

wwPDB EM Validation Summary Report (i)

Mar 10, 2022 - 02:04 am GMT

PDB ID	:	7PC2
EMDB ID	:	EMD-13316
Title	:	HIV-1 Env (BG505 SOSIP.664) in complex with the IgA bNAb 7-269 and the
		antibody 3BNC117.
Authors	:	Fernandez, I.; Bontems, F.; Pehau-Arnaudet, G.; Rey, F.
Deposited on	:	2021-08-03
Resolution	:	2.80 Å(reported)
Based on initial model	:	5V8M

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.0 dev 97
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.27

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

3826

Mol	Chain	Length	(Quality of c	hain	
			48%			
1	М	240	51%	•	46%	
		2.40	36%			
	0	240	52%	•	46%	
1		940	41%	_		
	Q	240	50%	•	46%	
2	Ν	215	47%	•	50%	
			33%			
2	Р	215	47%	•	50%	
_			40%			
2	R	215	48%	•	50%	
		101	65%			
3	A	481		91%		• 7%
0	Б	401	62%		_	
3	В	481		90%		• 7%
	C	401	62%			
3	C	481		91%		• 7%

Conti	nued from	n previous p	page		
Mol	Chain	Length	Quality of chain		
	_		53%		
4	D	153	82%	•	16%
4	F	159	56%		
4	E	155	80%	5%	16%
4	F	153	80%	5%	16%
-	-	100	31%	570	1070
5	G	226	52% · 4	6%	
	_		35%		
5	I	226	52% ·	46%	
5	K	าาต	32%	60/	
5	Γ	220	<u> </u>	.6%	
6	Н	206	46%	, D	
			37%		
6	J	206	47% 52	%	
	-		30%		
6	L	206	47% 52%	2	
7	4	0	50%		
	4	2	100%		
7	7	2	100%		
	•	_	50%		
7	8	2	100%		
	_	_	100%		
7	9	2	100%		
7	S	9	50%	20/	
1	<u>د</u>	Δ	50%	J%	
7	Т	2	100%		
			50%		
7	U	2	100%		
-	T 7	2	50%		
1	V	2	100%		
7	Z	2	50%		
- 1		2	100%		
7	d	2	100%		
			100%		
7	g	2	50% 50)%	
	1		100%		
(h	2	100%		
7	i	2	100%		
	1		100%		
7	j	2	100%		
			50%		
7	k	2	50% 50)%	
-		0	100%		
(р	2	100%		

Mol	Chain	Length	Quality of chai	n
7		0	100%	
1	V	Z	50%	
7	W	2	100%	
			100%	
7	Х	2	100%	
8	W	9	22%	<u>.</u>
0			89%	
8	s	9	22% 78%	0
8	77	0	89%	C70/
0	У	3		67%
9	Х	8	25% 75	%
0	1	0	100%	
9	1	8	38% 75%	62%
9	Z	8	38%	62%
1.0			100%	
10	0	3	67%	
10	2	3	67%	33%
			100%	
10	3	3	100%	
10	V	3	67%	
10	1	0	100%	
10	с	3	67%	33%
10	ſ	0	100%	
10	1	3	100% 100%	
10	m	3	100%	
10		2	67%	
10	0	3	67%	
10	t	3	100%	
			100%	
10	u	3	67%	33%
11	6	11	82%	
11	0	11	82%	
11	a	11	18% 82%	
11	_	11	64%	
11	r		18% 82% 71%	
12	b	7	43%	57%
10	1	~	100%	
13	1	5	60%	40%
13	е	5	60%	40%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length		Quality of chain					
					100%				
13	n	5		60%		40%			
				62%					
14	5	8	12%		88%				
				62%					
14	q	8	25%		75%				

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 27063 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1 0	130	Total	С	Ν	0	S	0	0	
1		150	1031	646	181	195	9	0	0
1	1 M	120	Total	С	Ν	0	S	0	0
		130	1031	646	181	195	9		0
1	1 Q	120	Total	С	Ν	0	S	0	0
T		190	1031	646	181	195	9		0

• Molecule 1 is a protein called 7-269 IgA Fab heavy chain.

• Molecule 2 is a protein called 7-269 IgA Fab light chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
2 D	р	108	Total	С	Ν	Ο	\mathbf{S}	0	0
2		108	821	515	140	163	3		0
9	2 N	108	Total	С	Ν	0	S	0	0
			821	515	140	163	3	0	0
0	2 R	108	Total	С	Ν	0	S	0	0
		108	821	515	140	163	3	0	

• Molecule 3 is a protein called gp120, BG505 SOSIP.664 T332N.

Mol	Chain	Residues	Atoms					AltConf	Trace
3 A	Λ	445	Total	С	Ν	0	\mathbf{S}	0	0
	440	3499	2195	618	658	28	0	0	
2	9 D	445	Total	С	Ν	0	S	0	0
3 D	440	3499	2195	618	658	28	0	0	
3 C	C	445	Total	С	Ν	0	S	0	0
	U		3499	2195	618	658	28		0

• Molecule 4 is a protein called gp41 BG505 T332N SOSIP.664.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	129	Total 1024	C 646	N 177	O 195	S 6	0	0

	9	1 1	0						
Mol	Chain	Residues		At	oms			AltConf	Trace
4	Г	190	Total	С	Ν	0	S	0	0
4 E	129	1024	646	177	195	6	0	0	
4 F	120	Total	С	Ν	0	S	0	0	
	Г	129	1024	646	177	195	6		0

Continued from previous page...

• Molecule 5 is a protein called 3BNC IgG Fab heavy chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	K	191	Total	С	Ν	Ο	S	0	0
0 K	121	985	626	177	179	3	0	0	
5	С	191	Total	С	Ν	Ο	\mathbf{S}	0	0
0	G	121	985	626	177	179	3	0	0
5	т	191	Total	С	Ν	0	S	0	0
		121	985	626	177	179	3	0	

• Molecule 6 is a protein called 3BNC117 IgG Fab light chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
6 I	0.9	Total	С	Ν	Ο	\mathbf{S}	0	0	
0	0 L	90	783	493	137	150	3	0	0
6	Ц	08	Total	С	Ν	Ο	S	0	0
0	11	98	783	493	137	150	3	0	U
6	т	08	Total	С	Ν	0	S	0	0
0 J	J	98	783	493	137	150	3	0	

• Molecule 7 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	S	2	Total C N O	0	0
1	C		28 16 2 10	0	0
7	Т	9	Total C N O	0	0
1	1 1	2	28 16 2 10	0	
7	ΤŢ	9	Total C N O	0	0
1	U	2	28 16 2 10	0	U
7	V	9	Total C N O	0	0
1	v		28 16 2 10	0	0

Mol	Chain	Residues	Ato	ms		AltConf	Trace
7	7	0	Total C	Ν	0	0	0
(L	2	28 16	2	10	0	0
7	J	0	Total C	Ν	0	0	0
(a	2	28 16	2	10	0	0
7	~	0	Total C	Ν	0	0	0
(g	Δ	28 16	2	10	0	0
7	h	0	Total C	Ν	0	0	0
(11	Δ	28 16	2	10	0	0
7	;	2	Total C	Ν	0	0	0
	1	2	28 16	2	10	0	0
7	i	2	Total C	Ν	0	0	0
	J	2	28 16	2	10	0	0
7	Ŀ	2	Total C	Ν	0	0	0
1	K	2	28 16	2	10	0	0
7	n	9	Total C	Ν	0	0	0
1	р	2	28 16	2	10	0	0
7	V	9	Total C	Ν	Ο	0	0
1	v	2	28 16	2	10	0	0
7	117	9	Total C	Ν	Ο	0	0
1	vv	2	28 16	2	10	0	0
7	v	9	Total C	Ν	0	0	0
-	л		28 16	2	10	0	0
7	4	2	Total C	Ν	Ο	0	0
-	4		28 16	2	10	0	U
7	7	2	Total C	Ν	Ο	0	0
-	'		28 16	2	10	U	
7	8	2	Total C	Ν	Ο	0	0
	0		28 16	2	10	0	0
7	Q	2	Total $\overline{\mathbf{C}}$	Ν	Ο	0	
'	5	2	28 16	2	10	U	0

Continued from previous page...

