

wwPDB X-ray Structure Validation Summary Report (i)

May 11, 2022 – 04:18 pm BST

PDB ID	:	7P4G
Title	:	Rabbit Muscle L-lactate dehydrogenase in complex with citrate
Authors	:	Iacovino, L.G.; Binda, C.; Hochkoeppler, A.
Deposited on	:	2021-07-11
Resolution	:	2.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.28.1
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0267
CCP4	:	7.1.010 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.28.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
wiethe	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	3163 (2.60-2.60)
Clashscore	141614	3518 (2.60-2.60)
Ramachandran outliers	138981	3455 (2.60-2.60)
Sidechain outliers	138945	3455 (2.60-2.60)
RSRZ outliers	127900	3104 (2.60-2.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	332	87%	9%	·
1	В	332	2% 86 %	11%	•
1	С	332	87%	12%	•
1	D	332	84%	14%	•
1	Е	332	84%	11% •	•

Chain Length Quality of chain Mol 2% F 1 332 • • 84% 13% .% \mathbf{G} 1 33291% 8% .% 1 Η 332• 83% 16% .% Ι 3321 86% 11% . .% J 1 33285% 11% • • .% Κ 332 1 ••• 85% 14% L 3321 86% 13% .% 1 М 33287% 12% 2% Ν 3321 85% 14% 2% Ο 3321 86% 14% 3% Р 1 332• • 84% 13%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 41110 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	200	Total	С	Ν	0	S	0	0	0
1	A	320	2466	1579	421	452	14	0	0	0
1	D	วาา	Total	С	Ν	0	S	0	0	0
1	D	322	2482	1589	424	455	14	0	0	0
1	C	207	Total	С	Ν	0	S	0	0	0
1		521	2526	1613	436	463	14	0	0	0
1	л	221	Total	С	Ν	0	S	0	0	0
1		331	2558	1632	441	471	14	0	0	0
1	F	200	Total	С	Ν	0	S	0	0	0
1	Ľ	320	2466	1579	421	452	14	0	0	0
1	Б	200	Total	С	Ν	0	S	0	0	0
	Г	322	2482	1589	424	455	14	0	0	0
1	C	991	Total	С	Ν	0	S	0	0	0
1	G	391	2558	1632	441	471	14	0	0	U
1	ц	220	Total	С	Ν	0	S	0	0	0
1	11	330	2553	1629	440	470	14	0	0	0
1	т	200	Total	С	Ν	0	S	0	0	0
1	1	320	2466	1579	421	452	14		0	0
1	т	310	Total	С	Ν	0	\mathbf{S}	0	0	0
1	J	519	2454	1573	419	448	14	0	0	U
1	K	330	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	17	000	2553	1629	440	470	14	0	0	0
1	T	331	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1		551	2558	1632	441	471	14	0	0	0
1	М	331	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	111	- 551	2558	1632	441	471	14	0	0	0
1	N	331	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	11	551	2558	1632	441	471	14	0	0	0
1	0	221	Total	С	Ν	0	S	0	0	0
		001	2558	1632	441	471	14	0		
1	D	395	Total	С	Ν	0	S	0	0	0
	1	525	2507	1604	430	459	14	U	U	0

• Molecule 1 is a protein called L-lactate dehydrogenase A chain.

	D 1		A / 1		
Chain	Residue	Modelled	Actual	Comment	Reference
А	248	SER	THR	engineered mutation	UNP P13491
В	248	SER	THR	engineered mutation	UNP P13491
С	248	SER	THR	engineered mutation	UNP P13491
D	248	SER	THR	engineered mutation	UNP P13491
Е	248	SER	THR	engineered mutation	UNP P13491
F	248	SER	THR	engineered mutation	UNP P13491
G	248	SER	THR	engineered mutation	UNP P13491
Н	248	SER	THR	engineered mutation	UNP P13491
Ι	248	SER	THR	engineered mutation	UNP P13491
J	248	SER	THR	engineered mutation	UNP P13491
K	248	SER	THR	engineered mutation	UNP P13491
L	248	SER	THR	engineered mutation	UNP P13491
М	248	SER	THR	engineered mutation	UNP P13491
N	248	SER	THR	engineered mutation	UNP P13491
0	248	SER	THR	engineered mutation	UNP P13491
Р	248	SER	THR	engineered mutation	UNP P13491

