6355 6355	A470 E476 ASP ASP ASP LEU PRO D482 T552 ALA	GLN SER ARG ARG ARG ARG LEU VAL ARG ARG SER ARG CLY	THR THR ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	8662 8562 8563 8563 8661

• Molecule 8: Putative RNA-binding protein

Chain	CI:	÷		36%				-				63%	6					-		
MET ALA ALA GLU	ARG LYS LYS	LYS SER LYS SFP	ALA VAL ALA	ASP ALA ASP	ALA ALA ILE	SER LYS LYS	GLU LYS ALA	THR LYS VAL	THR LYS ALA	THR PRO	ALA GLU	LYS ARG LYS	ALA PRO	GLU ALA	SER PRO VAL	ALA TLE	LYS GLN	LYS ALA ASP	LYS	ALA
VAL VAL LYS LYS	ALA VAL ALA	ALA GLU ASP T vs	ILE ALA GIU	LYS PRO VAL	LYS SER VAL	LEU LYS LYS	GLU THR SER	ALA LYS ALA	LYS GLU ALA	ALA LYS	LYS LYS	GLU GLN	LYS	GLU GLU	GLU GLU	ALA	GLU ASN ALA	ASP ALA ATA	PHE	SER
ASP GLU SER SER	LEU ASP GLU	GLN THR LYS	LEU MET ASP	THR LEU ASP	ASP GLY GLU	GLU SER ASP	GLU GLU GLU	SER LYS GLN	VAL SER THR	PHE	GLN GLN	ASP VAL GLY	LYS	THR PRO	LYS LYS ALA	PRO GLN	LYS GLN THR	ASN GLY ASD	SER	PRO
ALA GLY ASP S184	D242	E318 • • • • • • • • • • • • • • • • • • •	E328 A329	P330 A331 L332	K333 V334	LYS ALA LYS	PRO VAL LEU	GLU ASN GLY	CLU GLU GLU	TYS LYS LYS	ALA ILE GLU	THR ALA	PRO PRO	ALA VAL GLU	GLU GLU	GLU SER LYS	GLU VAL AIA	LYS ARG	GLN GLU GLU	GLU GLU VAL
GLU GLU LYS ALA	ALA PRO LYS	THR LYS LYS VAT	VAL GLU ASP	LYS PRO ALA	LYS GLU ALA	ALA THR ILE	SER ALA PRO	LYS LYS GLY	LYS LYS SER	LYS	THR LYS SER									
• Mol	ecule	9: P	esca	dillo	hon	nolog	r S													
Chain	CJ:				E	6%								44%	, 0			_		
MET G2 N277	ALA SER GLN	ASN GLY GLU	LYS ALA TIFE	THR ASN GLY	GLU GLU	GLY PRO ASP	PRO LYS VAL	GLN GLU GLU	VAL ASP LYS	LEU VAL	ALA LYS LEU	ARG GLU GLU	CTN CTN CTN	GLN ALA ASN	GLY ASP LYS	ASP	GLY GLU	GLU ASN	GLLY GLLU	ASP
ASP LYS PRO SER	ASF ALA ILE ASP	LYS PHE GLU DBD	VAL ALA PRO	GLY GLY ASP	VAL LEU PRO	GLN PRO SER	TYR SER SER	SER D362	P423 VAL ILE	ARG ALA	ALA VAL SER	GLU ASP GLY	ASP GLY	ASP ASN	GLN THR SER	GLN	LEU ALA PRO	ASN G448	K491 PR0	THR
GLN GLY GLN TYR	PRO THR LYS	PRO LEU GLU	GLN GLN THR	GLU GLU GLU	ALA LEU GLU	ALA GLU LEU	GLU ASP ALA	GLN ALA GLN	GLV GLV	SER	GLU GLU SER	GLY SER GLU	VAL GLU	ASP ASP MET	SER VAL ALA	SER	GLU GLU ASP	UTD OTD	ASP	PHE
GLY GLY SER	ASF GLU ASP GLU	GLU SER ASP	GLU GLY SFR	GLU GLU GLU	ASP GLU GLU	GLU ASP ASP	ASP GLU GLU	GLU GLU ALA	THR LEU GLU	ARG GLN	AKG GLU LEU	GLU GLU GLU	LEU ALA	GLY LYS ALA	VAL SER LYS	GLY	PRO LEU ASP	PRO LYS VAT	LYS ALA	LYS
LEU GLU LYS LYS	LTS ALA LEU GLU	ARG LYS LYS T VS	GLU GLU ALA	GLU GLU	GLU ARG ALA	LYS GLY MET	LEU SER LYS	LYS LYS ARG	LYS LEU PHE	GLU	GLN TYR	SER ASN ALA	TYS LYS	ALA GLU	ASP ALA LYS	LEU ARG	ALA LYS ARG	ARG ARG TI F	GLU	GLU
MET ALA ALA LYS	ALA																			
• Mol	ecule	e 10: 1	Ribo	osom	e bio	ogene	esis j	prot	ein I	NSA	42 ł	nom	olog	5						
Chain	CK:							91	۱%								ç	9%		
MET P2 V73	GLY GLY ARG PRO	ALA GLU LYS	P82	LYS ALA LEU	SER SER GLN	ILE LYS ASN	LYS ARG ALA	GLU LYS ALA	A115 V261											
• Mol	ecule	11: 1	Pute	ative	GT	P bi	ndin	g pr	otei	n										
Chain	CL:	14	1%	_						8	5%							_		
MET A2 E78	E79 L80 LEU	ARG LYS LYS GLU	LEU ALA LYS	ALA ALA LYS	THR GLY ALA	ASP GLY ASP	ASN ASP ASP	GLU GLU MET	CELU CILU	ASP ASP GLU	HIS MET	ARG GLU	GLU LEU	ASP LEU ASP	ASP	MET ASP GLU	ASP GLY	SER ASP VAL	ASP GLU SFB	ASN

W O R L D W I D E PROTEIN DATA BANK

PR0 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ASP VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
LYS LYS TRP THR THR THR THR THR THR PHE PRO PHE PRO PHE PRO PHE PRO PHE THR PRO PHE PRO PHE PRO PHE THR THR THR THR THR THR THR THR THR THR
VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
GLY VAL VILE VILE PHE SER SER SER SER SER SER SER SER SER SE
MET TYR VAL TYR VAL TYR VAL LEU LEU LEU LEU LEU CILY CILY CILY CILY CILY CILY CILY CILY
TRP TRP THR THR THR THR THR THR THR THR THR THR
LYS ALU ALA
\bullet Molecule 12: 60S ribosomal protein l 7-like protein
Chain CM: 87% 13%
MET RER SER SER VAL THR VAL ASP ASP ASP ASP ASS ASS ASS ASS ASS ASS
• Molecule 12: 60S ribosomal protein l7-like protein
Chain LF: 100%
← CS CS CS CS CS CS CS CS CS CS CS CS CS C
• Molecule 13: Eukaryotic translation initiation factor 6
Chain CN: 100%
◆ R ² R ²
• Molecule 14: DUF2423 domain-containing protein
Chain CO: 52% 48%
AET A 43 PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO