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deox y-beta-D-glucopyranose.

DWIDE

Mol	Chain	Residues	I	Ator	\mathbf{ns}		AltConf	Trace
8	W	9	Total 105	$\begin{array}{c} \mathrm{C} \\ 58 \end{array}$	N 2	O 45	0	0
						Contin	nued on next	t page

Continued from previous page	Continued	from	previous	page
------------------------------	-----------	------	----------	------

Mol	Chain	Residues	Atoms			AltConf	Trace
8	S	9	Total C	N	Ο	0	0
0 5	0		105 53	3 2	45	0	Ŭ
8	37	0	Total C	N	Ο	0	0
0	У	9	105 - 53	3 2	45	0	

• Molecule 9 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
9	Х	8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0	0
9	1	8	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 94 & 52 & 2 & 40 \end{array}$	0	0
9	Z	8	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 94 & 52 & 2 & 40 \end{array}$	0	0

• Molecule 10 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
10	V	3	Total C N O	0	0
10	1	5	39 22 2 15	0	0
10	C	3	Total C N O	0	0
10	C	5	39 22 2 15		0
10	f	3	Total C N O	0	0
10	10 1	0	39 22 2 15	0	0
10	m	3	Total C N O	0	0
10	111	5	39 22 2 15	0	0
10	0	3	Total C N O	0	0
10	0	5	39 22 2 15	0	0
10	+	3	Total C N O	0	0
10	U	5	39 22 2 15	0	

Mol	Chain	Residues	Atoms	AltConf	Trace
10	11	2	Total C N O	0	0
10	u	5	39 22 2 15	0	0
10	0	3	Total C N O	0	0
10 0	0	0	39 22 2 15	0	0
10	9	2	Total C N O	0	0
10	Z	5	39 22 2 15	0	
10 3	3	3	Total C N O	0	0
	5	5	39 22 2 15	0	

Continued from previous page...

• Molecule 11 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyr anose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopy ranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
11	a	11	Total C N O 127 70 2 55	0	0
11	r	11	Total C N O 127 70 2 55	0	0
11	6	11	Total C N O 127 70 2 55	0	0

• Molecule 12 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyra nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		AltConf	Trace
12	b	7	Total 83	C 46	N 2	O 35	0	0

• Molecule 13 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-

acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	race
13	е	5	Total C N O 61 34 2 25	0	0
13	n	5	Total C N O 61 34 2 25	0	0
13	1	5	Total C N O 61 34 2 25	0	0

• Molecule 14 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyr anose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		AltConf	Trace		
14	q	8	Total 94	C 52	N 2	O 40	0	0
14	5	8	Total 94	C 52	N 2	O 40	0	0

• Molecule 15 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	I	Aton	ns		AltConf
15	Δ	1	Total	С	Ν	0	0
15	A	1	70	40	5	25	0
15	Δ	1	Total	С	Ν	0	0
10	A	L	70	40	5	25	0
15	Δ	1	Total	С	Ν	0	0
10	A	L	70	40	5	25	0
15	Δ	1	Total	С	Ν	0	0
10	Л	I	70	40	5	25	0
15	Δ	1	Total	С	Ν	0	0
10	Π	T	70	40	5	25	0
15	В	1	Total	С	Ν	0	0
10	D	I	70	40	5	25	0
15	В	1	Total	С	Ν	Ο	0
10	D	I	70	40	5	25	0
15	В	1	Total	С	Ν	Ο	0
10		1	70	40	5	25	0
15	В	1	Total	С	Ν	Ο	0
10		1	70	40	5	25	0
15	В	1	Total	С	Ν	Ο	0
10		1	70	40	5	25	0
15	C	1	Total	С	Ν	Ο	0
10	0	1	56	32	4	20	0
15	C	1	Total	С	Ν	Ο	0
10	0	1	56	32	4	20	0
15	C	1	Total	С	Ν	Ο	0
10		*	56	32	4	20	
15	C	1	Total	\mathbf{C}	Ν	Ο	0
10			56	32	4	20	

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
15	Л	1	Total C N O	0
10	D	1	28 16 2 10	0
15	Л	1	Total C N O	0
10	D	1	28 16 2 10	0
15	F	1	Total C N O	0
10	Ľ	1	28 16 2 10	0
15	F	1	Total C N O	0
10	Ľ	1	28 16 2 10	0
15	Б	1	Total C N O	0
10	Г	1	28 16 2 10	0
15	Б	1	Total C N O	0
10	Г		28 16 2 10	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 7-269 IgA Fab heavy chain

L25(L26(L261 N262 N276

E26 E26 V27 M27

A26 E26 1277 T278 N279

N280 K283 N283 N283 L284 L288 F288 F288 F288 T290 T290

V295 C296 T297 R296

S243 T244 V245 Q246 Q246 C247 T248 H249 G250 I251 I251 I251 I255 P253 P253 V255

S24

ALA CYS GLU VAL THR HITS GLN VAL LLEU SER SER SER SER ASSN ARG GLU CYS CYS CYS

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain S:	50%	50%
_		
AG1 AG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain T:	50% 100	0%
NAG 1		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U:	50%	0%
NAG1 NAG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%
Chain V:	100%
NAG1	
• Molecul	o 7: 2 sectomido 2 doorry hoto D gluconymonogo (1 1) 2 sectomido

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

	50%		
Chain Z:		100%	
•			
11			
NAG NAG			

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

NAG1 NAG2

Chain d	
100%	

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100)%
Chain g:	50%	50%
**		
IAG1 IAG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain h:	100%
**	
4 <mark>62 1</mark>	

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain i:	50%	00%
NAG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain j:	100%	
NAG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain k:	50%	50%
 ♦ 	50.0	50/0
NAG1 NAG2		

NAG NAG

NAG 1 NAG 2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain p:	100%	
• •		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

01.1	100%
Chain v:	100%
• •	

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain w:	50%	0%
NAG1		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain x:	100%	
**		
NAG1 NAG2		
• Molecul	e 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
opyranose		

	50%	
Chain 4:	10	00%
•		
<mark>61</mark> 62		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain 7:	100%

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

_	50%	
Chain 8:	10	0%
•		
NAG1 NAG2		

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain 9:	100%
NAG	

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-$

				78%		
Chain V	V:		22%		78%	
• • •	++	•••				
AG 1 AG 2 MA 3 AN 4 AN 5 AN 5	AN6 AN7	AN8				
	W W	ΨW				

• Molecule 8: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-$

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN8 MAN9

• Molecule 9: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

		100%
Chain X:	25%	75%
******	▶	
A NG NG N7	<u>88</u>	

• Molecule 9: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

	_			100%		
Chain	l:		38%		62%	
***	•••	++				
AG1 AG2 AG2 AA3	AN5 AN5 AN6	AN7 AN8				
		W W				

• Molecule 9: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

		75	%		
Chain z:	38	9%		62%	
* **	•••				
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5	MAN7 MAN8				

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%			
Chain Y:		100%		
NAG1 NAG2 BMA3				
	D	$(1 \ 4) \ 0 \ 4$.1 0 1	

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%							
Chain c:	67%	33%						

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain f:	100%
•••	
E E E E E E E E E E E E E E E E E E E	