There are 16 discrepancies between the modelled and reference sequences:

• Molecule 2 is CITRIC ACID (three-letter code: CIT) (formula: $C_6H_8O_7$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C O 13 6 7	0	0
2	В	1	Total C O 13 6 7	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	1	Total C O 13 6 7	0	0
2	D	1	Total C O 13 6 7	0	0
2	Е	1	Total C O 13 6 7	0	0
2	F	1	Total C O 13 6 7	0	0
2	G	1	Total C O 13 6 7	0	0
2	Н	1	Total C O 13 6 7	0	0
2	Ι	1	Total C O 13 6 7	0	0
2	J	1	Total C O 13 6 7	0	0
2	K	1	Total C O 13 6 7	0	0
2	L	1	Total C O 13 6 7	0	0
2	М	1	Total C O 13 6 7	0	0
2	Ν	1	Total C O 13 6 7	0	0
2	О	1	Total C O 13 6 7	0	0
2	Р	1	Total C O 13 6 7	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	41	Total O 41 41	0	0
3	В	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0
3	С	49	Total O 49 49	0	0
3	D	38	Total O 38 38	0	0
3	Е	38	Total O 38 38	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	F	28	Total O 28 28	0	0
3	G	28	Total O 28 28	0	0
3	Н	32	$\begin{array}{cc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0
3	Ι	29	Total O 29 29	0	0
3	J	33	Total O 33 33	0	0
3	K	33	Total O 33 33	0	0
3	L	37	Total O 37 37	0	0
3	М	42	$\begin{array}{ccc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$	0	0
3	Ν	40	Total O 40 40	0	0
3	О	44	Total O 44 44	0	0
3	Р	40	$\begin{array}{cc} \text{Total} & \text{O} \\ 40 & 40 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 Chain A:
 9%

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

• Molecule 1: L-lactate dehydrogenase A chain

• Molecule 1: L-lactate dehydrogenase A chain

H214 L217 V226 V226 V234 V234 V234 V234 S248 S248 S248 S254 M252 M252	K264 P271 1294 Q296 Q296 B328 F331	
• Molecule 1: L-lactate de	ehydrogenase A chain	
Chain J:	85%	11% ••
MET A1 L112 K13 K13 K13 K13 K13 K13 K13 K13 K13 H66 H66 H66	T85 T85 888 888 888 0 LN 0 CLN 0 CLN 0 CLN 0 CLN 1 LEU 1 LEU 1 LEU 1 L10 1 L11	K131 N137 1141 Y144 L164 D165 L172 R176 H192 H192 A206
• Molecule 1: L-lactate d	ehvdrogenase A chain	
Chain K:	85%	14% ••
MET ALA ALA ALA ALA E13 E14 E15 E15 C21 C21 C31 C31 C31 C31 C31 C31 C31 C31 C31 C3	V50 V50 E54 R72 R72 R72 R72 R80 K80 K80 K88 K89 K89 K89 K89 K89	v124 K131 1141 1141 0159 0159 0159 0187 0194 0194 216 216 216 216
D222 4237 1241 1241 1247 8264 N365 N365 N266 8273 8273	E284 C292 C296 C296 C296 C296 C296 C296 C296 C292	
• Molecule 1: L-lactate de	ehydrogenase A chain	
Chain L:	86%	13%
MET A1 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7	R53 E54 E55 E55 E55 K89 K89 K89 K89 K89 K89 K89 K98 R105 K105 K105 K105	R111 Y126 X131 L133 L133 L133 L133 R164 W137 N137 N137 N137 V164 W187 V164 V187 V208
K211 D222 Q225 Q226 Q226 C223 C223 C223 C223 C223 C223 C223 C	8273 1276 1279 1279 1288 1388 1388	
• Molecule 1: L-lactate de	ehydrogenase A chain	
Chain M:	87%	12%
Chain M:	87% • • • • • • • • • • • • • • • • • • •	1179 H180 H180 H2149 F215 F214 F215 F214 F215 F224 F215 F249 F249 F249 F249 F249 F249 F249 F249
Cuain M: Rait 6 6 8 8 9 9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87% 8127 8136 8136 8127 817 817 817 817 817 817 817 81	V179 H180 K211 1182 K215 K215 K219 K249 K249 K249 K249 K249 K249 K249 K24
Chain M: Image: Second seco	87%	1179 1180 1189 1189 1247 1243 1243 1243 1243 1243 1243 1243 1243
• Molecule 1: L-lactate de • Molecule 1: L-lactate de	87%	12% 1180 1180 1180 1180 1180 1180 1180 118