HI 10 LYS PRO ASN ASN ASN LYS LYS LYS	
• Molecule 15: Ribosome biogenesis protein RLP24	
Chain CQ: 81% 19%	
	ET ET
• Molecule 16: Zinc finger domain-containing protein	
Chain Cb: 86% 14%	
CITYS THR THR CITYS CITY	
• Molecule 17: Nucleolar GTP-binding protein 2	
Chain Cd: 74% 26%	
ALA LIBE CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	
ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 18: Ribosome biogenesis protein NOP53	
Chain Ce: 59% 41%	
ALLA VALL LIBU LIBU LIBU LIBU LIBU LIBU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
GLU LEU ASP ASP ASP ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
Ч<бУЭм5щщчбйчбйчба	
NA N	
ASN ALA ALA ALA ALA ASS F355 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	

• Molecule 19: Ribosome production factor 2 homolog

Chain Cf:	81%	19%	
MET LEU ARG GLN TLS P7	TH 192 TH 192 SER THR SER ASN ASN ASN ASN ASN ASP ASP ASP ARC ACT ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLY GLY GLU GLU GLU ASP ARG ARG ARG ARG VAL VAL VAL	ALA GLY SER
247 247 247 247 247 247 247 247 247 247	GLY GLY		
• Molecule	20: Ribosome biogenesis regulatory protein		
Chain Cg:	93%	7%	
MET SER THR ASP THR SER LYS PRO	L11 E16 K109 MET CLY LYS LYS		
• Molecule	21: Ribosome assembly protein 4		
Chain Ch:	<u>6%</u> 94%	6%	
MET ALA THR LLU LLU ALA PRO PRO	NARG ARG ARG ARG ARG ARG ARG ARG ARD ARG ARN ARD ARD ARD ARD ARD ARD ARD ARD ARD ARD	A60 L73 G74 R75 D76 R77 E78	G91 693 N101
L104	N114		
• Molecule	22: rRNA-processing protein		
Chain Cz:	82%	18%	
MET ASN MET SER GLU THR GLN VAL	THR THR ALA ALA ALA ALA PRO ALA THR THR THR THR THR THR THR THR THR THR		
• Molecule	23: 60S ribosomal protein L2-like protein		
Chain LA:	75%	25%	
MET GLY ARG VAL ILE ARG ASN GLN	ARG ARG GLY SER ARG GLY CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	GLN LYS LYS ALA GLY LEU LEU LEU ALA ALA ARG ARG ARG	GLY LEU LEU
ARG GLY THR GLN GLN LYS THR LYS GLU			
• Molecule	24: 60S ribosomal protein L3-like protein		
Chain LB:	99%		

- Molecule 25: 60S ribosomal protein L4-like protein Chain LC: 99% MET • Molecule 26: 60S ribosomal protein l5-like protein Chain LD: 94% 6% LYS THR PHE THR GLY GLU GLU GLU SRN ME7 AL/ PHE HIS GLI GLN ASF • Molecule 27: 60S ribosomal protein L6 Chain LE: 95% ALA PHE PHE LYS GLN GLV GLU • Molecule 28: 60S ribosomal protein L8 Chain LG: 90% 10% MET PRO LVS SER GLY LVS SER LVS PRO PRO PRO PRO GLN GLY SLVS ALA ALA ALA I LE L YS V AI • Molecule 29: 60S ribosomal protein l9-like protein Chain LH: 83% 17% GLY THR PHEE ARG ARG ARG ARG ARG CLY ARG CLY CLYS GLY LYS SER ARG GLY CLYS SER ARG GLY THR LYS SER ARG GLY THR ARG CLI TTRR ARG CLI TTRRA ARG TTRRA A TTRRA ARG TTRRA A TTRRA ATTRRA A TTRRA A TTRRA ATTRRA ATTRA • Molecule 30: Putative ribosomal protein Chain LJ: 98%
- Molecule 31: 60S ribosomal protein L12-like protein

Chain LK:	95% •••	
MET PRO PRO LYS PHE ASP PRO NB K40		
• Molecule 32:	60S ribosomal protein L13	
Chain LL:	95% 5%	
MET ALA ALA ILE LYS LYS ASN GLN GLN GLN PLD	E209 A210 K211 K212 K213	
• Molecule 33:	60S ribosomal protein L14-like protein	
Chain LM:	99%	
MET A2 A142		
• Molecule 34:	Ribosomal protein L15	
Chain LN:	100%	•
MET G2 R203		
• Molecule 35:	60S ribosomal protein L16-like protein	
Chain LO:	100%	•
MET 82 Y204		
• Molecule 36:	60S ribosomal protein l17-like protein	
Chain LP:	91% 9%	
MET V2 E154 GLU THR VAL CIN GLN GLN SER	ALU VAL ARG ARG AIA ALA ALA	
• Molecule 37:	Ribosomal protein L18-like protein	
Chain LQ:	70% 30%	
MET ASP ASP LLEU VAL CYS ALA ALA ALA FLEU FLEU LEU	PHE PHE PRO ARG ARG ARG ARG ARG ARG ARG ALA ARG CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	ARG ARG GLY ARG