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain m:	100%

NAG1 NAG2 BMA3	

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain o:	67%	
NAG1 NAG2 BMA3		

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain u:	67%	33%
NAG1		

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

_	100%		
Chain 0:	100%		I
NAG1			
• Molecule cetamido-2	e 10: beta-D-mannopyranose-(1-4)-2-ace 2-deoxy-beta-D-glucopyranose	etamido-2-deoxy-beta-D-g	;lucopyranose-(1-4)-2-a
_	67%		
Chain 2:	67%	33%	I
NAG1 NAG2 BMA3			
• Molecule cetamido-2	e 10: beta-D-mannopyranose-(1-4)-2-ace 2-deoxy-beta-D-glucopyranose	etamido-2-deoxy-beta-D-g	;lucopyranose-(1-4)-2-a

Chain 3:	100% 100%	
AG1 AG2 MA3		

 \bullet Molecule 11: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyra

										82%	
Ch	air	18	a:				18	8%		82%	
••	•	•	•	•	٠	•	•	•			
61	IA3	N14	NI5	NN6	ZN17	NN8	6N1	N110	N11		
1N	B	/W	W	M/	W/	W/	W/	W/	M/		

• Molecule 11: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy

		_				64%
Chair	n r	: -		18	3%	82%
••		•	•	••	••	
61 G2 A3	N5 N5	N6 N7	N8	6N	N10 N11	
NA NA BM	MA	MA MA	MA	MA	MA	

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-$

-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos
e	
020/	

• Molecule 12: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

 \bullet Molecule 13: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

 \bullet Molecule 13: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

 \bullet Molecule 13: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

	100%					
Chain 1:	60%	40%				

NAG1 NAG2 BMA3 MAN4 MAN5						

• Molecule 14: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(

1-4)-2-acet	amido-2-deoxy	-beta-D-glucopy	ranose-(1-4))-2-acetamid	o-2-deoxy-beta	a-D-glucopyranos
e						
_		62%				

Chain q:	25%	75%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6	MAN7	

• Molecule 14: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyra nose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos e

		62%	
Chain 5:	12%	88%	
***	••		
agi agi ang ang ang ang	AN7 AN8		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C3	Depositor
Number of particles used	115394	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	2.634	Depositor
Minimum map value	-0.659	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.049	Depositor
Recommended contour level	0.29	Depositor
Map size (Å)	357.0, 357.0, 357.0	wwPDB
Map dimensions	420, 420, 420	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.85, 0.85, 0.85	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	М	0.51	0/1059	0.63	2/1432~(0.1%)
1	0	0.31	0/1059	0.50	1/1432~(0.1%)
1	Q	0.31	0/1059	0.50	1/1432~(0.1%)
2	Ν	0.30	0/840	0.47	0/1142
2	Р	0.30	0/840	0.47	0/1142
2	R	0.29	0/840	0.47	0/1142
3	А	0.44	0/3569	0.52	0/4844
3	В	0.54	0/3569	0.54	0/4844
3	С	0.48	0/3569	0.53	0/4844
4	D	0.31	0/1041	0.44	0/1412
4	Е	0.31	0/1041	0.45	0/1412
4	F	0.31	0/1041	0.46	0/1412
5	G	0.37	0/1017	0.48	0/1386
5	Ι	0.36	0/1017	0.48	0/1386
5	Κ	0.36	0/1017	0.48	0/1386
6	Н	0.33	0/798	0.79	2/1080~(0.2%)
6	J	0.31	0/798	0.46	0/1080
6	L	0.30	0/798	0.45	0/1080
All	All	0.41	0/24972	0.52	6/33888~(0.0%)

There are no bond length outliers.

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	Н	7	SER	CB-CA-C	-15.52	80.62	110.10
6	Н	7	SER	N-CA-C	13.66	147.88	111.00
1	М	108	SER	CB-CA-C	-7.99	94.93	110.10
1	М	108	SER	N-CA-C	7.81	132.09	111.00
1	Q	110	CYS	CA-CB-SG	5.30	123.54	114.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	М	128/240~(53%)	114 (89%)	14 (11%)	0	100	100
1	Ο	128/240~(53%)	115 (90%)	13 (10%)	0	100	100
1	Q	128/240~(53%)	117 (91%)	11 (9%)	0	100	100
2	Ν	106/215~(49%)	96 (91%)	10 (9%)	0	100	100
2	Р	106/215~(49%)	97~(92%)	9 (8%)	0	100	100
2	R	106/215~(49%)	98~(92%)	8 (8%)	0	100	100
3	А	433/481 (90%)	398 (92%)	35 (8%)	0	100	100
3	В	433/481 (90%)	405 (94%)	28 (6%)	0	100	100
3	С	433/481 (90%)	405 (94%)	28 (6%)	0	100	100
4	D	125/153~(82%)	113 (90%)	12 (10%)	0	100	100
4	Е	125/153~(82%)	114 (91%)	11 (9%)	0	100	100
4	F	125/153~(82%)	111 (89%)	14 (11%)	0	100	100
5	G	119/226~(53%)	112 (94%)	7 (6%)	0	100	100
5	Ι	119/226~(53%)	111 (93%)	8 (7%)	0	100	100
5	К	119/226~(53%)	112 (94%)	7 (6%)	0	100	100
6	Н	92/206~(45%)	83 (90%)	9 (10%)	0	100	100
6	J	92/206~(45%)	86 (94%)	6 (6%)	0	100	100
6	L	92/206~(45%)	86 (94%)	6 (6%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
All	All	3009/4563~(66%)	2773~(92%)	236~(8%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	М	108/206~(52%)	101 (94%)	7~(6%)	17	44
1	Ο	108/206~(52%)	102 (94%)	6 (6%)	21	51
1	Q	108/206~(52%)	100 (93%)	8 (7%)	13	37
2	Ν	90/187~(48%)	82 (91%)	8 (9%)	9	28
2	Р	90/187~(48%)	83 (92%)	7 (8%)	12	35
2	R	90/187~(48%)	86 (96%)	4 (4%)	28	61
3	А	398/428 (93%)	390 (98%)	8 (2%)	55	84
3	В	398/428 (93%)	386 (97%)	12 (3%)	41	75
3	С	398/428 (93%)	391 (98%)	7 (2%)	59	86
4	D	111/129~(86%)	107 (96%)	4 (4%)	35	69
4	Е	111/129~(86%)	104 (94%)	7 (6%)	18	46
4	F	111/129~(86%)	104 (94%)	7~(6%)	18	46
5	G	102/193~(53%)	99~(97%)	3 (3%)	42	76
5	Ι	102/193~(53%)	98~(96%)	4 (4%)	32	66
5	Κ	102/193~(53%)	99~(97%)	3(3%)	42	76
6	Н	86/183~(47%)	84 (98%)	2(2%)	50	82
6	J	86/183~(47%)	84 (98%)	2(2%)	50	82
6	L	86/183 (47%)	85 (99%)	1 (1%)	71	92
All	All	2685/3978~(68%)	2585 (96%)	100 (4%)	37	68

 $5~{\rm of}~100$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
3	В	410	SER
4	Е	546	SER
6	J	89	GLN
3	В	432	GLN
3	С	276	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 49 such sidechains are listed below:

Mol	Chain	Res	Type		
3	В	432	GLN		
3	С	355	ASN		
3	С	33	ASN		
3	С	203	GLN		
4	F	540	GLN		

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

190 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Turne	Chain	Res	Link	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
10	NAG	0	1	3,10	14,14,15	0.22	0	17,19,21	0.47	0
10	NAG	0	2	10	14,14,15	0.21	0	17,19,21	0.46	0
10	BMA	0	3	10	11,11,12	0.50	0	$15,\!15,\!17$	0.75	0
13	NAG	1	1	3,13	14,14,15	0.40	0	17,19,21	0.41	0

