

wwPDB EM Validation Summary Report (i)

Jan 28, 2023 - 08:05 am GMT

PDB ID	:	70YB
EMDB ID	:	EMD-13112
Title	:	Cryo-EM structure of the 6 hpf zebrafish embryo 80S ribosome
Authors	:	Leesch, F.; Lorenzo-Orts, L.; Grishkovskaya, I.; Kandolf, S.; Belacic, K.; Mein-
		hart, A.; Haselbach, D.; Pauli, A.
Deposited on	:	2021-06-24
Resolution	:	2.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	22	1939	62% 15%	23%
2	51	4269	63% 14%	24%
3	71	120	95%	5%
4	81	158	83%	12% 5%
5	A1	257	94%	• 5%
6	A2	308	• 67% •	32%
7	B1	403	98%	•
8	B2	267	8%	• 20%

Mol	Chain	Length	Quality of chain	
9	C1	375	93%	7%
10	C2	280	74% •	24%
11	D1	296	96%	• •
12	D2	245	6% 90%	10%
13	E1	265	77% .	22%
14	E2	263	98%	••
15	F1	246	89%	• 10%
16	F2	204	• 90%	10%
17	G1	266	77%	22%
18	G2	249	92%	8%
19	H1	192	99%	.
20	H2	194	95%	•••
21	I1	215	98%	•
22	I2	208	9%96%	•••
23	J1	178	93%	• 6%
24	J2	194	● 93%	7%
25	K2	166	55% • 44%	
26	L1	211	92%	• 7%
27	L2	159	5% 82% •	16%
28	M1	139	96%	•
29	N1	204	98%	
30	N2	151	• 99%	
31	O1	205	100%	
32	O2	151	82%	17%
33	P1	184	82%	17%

Mol	Chain	Length	Quality of chain
34	P2	145	• 79% • 20%
35	Q1	182	98%
36	Q2	146	90% • 8%
37	R1	196	• 84% • 15%
38	R2	134	98%
39	S1	176	99%
40	S2	152	89% · 11%
41	T1	160	98%
42	Τ2	146	93% · 6%
43	U1	141	• 67% • 31%
44	U2	119	82% 18%
45	V1	140	92% 8%
46	V2	81	99%
47	W1	157	38% 62%
48	W2	130	98%
49	X1	155	75% 25%
50	X2	143	97%
51	Y1	145	83% • 16%
52	Y2	132	5% 93% • 6%
53	$\mathbf{Z1}$	136	99%
54	Z2	124	53% 47%
55	a1	148	98% ···
56	a2	115	► 84% • 15%
57	b1	64	75% • 23%
58	b2	84	96% •

Mol	Chain	Length	Quality of chain	
59	c1	117	78% •	21%
60	c2	69	6% 87%	• 12%
61	d1	123	86%	• 13%
62	d2	56	98%	•
63	e1	135	93%	7%
64	e2	133	• 37% • 62%	
65	f1	110	97%	•
66	g1	117	88%	• 11%
67	g2	317	<u> </u>	••
68	h1	123	• 96%	••
69	i1	105	92%	• 7%
70	j1	97	89%	11%
71	k1	70	• 97%	<mark></mark>
72	11	50	98%	•
73	m1	128	38% • 61%	
74	n1	25	96%	•
75	o1	106	95%	•••
76	p1	92	99%	
77	r1	138	85%	• 14%

2 Entry composition (i)

There are 79 unique types of molecules in this entry. The entry contains 194863 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		I	AltConf	Trace			
1	22	1502	Total 32102	C 14330	N 5809	O 10462	Р 1501	0	0

• Molecule 2 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
2	51	3263	Total 69917	C 31143	N 12776	O 22736	Р 3262	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	AltConf	Trace			
3	71	120	Total 2563	C 1145	N 465	O 834	Р 119	0	0

• Molecule 4 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
4	81	150	Total 3199	C 1427	N 574	O 1048	Р 150	0	0

• Molecule 5 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	A1	245	Total 1879	C 1181	N 381	O 310	${f S}{7}$	0	0

• Molecule 6 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	A2	210	Total 1665	C 1061	N 290	O 305	S 9	0	0

• Molecule 7 is a protein called Ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	B1	394	Total 3181	C 2021	N 600	0 544	S 16	0	0

• Molecule 8 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	AltConf	Trace			
8	B2	213	Total 1730	C 1097	N 310	O 309	S 14	0	0

• Molecule 9 is a protein called Ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	C1	348	Total 2774	C 1741	N 551	O 464	S 18	0	0

• Molecule 10 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	C2	213	Total 1651	C 1069	N 283	O 290	S 9	0	0

• Molecule 11 is a protein called Ribosomal protein L5b.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	D1	288	Total 2337	C 1482	N 429	0 415	S 11	0	0

• Molecule 12 is a protein called DNA-(apurinic or apyrimidinic site) lyase.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	D2	221	Total 1713	C 1091	N 309	O 306	${ m S} 7$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
13	E1	206	Total 1671	C 1065	N 327	0 272	${f S}{7}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	E2	261	Total 2070	C 1320	N 385	O 357	S 8	0	0

• Molecule 15 is a protein called Ribosomal protein L7.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	F1	222	Total 1811	C 1160	N 346	O 298	${ m S} 7$	0	0

• Molecule 16 is a protein called Ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	F2	183	Total 1442	C 904	N 268	0 264	S 6	0	0

• Molecule 17 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	G1	207	Total 1683	C 1076	N 322	0 281	${S \atop 4}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	G2	230	Total 1864	C 1163	N 375	0 319	S 7	0	0

• Molecule 19 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	H1	190	Total 1505	C 949	N 279	0 271	S 6	0	0

• Molecule 20 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
20	H2	186	Total 1492	C 952	N 276	O 264	0	0