WORLDWIDE PROTEIN DATA BANK

ARG ARG SER ARG GLY PHE LYS VAL

• Molecule 38: Ribosomal protein L19

С	hai	n l	LF	l:	5%															95%	6															
MET	GLU	VAL	ALA ASN	ASP	ALA PRO	GLY	PHE	ASP	GLU	GLN	ALG	THR	LEU	THR	SER	SER THR	THR	VAL	ILE	GLN	LEU	ALA	ILE	GLU	LYS ILE	SER	ASN	SER	ASP	ARG PRO	ALA T ETT	LEU	LEU	LEU	VAL LEU	PHE
TRP	HIS	PHE	TYR ALA	ASP	PRO	ARG	ALA	VAL	LYS	CYS I FII	THR	SER	THR	LYS	SER	GLU ALA	CLU	SER	VAL	PRO PRO	LEU	ALA	ALA	ARG	GLU	ALA	LYS	GLN	ILE	ALA GLN	ALA	SER	ALA	LEU VAL	GLU TRP	CYS
SER	LEU LEU	GLN	ASN	ALA	THR	LEU	GLU	LYS	SER	LYS	LEU	VAL	ALA	THR AI A	ASP	ALA	CLU	LYS SFR	TEU	GLN PRO	THR AT A	ALA	GLY	VAL	GLY HIS	SER	ALA LEU	VAL	THR	ARG ARG	GLY	ARG	LIS	VAL GLN	ALA ASP	GLN
ALA	ALA VAL	THR	ALA ILE	GL Y VAL	LEU	ALA	ASP	ALA	PRO	THR	LYS	ASN	VAL	LEU	GLY	VAL TI.F	ALA	GLY	CYS	ALA ARG	GLN	GLU	ALA	ALA	VAL VAL	GLU	LEU	LYS	GLN	TYR PHE	THR DHF	TYR	ALA ARG	GLU ILE	ILE GLY	SER
ARG	ALA	PRO	SER HIS	ILE	ASP GLY	LEU	ASP	PHE	ALA	ALA	VAL	SER	GLU	ASP I FII	ASP	LYS	VAL	PHE	ALA	GLU	LYS	LEU	LEU ARC	ALA	PRO GLU	VAL	LEU	ASN	LEU	THR	PRO I FII	VAL	ALA	LEU PRO	LYS LEU	ASP
LEU	SER LYS	LEU	ASN SER	ARG	VAL LYS	PRO	LEU	SER	ILE	LYS SFR	SER	ASN	VAL	ILE	SER	GLY ALA	VAL	ARG AT A	PHE	ARG GLU	ILE	THR	VAL	ARG	ASP PHE	ALA	LEU	GLU	THR	ALA ASP	GLU	LEU	PRO	LEU	THR ASN	LYS
LEU	ALA SER	ALA	HIS ARG	VAL	HIS	GLU	LEU	SER CI V	TEU	PRO LFU	SER	ALA	ILE	ALA THR	LYS	ILE ALA	THR	GLY	PRO	ALA VAL	THR	LYS	GLU AL A	ASN	GLU ALA	ALA	SER	ALA	THR	LEU ALA	LEU	ALA	ALA	LEU PHE	LEU LEU	ARG
THR	PRO GLU	PRO	LYS ALA	LEU	ASP	TYR	LYS	GLY	GLY	ASP	LYS	VAL	SER	ARG	ILE	TRP TI.E	LEU	ARG THR	GLY	ASP LEU	LEU	ALA	PHE	GLN	GLU ALA	GLU	PRO	ALA	PHE	VAL ALA	PHE AT A	GLU	ALA VAL	VAL PRO	SER LEU	LEU
THR	TLE PHE	GLU	VAL VAL	ALA	PRO THR	ALA	ALA VAL	GLN	GLY	LEU VAL	THR	GLY	LEU	VAL	ALA	GLY	SER	GLY GLY	LEU	GLN ARG	LEU	ASN	ALA	ILE	GLN	LEU	LYS	LYS	ALA	VAL GLN	LYS	SER	TLE	LEU ASP	PRO LYS	PRO
SER	PHE VAL	SER	GLN ARG	LEU TVR	SER LYS	TYR	GLU	ASP	LEU	LYS TRP	PHE	CYS	ALA	LEU	ALA	ILE VAL	GLU	GLY GLY	LEU	SER	SER	ALA	ILE	LEU	ALA TRP	THR	ALA	PHE	PHE	LEU ILE	CYS	ALA	THR	PRO SER	ALA VAL	ARG
ARG	GLN	ASP	ALA LEU	SER	LEU SER	ALA	ARG	LEU	PRO	GLY	GLN	PHE	ALA	THR	ILE	ILE	GLY	LEU TRP	SIH	TRP ILE	ALA THP	SER	GLU	ALA	GLU	GLU	ALA	ALA VAL	LEU	ALA LYS	SER GI V	THR	ASN	LEU HIS	LEU VAL	LEU
LYS	ALA ILE	LEU	SER PRO	ALA	LEU ASN	ARG	ARG	GL Y	ASP	VAL	LYS	ALA	LEU	GLN AT A	GLN	MET	SER	LEU	VAL	ALA	LYS	GLN	LEU	PRO	ARG ALA	SER	ILE	ASP	CYS	LEU LYS	VAL	VAL	PRO	GL Y GL N	LEU ALA	LYS
ASP	GLU GLU	ALA	LEU ILE	ASP	TLE VAL	ARG	THR	GLY	OLD	GLN	SER	GLU	THR	LYS	ALA	ALA TYR	SER	ALA AIA	ALA	GLU	VAL	VAL	SER	GLU	ASN MET	THR	ARG	ILE VAL	ALA	LEU ILE	GLN	ASP	ASP	ALA ALA	VAL VAL	SER
THR	VAL GLY	LEU	GLU ALA	ALA TIF	PHE	THR	GLU	GLY	THR	PHE	ASP	VAL	ALA	LYS	GLN	ASN VAL	VAL	PRO	LYS	ASN VAL	LYS	TYR	ASP	LEU	LYS TRP	GLU	GLU	LEU ARG	GLN	GLN	ALA	TAS	GLY	GLN	LYS	LEU
THR	ALA GLU	GLN	ALA LYS	VAL	ALA GLN	LEU	LYS	GLU AT A	GLU	ILE	CLU	ASN	ARG	LYS	ALA	ALA	LEU	LEU	GLY	GLY	VAL	LYS	ALA	ALA	THR GLY	PRO	THR	ASP	THR	ARG TRP	MET	ALA	ALA VAL	SER	THR LEU	ALA
ALA	ILE ASN	GLY	ALA THR	ARG	THR GLY	GLU	GLY	PRO 1 EII	ALA	PHE	SER	LEU	GLU	GLN TI F	THR	SER	ILE	GLY SFR	PHE	ILE ARG	PRO DHF	MET	GLY VAL	ALA	THR	ARG	TYR	GLU VAL	THR	ALA LEU	PRO CI II	ASN	THR	GLU GLU	PRO PHE	GLU
GLU	LEU	ARG	VAL LEU	TYR	LEU ARG	PHE	GLY	GLU	ARG	PRO I.FII	ASP	THR	VAL	LEU	TYR	VAL LEU	PRO	LEU	LEU	TYR VAL	LEU	LYS	GLY	PHE	ALA LYS	ASP	ALA	GLU	ASP	GLN	LEU	LEU	ALA ILE	GLU ILE	LEU SER	PHE
SIH	ASP	ALA	PHE ASP	GLU	LEU PRO	ARG	GLU	ILE	SER	SER	ILE	SER	MET	dLN GLN	TYR	SER. GLN	HIS	TYR I VS	ILE	LYS	ASP	PHE	SER	MET	VAL ARG	CYS	ALA	PRO	ILE	SER PRO	ALA	ILE	VAL	LEU ALA	ARG GLY	ALA