Ъ / [.]	Mal True Chain		D	т. 1	Bond lengths			Bond angles		
IVIOI	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
13	NAG	1	2	13	14,14,15	0.31	0	17,19,21	0.45	0
13	BMA	1	3	13	11,11,12	0.58	0	$15,\!15,\!17$	0.73	0
13	MAN	1	4	13	11,11,12	0.63	0	$15,\!15,\!17$	1.11	2 (13%)
13	MAN	1	5	13	11,11,12	0.65	0	$15,\!15,\!17$	1.00	2 (13%)
10	NAG	2	1	3,10	14,14,15	0.30	0	17,19,21	0.66	1 (5%)
10	NAG	2	2	10	14,14,15	0.22	0	17,19,21	0.40	0
10	BMA	2	3	10	11,11,12	0.51	0	$15,\!15,\!17$	0.75	0
10	NAG	3	1	3,10	14,14,15	0.25	0	17,19,21	0.44	0
10	NAG	3	2	10	14,14,15	0.17	0	17,19,21	0.41	0
10	BMA	3	3	10	11,11,12	0.60	0	$15,\!15,\!17$	0.91	0
7	NAG	4	1	3,7	14,14,15	0.20	0	17,19,21	0.59	0
7	NAG	4	2	7	14,14,15	0.26	0	17,19,21	0.43	0
14	NAG	5	1	3,14	14,14,15	0.40	0	17,19,21	1.30	2 (11%)
14	NAG	5	2	14	14,14,15	0.34	0	17,19,21	0.53	0
14	BMA	5	3	14	11,11,12	0.72	0	$15,\!15,\!17$	0.96	1 (6%)
14	MAN	5	4	14	11,11,12	0.62	0	$15,\!15,\!17$	0.96	1 (6%)
14	MAN	5	5	14	11,11,12	0.63	0	$15,\!15,\!17$	1.15	2 (13%)
14	MAN	5	6	14	11,11,12	0.71	0	$15,\!15,\!17$	1.11	1 (6%)
14	MAN	5	7	14	11,11,12	0.87	1 (9%)	$15,\!15,\!17$	1.20	1 (6%)
14	MAN	5	8	14	11,11,12	0.71	0	$15,\!15,\!17$	0.99	1 (6%)
11	NAG	6	1	11,3	14,14,15	0.50	0	17,19,21	0.41	0
11	MAN	6	10	11	11,11,12	0.75	0	$15,\!15,\!17$	1.24	2 (13%)
11	MAN	6	11	11	11,11,12	0.76	1 (9%)	$15,\!15,\!17$	0.93	1 (6%)
11	NAG	6	2	11	14,14,15	0.32	0	17,19,21	0.49	0
11	BMA	6	3	11	11,11,12	0.59	0	$15,\!15,\!17$	0.96	1 (6%)
11	MAN	6	4	11	11,11,12	0.76	0	$15,\!15,\!17$	1.25	2 (13%)
11	MAN	6	5	11	11,11,12	0.69	0	$15,\!15,\!17$	0.93	1 (6%)
11	MAN	6	6	11	11,11,12	0.55	0	$15,\!15,\!17$	1.12	2 (13%)
11	MAN	6	7	11	11,11,12	0.67	0	$15,\!15,\!17$	1.23	2 (13%)
11	MAN	6	8	11	11,11,12	0.59	0	$15,\!15,\!17$	1.19	2 (13%)
11	MAN	6	9	11	11,11,12	0.59	0	$15,\!15,\!17$	0.99	1 (6%)
7	NAG	7	1	7,6	14,14,15	0.22	0	17,19,21	0.38	0
7	NAG	7	2	7	14,14,15	0.20	0	17,19,21	0.41	0
7	NAG	8	1	7,6	14,14,15	0.24	0	17,19,21	0.37	0
7	NAG	8	2	7	14,14,15	0.19	0	17,19,21	0.41	0
7	NAG	9	1	7,6	14,14,15	0.23	0	17,19,21	0.37	0
7	NAG	9	2	7	14,14,15	0.20	0	17,19,21	0.37	0
7	NAG	S	1	3,7	14,14,15	0.24	0	17,19,21	0.47	0

Mal Trma Ch		Chain	Dag	T : 1-	Bond lengths			Bond angles		
IVIOI	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	NAG	S	2	7	14,14,15	0.40	0	$17,\!19,\!21$	1.25	1 (5%)
7	NAG	Т	1	3,7	14,14,15	0.22	0	17,19,21	0.47	0
7	NAG	Т	2	7	14,14,15	0.20	0	17,19,21	0.40	0
7	NAG	U	1	3,7	14,14,15	0.36	0	17,19,21	0.41	0
7	NAG	U	2	7	14,14,15	0.23	0	17,19,21	0.42	0
7	NAG	V	1	3,7	14,14,15	0.44	0	17,19,21	0.46	0
1	NAG	V	2	7	14,14,15	0.23	0	17,19,21	0.41	0
0	NAG NAC	W	1	3,8	14,14,10 14,14,15	0.30	0	17,19,21 17.10.21	0.52	0
0				0	14,14,10 11 11 10	0.32	0	17,19,21 15 15 17	0.01	$\frac{1}{607}$
0	DMA	VV	3	0	11,11,12	0.64	0	15,15,17	0.99	1(0/0)
8	MAN	W	4	8	11,11,12	0.55	0	15,15,17	1.18	2 (13%)
8	MAN	W	5	8	11,11,12	0.58	0	15, 15, 17	1.09	2 (13%)
8	MAN	W	6	8	11,11,12	0.65	0	$15,\!15,\!17$	0.91	1 (6%)
8	MAN	W	7	8	11,11,12	0.66	0	$15,\!15,\!17$	1.43	2 (13%)
8	MAN	W	8	8	11,11,12	0.67	0	$15,\!15,\!17$	1.30	2 (13%)
8	MAN	W	9	8	11,11,12	0.53	0	15,15,17	1.15	2 (13%)
9	NAG	Х	1	3,9	14,14,15	0.39	0	17,19,21	0.43	0
9	NAG	Х	2	9	14,14,15	0.18	0	17,19,21	0.42	0
9	BMA	Х	3	9	11,11,12	0.58	0	$15,\!15,\!17$	0.71	1 (6%)
9	MAN	Х	4	9	11,11,12	0.68	0	15,15,17	1.24	2 (13%)
9	MAN	Х	5	9	11,11,12	0.71	0	$15,\!15,\!17$	0.88	1 (6%)
9	MAN	Х	6	9	11,11,12	0.61	0	$15,\!15,\!17$	1.06	2 (13%)
9	MAN	Х	7	9	11,11,12	0.60	0	$15,\!15,\!17$	1.06	2 (13%)
9	MAN	Х	8	9	11,11,12	0.61	0	15,15,17	0.99	2 (13%)
10	NAG	Y	1	3,10	14,14,15	0.24	0	17,19,21	0.46	0
10	NAG	Y	2	10	14,14,15	0.20	0	17,19,21	0.45	0
10	BMA	Y	3	10	11,11,12	0.54	0	$15,\!15,\!17$	0.75	0
7	NAG	Z	1	3,7	14,14,15	0.21	0	17,19,21	0.57	0
7	NAG	Z	2	7	14,14,15	0.26	0	17,19,21	0.43	0
11	NAG	a	1	11,3	14,14,15	0.53	0	17,19,21	0.40	0
11	MAN	a	10	11	11,11,12	0.86	0	15, 15, 17	1.51	2 (13%)
11	MAN	a	11	11	11,11,12	0.62	0	$15,\!15,\!17$	1.65	2(13%)
11	NAG	a	2	11	14,14,15	0.34	0	17,19,21	0.48	0
11	BMA	a	3	11	11,11,12	0.59	0	$15,\!15,\!17$	0.97	1 (6%)
11	MAN	a	4	11	11,11,12	0.78	0	$15,\!15,\!17$	1.25	2 (13%)
11	MAN	a	5	11	11,11,12	0.69	0	$15,\!15,\!17$	0.93	1 (6%)
11	MAN	a	6	11	11,11,12	0.56	0	$15,\!15,\!17$	1.20	2 (13%)
11	MAN	a	7	11	11,11,12	0.69	0	$15,\!15,\!17$	1.23	2 (13%)