• Molecule 21 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	I1	211	Total 1699	C 1076	N 329	O 279	S 15	0	0

• Molecule 22 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	AltConf	Trace			
22	I2	206	Total 1666	C 1047	N 329	0 285	${ m S}{ m 5}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	J1	167	Total 1348	C 854	N 254	0 235	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	J2	180	Total 1492	C 952	N 295	0 243	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called Ribosomal protein S10.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	K2	93	Total 769	C 507	N 131	O 127	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
26	L1	197	Total 1603	C 1003	N 335	O 260	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	L2	133	Total 1086	C 686	N 211	0 183	S 6	0	0

• Molecule 28 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	M1	134	Total 1094	C 702	N 207	0 180	${f S}{5}$	0	0

• Molecule 29 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
29	N1	202	Total 1689	C 1065	N 352	O 267	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	N2	149	Total 1200	C 767	N 230	O 202	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		Ate		AltConf	Trace		
31	01	204	Total 1662	C 1073	N 318	O 266	${ m S}{ m 5}$	0	0

• Molecule 32 is a protein called Ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	O2	126	Total 943	C 579	N 186	0 172	S 6	0	0

• Molecule 33 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	P1	152	Total 1235	C 770	N 243	0 213	${ m S} 9$	0	0

• Molecule 34 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	P2	116	Total 957	C 608	N 177	0 165	S 7	0	0

• Molecule 35 is a protein called Ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	Q1	180	Total 1459	C 917	N 302	O 236	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called Ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	Q2	134	Total 1052	C 671	N 196	0 182	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues		A	toms	AltConf	Trace		
37	R1	166	Total 1381	C 856	N 300	O 215	S 10	0	0

• Molecule 38 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	R2	132	Total 1068	C 670	N 199	0 195	${S \atop 4}$	0	0

• Molecule 39 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	S1	176	Total 1457	C 934	N 284	O 230	S 9	0	0

• Molecule 40 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	S2	136	Total 1129	C 708	N 228	0 192	S 1	0	0

• Molecule 41 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	T1	157	Total 1283	C 816	N 250	0 213	${S \atop 4}$	0	0

• Molecule 42 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	Τ2	137	Total 1058	$\begin{array}{c} \mathrm{C} \\ 667 \end{array}$	N 202	0 185	$\frac{S}{4}$	0	0

• Molecule 43 is a protein called Ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	U1	97	Total 792	C 508	N 138	0 144	${S \over 2}$	0	0

• Molecule 44 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	U2	97	Total 754	C 473	N 139	0 138	$\frac{S}{4}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	V1	129	Total 970	C 613	N 182	0 170	${ m S}{ m 5}$	0	0

• Molecule 46 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	V2	81	Total 623	C 384	N 116	0 119	$\frac{S}{4}$	0	0

• Molecule 47 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
17	W1	60	Total	С	Ν	Ο	\mathbf{S}	0	0
41	VV 1	00	503	323	98	80	2	0	0

• Molecule 48 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	W2	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 49 is a protein called Ribosomal protein L23a.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	X1	117	Total 959	C 614	N 179	0 165	S 1	0	0

• Molecule 50 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	X2	139	Total 1083	C 684	N 215	0 181	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called ATPase H+ transporting V0 subunit e1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Y1	122	Total 1024	C 643	N 209	0 169	${ m S} { m 3}$	0	0

• Molecule 52 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	Y2	124	Total	C	N 102	0	S	0	0
			1011	043	193	170	б		

• Molecule 53 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	Z1	135	Total 1105	С 714	N 208	0 179	$\frac{S}{4}$	0	0

• Molecule 54 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
54	Z2	66	Total 529	C 343	N 95	O 91	0	0

• Molecule 55 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	al	147	Total 1164	C 740	N 233	0 188	${ m S} { m 3}$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	a2	98	Total 782	C 486	N 161	O 130	${f S}{5}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
57	b1	49	Total 419	C 259	N 92	O 67	S 1	0	0

• Molecule 58 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
58	b2	81	Total 636	C 398	N 120	0 111	${f S}{7}$	0	0

• Molecule 59 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
59	c1	93	Total 721	C 457	N 127	0 131	S 6	0	0

• Molecule 60 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
60	c2	61	Total 475	C 288	N 94	0 91	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 61 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
61	d1	107	Total 888	C 558	N 172	0 156	${S \over 2}$	0	0

• Molecule 62 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
62	d2	55	Total 459	C 285	N 94	O 75	${f S}{5}$	0	0

• Molecule 63 is a protein called Ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	e1	125	Total 1030	C 649	N 212	0 163	S 6	0	0

• Molecule 64 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
64	e2	50	Total 399	C 244	N 88	O 67	0	0

• Molecule 65 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	f1	107	Total 861	C 550	N 171	0 137	${ m S} { m 3}$	0	0

• Molecule 66 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
66	g1	104	Total 833	C 519	N 172	0 136	S 6	0	0

• Molecule 67 is a protein called Guanine nucleotide-binding protein subunit beta-2-like 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
67	g2	310	Total 2394	C 1507	N 418	O 457	S 12	0	0

• Molecule 68 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	h1	120	Total 991	C 627	N 197	0 165	${ m S} { m 2}$	0	0

• Molecule 69 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	i1	98	Total 801	C 502	N 170	0 125	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 70 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
70	j1	86	Total 701	C 430	N 155	O 110	S 6	0	0

• Molecule 71 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
71	k1	69	Total 569	C 366	N 103	O 99	S 1	0	0

• Molecule 72 is a protein called Ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
72	11	49	Total 434	C 275	N 97	0 61	S 1	0	0

• Molecule 73 is a protein called 60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
73	m1	50	Total 413	C 256	N 87	O 64	S 6	0	0