ILE	PRO	GLN	THR	VAL	ARG	ALA	VAL I FII	GLN	ALA	SER	ALA	ASP	ASP	MET	ASP	VAL	ASN ALA	SER	GLU	GLU	TRP	LEU	CYS	HIS	ASP	ILE	GLU	ASN	GLU	LEU	GLY ARG	GLU	TRP	GLU	GLU SER	GLU	LYS	THR	GLU	TEU
GLY	SYJ	MET	TLE PRO	TYR	LEU	SER	LYS	VAL	GLN	ARG	ARG	ALA	ALA	LYS	TEU	ALA	GLU VAL.	ALA	GLY	GLN	PRO	ASP	VAL	ALA	ILE	LEU	LYS	TEU	GLU	SER	VAL	GLU T FTI	ALA	LYS	PR0 ARG	VAL	GLN	LEU	GLU	GLY
MET	LYS	LYS	ASP	LEU	SER	PRO	TRP	ALA	ARG	ATD STH	ILE	ALA	ALA	PHE	GLY	LEU	ALA PRO	SIH	LEU	GLU	ARG	GLN	GLU	PRO	PHE	ASN	LEU	ILE	GLU	GLY	LEU	GLY	CLN	SER	ALA GLY	VAL	ARG ALA	GLU MFT	LEU	ALA
ALA	MET	THR	ILE GLU	ILE	HIS	TYS	GLU TI F	TEU	ASP	ARG	MET	LYS	PHE	GLU	VAL	LEU	GLU AL.A	PRO	ASP	LYS	SER	GLU AT A	ALA ALA	ASP	VAL	ASN	ALA	VAL	ILE	MET	GLY	ALA	ALA	ARG	HIS	TAS	GLY	ASP	LYS	PRO
VAL	VAL ILE	GLU	ARG LEU	LEU	ALA	LEU	SER	PRO	SER	GLU ALA	VAL	GLN	ALA	ILE	GLU	CYS	LEU PRO	PRO	LEU	VAL	THR	CYS	ALA	LYS	SER	LYS	PHE	ASP	GLU	MET	GLU	LEU	THR	SER	LYS	TYR	GLU	GLN	GLY ALA	ALA
TYR	LEU	ALA	GLY LEU	VAL	LEU	ARG	GLY	ASN	VAL	LEU	GLU	TYR	ILE	MET	GLN	LEU	ASN	ALA	LEU	GLU	LYS	LYS	ILE	ARG	ALG	GLU	ALA	MET	ALA	TYR	GLU LEU	LEU	THR	ILE	GLY	ARG	PHE	GLU	TYR VAL	ILE
dLN GLN	VAL	PRO	GLN	LEU	ALA	PHE	GLY	GLY	ASN	ALA ASP	VAL	ARG	ALA	ALA	ALA	ALA	ALA LVS	ALA	CYS	PHE AL.A	LYS	LEU	SER	TYR	VAL	LYS	ILE	LEU	PRO THR	LEU	ASN	GLY	ASP	ASP	GLN	TRP	ARG	LYS	GLY GLY AI.A	CYS
ASP	LEU	GLY	ALA MET	ALA	TYR	ASP	PRO CI M	GLN	LEU	GLN	ASN	LEU	GLU	ILE	PRO	PRO	THR	ALA	VAL	LEU ASN	ASP	SER	STI	GLU	ARG	ALA	ALA ALA	ASN	ARG SER	LEU	ARG	PHE	GLU	VAL	THR	ASN	GLU	ILE	SER	ILE
ASP	LEU	LEU	LYS ALA	LEU	SER	PRO	THR I VS	TYR	THR	ASP	ALA	LEU	ALA	LEU	TYS	VAL	GLN	VAL	SIH	TYR	ASP	ALA	SER	LEU	LEU	VAL	ARG	ILE	GLN	ARG	GLY LEU	GLY	ARG	SER	ASN THR	TYS LT	ARG LYS	ALA	GLN VAL	ILE
GLY	LEU	ALA	HIS	THR	GLU	LYS	ASP	ILE	ALA	LEU	PRO	VAL	VAL	ALA	LEU	LYS	V AL A L.A	VAL	VAL	ASP	VAL	PRO TUD	THR	ARG	THR	ALA	ARG	ALA	GLY	SER	VAL	GLU GLU	LEU	GLY	GLU ASP	ALA	LEU PRO	ASP	TLE	ASN
LEU	GLN	THR	LEU	SER	ASP	SER	ALA	ASP	ARG	0ELY	SER	ALA	ALA	LEU	GLU	VAL	AL.A	GLY	LEU	GLY THR	SER	ARG	GLU	GLU	LEU	PRO	ILE	LEU	GLN	VAL	GLU	PRO I VS	PRO	ALA	VAL ARG	GLU	GLY	MET	LEU	ILE
PHE	PRO	VAL	CYS PHE	GLY	ASN	PHE	ALA	TYR	LEU	GLY LYS	ILE	ILE	PRO	ILE	SER	GLY	ALEU AL.A	ASP	ASP	CLIT	SER	ILE	GLU	THR	LEU	ARG	GLY	ARG	LEU	VAL	ASN	PHE AT A	VAL	ARG	ALA VAL	ASP	LEU	LEU	GLU	GLU
ARG	LEU	ALA	ASP	ASN	TYR	ILE	ARG	SER	SER	GLU	LEU	VAL	ASP	LEU	PHE	ASN	LEU ALA	GLY ALA	VAL	LYS	SER	ALA	LYS	GLU	ASP	GLU	ALA ASP	GLN	ASP ILE	THR	GLU	ALA	ALA	SER	LEU ARG	GLU	VAL LEU	GLT	GLU LYS	ARG
ASN	ILE	LEU	SER	LEU	TYR	CYS	ARG	ASP	THR	ALA GLY	ALA	VAL	ALA	ALA	VAL	THR	VAL TRP	LYS	GLN	LEU VAL	SIH	SER	ARG	THR	LYS	GLU	VAL	PRO	THR	THR	LEU	LEU	TAS	ARG	LEU GLY	SER	ASN	MET	SIH STH	VAL
ILE	SER	ASN	ALA LEU	GLY	GLU	ILE	LYS	ALA	GLY	ASP GLY	VAL	LEU	THR	LEU	PRO	THR	CI.II	GLU	GLY	CI.N	THR	SER	ASP	VAL	ALA	LYS	GLY	ILE	CYS LEU	ALA	LYS	GLU	ILE	SER	SER	SER	GLU	ALA	GLU ASP	SIH
GLU	THR	LEU	ILE SER	VAL	VAL	THR	ALA	THR	ASP	ASP	SER	ASP	ARG	GLU AT A	ALA	ALA	GLU AL.A	PHE	ASP	SER	GLN	GLN GLN	ILE	GLY	ARG	ALA	ASP	GLN	VAL LEU	PRO	LEU	LEU	LEU	LEU	ARG SER	GLU	GLU	ALA	ASN ASN	TEU
ALA	LEU	LEU	THR	LEU	THR	PRO	THR	ALA	ASN	TLE	LEU	PRO A SM	LEU	ILE	THR	LEU	THR	PRO	PRO	ILE SER	ALA	PHE	ALA	LYS	LEU	ALA	LEU	SER	LYS VAL	ALA	ALA	ALA	ASN	ARG	ARG LEU	PRO	ASN ILE	ILE	SER	MET
ASP	ILE	VAL	GLY	ALA	ASP	THR	LEU	GLU	GLU	ASP	THR	SER	ASP	THR	ILE	LEU	TLE	ASP	ASP	THR. ASP	GLY	LEU	VAL	VAL	ASN	VAL	LEU	GLN	LEU	LYS	GLU	ASP HTS	ARG	LYS	ARG	ALA	GLY	ARG	LEU AL.A	LYS
PHE	SER	ALA	ALA THR	VAL	ASN	SER	ARG	ASN	GLN	ASP ILE	ILE	ARG	LEU	LEU	SER	PHE	ASP	TAS	ASP	MET	VAL	VAL	ALA	SER	ASN	ALA	ASN	GLU	THR	LYS	LEU	LYS	GLU	GLU	MET GLU	GLY	VAL	ILE	THR	GLN
THR	LEU	GLN	VAL GLY	VAL	ALA	ARG	GLU T FII	ALA	GLY	PHE	LEU	PRO I VS	GLY	ILE	ALA	ILE	LEU PRO	ILE	PHE	LEU GLN	GLY	LEU	ASN	GLY	ALA	GLU	ARG	VAL	ALA ALA	ALA	GLY	ILE SFR	ASP	ILE	VAL ASP	ARG	THR	GLU AT A	SER	LYS