	т		Ъ	T • 1	Bo	ond leng	ths	Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
11	MAN	a	8	11	11,11,12	0.56	0	$15,\!15,\!17$	1.19	2 (13%)
11	MAN	a	9	11	11,11,12	0.54	0	$15,\!15,\!17$	1.01	2 (13%)
12	NAG	b	1	12,3	14,14,15	0.60	0	17,19,21	0.46	0
12	NAG	b	2	12	14,14,15	0.24	0	17,19,21	0.56	0
12	BMA	b	3	12	11,11,12	0.73	0	$15,\!15,\!17$	0.96	0
12	MAN	b	4	12	11,11,12	0.55	0	$15,\!15,\!17$	1.02	2 (13%)
12	MAN	b	5	12	11,11,12	0.61	0	15,15,17	1.08	2 (13%)
12	MAN	b	6	12	11,11,12	0.67	0	15,15,17	1.12	2 (13%)
12	MAN	b	7	12	11,11,12	0.68	0	15,15,17	0.93	1 (6%)
10	NAG	с	1	3,10	14,14,15	0.41	0	17,19,21	1.30	2 (11%)
10	NAG	с	2	10	14,14,15	0.20	0	17,19,21	0.43	0
10	BMA	С	3	10	11,11,12	0.60	0	15,15,17	0.70	0
7	NAG	d	1	3,7	14,14,15	0.31	0	17,19,21	0.47	0
7	NAG	d	2	7	14,14,15	0.23	0	17,19,21	0.39	0
13	NAG	е	1	3,13	14,14,15	0.42	0	17,19,21	0.40	0
13	NAG	е	2	13	14,14,15	0.27	0	17,19,21	0.50	0
13	BMA	е	3	13	11,11,12	0.62	0	15,15,17	0.75	0
13	MAN	е	4	13	11,11,12	0.65	0	$15,\!15,\!17$	0.95	1 (6%)
13	MAN	е	5	13	11,11,12	0.67	0	15,15,17	1.05	2 (13%)
10	NAG	f	1	3,10	14,14,15	0.29	0	17,19,21	0.65	0
10	NAG	f	2	10	14,14,15	0.22	0	17,19,21	0.44	0
10	BMA	f	3	10	11,11,12	0.54	0	15,15,17	0.75	0
7	NAG	g	1	3,7	14,14,15	0.26	0	17,19,21	0.47	0
7	NAG	g	2	7	14,14,15	0.41	0	17,19,21	1.24	2 (11%)
7	NAG	h	1	3,7	14,14,15	0.17	0	17,19,21	0.49	0
7	NAG	h	2	7	14,14,15	0.18	0	17,19,21	0.41	0
7	NAG	i	1	3,7	14,14,15	0.34	0	17,19,21	0.41	0
7	NAG	i	2	7	14,14,15	0.23	0	17,19,21	0.42	0
7	NAG	j	1	3,7	14,14,15	0.41	0	17,19,21	0.46	0
7	NAG	j	2	7	14,14,15	0.25	0	17,19,21	0.38	0
7	NAG	k	1	3,7	14,14,15	0.41	0	17,19,21	1.33	2 (11%)
7	NAG	k	2	7	14,14,15	0.23	0	17,19,21	0.37	0
9	NAG	1	1	3,9	14,14,15	0.49	0	17,19,21	0.40	0
9	NAG	1	2	9	14,14,15	0.19	0	17,19,21	$0.4\overline{4}$	0
9	BMA	1	3	9	11,11,12	0.55	0	$15,\!15,\!17$	0.71	1 (6%)
9	MAN	1	4	9	11,11,12	0.70	0	15, 15, 17	1.06	0
9	MAN	1	5	9	11,11,12	0.78	0	15, 15, 17	1.15	2 (13%)
9	MAN	1	6	9	11,11,12	0.72	0	15,15,17	1.07	1 (6%)
9	MAN	1	7	9	11,11,12	0.63	0	15,15,17	1.24	2 (13%)

	T		D	T	Bo	ond lengths		Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
9	MAN	1	8	9	11,11,12	0.60	0	$15,\!15,\!17$	0.98	2 (13%)
10	NAG	m	1	3,10	14,14,15	0.23	0	17,19,21	0.46	0
10	NAG	m	2	10	14,14,15	0.21	0	17,19,21	0.43	0
10	BMA	m	3	10	11,11,12	0.51	0	$15,\!15,\!17$	0.73	0
13	NAG	n	1	3,13	14,14,15	0.42	0	17,19,21	0.40	0
13	NAG	n	2	13	14,14,15	0.30	0	17,19,21	0.46	0
13	BMA	n	3	13	11,11,12	0.62	0	15,15,17	0.86	0
13	MAN	n	4	13	11,11,12	0.72	0	15,15,17	1.39	2 (13%)
13	MAN	n	5	13	11,11,12	0.74	0	$15,\!15,\!17$	1.27	2 (13%)
10	NAG	0	1	3,10	14,14,15	0.32	0	17,19,21	0.63	0
10	NAG	0	2	10	14,14,15	0.23	0	17,19,21	0.39	0
10	BMA	0	3	10	11,11,12	0.54	0	$15,\!15,\!17$	0.75	0
7	NAG	р	1	3,7	14,14,15	0.21	0	17,19,21	0.57	0
7	NAG	р	2	7	14,14,15	0.24	0	17,19,21	0.44	0
14	NAG	q	1	3,14	14,14,15	0.50	0	17,19,21	0.48	0
14	NAG	q	2	14	14,14,15	0.28	0	17,19,21	0.52	0
14	BMA	q	3	14	11,11,12	0.64	0	15,15,17	0.96	1 (6%)
14	MAN	q	4	14	11,11,12	0.60	0	$15,\!15,\!17$	0.95	1 (6%)
14	MAN	q	5	14	11,11,12	0.62	0	$15,\!15,\!17$	1.13	2 (13%)
14	MAN	q	6	14	11,11,12	0.71	0	$15,\!15,\!17$	1.12	1 (6%)
14	MAN	q	7	14	11,11,12	0.61	0	$15,\!15,\!17$	1.10	2 (13%)
14	MAN	q	8	14	11,11,12	0.66	0	$15,\!15,\!17$	0.94	1 (6%)
11	NAG	r	1	11,3	14,14,15	0.52	0	17,19,21	0.40	0
11	MAN	r	10	11	11,11,12	0.71	0	$15,\!15,\!17$	1.20	2 (13%)
11	MAN	r	11	11	11,11,12	0.73	1 (9%)	$15,\!15,\!17$	0.92	1 (6%)
11	NAG	r	2	11	14,14,15	0.35	0	17,19,21	0.54	0
11	BMA	r	3	11	11,11,12	0.64	0	$15,\!15,\!17$	0.98	1 (6%)
11	MAN	r	4	11	11,11,12	0.75	0	$15,\!15,\!17$	1.24	2 (13%)
11	MAN	r	5	11	11,11,12	0.67	0	$15,\!15,\!17$	0.98	1 (6%)
11	MAN	r	6	11	11,11,12	0.54	0	$15,\!15,\!17$	1.16	2 (13%)
11	MAN	r	7	11	11,11,12	0.68	0	$15,\!15,\!17$	1.21	2 (13%)
11	MAN	r	8	11	11,11,12	0.57	0	$15,\!15,\!17$	1.16	2 (13%)
11	MAN	r	9	11	11,11,12	0.52	0	15,15,17	1.03	2 (13%)
8	NAG	s	1	3,8	14,14,15	0.29	0	17,19,21	0.51	0
8	NAG	S	2	8	14,14,15	0.33	0	17,19,21	0.52	0
8	BMA	s	3	8	11,11,12	0.89	0	15,15,17	1.02	2 (13%)
8	MAN	S	4	8	11,11,12	0.61	0	$15,\!15,\!17$	1.19	2 (13%)
8	MAN	s	5	8	11,11,12	0.61	0	$15,\!15,\!17$	1.11	2 (13%)