• Molecule 74 is a protein called Rpl41.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
74	n1	24	Total 231	C 140	N 63	O 26	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 75 is a protein called 60S ribosomal protein L36a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	o1	102	Total 840	C 526	N 172	0 136	S 6	0	0

• Molecule 76 is a protein called Zgc:171772.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	p1	91	Total 703	C 444	N 132	O 120	${f S}{7}$	0	0

• Molecule 77 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	AltConf	Trace			
77	r1	118	Total 943	$\begin{array}{c} \mathrm{C} \\ 589 \end{array}$	N 193	0 159	${ m S} { m 2}$	0	0

• Molecule 78 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
78	51	189	Total Mg 189 189	0
78	71	3	Total Mg 3 3	0
78	81	4	Total Mg 4 4	0
78	A1	2	Total Mg 2 2	0
78	B1	1	Total Mg 1 1	0
78	V1	1	Total Mg 1 1	0
78	b1	1	Total Mg 1 1	0
78	e1	1	Total Mg 1 1	0
78	m1	1	Total Mg 1 1	0

• Molecule 79 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
79	a2	1	Total Zn 1 1	0
79	d2	1	Total Zn 1 1	0
79	g1	1	Total Zn 1 1	0
79	j1	1	Total Zn 1 1	0
79	m1	1	Total Zn 1 1	0
79	o1	1	Total Zn 1 1	0
79	p1	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S rRNA

• Molecule 6: 40S ribosomal protein SA

Chain A2:	• • • 32%	
MET SER 63 E12 E192	P206 P206 P209 P209 P209 P209 P209 P201 P209 P201	SER VAL PRO ILLE GLN
GLN PHE PRO ALA GLY GLV ALA	CRRO CRACK CALA CALA CALA CALA CALA CALA CALA C	
• Molecule	7: Ribosomal protein L3	
Chain B1:	98%	
MET S2 D395 ARG LEU LYS LYS	GLU GLU ALA ALA	
• Molecule	8: 40S ribosomal protein S3a	
Chain B2:	8% 79% • 20%	
MET ALA VAL GLY LYS LYS ARG ARG	LEU LIN LYS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	K220 P221 K222 F223 E224 €224 GL7 GL7 GL7
GLY SER THR SER ALA ALA ALA LYS	PR0 GLU GLU GLU GLU GLU CLY CLY ARG ALA ARG ALA ARG GLU PR0 CLU CLU VAL VAL	
• Molecule	9: Ribosomal protein L4	
Chain C1:	93% 7%	
MET A2 A349 LYS MET MET	LEU PRO PRO LVS LVS LVS LVS VAL VAL LVS THR TVS LVS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule	10: 40S ribosomal protein S2	
Chain C2:	74% • 24%	
MET ALA ASP ASP ALA ALA GLY ARG	CLY CLY PHE ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	E244 H268
LEU ALA LYS LYS THR HIS ARG VAL	SER GLN GLN GLN GLN PRO CLY THR FLU GLN SER SER	
• Molecule	11: Ribosomal protein L5b	
Chain D1:	96%	
MET GLY PHE V4 L115 T155	R265 ALA ALA GLU GLU ASP	

• Molecule 12: DNA-(apurinic or apyrimidinic site) lyase

Chain D2:	90% 109	6
MET A2 E3 1 R7 6 A92	Li13 Li13 Ri17 T170 E216 C114 C118 E216 C114 V11 T220 E216 C14 V11 T220 C14 V11 T220 C14 V11 C14 C14 V11 C14 C14 V11 C14 C14 V11 C14 C14 V11 C14 C14 V11 C14 C14 V11 C14 C14 C14 C14 C14 C14 C14 C14 C14 C	ALA
• Molecule 13	: 60S ribosomal protein L6	
Chain E1:	77% · 22%	_
MET ALA GLU GLV ASP LYS LYS LYS VAL ALA	ARG HTS SER SER ARG ARG ARG ARG ARG ARG C43 C43 C43 C43 C43 C43 C43 C43 C43 C43	V152 L199 Arg LYS Pro
LYS HIS GLN GLN GLU GLU GLU TLE PHE ASP THR		
• Molecule 14	: 40S ribosomal protein S4, X isoform	
Chain E2:	98%	
MET A2 K62 E93 L1153	K174 F175 F176 T247 2261 SBR	
• Molecule 15:	: Ribosomal protein L7	
Chain F1:	89% · 10%	þ
MET ALA GLY GLV GLU THR LYS LYS LYS LYS LYS TTLE	VAL VAL SER SER SER SER LEU ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS	
• Molecule 16	: Ribosomal protein S5	
Chain F2:	90% 10%	D
MET ALA GLU ASP ASP GLU GLU ALA ALA ALA	VAL ALIA ALIA GLU FRIR PRIR FII E16 6129 0127 V258 ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 17	: 60S ribosomal protein L7a	
Chain G1:	77% 22%	-
MET PRO LYS QLY CLYS CLYS CLY CLYS CLY	LYS VALA ALA ALA ALA ALA ALA ALA VAL VAL VA	D228 1250 ALA LLYS LLEU GLU
LYS ALA LYS LYS ALA GLU LYS LYS LYS	GLY	