• Molecule 43: 60S ribosomal protein L25-like protein

Chain LX:	93%	7%
MET ALA PRO LYS LYS LYS LYS CLY GLY ALA	V 115 6 112 112 112 112 112 112 112 112 112 1	
• Molecule 44:	60S ribosomal protein L26-like protein	
Chain LY:	96%	·
M1 C133 LYS LYS THR ALA ALA		
• Molecule 45:	60S ribosomal protein L27	
Chain LZ:	100%	
There are no o	outlier residues recorded for this chain.	
• Molecule 46:	60S ribosomal protein L28-like protein	
Chain La:	72% 28%	9
MET P2 V15 SER ALA ALA CLY GLY VAL	ALT ILYS ILYS ARG ARG ARG ARG ALA ARG ARG ARG ARD ARD ARD ARD ARD ARD ARD ARD	
• Molecule 47:	60S ribosomal protein l30-like protein	
Chain Lc:	88%	12%
MET ALA PRO LYS LYS SER SER GLU GLU GLN	B102 D106 GLN GLN	
• Molecule 48:	Putative 60S ribosomal protein	
Chain Ld:	92%	8%
MET SER SER THR GLN CVS CLN SER SER SER SER		
• Molecule 49:	60S ribosomal protein L32-like protein	
Chain Le:	96%	·
MET V2 V127 THR THR GLU VAL		

• Molecule 50: 60S ribosomal protein l33-like protein

Chain Lf:	99%	
MET P2 I109		
• Molecule	51: Ribosomal protein l34-like protein	
Chain Lg:	8% 99%	
MET A2 Q111 A112 €113 K114	VIIS NII6 NII8	
• Molecule	52: dolichyl-diphosphooligosaccharideprotein glycotransferase	
Chain Lh:	13% 87%	
MET SER SER N4 S41 A125	ALA TALA TYR GLU GLU GLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	THR
ARG ARG GLU ARG GLN GLN HIS ASN ASN	SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLU
SER ILE HIS GLU ASP PRO TTO	PHE ASN ALA ALA ALA ALA ALA ALA TTR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	TEU
LEU ARG PHE LEU LEU VAL PRO VAL	ALA ARG ARG ARG ARG ARG ARG ARG ARG ARA ARA	SER
VAL ALA GLY SER TYR ASP GLU	TILE TILE PHE PHE LEU VAL LEU PHE PHE PHE TTRP TTRP TTRP CLEU CLEU CLEU CLEU CLEU CLEU CLEU TTRP TTRP TTRP TTRP TTRP TTRP TTRP TTR	TEU
HIS SER PHE VAL LEU LEU CYS MET	ARC ARC TYR ARC TYR ARG TYR ARG TYR TYR TYR TYR TTR TTR TTR TTR TTR TTR	ALA
PHE LEU ASP TYR VAL ARG SER SER THR	SLE SLE SRE ARG CAN PHE CAN PHE CAN PHE CAN PHE CAN PHE CAN PHE CAN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ILE
HIS TLE PRO TLE ALA SER VAL SER	Survey HIIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	GLY
VAL MET VAL ARG LEU MET THR THR	THE PRIC VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	VAL
GLY VAL TYR ALA ALA GLY GLY TRP GLY	HIM MAT SIGLY SIGLY TTRE TTRE TTRE TTRE TTRE TTRE TTRE TTR	TYR
GLN TRP LEU ARG GLN ASN ARG ARG	ASP ALA ALA MET TILE SER MET TRP TRP TRP TRP TTRP TTRP TTRP TTRP T	ILE
MET ARG GLN GLU VAL VAL TYR TYR	LEU VAL VAL VAL VAL VAL CLY GLY GLY GLY ASP ASP PHE TLEU TLEU TLEU TLEU TLEU TLEU TLEU TLE	ALA
THR ASP THR NET LYS SER SER SER MET	TTR TTR TTR TTR TTR TTR TTR TTR TTR TTR	LYS