Mal	Tune	Chain	Dec	Tiple	Bo	ond leng	ths	Bond angles		
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	MAN	s	6	8	11,11,12	0.65	0	$15,\!15,\!17$	0.94	1 (6%)
8	MAN	s	7	8	11,11,12	0.63	0	$15,\!15,\!17$	0.89	1 (6%)
8	MAN	s	8	8	11,11,12	0.87	1 (9%)	$15,\!15,\!17$	1.38	3 (20%)
8	MAN	s	9	8	11,11,12	0.76	1 (9%)	$15,\!15,\!17$	0.91	1 (6%)
10	NAG	t	1	3,10	14,14,15	0.28	0	17,19,21	0.43	0
10	NAG	t	2	10	14,14,15	0.19	0	$17,\!19,\!21$	0.39	0
10	BMA	t	3	10	11,11,12	0.56	0	$15,\!15,\!17$	0.73	0
10	NAG	u	1	3,10	14,14,15	0.26	0	$17,\!19,\!21$	0.43	0
10	NAG	u	2	10	14,14,15	0.39	0	17,19,21	1.25	1 (5%)
10	BMA	u	3	10	11,11,12	0.54	0	$15,\!15,\!17$	0.78	0
7	NAG	V	1	3,7	14,14,15	0.36	0	$17,\!19,\!21$	0.41	0
7	NAG	V	2	7	14,14,15	0.23	0	17,19,21	0.42	0
7	NAG	W	1	3,7	14,14,15	0.38	0	$17,\!19,\!21$	0.46	0
7	NAG	W	2	7	14,14,15	0.22	0	17,19,21	0.40	0
7	NAG	х	1	3,7	14,14,15	0.46	0	17,19,21	0.72	1 (5%)
7	NAG	х	2	7	14,14,15	0.40	0	$17,\!19,\!21$	0.74	1 (5%)
8	NAG	У	1	3,8	14,14,15	0.29	0	$17,\!19,\!21$	0.52	0
8	NAG	У	2	8	14,14,15	0.33	0	17,19,21	0.56	0
8	BMA	У	3	8	11,11,12	0.80	0	$15,\!15,\!17$	0.94	0
8	MAN	У	4	8	11,11,12	0.64	0	$15,\!15,\!17$	1.16	2 (13%)
8	MAN	У	5	8	11,11,12	0.56	0	$15,\!15,\!17$	1.10	2 (13%)
8	MAN	У	6	8	11,11,12	0.65	0	$15,\!15,\!17$	0.94	1 (6%)
8	MAN	У	7	8	11,11,12	0.63	0	$15,\!15,\!17$	0.91	1 (6%)
8	MAN	У	8	8	11,11,12	0.67	0	$15,\!15,\!17$	1.26	2 (13%)
8	MAN	У	9	8	11,11,12	0.68	0	$15,\!15,\!17$	1.32	2 (13%)
9	NAG	Z	1	3,9	14,14,15	0.51	0	$17,\!19,\!21$	0.38	0
9	NAG	Z	2	9	14,14,15	0.18	0	17,19,21	0.44	0
9	BMA	Z	3	9	11,11,12	0.51	0	$15,\!15,\!17$	0.73	0
9	MAN	Z	4	9	11,11,12	0.76	1 (9%)	$15,\!15,\!17$	1.09	1 (6%)
9	MAN	Z	5	9	11,11,12	0.81	1 (9%)	$15,\!15,\!17$	1.13	2 (13%)
9	MAN	Z	6	9	11,11,12	0.68	0	$15,\!15,\!17$	0.92	1 (6%)
9	MAN	Z	7	9	11,11,12	0.53	0	$15,\!15,\!17$	1.15	2 (13%)
9	MAN	Z	8	9	11,11,12	0.60	0	15, 15, 17	0.99	2 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	NAG	0	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	0	2	10	-	2/6/23/26	0/1/1/1
10	BMA	0	3	10	-	0/2/19/22	0/1/1/1
13	NAG	1	1	3,13	-	0/6/23/26	0/1/1/1
13	NAG	1	2	13	-	0/6/23/26	0/1/1/1
13	BMA	1	3	13	-	1/2/19/22	0/1/1/1
13	MAN	1	4	13	-	2/2/19/22	1/1/1/1
13	MAN	1	5	13	-	2/2/19/22	0/1/1/1
10	NAG	2	1	3,10	-	2/6/23/26	0/1/1/1
10	NAG	2	2	10	-	0/6/23/26	0/1/1/1
10	BMA	2	3	10	-	0/2/19/22	0/1/1/1
10	NAG	3	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	3	2	10	-	0/6/23/26	0/1/1/1
10	BMA	3	3	10	-	2/2/19/22	0/1/1/1
7	NAG	4	1	3,7	-	0/6/23/26	0/1/1/1
7	NAG	4	2	7	-	1/6/23/26	0/1/1/1
14	NAG	5	1	3,14	-	5/6/23/26	0/1/1/1
14	NAG	5	2	14	-	2/6/23/26	0/1/1/1
14	BMA	5	3	14	-	0/2/19/22	0/1/1/1
14	MAN	5	4	14	-	2/2/19/22	0/1/1/1
14	MAN	5	5	14	-	2/2/19/22	0/1/1/1
14	MAN	5	6	14	-	0/2/19/22	0/1/1/1
14	MAN	5	7	14	-	2/2/19/22	0/1/1/1
14	MAN	5	8	14	-	2/2/19/22	0/1/1/1
11	NAG	6	1	11,3	-	2/6/23/26	0/1/1/1
11	MAN	6	10	11	-	2/2/19/22	0/1/1/1
11	MAN	6	11	11	-	2/2/19/22	0/1/1/1
11	NAG	6	2	11	-	0/6/23/26	0/1/1/1
11	BMA	6	3	11	-	2/2/19/22	0/1/1/1
11	MAN	6	4	11	-	0/2/19/22	0/1/1/1
11	MAN	6	5	11	-	2/2/19/22	0/1/1/1
11	MAN	6	6	11	-	2/2/19/22	0/1/1/1
11	MAN	6	7	11	-	1/2/19/22	1/1/1/1
11	MAN	6	8	11	-	0/2/19/22	0/1/1/1
11	MAN	6	9	11	-	0/2/19/22	0/1/1/1
7	NAG	7	1	7,6	-	$1/6/\overline{23/26}$	0/1/1/1
7	NAG	7	2	7	_	2/6/23/26	0/1/1/1
7	NAG	8	1	7,6	-	0/6/23/26	0/1/1/1
7	NAG	8	2	7	-	1/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	9	1	7,6	-	2/6/23/26	0/1/1/1
7	NAG	9	2	7	-	1/6/23/26	0/1/1/1
7	NAG	S	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	S	2	7	-	5/6/23/26	0/1/1/1
7	NAG	Т	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	Т	2	7	-	0/6/23/26	0/1/1/1
7	NAG	U	1	3,7	-	0/6/23/26	0/1/1/1
7	NAG	U	2	7	-	0/6/23/26	0/1/1/1
7	NAG	V	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	V	2	7	-	0/6/23/26	0/1/1/1
8	NAG	W	1	3,8	-	0/6/23/26	0/1/1/1
8	NAG	W	2	8	-	0/6/23/26	0/1/1/1
8	BMA	W	3	8	-	0/2/19/22	0/1/1/1
8	MAN	W	4	8	-	0/2/19/22	0/1/1/1
8	MAN	W	5	8	-	0/2/19/22	0/1/1/1
8	MAN	W	6	8	-	0/2/19/22	0/1/1/1
8	MAN	W	7	8	-	2/2/19/22	0/1/1/1
8	MAN	W	8	8	-	2/2/19/22	0/1/1/1
8	MAN	W	9	8	-	2/2/19/22	0/1/1/1
9	NAG	Х	1	3,9	-	0/6/23/26	0/1/1/1
9	NAG	Х	2	9	-	0/6/23/26	0/1/1/1
9	BMA	Х	3	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	4	9	-	2/2/19/22	0/1/1/1
9	MAN	Х	5	9	-	1/2/19/22	0/1/1/1
9	MAN	Х	6	9	-	2/2/19/22	0/1/1/1
9	MAN	Х	7	9	-	2/2/19/22	1/1/1/1
9	MAN	Х	8	9	-	2/2/19/22	0/1/1/1
10	NAG	Y	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	Y	2	10	-	1/6/23/26	0/1/1/1
10	BMA	Y	3	10	_	0/2/19/22	0/1/1/1
7	NAG	Z	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	Z	2	7	-	2/6/23/26	0/1/1/1
11	NAG	a	1	11,3	-	2/6/23/26	0/1/1/1
11	MAN	a	10	11	-	0/2/19/22	0/1/1/1
11	MAN	a	11	11	-	0/2/19/22	1/1/1/1
11	NAG	a	2	11	-	0/6/23/26	0/1/1/1
11	BMA	a	3	11	-	2/2/19/22	0/1/1/1
11	MAN	a	4	11	_	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	MAN	a	5	11	-	0/2/19/22	0/1/1/1
11	MAN	a	6	11	-	2/2/19/22	0/1/1/1
11	MAN	a	7	11	-	0/2/19/22	1/1/1/1
11	MAN	a	8	11	-	0/2/19/22	0/1/1/1
11	MAN	a	9	11	-	0/2/19/22	0/1/1/1
12	NAG	b	1	$12,\!3$	-	2/6/23/26	0/1/1/1
12	NAG	b	2	12	-	2/6/23/26	0/1/1/1
12	BMA	b	3	12	-	0/2/19/22	0/1/1/1
12	MAN	b	4	12	-	2/2/19/22	0/1/1/1
12	MAN	b	5	12	-	2/2/19/22	0/1/1/1
12	MAN	b	6	12	-	0/2/19/22	0/1/1/1
12	MAN	b	7	12	-	1/2/19/22	0/1/1/1
10	NAG	с	1	3,10	-	3/6/23/26	0/1/1/1
10	NAG	с	2	10	-	0/6/23/26	0/1/1/1
10	BMA	с	3	10	-	1/2/19/22	0/1/1/1
7	NAG	d	1	3,7	-	0/6/23/26	0/1/1/1
7	NAG	d	2	7	-	2/6/23/26	0/1/1/1
13	NAG	е	1	3,13	-	2/6/23/26	0/1/1/1
13	NAG	е	2	13	-	0/6/23/26	0/1/1/1
13	BMA	е	3	13	-	0/2/19/22	0/1/1/1
13	MAN	е	4	13	-	2/2/19/22	0/1/1/1
13	MAN	е	5	13	-	0/2/19/22	0/1/1/1
10	NAG	f	1	3,10	-	2/6/23/26	0/1/1/1
10	NAG	f	2	10	-	0/6/23/26	0/1/1/1
10	BMA	f	3	10	-	1/2/19/22	0/1/1/1
7	NAG	g	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	g	2	7	-	3/6/23/26	0/1/1/1
7	NAG	h	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	h	2	7	-	0/6/23/26	0/1/1/1
7	NAG	i	1	3,7	-	0/6/23/26	0/1/1/1
7	NAG	i	2	7	-	1/6/23/26	0/1/1/1
7	NAG	j	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	j	2	7	-	2/6/23/26	0/1/1/1
7	NAG	k	1	3,7	-	3/6/23/26	0/1/1/1
7	NAG	k	2	7	-	2/6/23/26	0/1/1/1
9	NAG	1	1	3,9	-	0/6/23/26	0/1/1/1
9	NAG	1	2	9	-	2/6/23/26	0/1/1/1
9	BMA	1	3	9	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	MAN	1	4	9	-	2/2/19/22	0/1/1/1
9	MAN	1	5	9	-	1/2/19/22	1/1/1/1
9	MAN	1	6	9	-	2/2/19/22	0/1/1/1
9	MAN	1	7	9	_	2/2/19/22	1/1/1/1
9	MAN	1	8	9	-	0/2/19/22	0/1/1/1
10	NAG	m	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	m	2	10	-	0/6/23/26	0/1/1/1
10	BMA	m	3	10	-	0/2/19/22	0/1/1/1
13	NAG	n	1	3,13	-	2/6/23/26	0/1/1/1
13	NAG	n	2	13	-	0/6/23/26	0/1/1/1
13	BMA	n	3	13	-	2/2/19/22	0/1/1/1
13	MAN	n	4	13	-	2/2/19/22	0/1/1/1
13	MAN	n	5	13	-	1/2/19/22	1/1/1/1
10	NAG	0	1	3,10	-	2/6/23/26	0/1/1/1
10	NAG	0	2	10	-	0/6/23/26	0/1/1/1
10	BMA	0	3	10	-	1/2/19/22	0/1/1/1
7	NAG	р	1	3,7	-	0/6/23/26	0/1/1/1
7	NAG	р	2	7	-	2/6/23/26	0/1/1/1
14	NAG	q	1	3,14	-	2/6/23/26	0/1/1/1
14	NAG	q	2	14	-	2/6/23/26	0/1/1/1
14	BMA	q	3	14	-	0/2/19/22	0/1/1/1
14	MAN	q	4	14	-	0/2/19/22	0/1/1/1
14	MAN	q	5	14	-	2/2/19/22	0/1/1/1
14	MAN	q	6	14	-	1/2/19/22	0/1/1/1
14	MAN	q	7	14	-	0/2/19/22	0/1/1/1
14	MAN	q	8	14	-	1/2/19/22	0/1/1/1
11	NAG	r	1	11,3	-	1/6/23/26	0/1/1/1
11	MAN	r	10	11	-	2/2/19/22	0/1/1/1
11	MAN	r	11	11	-	2/2/19/22	0/1/1/1
11	NAG	r	2	11	-	2/6/23/26	0/1/1/1
11	BMA	r	3	11	-	2/2/19/22	0/1/1/1
11	MAN	r	4	11	-	2/2/19/22	0/1/1/1
11	MAN	r	5	11	-	1/2/19/22	0/1/1/1
11	MAN	r	6	11	-	2/2/19/22	0/1/1/1
11	MAN	r	7	11	-	0/2/19/22	1/1/1/1
11	MAN	r	8	11	-	1/2/19/22	0/1/1/1
11	MAN	r	9	11	-	2/2/19/22	0/1/1/1
8	NAG	S	1	3.8	_	0/6/23/26	0/1/1/1