 \bullet Molecule 18: 40S ribosomal protein S6

Chain G2:	92%	8%
M1 F7 R22 D43 G123	S127 1128 1128 1151 1153 1153 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1154 1158	
• Molecule 19	: 60S ribosomal protein L9	
Chain H1:	99%	
M1 A190 GLU SER		
• Molecule 20	2: 40S ribosomal protein S7	
Chain H2:	95%	• •
MET PHE SER THR SER SER PI 1 MI2	Clist Children Childr	
• Molecule 21	: 60S ribosomal protein L10	
Chain I1:	98%	·
MET GLY R3 R3 S104 A106	G107 A108 R110 Q112 Q112 ALA ASN	
• Molecule 22	2: 40S ribosomal protein S8	
Chain I2:	96%	• •
MET G2 H22 H22 T76 A34 A34	T107 T107 F120 K124 K125 A127 F130 F131 F131 K143 K205 K205 K205 K205	
• Molecule 23	: 60S ribosomal protein L11	
Chain J1:	93%	6%
MET ALA ASP GLN SER GLU LYS CLV GLU N10	LYS LYS LYS	
• Molecule 24	: 40S ribosomal protein S9	
Chain J2:	93%	7%
MET P2 A181 A181 CLN CLN CLN CLY CLY CLY CLY	ASP ASP GLU GLU ASP ASP	

• Molecule 25: Ribosomal protein S10			
Chain K2: 55%		44%	
MET 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14	PRO ALA ALA ALA ALA ALA ALA GLY GLY GLY ASP ASP ASP ASP ASP	ARG SER SER ALA ALA ALA PRD PRD ALA ALA ALA ALA ALA	GLY ALA GLY
ALA ALA ALA ALA ALA GLU GLV GLY GLY GLN GLN GLN GLN GLN GLN			
• Molecule 26: 60S ribosomal protein l	L13		
Chain L1:	92%	• 7%	
MET A2 H67 A132 A132 A132 A132 A136 A13 A13 A13 A13 A13 A13 A13 A13			
• Molecule 27: 40S ribosomal protein S	511		
Chain L2: 5% 82%	6	• 16%	
MET ALA ALA ALA ALA ALA ALA MG CLN VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	R49 D53 D53 D53 D120 V122 V122 V122 0124	dist Aisz Lys Lys CLN PHE CLN PHE	
• Molecule 28: 60S ribosomal protein l	L14		
Chain M1:	96%		
MET V2 A135 GLN GLN ALA ALA			
• Molecule 29: Ribosomal protein L15			
Chain N1:	98%		
MET GLY GLY GLY 13 13 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 17 14 14 14 14 14 14 14 14 14 14 14 14 14			
• Molecule 30: 40S ribosomal protein S	513		
Chain N2:	99%		
MET G2 B103 R104 N105 S144 S143 S144 ALA			
• Molecule 31: 60S ribosomal protein l	L13a		

Chain O1:

100%

MET V205	
• Molecule 32: Ribosomal protein S14	
Chain O2: 82%	• 17%
MET PRO PRO PRO CLY CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
\bullet Molecule 33: 60S ribosomal protein L17	
Chain P1: 82%	• 17%
MET V2 V2 V2 V3 V4L V4L V4L V4L V4L V4L V4L V4L V4L V4L	
• Molecule 34: 40S ribosomal protein S15	
Chain P2: 79% ·	20%
MET ASP ASP THR CLU CLN CLN CLN CLN CLN CLN ARG ARG ARC CL2 ARC CL2 ARC CL2 ARC CL2 ARC CL2 ARC CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL	
• Molecule 35: Ribosomal protein L18	
Chain Q1: 98%	
MET C2 D107 HIS HIS	
• Molecule 36: Ribosomal protein S16	
Chain Q2: 90%	• 8%
MET PRO ALA ALA ALA CIY PRO EEO A64 A64 A64 A64 A64 A64 A64 A64 A64 A64	
\bullet Molecule 37: 60S ribosomal protein L19	
Chain R1: 84%	• 15%
MET S2 S2 193 1166 1167 1166 1167 1167 1167 1167 1167 1167 1167 1168 1167 1168 1178 1168 1178 1168 1178 1168 1178 1168 1178 1168 1178 1168 1178 1168 1178	

 \bullet Molecule 38: 40S ribosomal protein S17

• Molecule 45: 60S ribosomal protein L23
Chain V1: 92% 8%
MET SER ARG GLY GLY SER SER A12 A140
• Molecule 46: 40S ribosomal protein S21
Chain V2: 99%
\bullet Molecule 47: 60S ribosomal protein L24
Chain W1: 38% 62%
MET VS LYS LYS LYS CGS CGS CGS CGLN SER SER VAL LYS CLU SER ARG CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
ALA ALA CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN
\bullet Molecule 48: 40S ribosomal protein S15a
Chain W2: 98%
AET 130 130 130 130 130 130 130 130
• Molecule 49: Ribosomal protein L23a
Chain X1: 75% 25%
MET ALA ALA ALA ALA CLYS CLV CLYS CLV ALA ALA ALA CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS
• Molecule 50: 40S ribosomal protein S23
Chain X2: 97%
MET F105 PR0 ARG SER
\bullet Molecule 51: ATPase H+ transporting V0 subunit e1
Chain Y1: 83% · 16%

M A A A A A A A A A A A A A	
\bullet Molecule 52: 40S ribosomal protein S24	
Chain Y2: 93%	• 6%
MET ASN ASN ASN ASN ASN ASN ASN C11 A127 C17 C11 A127 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	
\bullet Molecule 53: 60S ribosomal protein L27	
Chain Z1: 99%	
E 133 6 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
• Molecule 54: 40S ribosomal protein S25	
Chain Z2: 53% 47%	
MET PRO PRO PRO CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	D56 C95 T113 LYS GLY THR ASP GLU
ALA PICO GLU LYS ALA ALA	
\bullet Molecule 55: 60S ribosomal protein L27a	
Chain a1: 98%	
MET P2 195 140 A148 A148	
\bullet Molecule 56: 40S ribosomal protein S26	
Chain a2: 84%	15%
MET 12 12 12 12 12 12 12 12 12 12	
\bullet Molecule 57: 60S ribosomal protein L29	
Chain b1: 75% · 2	3%
MET A2 LYS LYS LYS GLY GLY ALA CYS CLY SER LYS SER LYS	