12.13 12.13 12.22 12.22 12.23 12.23 12.25 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 12.26 13.23 13.20 13.20 13.21 13.21 13.22 13.23 14.23 14.23 15.23

• Molecule 1: L-lactate dehydrogenase A chain

• Molecule 1: L-lactate dehydrogenase A chain

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	83.70Å 141.57Å 148.14Å	Depositor
a, b, c, α , β , γ	114.55° 94.69° 102.20°	Depositor
Bosolution(A)	49.02 - 2.60	Depositor
	48.97 - 2.60	EDS
% Data completeness	93.4 (49.02-2.60)	Depositor
(in resolution range)	$93.4 \ (48.97 - 2.60)$	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.59 (at 2.61 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0253	Depositor
B B.	0.199 , 0.260	Depositor
n, n_{free}	0.205 , 0.261	DCC
R_{free} test set	8434 reflections $(4.94%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	35.1	Xtriage
Anisotropy	0.055	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	(Not available), (Not available)	EDS
L-test for $twinning^2$	$ L > = 0.50, < L^2 > = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	41110	wwPDB-VP
Average B, all atoms $(Å^2)$	36.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.98% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CIT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.69	0/2511	0.79	0/3396
1	В	0.69	0/2527	0.79	0/3418
1	С	0.69	0/2571	0.80	0/3476
1	D	0.69	0/2604	0.81	0/3521
1	Е	0.69	0/2511	0.79	0/3396
1	F	0.71	0/2527	0.81	0/3418
1	G	0.68	0/2604	0.79	0/3521
1	Н	0.69	0/2599	0.80	0/3514
1	Ι	0.69	0/2511	0.79	0/3396
1	J	0.69	0/2497	0.80	0/3376
1	Κ	0.69	0/2599	0.80	0/3514
1	L	0.70	0/2604	0.81	0/3521
1	М	0.71	0/2604	0.81	1/3521~(0.0%)
1	Ν	0.70	0/2604	0.81	0/3521
1	0	0.69	0/2604	0.80	0/3521
1	Р	0.68	0/2552	0.80	0/3451
All	All	0.69	0/41029	0.80	1/55481~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	М	156	ARG	NE-CZ-NH2	-5.24	117.68	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2466	0	2546	17	0
1	В	2482	0	2563	23	0
1	С	2526	0	2603	25	0
1	D	2558	0	2637	33	0
1	Е	2466	0	2546	27	0
1	F	2482	0	2563	26	0
1	G	2558	0	2637	24	0
1	Н	2553	0	2629	29	0
1	Ι	2466	0	2546	25	0
1	J	2454	0	2543	23	0
1	Κ	2553	0	2629	29	0
1	L	2558	0	2637	24	0
1	М	2558	0	2637	19	0
1	Ν	2558	0	2637	28	0
1	0	2558	0	2637	32	0
1	Р	2507	0	2592	26	0
2	А	13	0	5	2	0
2	В	13	0	5	2	0
2	С	13	0	5	3	0
2	D	13	0	5	3	0
2	Е	13	0	5	3	0
2	F	13	0	5	3	0
2	G	13	0	5	3	0
2	Н	13	0	5	2	0
2	Ι	13	0	5	2	0
2	J	13	0	5	3	0
2	Κ	13	0	5	0	0
2	L	13	0	5	4	0
2	М	13	0	5	3	0
2	Ν	13	0	5	3	0
2	0	13	0	5	1	0
2	Р	13	0	5	2	0
3	А	41	0	0	0	0
3	В	47	0	0	1	0
3	С	49	0	0	1	0
3	D	38	0	0	2	0
3	Е	38	0	0	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	F	28	0	0	0	0
3	G	28	0	0	0	0
3	Н	32	0	0	1	0
3	Ι	29	0	0	1	0
3	J	33	0	0	0	0
3	Κ	33	0	0	2	0
3	L	37	0	0	1	0
3	М	42	0	0	0	0
3	Ν	40	0	0	0	0
3	0	44	0	0	0	0
3	Р	40	0	0	0	0
All	All	41110	0	41662	353	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