• Molecule 53: 60S ribosomal protein L36

Chain Li:	92%	8%
MET SER GLU ASP ALA ALA PHO HIA ALA ALA ALA ALA ALA HIOS HIOS		
• Molecule 54: Ribosoma	l protein L37	
Chain Lj:	93%	7%
MET 122 123 MLA MLA SER SER SER SER		
• Molecule 55: 60S riboso	omal protein L38-like protein	
Chain Lk:	81%	19%
MET P2 P2 ILVS ILVS ILLE PHE PHE PRO PRO PRO PRO ALA ALA ALA	R77 SER SER ALA	
• Molecule 56: Ribosoma	l protein eL39	
Chain Ll:	98%	·
MET P2 L5 1		
• Molecule 57: 60S riboso	omal protein L43-like protein	
Chain Lp:	99%	
MET 82 189 190 691		
• Molecule 58: Putative 6	60S ribosomal protein	
Chain Lq:	95%	5%
MET 22 8140 ALA ALA ALA GLY GLN GLN		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	74642	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45.6	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	9.056	Depositor
Minimum map value	0.000	Depositor
Average map value	0.018	Depositor
Map value standard deviation	0.169	Depositor
Recommended contour level	0.55	Depositor
Map size (Å)	522.5, 522.5, 522.5	wwPDB
Map dimensions	500, 500, 500	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, OMU, MG, OMG, GTP, OMC, A2M

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles						
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5					
1	C1	0.33	0/72882	0.92	107/113631~(0.1%)					
2	C2	0.32	0/3710	0.88	4/5778~(0.1%)					
3	C3	0.26	0/1958	0.94	5/3050~(0.2%)					
4	C4	0.30	0/2833	0.95	5/4414~(0.1%)					
5	CB	0.26	0/2153	0.55	1/2926~(0.0%)					
6	CF	0.26	0/1972	0.56	1/2660~(0.0%)					
7	CH	0.27	0/5147	0.55	1/6926~(0.0%)					
8	CI	0.34	0/1265	0.67	1/1702~(0.1%)					
9	CJ	0.27	0/3196	0.51	0/4319					
10	CK	0.27	0/1939	0.55	0/2608					
11	CL	0.29	0/631	0.57	0/843					
12	CM	0.28	0/1805	0.53	0/2417					
12	LF	0.29	0/2061	0.53	0/2765					
13	CN	0.26	0/1878	0.55	0/2555					
14	CO	0.26	0/470	0.51	0/619					
15	CQ	0.30	0/1504	0.60	0/2000					
16	Cb	0.27	0/845	0.58	0/1128					
17	Cd	0.26	0/3770	0.51	0/5082					
18	Ce	0.27	0/2173	0.55	0/2890					
19	Cf	0.26	0/2326	0.54	0/3113					
20	Cg	0.26	0/1508	0.54	0/2051					
21	Ch	0.26	0/3914	0.56	0/5319					
22	Cz	0.30	0/877	0.62	0/1148					
23	LA	0.28	0/1488	0.57	0/2009					
24	LB	0.28	0/3172	0.56	0/4260					
25	LC	0.27	0/2808	0.53	0/3785					
26	LD	0.27	0/2308	0.52	0/3105					
27	LE	0.26	$0/1\overline{504}$	0.53	$1/2027 \ (0.0\%)$					
28	LG	0.27	0/1918	0.51	0/2565					
29	LH	0.27	$0/1\overline{515}$	0.55	1/2037~(0.0%)					
30	LJ	0.26	0/1379	0.61	0/1844					
31	LK	0.26	0/1198	0.58	1/1611~(0.1%)					

Mal	Chain	Bond	Bond lengths		Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
32	LL	0.25	0/1614	0.56	0/2168
33	LM	0.28	0/1145	0.56	0/1539
34	LN	0.27	0/1741	0.61	0/2332
35	LO	0.31	0/1645	0.58	0/2205
36	LP	0.26	0/1364	0.57	0/1835
37	LQ	0.26	0/1218	0.56	0/1639
38	LR	0.26	0/1260	0.56	0/1683
39	LS	0.26	0/1461	0.55	0/1966
40	LT	0.28	0/1046	0.58	0/1409
41	LU	0.27	0/859	0.50	0/1151
42	LV	0.28	0/1009	0.56	0/1357
43	LX	0.26	0/1151	0.51	0/1547
44	LY	0.27	0/1070	0.61	0/1432
45	LZ	0.27	0/1135	0.55	0/1519
46	La	0.25	0/892	0.52	0/1200
47	Lc	0.26	0/714	0.51	0/960
48	Ld	0.27	0/889	0.54	0/1192
49	Le	0.25	0/1035	0.54	0/1379
50	Lf	0.28	0/883	0.58	0/1187
51	Lg	0.27	0/927	0.59	0/1244
52	Lh	0.30	0/1014	0.58	0/1349
53	Li	0.28	0/834	0.62	0/1099
54	Lj	0.28	0/712	0.61	0/944
55	Lk	0.28	0/640	0.59	0/850
56	Ll	0.25	0/446	0.57	0/593
57	Lp	0.26	0/706	0.60	0/940
58	Lq	0.29	0/1091	0.57	0/1468
All	All	0.30	0/166608	0.77	128/241374~(0.1%)

There are no bond length outliers.

The worst 5 of 128 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	C1	1179	С	C2-N1-C1'	9.55	129.30	118.80
1	C1	1179	C	N1-C2-O2	9.46	124.57	118.90
5	CB	24	LEU	CA-CB-CG	9.42	136.96	115.30
1	C1	1538	U	N1-C2-O2	9.36	129.35	122.80
1	C1	1538	U	N3-C2-O2	-9.14	115.80	122.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured Allowed		Outliers	rs Percentiles	
5	CB	259/391~(66%)	254 (98%)	5 (2%)	0	100	100
6	CF	243/270~(90%)	240 (99%)	3 (1%)	0	100	100
7	CH	621/661~(94%)	613 (99%)	8 (1%)	0	100	100
8	CI	150/414~(36%)	149 (99%)	1 (1%)	0	100	100
9	CJ	376/679~(55%)	371~(99%)	5 (1%)	0	100	100
10	CK	231/261~(88%)	225~(97%)	6 (3%)	0	100	100
11	CL	38/558~(7%)	38 (100%)	0	0	100	100
All	All	1918/3234~(59%)	1890 (98%)	28 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
5	CB	227/329~(69%)	226 (100%)	1 (0%)	91 95		
6	CF	212/236~(90%)	212 (100%)	0	100 100		
7	CH	549/575~(96%)	549 (100%)	0	100 100		