• Molecule 58:	40S ribosomal protein S27	
Chain b2:	96%	· ·
MET P2 A50 A50 R80 R81 K81 K82 K82 K82 K82 K82 K82 K82 K82 K82 K82		
• Molecule 59: (60S ribosomal protein L30	
Chain c1:	78% .	21%
MET VAL ALA ALA ALA LYS LYS LYS SER LYS SER LEU	SIS NV28 NSP ASP ASP ASP ASP ASP ASP ASP ASP ASP A	
• Molecule 60:	40S ribosomal protein S28	
Chain c2:	87%	• 12%
MET ASP AIA SER ARG VAL PS V32 V32	D35 BG7 LEU ARG	
• Molecule 61: (60S ribosomal protein L31	
Chain d1:	86%	13%
MET ALA PRO LYS LYS GLY GLY CYS CLYS GLY GLY	SER ARG SER ALLA ILLE N16 B55 ASN	
• Molecule 62:	40S ribosomal protein S29	
Chain d2:	98%	·
MET G2 D56		
• Molecule 63: 1	Ribosomal protein L32	
Chain e1:	93%	7%
MET ALA ALA L4 L4 LEU LEU GLU GLU GLU GLU	GLU GLU	
• Molecule 64:	40S ribosomal protein S30	
Chain e2:	37% • 62%	
MET GLN CLEU PHE LEU ARG ALA GLN SER LEU HIS	LEU LEU VAL SER ASN ASN ASN ASN ASP ASP ALA ASP ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	ASP ASP SER THR LEU LEU ASN CYS GLY THR THR

eLU PHE CVYS CVYS CVYS CVAL ELEU CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 65: 60S ribosomal protein L35a	
Chain f1: 97% ·	
• Molecule 66: 60S ribosomal protein L34	
Chain g1: 88% • 11%	
MET V2 D89 VAID LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA CIAN CLNS LYS	
\bullet Molecule 67: Guanine nucleotide-binding protein subunit beta-2-like 1	
Chain g2: 97%	
MET THR GLU GLU GLU GLU GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	
\bullet Molecule 68: 60S ribosomal protein L35	
Chain h1: 96% ···	I
• Molecule 69: 60S ribosomal protein L36	
Chain i1: 92% • 7%	
MET VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 70: Ribosomal protein L37	
Chain j1: 89% 11%	
MET 12 ARA ALA ALA ALA ALA ALA SER SER SER SER	

• Molecule 71: 60S ribosomal protein L38

Chain k1:	97%	
MET P2 K37 K70		
• Molecule 72:	Ribosomal protein L39	
Chain l1:	98% ·	
A2 G32 G50 LEU		
• Molecule 73:	60S ribosomal protein L40	
Chain m1:	38% • 61%	
MET MET GLN ILE PHE VAL LYS THR LEU THR CLY GLY	THR THR ILEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ASP TYR ASN
ILE GLN GLN CLVS GLU SER THR LEU LEU VAL		
• Molecule 74:	Rpl41	
Chain n1:	96% .	
MET R2 K25		
• Molecule 75:	60S ribosomal protein L36a	
Chain o1:	95% •••	
MET V2 D42 V103 ILLE GLN PHE		
• Molecule 76:	Zgc:171772	
Chain p1:	99%	
MET A2 D91 q92		
• Molecule 77:	60S ribosomal protein L28	
Chain r1:	85% • 14%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	775288	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	48.3	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	10.815	Depositor
Minimum map value	-0.721	Depositor
Average map value	0.068	Depositor
Map value standard deviation	0.247	Depositor
Recommended contour level	0.7	Depositor
Map size (Å)	508.8, 508.8, 508.8	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	B	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	22	0.16	0/35898	0.69	14/55926~(0.0%)
2	51	0.24	0/78190	0.71	8/121918~(0.0%)
3	71	0.22	0/2867	0.66	0/4469
4	81	0.23	0/3573	0.69	0/5563
5	A1	0.25	0/1918	0.42	0/2569
6	A2	0.24	0/1703	0.39	0/2313
7	B1	0.25	0/3251	0.42	0/4351
8	B2	0.23	0/1757	0.41	0/2353
9	C1	0.24	0/2828	0.39	0/3797
10	C2	0.24	0/1687	0.40	0/2281
11	D1	0.25	0/2380	0.39	0/3185
12	D2	0.24	0/1740	0.42	0/2342
13	E1	0.25	0/1697	0.41	0/2264
14	E2	0.24	0/2110	0.42	0/2839
15	F1	0.25	0/1842	0.38	0/2460
16	F2	0.23	0/1462	0.38	0/1966
17	G1	0.24	0/1717	0.39	0/2316
18	G2	0.23	0/1887	0.41	0/2515
19	H1	0.24	0/1523	0.43	0/2048
20	H2	0.23	0/1515	0.41	0/2033
21	I1	0.26	0/1738	0.41	0/2325
22	I2	0.23	0/1695	0.42	0/2267
23	J1	0.24	0/1371	0.41	0/1833
24	J2	0.23	0/1517	0.37	0/2028
25	K2	0.23	0/792	0.39	0/1072
26	L1	0.24	0/1631	0.40	0/2178
27	L2	0.23	0/1105	0.42	0/1479
28	M1	0.25	0/1115	0.37	0/1488
29	N1	0.24	0/1731	0.40	0/2314
30	N2	0.22	0/1223	0.37	0/1644
31	01	0.24	0/1694	0.38	0/2267
32	02	0.24	0/955	0.43	0/1279