The worst 5 of 353 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:H:247:THR:OG1	2:H:401:CIT:H22	1.71	0.91
1:B:237:ALA:HB2	2:B:401:CIT:O2	1.73	0.88
1:L:137:ASN:HD21	2:L:401:CIT:C6	1.97	0.77
1:D:247:THR:OG1	2:D:401:CIT:H22	1.85	0.76
1:O:120:ILE:HD13	1:O:146:ALA:HA	1.70	0.74

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	316/332~(95%)	304 (96%)	11 (4%)	1 (0%)	41	64

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	В	318/332~(96%)	307~(96%)	11 (4%)	0	100	100
1	С	323/332~(97%)	308~(95%)	15~(5%)	0	100	100
1	D	329/332~(99%)	311 (94%)	17~(5%)	1 (0%)	41	64
1	Ε	316/332~(95%)	303~(96%)	12~(4%)	1 (0%)	41	64
1	F	318/332~(96%)	302~(95%)	16~(5%)	0	100	100
1	G	329/332~(99%)	320~(97%)	9~(3%)	0	100	100
1	Н	328/332~(99%)	310~(94%)	18 (6%)	0	100	100
1	Ι	316/332~(95%)	303~(96%)	13~(4%)	0	100	100
1	J	313/332~(94%)	305~(97%)	8(3%)	0	100	100
1	Κ	328/332~(99%)	311~(95%)	16~(5%)	1 (0%)	41	64
1	L	329/332~(99%)	313~(95%)	15~(5%)	1 (0%)	41	64
1	М	329/332~(99%)	315~(96%)	13~(4%)	1 (0%)	41	64
1	Ν	329/332~(99%)	318~(97%)	11 (3%)	0	100	100
1	Ο	329/332~(99%)	317~(96%)	12~(4%)	0	100	100
1	Р	321/332~(97%)	305~(95%)	15~(5%)	1 (0%)	41	64
All	All	$517\overline{1/5312} \ (97\%)$	4952 (96%)	212 (4%)	7~(0%)	51	75

Continued from previous page...

5 of 7 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	14	GLU
1	Е	285	ASP
1	D	222	ASP
1	М	15	GLU
1	Κ	222	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	274/285~(96%)	266~(97%)	8(3%)	42 68

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	В	276/285~(97%)	271~(98%)	5(2%)	59	80
1	\mathbf{C}	281/285~(99%)	276~(98%)	5(2%)	59	80
1	D	284/285~(100%)	275~(97%)	9~(3%)	39	65
1	Ε	274/285~(96%)	263~(96%)	11 (4%)	31	57
1	F	276/285~(97%)	264~(96%)	12~(4%)	29	54
1	G	284/285~(100%)	279~(98%)	5(2%)	59	80
1	Н	284/285~(100%)	273~(96%)	11 (4%)	32	58
1	Ι	274/285~(96%)	267~(97%)	7 (3%)	46	72
1	J	273/285~(96%)	264~(97%)	9~(3%)	38	64
1	К	284/285~(100%)	273~(96%)	11 (4%)	32	58
1	L	284/285~(100%)	277~(98%)	7~(2%)	47	73
1	М	284/285~(100%)	271~(95%)	13~(5%)	27	51
1	Ν	284/285~(100%)	275~(97%)	9~(3%)	39	65
1	Ο	284/285~(100%)	278~(98%)	6~(2%)	53	77
1	Р	279/285~(98%)	266~(95%)	13~(5%)	26	50
All	All	4479/4560 (98%)	4338 (97%)	141 (3%)	40	66