Mol	Chain	Analysed	Rotameric	Outliers	Perce	Percentiles					
8	CI	124/336~(37%)	124 (100%)	0	100	100					
9	CJ	331/579~(57%)	331 (100%)	0	100	100					
10	CK	206/225~(92%)	206 (100%)	0	100	100					
11	CL	33/458~(7%)	33 (100%)	0	100	100					
All	All	1682/2738~(61%)	1681 (100%)	1 (0%)	93	97					

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type	
5	CB	36	LYS	

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
7	CH	302	GLN
10	CK	60	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	C1	3069/3342~(91%)	556 (18%)	0
2	C2	155/156~(99%)	21 (13%)	0
3	C3	80/162~(49%)	20 (25%)	0
4	C4	118/119~(99%)	22 (18%)	0
All	All	3422/3779~(90%)	619 (18%)	0

5 of 619 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	C1	4	U
1	C1	6	G
1	C1	27	А
1	C1	44	А
1	C1	50	А

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

34 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	Bond lengths		Bond angles		
	туре	Ullaili	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	OMU	C1	2690	1	19,22,23	3.06	6 (31%)	26,31,34	1.68	4 (15%)
1	A2M	C1	2289	1	18,25,26	4.37	9 (50%)	18,36,39	3.76	4 (22%)
1	OMC	C1	1420	1	19,22,23	0.65	0	26,31,34	1.35	4 (15%)
1	OMU	C1	2380	1	19,22,23	3.01	6 (31%)	26,31,34	1.65	5 (19%)
1	OMG	C1	2774	1	18,26,27	1.16	2 (11%)	19,38,41	0.86	1 (5%)
1	OMG	C1	2358	1	18,26,27	1.16	2 (11%)	19,38,41	0.90	1 (5%)
1	A2M	C1	848	1	18,25,26	4.34	9 (50%)	18,36,39	3.83	4 (22%)
1	A2M	C1	389	1	18,25,26	4.33	9 (50%)	18,36,39	3.83	4 (22%)
1	OMG	C1	646	1	18,26,27	1.14	2 (11%)	19,38,41	0.89	1 (5%)
1	OMC	C1	778	1	19,22,23	0.58	0	26,31,34	0.92	1 (3%)
1	OMU	C1	1868	1	19,22,23	3.07	6 (31%)	26,31,34	1.72	4 (15%)
1	OMU	C1	2384	1	19,22,23	3.07	6 (31%)	26,31,34	1.65	5 (19%)
1	OMC	C1	1836	1	19,22,23	0.58	0	26,31,34	0.83	1 (3%)
1	OMU	C1	1917	1	19,22,23	3.10	6 (31%)	26,31,34	1.78	5 (19%)
1	A2M	C1	1847	1	18,25,26	4.35	8 (44%)	18,36,39	3.90	4 (22%)
1	OMG	C1	627	1	18,26,27	1.17	2 (11%)	19,38,41	0.92	1 (5%)
1	OMG	C1	787	1	18,26,27	1.17	2 (11%)	19,38,41	0.89	1 (5%)
1	OMC	C1	2918	1	19,22,23	0.60	0	26,31,34	0.80	0
1	OMC	C1	1491	1	19,22,23	0.54	0	26,31,34	0.70	0
1	OMU	C1	2683	1	19,22,23	3.03	6 (31%)	26,31,34	1.64	4 (15%)
1	OMG	C1	2881	1	18,26,27	1.12	2 (11%)	19,38,41	0.84	1 (5%)
1	OMC	C1	1812	1	19,22,23	0.59	0	26,31,34	1.23	2(7%)
1	OMG	C1	2578	1	18,26,27	1.14	2 (11%)	19,38,41	0.90	1(5%)
1	A2M	C1	1432	1	18,25,26	4.34	9 (50%)	18,36,39	3.87	4 (22%)
1	A2M	C1	637	1	18,25,26	4.33	9 (50%)	18,36,39	3.88	4 (22%)
1	A2M	C1	858	1	18,25,26	4.38	9 (50%)	18,36,39	3.88	4 (22%)

Mal	Turne	Chain	Dec	Link	Bo	ond leng	ths	Bond angles		
1VIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	A2M	C1	1223	1	$18,\!25,\!26$	4.31	9 (50%)	18,36,39	<mark>3.85</mark>	4 (22%)
1	OMU	C1	2688	1	19,22,23	3.05	6 (31%)	26,31,34	1.67	5 (19%)
1	OMG	C1	2876	1	$18,\!26,\!27$	1.13	2 (11%)	19,38,41	0.84	1 (5%)
1	OMG	C1	385	1	$18,\!26,\!27$	1.14	2 (11%)	19,38,41	0.82	1 (5%)
1	OMU	C1	2277	1	19,22,23	3.06	6 (31%)	26,31,34	1.67	5 (19%)
1	OMC	C1	2300	1	19,22,23	0.55	0	26,31,34	0.70	0
1	OMC	C1	2838	1	$19,\!22,\!23$	0.70	0	26,31,34	1.55	4 (15%)
1	OMG	C1	1433	1	$18,\!26,\!27$	1.16	2 (11%)	19,38,41	0.85	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMU	C1	2690	1	-	2/9/27/28	0/2/2/2
1	A2M	C1	2289	1	-	0/5/27/28	0/3/3/3
1	OMC	C1	1420	1	-	3/9/27/28	0/2/2/2
1	OMU	C1	2380	1	-	0/9/27/28	0/2/2/2
1	OMG	C1	2774	1	-	0/5/27/28	0/3/3/3
1	OMG	C1	2358	1	-	0/5/27/28	0/3/3/3
1	A2M	C1	848	1	-	1/5/27/28	0/3/3/3
1	A2M	C1	389	1	-	3/5/27/28	0/3/3/3
1	OMG	C1	646	1	-	0/5/27/28	0/3/3/3
1	OMC	C1	778	1	-	0/9/27/28	0/2/2/2
1	OMU	C1	1868	1	-	0/9/27/28	0/2/2/2
1	OMU	C1	2384	1	-	1/9/27/28	0/2/2/2
1	OMC	C1	1836	1	-	0/9/27/28	0/2/2/2
1	OMU	C1	1917	1	-	3/9/27/28	0/2/2/2
1	A2M	C1	1847	1	-	3/5/27/28	0/3/3/3
1	OMG	C1	627	1	-	0/5/27/28	0/3/3/3
1	OMG	C1	787	1	-	0/5/27/28	0/3/3/3
1	OMC	C1	2918	1	-	0/9/27/28	0/2/2/2
1	OMC	C1	1491	1	-	1/9/27/28	0/2/2/2
1	OMU	C1	2683	1	-	1/9/27/28	0/2/2/2
1	OMG	C1	2881	1	-	0/5/27/28	0/3/3/3
1	OMC	C1	1812	1	-	1/9/27/28	0/2/2/2
1	OMG	C1	2578	1	-	3/5/27/28	0/3/3/3
1	A2M	C1	1432	1	-	0/5/27/28	0/3/3/3
1	A2M	C1	637	1	-	1/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	A2M	C1	858	1	-	1/5/27/28	0/3/3/3
1	A2M	C1	1223	1	-	1/5/27/28	0/3/3/3
1	OMU	C1	2688	1	-	0/9/27/28	0/2/2/2
1	OMG	C1	2876	1	-	0/5/27/28	0/3/3/3
1	OMG	C1	385	1	-	2/5/27/28	0/3/3/3
1	OMU	C1	2277	1	-	0/9/27/28	0/2/2/2
1	OMC	C1	2300	1	-	1/9/27/28	0/2/2/2
1	OMC	C1	2838	1	-	2/9/27/28	0/2/2/2
1	OMG	C1	1433	1	-	3/5/27/28	0/3/3/3