	Chain	Bond	lengths	B	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	P1	0.24	0/1261	0.40	0/1691
34	P2	0.24	0/974	0.39	0/1301
35	Q1	0.24	0/1484	0.41	0/1985
36	Q2	0.23	0/1068	0.40	0/1434
37	R1	0.22	0/1397	0.36	0/1849
38	R2	0.23	0/1082	0.37	0/1452
39	S1	0.26	0/1496	0.40	0/2009
40	S2	0.23	0/1147	0.39	0/1535
41	T1	0.25	0/1312	0.40	0/1756
42	Τ2	0.23	0/1076	0.37	0/1445
43	U1	0.24	0/806	0.42	0/1081
44	U2	0.23	0/763	0.42	0/1027
45	V1	0.26	0/984	0.43	0/1320
46	V2	0.24	0/629	0.42	0/842
47	W1	0.26	0/516	0.39	0/688
48	W2	0.23	0/1051	0.41	0/1406
49	X1	0.24	0/978	0.40	0/1318
50	X2	0.24	0/1100	0.41	0/1468
51	Y1	0.24	0/1039	0.41	0/1383
52	Y2	0.23	0/1027	0.42	0/1364
53	Z1	0.25	0/1128	0.39	0/1504
54	Z2	0.23	0/536	0.42	0/721
55	a1	0.25	0/1196	0.41	0/1601
56	a2	0.23	0/795	0.41	0/1066
57	b1	0.23	0/429	0.37	0/568
58	b2	0.23	0/649	0.41	0/872
59	c1	0.25	0/731	0.39	0/981
60	c2	0.22	0/477	0.45	0/639
61	d1	0.24	0/903	0.42	0/1217
62	d2	0.23	0/470	0.37	0/624
63	e1	0.24	0/1048	0.40	0/1396
64	e2	0.23	0/401	0.37	0/526
65	f1	0.26	0/880	0.42	0/1175
66	g1	0.24	0/843	0.42	0/1123
67	g2	0.23	0/2451	0.45	0/3343
68	h1	0.23	0/998	0.36	0/1318
69	i1	0.23	0/812	0.36	0/1074
70	j1	0.24	0/715	0.42	0/944
71	k1	0.25	0/575	0.39	0/761
72	l1	0.23	0/444	0.40	0/587
73	m1	0.24	0/419	0.41	0/555
74	n1	0.20	0/232	0.33	0/295
75	o1	0.25	0/853	0.41	0/1125

Mal	Chain	Bond lengths		Bond angles		
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
76	p1	0.25	0/713	0.41	0/945	
77	r1	0.23	0/956	0.41	0/1279	
All	All	0.23	0/208956	0.60	22/306275~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
39	S1	0	1

There are no bond length outliers.

The worst 5 of 22 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	22	676	U	C2-N1-C1'	7.74	126.98	117.70
1	22	676	U	N1-C2-O2	7.31	127.92	122.80
1	22	676	U	N3-C2-O2	-6.83	117.42	122.20
1	22	907	А	P-O3'-C3'	6.36	127.34	119.70
1	22	402	С	C2-N1-C1'	6.16	125.58	118.80

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
39	S1	164	LYS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
5	A1	243/257~(95%)	236~(97%)	7 (3%)	0	100	100
6	A2	208/308~(68%)	204 (98%)	4 (2%)	0	100	100
7	B1	392/403~(97%)	381 (97%)	11 (3%)	0	100	100
8	B2	211/267~(79%)	205~(97%)	6 (3%)	0	100	100
9	C1	346/375~(92%)	336 (97%)	10 (3%)	0	100	100
10	C2	211/280~(75%)	210 (100%)	1 (0%)	0	100	100
11	D1	286/296~(97%)	278 (97%)	8 (3%)	0	100	100
12	D2	219/245~(89%)	208 (95%)	11 (5%)	0	100	100
13	E1	198/265~(75%)	191 (96%)	7 (4%)	0	100	100
14	E2	259/263~(98%)	243 (94%)	16 (6%)	0	100	100
15	F1	220/246~(89%)	215 (98%)	5 (2%)	0	100	100
16	F2	179/204~(88%)	171 (96%)	8 (4%)	0	100	100
17	G1	203/266~(76%)	196 (97%)	7 (3%)	0	100	100
18	G2	228/249~(92%)	220 (96%)	8 (4%)	0	100	100
19	H1	188/192~(98%)	184 (98%)	4 (2%)	0	100	100
20	H2	184/194~(95%)	174 (95%)	10 (5%)	0	100	100
21	I1	209/215~(97%)	201 (96%)	8 (4%)	0	100	100
22	I2	204/208~(98%)	194 (95%)	10 (5%)	0	100	100
23	J1	165/178~(93%)	161 (98%)	4 (2%)	0	100	100
24	J2	178/194~(92%)	177 (99%)	1 (1%)	0	100	100
25	K2	91/166~(55%)	86 (94%)	5 (6%)	0	100	100
26	L1	195/211~(92%)	188 (96%)	7 (4%)	0	100	100
27	L2	129/159~(81%)	123 (95%)	6 (5%)	0	100	100
28	M1	132/139~(95%)	129 (98%)	3 (2%)	0	100	100
29	N1	200/204~(98%)	195 (98%)	5 (2%)	0	100	100
30	N2	147/151~(97%)	145 (99%)	2 (1%)	0	100	100
31	O1	202/205~(98%)	199 (98%)	3 (2%)	0	100	100
32	O2	124/151~(82%)	120 (97%)	4 (3%)	0	100	100
33	P1	150/184~(82%)	143 (95%)	7 (5%)	0	100	100
34	P2	114/145~(79%)	111 (97%)	3(3%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<i>a</i> 1	c		
Continued	trom	previous	page
00100000000	J. 01.0	P. 0000 40	P ~ 9 ~