Continued from previous page...

5 of 141 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Ν	148	LYS
1	Ν	314	HIS
1	Р	50	VAL
1	F	310	GLU
1	F	276	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 15 such sidechains are listed below:

Mol	Chain	Res	Type
1	J	265	ASN
1	Р	20	ASN
1	Κ	6	GLN
1	Р	297	ASN
1	L	137	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

16 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Chain	Chain	Ros Link		B	Bond lengths			Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2			
2	CIT	N	401	-	3,12,12	0.64	0	3,17,17	0.77	0			
2	CIT	F	401	-	3,12,12	0.64	0	3,17,17	0.87	0			
2	CIT	С	401	-	3,12,12	0.65	0	3,17,17	1.05	0			
2	CIT	K	401	-	3,12,12	0.63	0	3,17,17	0.63	0			
2	CIT	Е	401	-	3,12,12	0.56	0	3,17,17	0.32	0			
2	CIT	Ι	401	-	3,12,12	0.75	0	3,17,17	0.31	0			
2	CIT	L	401	-	3,12,12	0.77	0	3,17,17	0.47	0			
2	CIT	G	401	-	3,12,12	0.70	0	3,17,17	1.05	0			
2	CIT	В	401	-	3,12,12	0.57	0	3,17,17	0.63	0			
2	CIT	Р	401	-	3,12,12	0.60	0	3,17,17	0.46	0			
2	CIT	Н	401	-	3,12,12	0.76	0	3,17,17	1.15	0			
2	CIT	D	401	-	3,12,12	0.85	0	3,17,17	0.65	0			
2	CIT	J	401	-	3,12,12	0.47	0	3,17,17	0.78	0			
2	CIT	0	401	-	3,12,12	0.55	0	3,17,17	0.65	0			
2	CIT	A	401	-	3,12,12	0.63	0	3,17,17	0.56	0			
2	CIT	М	401	-	3,12,12	0.78	0	3,17,17	0.59	0			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	CIT	Ν	401	-	-	1/6/16/16	-
2	CIT	F	401	-	-	2/6/16/16	-
2	CIT	С	401	-	-	1/6/16/16	-
2	CIT	К	401	-	-	2/6/16/16	-
2	CIT	Е	401	-	-	3/6/16/16	-
2	CIT	Ι	401	-	-	3/6/16/16	-
2	CIT	L	401	-	-	3/6/16/16	-
2	CIT	G	401	-	-	3/6/16/16	-
2	CIT	В	401	-	-	1/6/16/16	-
2	CIT	Р	401	-	-	1/6/16/16	-
2	CIT	Н	401	-	-	0/6/16/16	-
2	CIT	D	401	-	-	0/6/16/16	-
2	CIT	J	401	-	-	3/6/16/16	-
2	CIT	0	401	-	-	3/6/16/16	-
2	CIT	А	401	-	-	4/6/16/16	-
2	CIT	М	401	-	-	3/6/16/16	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

5 of 33 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	401	CIT	C1-C2-C3-C6
2	Ε	401	CIT	C1-C2-C3-C6
2	F	401	CIT	C1-C2-C3-C6
2	G	401	CIT	C1-C2-C3-C6
2	Ι	401	CIT	C1-C2-C3-C6

There are no ring outliers.