The worst 5 of 139 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
1	C1	858	A2M	C3'-C2'	-12.77	1.24	1.52
1	C1	637	A2M	C3'-C2'	-12.74	1.24	1.52
1	C1	2289	A2M	C3'-C2'	-12.73	1.24	1.52
1	C1	1432	A2M	C3'-C2'	-12.70	1.24	1.52
1	C1	1223	A2M	C3'-C2'	-12.67	1.24	1.52

The worst 5 of 91 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	C1	1432	A2M	C1'-N9-C4	10.64	145.33	126.64
1	C1	389	A2M	C1'-N9-C4	10.54	145.16	126.64
1	C1	1847	A2M	C1'-N9-C4	10.49	145.08	126.64
1	C1	637	A2M	C1'-N9-C4	10.47	145.04	126.64
1	C1	858	A2M	C1'-N9-C4	10.33	144.79	126.64

There are no chirality outliers.

5 of 33 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	C1	389	A2M	O4'-C4'-C5'-O5'
1	C1	389	A2M	C1'-C2'-O2'-CM'
1	C1	637	A2M	C1'-C2'-O2'-CM'
1	C1	1433	OMG	O4'-C4'-C5'-O5'
1	C1	1433	OMG	C1'-C2'-O2'-CM2

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 8 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Ма	Mal Tuna Chain Bas		Dec	Tinle	Bo	ond leng	$_{\rm ths}$	Bond angles		
MOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
59	GTP	CH	701	60	26,34,34	1.14	2 (7%)	32,54,54	1.61	7 (21%)
59	GTP	Cd	1000	60	26,34,34	1.15	2 (7%)	32,54,54	1.53	6 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	GTP	CH	701	60	-	4/18/38/38	0/3/3/3
59	GTP	Cd	1000	60	-	3/18/38/38	0/3/3/3

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
59	CH	701	GTP	C5-C6	-4.05	1.39	1.47
59	Cd	1000	GTP	C5-C6	-4.00	1.39	1.47
59	CH	701	GTP	C2-N3	2.13	1.38	1.33
59	Cd	1000	GTP	C2-N3	2.05	1.38	1.33

The worst 5 of 13 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
59	Cd	1000	GTP	PB-O3B-PG	-3.61	120.44	132.83
59	СН	701	GTP	PB-O3B-PG	-3.46	120.97	132.83

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$			
59	CH	701	GTP	PA-O3A-PB	-3.31	121.47	132.83			
59	CH	701	GTP	C5-C6-N1	3.22	119.63	113.95			
59	Cd	1000	GTP	C5-C6-N1	3.14	119.50	113.95			

There are no chirality outliers.

5 of 7 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
59	Cd	1000	GTP	O4'-C4'-C5'-O5'
59	CH	701	GTP	PB-O3B-PG-O2G
59	Cd	1000	GTP	C3'-C4'-C5'-O5'
59	CH	701	GTP	PB-O3A-PA-O2A
59	CH	701	GTP	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17950. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 250

Y Index: 250

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 259

Y Index: 248

Z Index: 252

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.55. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1366 $\rm nm^3;$ this corresponds to an approximate mass of 1234 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.391 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-17950 and PDB model 8PV1. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.55 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.55).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.55) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score				
All	0.9460	0.6180				
C1	0.9700	0.6200				
C2	0.9720	0.6490				
C3	0.7660	0.4470				
C4	0.9080	0.5310				
CB	0.7780	0.4950				
CF	0.9210	0.5950				
CH	0.9190	0.6190				
CI	0.8300	0.5240				
CJ	0.9600	0.6200				
CK	0.9710	0.6530				
CL	0.8890	0.5630				
\mathcal{CM}	0.9060	0.5750				
CN	0.9630	0.6520				
CO	0.9100	0.6370				
CQ	0.8810	0.6140				
Cb	0.9560	0.6450				
Cd	0.9580	0.6340				
Ce	0.8510	0.5650				
Cf	0.9350	0.5990				
Cg	0.9280	0.5810				
Ch	0.8870	0.5910				
Cz	0.8380	0.5240				
LA	0.9690	0.6540				
LB	0.9810	0.6850				
LC	0.9770	0.6680				
LD	0.9090	0.5860				
LE	0.9260	0.6220				
LF	0.9590	0.6480				
LG	0.9480	0.6270				
LH	0.9520	0.6460				
LJ	0.8900	0.5120				
LK	0.8580	0.5450				
LL	0.9390	0.6360				
LM	0.9580	0.6450				

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
LN	0.9900	0.6750
LO	0.9830	0.6790
LP	0.9810	0.6790
LQ	0.9600	0.6390
LR	0.9510	0.6580
LS	0.9670	0.6470
LT	0.8620	0.5280
LU	0.9250	0.6050
LV	0.9890	0.6820
LX	0.9530	0.6370
LY	0.9590	0.6440
LZ	0.9550	0.6370
La	0.9550	0.6410
Lc	0.9320	0.6220
Ld	0.9730	0.6770
Le	0.9810	0.6750
Lf	0.9920	0.6930
Lg	0.9150	0.6400
Lh	0.9270	0.6000
Li	0.9240	0.6060
Lj	0.9880	0.6900
Lk	0.8950	0.6060
Ll	0.9950	0.6980
Lp	0.9200	0.6340
Lq	0.9580	0.6410