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
35	Q1	178/182~(98%)	171 (96%)	7 (4%)	0	100	100
36	Q2	132/146~(90%)	127 (96%)	5 (4%)	0	100	100
37	R1	164/196~(84%)	163 (99%)	1 (1%)	0	100	100
38	R2	130/134~(97%)	127 (98%)	3 (2%)	0	100	100
39	S1	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
40	S2	134/152~(88%)	127 (95%)	7 (5%)	0	100	100
41	T1	155/160~(97%)	151 (97%)	4 (3%)	0	100	100
42	Τ2	135/146~(92%)	127 (94%)	8 (6%)	0	100	100
43	U1	95/141~(67%)	90 (95%)	5 (5%)	0	100	100
44	U2	95/119 (80%)	93 (98%)	2 (2%)	0	100	100
45	V1	127/140~(91%)	125 (98%)	2 (2%)	0	100	100
46	V2	79/81~(98%)	78 (99%)	1 (1%)	0	100	100
47	W1	58/157~(37%)	57 (98%)	1 (2%)	0	100	100
48	W2	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
49	X1	115/155~(74%)	112 (97%)	3 (3%)	0	100	100
50	X2	137/143~(96%)	132 (96%)	5 (4%)	0	100	100
51	Y1	120/145~(83%)	116 (97%)	4 (3%)	0	100	100
52	Y2	122/132~(92%)	115 (94%)	7 (6%)	0	100	100
53	Z1	133/136~(98%)	129 (97%)	4 (3%)	0	100	100
54	Z2	64/124~(52%)	61 (95%)	3 (5%)	0	100	100
55	al	145/148~(98%)	135 (93%)	10 (7%)	0	100	100
56	a2	96/115~(84%)	95 (99%)	1 (1%)	0	100	100
57	b1	47/64~(73%)	44 (94%)	3 (6%)	0	100	100
58	b2	79/84~(94%)	75 (95%)	4 (5%)	0	100	100
59	c1	91/117~(78%)	90 (99%)	1 (1%)	0	100	100
60	c2	59/69~(86%)	58 (98%)	1 (2%)	0	100	100
61	d1	$\overline{105/123}~(85\%)$	102 (97%)	3 (3%)	0	100	100
62	d2	$53/\overline{56}~(95\%)$	53 (100%)	0	0	100	100
63	e1	$\overline{123/135}~(91\%)$	121 (98%)	2 (2%)	0	100	100
64	e2	46/133 (35%)	45 (98%)	1 (2%)	0	100	100
65	f1	$105/\overline{110}~(96\%)$	104 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
66	g1	102/117~(87%)	99~(97%)	3(3%)	0	100	100
67	g2	308/317~(97%)	291 (94%)	17 (6%)	0	100	100
68	h1	118/123~(96%)	114 (97%)	4 (3%)	0	100	100
69	i1	96/105~(91%)	94~(98%)	2 (2%)	0	100	100
70	j1	84/97~(87%)	84 (100%)	0	0	100	100
71	k1	67/70~(96%)	67~(100%)	0	0	100	100
72	l1	47/50~(94%)	46 (98%)	1 (2%)	0	100	100
73	m1	48/128~(38%)	48 (100%)	0	0	100	100
74	n1	22/25~(88%)	22~(100%)	0	0	100	100
75	o1	100/106~(94%)	96~(96%)	4 (4%)	0	100	100
76	p1	89/92~(97%)	88~(99%)	1 (1%)	0	100	100
77	r1	116/138 (84%)	114 (98%)	2 (2%)	0	100	100
All	All	10635/12237~(87%)	10301 (97%)	334 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	A1	189/200~(94%)	186 (98%)	3~(2%)	62	79
6	A2	179/250~(72%)	176~(98%)	3~(2%)	60	78
7	B1	346/353~(98%)	346 (100%)	0	100	100
8	B2	194/231~(84%)	192~(99%)	2(1%)	76	88
9	C1	291/313~(93%)	290 (100%)	1 (0%)	92	97
10	C2	179/220~(81%)	173~(97%)	6 (3%)	37	56
11	D1	244/249~(98%)	241~(99%)	3~(1%)	71	85
12	D2	184/204~(90%)	183 (100%)	1 (0%)	88	95
13	E1	182/234~(78%)	179~(98%)	3~(2%)	62	79