C0mu	nueu jro:	m previoi	is page	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	s	2	8	-	0/6/23/26	0/1/1/1
8	BMA	s	3	8	-	0/2/19/22	0/1/1/1
8	MAN	s	4	8	-	0/2/19/22	0/1/1/1
8	MAN	s	5	8	-	1/2/19/22	0/1/1/1
8	MAN	\mathbf{S}	6	8	-	2/2/19/22	0/1/1/1
8	MAN	s	7	8	-	0/2/19/22	0/1/1/1
8	MAN	s	8	8	-	0/2/19/22	0/1/1/1
8	MAN	s	9	8	-	2/2/19/22	0/1/1/1
10	NAG	t	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	t	2	10	-	2/6/23/26	0/1/1/1
10	BMA	t	3	10	-	0/2/19/22	0/1/1/1
10	NAG	u	1	3,10	-	0/6/23/26	0/1/1/1
10	NAG	u	2	10	-	3/6/23/26	0/1/1/1
10	BMA	u	3	10	-	0/2/19/22	0/1/1/1
7	NAG	V	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	V	2	7	-	1/6/23/26	0/1/1/1
7	NAG	W	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	W	2	7	-	2/6/23/26	0/1/1/1
7	NAG	x	1	3,7	-	2/6/23/26	0/1/1/1
7	NAG	x	2	7	-	3/6/23/26	0/1/1/1
8	NAG	у	1	3,8	-	0/6/23/26	0/1/1/1
8	NAG	у	2	8	-	0/6/23/26	0/1/1/1
8	BMA	у	3	8	-	0/2/19/22	0/1/1/1
8	MAN	у	4	8	-	0/2/19/22	0/1/1/1
8	MAN	у	5	8	-	1/2/19/22	0/1/1/1
8	MAN	у	6	8	-	0/2/19/22	0/1/1/1
8	MAN	у	7	8	-	0/2/19/22	0/1/1/1
8	MAN	У	8	8	-	0/2/19/22	0/1/1/1
8	MAN	У	9	8	-	1/2/19/22	1/1/1/1
9	NAG	Z	1	3,9	-	0/6/23/26	0/1/1/1
9	NAG	Z	2	9	-	2/6/23/26	0/1/1/1
9	BMA	Z	3	9	-	0/2/19/22	0/1/1/1
9	MAN	Z	4	9	-	2/2/19/22	0/1/1/1
9	MAN	Z	5	9	-	1/2/19/22	0/1/1/1
9	MAN	Z	6	9	-	0/2/19/22	0/1/1/1
9	MAN	Z	7	9	-	$0/2/\overline{19/22}$	0/1/1/1
9	MAN	Z	8	9	-	$1/2/\overline{19/22}$	0/1/1/1