15 monomers are involved in 39 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	N	401	CIT	3	0
2	F	401	CIT	3	0

	J	· · · · ·	1 J		
Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
2	С	401	CIT	3	0
2	Е	401	CIT	3	0
2	Ι	401	CIT	2	0
2	L	401	CIT	4	0
2	G	401	CIT	3	0
2	В	401	CIT	2	0
2	Р	401	CIT	2	0
2	Н	401	CIT	2	0
2	D	401	CIT	3	0
2	J	401	CIT	3	0
2	0	401	CIT	1	0
2	А	401	CIT	2	0
2	М	401	CIT	3	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2	$OWAB(A^2)$	Q<0.9
1	А	320/332~(96%)	-0.28	3 (0%) 84 82	19, 32, 53, 90	0
1	В	322/332~(96%)	-0.23	8 (2%) 57 51	17, 30, 55, 84	0
1	С	327/332~(98%)	-0.31	1 (0%) 94 93	16, 31, 50, 70	0
1	D	331/332~(99%)	-0.16	0 100 100	19, 32, 58, 100	0
1	Ε	320/332~(96%)	0.12	10 (3%) 49 42	19, 38, 69, 90	0
1	F	322/332~(96%)	0.05	6 (1%) 66 62	21, 35, 65, 88	0
1	G	331/332~(99%)	-0.10	2 (0%) 89 88	21, 34, 60, 93	0
1	Н	330/332~(99%)	-0.04	4 (1%) 79 76	21, 39, 67, 89	0
1	Ι	320/332~(96%)	-0.18	3 (0%) 84 82	19, 34, 59, 87	0
1	J	319/332~(96%)	-0.15	3 (0%) 84 82	16, 31, 57, 82	0
1	Κ	330/332~(99%)	-0.19	3 (0%) 84 82	19, 35, 58, 84	0
1	L	331/332~(99%)	-0.12	1 (0%) 94 93	20, 36, 59, 109	0
1	М	331/332~(99%)	-0.13	2 (0%) 89 88	17, 31, 56, 95	0
1	Ν	331/332~(99%)	-0.19	5 (1%) 73 70	19, 31, 54, 96	0
1	Ο	331/332~(99%)	-0.10	7 (2%) 63 58	17, 32, 58, 94	0
1	Р	325/332~(97%)	-0.02	10 (3%) 49 42	20, 33, 64, 91	0
All	All	5221/5312 (98%)	-0.13	68 (1%) 77 73	16, 33, 59, 109	0

The worst 5 of 68 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	221	ALA	5.1
1	Е	328	GLU	4.2
1	0	15	GLU	4.1
1	Е	221	ALA	3.9
1	Е	96	GLY	3.8

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q < 0.9
2	CIT	F	401	13/13	0.67	0.23	$65,\!75,\!92,\!101$	0
2	CIT	G	401	13/13	0.67	0.31	80,86,98,99	0
2	CIT	L	401	13/13	0.69	0.28	$77,\!80,\!90,\!93$	0
2	CIT	В	401	13/13	0.72	0.35	71,77,90,99	0
2	CIT	K	401	13/13	0.73	0.28	79,87,101,111	0
2	CIT	0	401	13/13	0.73	0.34	78,84,93,100	0
2	CIT	А	401	13/13	0.77	0.27	69,74,80,80	0
2	CIT	J	401	13/13	0.78	0.31	65,73,76,81	0
2	CIT	М	401	13/13	0.78	0.26	49,66,74,82	0
2	CIT	Ν	401	13/13	0.78	0.25	69,78,102,102	0
2	CIT	D	401	13/13	0.78	0.25	59,77,85,88	0
2	CIT	Р	401	13/13	0.78	0.37	69,74,79,86	0
2	CIT	Е	401	13/13	0.79	0.37	63,67,83,84	0
2	CIT	Ι	401	13/13	0.81	0.22	65,81,88,92	0
2	CIT	Н	401	13/13	0.81	0.37	73,82,93,93	0
2	CIT	С	401	13/13	0.86	0.18	56,70,74,74	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