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
9	Z	5	MAN	C1-C2	2.34	1.57	1.52
14	5	7	MAN	O5-C1	-2.19	1.40	1.43
11	6	11	MAN	O5-C1	-2.17	1.40	1.43
8	s	8	MAN	O5-C1	-2.17	1.40	1.43
11	r	11	MAN	O5-C1	-2.15	1.40	1.43

The worst 5 of 151 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	а	11	MAN	C1-O5-C5	5.19	119.22	112.19
10	с	1	NAG	C2-N2-C7	4.37	129.13	122.90
14	5	1	NAG	C2-N2-C7	4.36	129.11	122.90
11	a	10	MAN	O2-C2-C3	-4.29	101.55	110.14
13	n	4	MAN	C1-O5-C5	4.29	118.00	112.19

There are no chirality outliers.

5 of 199 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
7	k	2	NAG	C4-C5-C6-O6
7	g	1	NAG	O5-C5-C6-O6
12	b	1	NAG	C4-C5-C6-O6
7	S	1	NAG	O5-C5-C6-O6
9	1	7	MAN	O5-C5-C6-O6

5 of 10 ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	l	7	MAN	C1-C2-C3-C4-C5-O5
8	У	9	MAN	C1-C2-C3-C4-C5-O5
11	а	11	MAN	C1-C2-C3-C4-C5-O5
9	Х	7	MAN	C1-C2-C3-C4-C5-O5
9	l	5	MAN	C1-C2-C3-C4-C5-O5

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

20 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Turne	Chain	Chain Res	s Link	Bo	ond leng	ths	Bond angles		
	туре	Unain			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
15	NAG	С	602	3	14,14,15	0.21	0	17,19,21	0.49	0
15	NAG	В	605	3	14,14,15	0.27	0	17,19,21	0.43	0
15	NAG	В	603	3	14,14,15	0.26	0	17,19,21	0.38	0
15	NAG	С	603	3	14,14,15	0.28	0	17,19,21	0.40	0

Mal	Tuno	Chain Bos		Tink	Bo	Bond lengths			Bond angles		
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
15	NAG	С	604	3	14,14,15	0.21	0	17,19,21	0.45	0	
15	NAG	А	601	3	14,14,15	0.25	0	$17,\!19,\!21$	0.39	0	
15	NAG	F	701	4	14,14,15	0.20	0	$17,\!19,\!21$	0.43	0	
15	NAG	В	604	3	14,14,15	0.19	0	17,19,21	0.45	0	
15	NAG	В	602	3	14,14,15	0.19	0	$17,\!19,\!21$	0.39	0	
15	NAG	D	701	4	14,14,15	0.22	0	$17,\!19,\!21$	0.46	0	
15	NAG	Е	702	4	14,14,15	0.20	0	17,19,21	0.42	0	
15	NAG	D	702	4	14,14,15	0.22	0	$17,\!19,\!21$	0.41	0	
15	NAG	А	605	3	14,14,15	0.22	0	17,19,21	0.47	0	
15	NAG	А	602	3	14,14,15	0.17	0	17,19,21	0.42	0	
15	NAG	В	601	3	14,14,15	0.22	0	17,19,21	0.47	0	
15	NAG	С	601	3	14,14,15	0.27	0	17,19,21	0.46	0	
15	NAG	А	603	3	14,14,15	0.19	0	17,19,21	0.44	0	
15	NAG	A	604	3	14,14,15	0.29	0	17,19,21	0.39	0	
15	NAG	F	702	4	14,14,15	0.21	0	17,19,21	0.41	0	
15	NAG	E	701	4	14,14,15	0.19	0	17,19,21	0.45	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
15	NAG	С	602	3	-	2/6/23/26	0/1/1/1
15	NAG	В	605	3	-	4/6/23/26	0/1/1/1
15	NAG	В	603	3	-	0/6/23/26	0/1/1/1
15	NAG	С	603	3	-	0/6/23/26	0/1/1/1
15	NAG	С	604	3	-	1/6/23/26	0/1/1/1
15	NAG	А	601	3	-	0/6/23/26	0/1/1/1
15	NAG	F	701	4	-	0/6/23/26	0/1/1/1
15	NAG	В	604	3	-	2/6/23/26	0/1/1/1
15	NAG	В	602	3	-	2/6/23/26	0/1/1/1
15	NAG	D	701	4	-	2/6/23/26	0/1/1/1
15	NAG	Е	702	4	-	0/6/23/26	0/1/1/1
15	NAG	D	702	4	-	2/6/23/26	0/1/1/1
15	NAG	А	605	3	-	2/6/23/26	0/1/1/1
15	NAG	А	602	3	-	2/6/23/26	0/1/1/1
15	NAG	В	601	3	-	2/6/23/26	0/1/1/1
15	NAG	С	601	3	-	2/6/23/26	0/1/1/1
15	NAG	А	603	3	-	2/6/23/26	0/1/1/1

Continued on next page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
15	NAG	А	604	3	-	1/6/23/26	0/1/1/1
15	NAG	F	702	4	-	2/6/23/26	0/1/1/1
15	NAG	Е	701	4	-	0/6/23/26	0/1/1/1

Continued from previous page...

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

5 of 28 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
15	А	603	NAG	C4-C5-C6-O6
15	А	602	NAG	C4-C5-C6-O6
15	В	602	NAG	C4-C5-C6-O6
15	В	604	NAG	C4-C5-C6-O6
15	А	605	NAG	O5-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
3	В	2
6	Н	2
6	J	2
3	А	2
3	С	2
6	L	2

The worst 5 of 12 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	В	141:ASP	С	150:MET	Ν	3.05

Continued on next page...

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)					
1	Н	27:GLY	С	32:TYR	N	2.98					
1	J	91:TYR	С	96:GLU	N	2.97					
1	А	141:ASP	С	150:MET	N	2.96					
1	В	309:ILE	С	312:GLY	N	2.95					

Continued from previous page...

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13316. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 210

Y Index: 210

Z Index: 210 $\,$

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 223

Y Index: 205

Z Index: 201

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.29. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{13316}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 208 nm^3 ; this corresponds to an approximate mass of 188 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13316 and PDB model 7PC2. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.29 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 37% of all backbone atoms, 29% of all non-hydrogen atoms, are inside the map.