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	E2	226/229~(99%)	222~(98%)	4(2%)	59	76
15	F1	189/210~(90%)	187~(99%)	2(1%)	73	87
16	F2	154/170~(91%)	154 (100%)	0	100	100
17	G1	181/224~(81%)	180 (99%)	1 (1%)	86	94
18	G2	201/219~(92%)	200 (100%)	1 (0%)	88	95
19	H1	167/169~(99%)	167 (100%)	0	100	100
20	H2	165/176~(94%)	164 (99%)	1 (1%)	86	94
21	I1	180/182~(99%)	179 (99%)	1 (1%)	86	94
22	I2	176/181~(97%)	170 (97%)	6(3%)	37	56
23	J1	141/150~(94%)	139 (99%)	2 (1%)	67	82
24	J2	160/168~(95%)	160 (100%)	0	100	100
25	K2	82/132~(62%)	81 (99%)	1 (1%)	71	85
26	L1	167/178~(94%)	165 (99%)	2 (1%)	71	85
27	L2	119/141 (84%)	116 (98%)	3 (2%)	47	67
28	M1	113/117~(97%)	113 (100%)	0	100	100
29	N1	171/172~(99%)	168 (98%)	3 (2%)	59	76
30	N2	129/130~(99%)	129 (100%)	0	100	100
31	01	175/176~(99%)	175 (100%)	0	100	100
32	O2	98/119~(82%)	96~(98%)	2(2%)	55	74
33	P1	134/165~(81%)	133 (99%)	1 (1%)	84	92
34	P2	105/130~(81%)	104 (99%)	1 (1%)	76	88
35	Q1	158/160~(99%)	156 (99%)	2(1%)	69	84
36	Q2	108/119~(91%)	105 (97%)	3(3%)	43	63
37	R1	145/173~(84%)	144 (99%)	1 (1%)	84	92
38	R2	119/121 (98%)	118 (99%)	1 (1%)	81	91
39	S1	155/155~(100%)	154 (99%)	1 (1%)	86	94
40	S2	118/132 (89%)	117 (99%)	1 (1%)	81	91
41	T1	138/140~(99%)	137 (99%)	1 (1%)	84	92
42	Τ2	110/117~(94%)	109 (99%)	1 (1%)	78	90
43	U1	87/127 (68%)	85 (98%)	2 (2%)	50	70
44	U2	87/105~(83%)	87 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
45	V1	101/108~(94%)	101 (100%)	0	100	100
46	V2	65/65~(100%)	64~(98%)	1 (2%)	65	80
47	W1	52/129~(40%)	52~(100%)	0	100	100
48	W2	112/113~(99%)	111 (99%)	1 (1%)	78	90
49	X1	105/134~(78%)	105~(100%)	0	100	100
50	X2	111/115~(96%)	110 (99%)	1 (1%)	78	90
51	Y1	115/136~(85%)	113 (98%)	2(2%)	60	78
52	Y2	108/116~(93%)	107~(99%)	1 (1%)	78	90
53	Z1	115/116~(99%)	114 (99%)	1 (1%)	78	90
54	Z2	57/105~(54%)	57~(100%)	0	100	100
55	a1	121/122~(99%)	119 (98%)	2(2%)	60	78
56	a2	86/99~(87%)	85~(99%)	1 (1%)	71	85
57	b1	45/56~(80%)	44 (98%)	1 (2%)	52	71
58	b2	73/76~(96%)	73 (100%)	0	100	100
59	c1	78/98~(80%)	76~(97%)	2(3%)	46	66
60	c2	53/61~(87%)	52 (98%)	1 (2%)	57	75
61	d1	98/110~(89%)	97~(99%)	1 (1%)	76	88
62	d2	48/49~(98%)	48 (100%)	0	100	100
63	e1	113/121 (93%)	113 (100%)	0	100	100
64	e2	$41/112 \ (37\%)$	40 (98%)	1 (2%)	49	68
65	f1	86/88~(98%)	86 (100%)	0	100	100
66	g1	91/102~(89%)	90 (99%)	1 (1%)	73	87
67	g2	263/274~(96%)	260 (99%)	3 (1%)	73	87
68	h1	108/110 (98%)	106 (98%)	2 (2%)	57	75
69	i1	83/88 (94%)	82 (99%)	1 (1%)	71	85
70	j1	73/80~(91%)	73 (100%)	0	100	100
71	k1	64/65~(98%)	63~(98%)	1 (2%)	62	79
72	11	45/46~(98%)	45 (100%)	0	100	100
73	m1	46/116 (40%)	45 (98%)	1 (2%)	52	71
74	n1	23/24~(96%)	23 (100%)	0	100	100
75	o1	$91/\overline{95}~(96\%)$	90(99%)	1 (1%)	73	87

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
76	p1	74/75~(99%)	74 (100%)	0	100	100
77	r1	102/120~(85%)	101 (99%)	1 (1%)	76	88
All	All	9292/10465~(89%)	9199~(99%)	93 (1%)	77	88

5 of 93 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
36	Q2	141	TYR
52	Y2	14	THR
38	R2	119	VAL
43	U1	124	TYR
56	a2	39	PHE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 124 such side chains are listed below:

Mol	Chain	Res	Type
25	K2	77	GLN
62	d2	4	GLN
34	P2	32	GLN
61	d1	98	ASN
73	m1	84	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	22	1483/1939~(76%)	290 (19%)	10~(0%)
2	51	3236/4269~(75%)	570 (17%)	37~(1%)
3	71	119/120~(99%)	6~(5%)	0
4	81	147/158~(93%)	19 (12%)	0
All	All	4985/6486 (76%)	885 (17%)	47 (0%)

5 of 885 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	22	3	С
1	22	4	С
1	22	33	G
1	22	41	G
1	22	46	А

5 of 47 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	51	1052	G
2	51	1977	А
2	51	1079	U
2	51	1651	С
2	51	2858	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 210 ligands modelled in this entry, 210 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13112. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

Z Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 221

Y Index: 228

Z Index: 195

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.7. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2168 $\rm nm^3;$ this corresponds to an approximate mass of 1959 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13112 and PDB model 70YB. Per-residue inclusion information can be found in section 3 on page 18.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.7 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.7).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.7) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9407	0.5280
22	0.9610	0.4440
51	0.9772	0.5840
71	0.9984	0.6170
81	0.9853	0.5990
A1	0.9715	0.6120
A2	0.9084	0.4950
B1	0.9636	0.6140
B2	0.7725	0.3260
C1	0.9642	0.6040
C2	0.9190	0.5240
D1	0.9388	0.5730
D2	0.8186	0.3590
E1	0.9380	0.5720
E2	0.8425	0.3590
F1	0.9618	0.6130
F2	0.7953	0.3820
G1	0.9032	0.5450
G2	0.7823	0.3760
H1	0.9415	0.5930
H2	0.7594	0.3530
I1	0.9107	0.5850
I2	0.7897	0.3790
J1	0.8789	0.5300
J2	0.8976	0.4040
K2	0.8677	0.3160
L1	0.9025	0.5750
L2	0.8114	0.3640
M1	0.9596	0.6040
N1	0.9795	0.6220
N2	0.8263	0.3430
01	0.9677	0.6150
O2	0.8221	0.3390
P1	0.9667	0.6160
P2	0.8698	0.3940

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
Q1	0.9728	0.6120
Q2	0.8707	0.4080
R1	0.9386	0.5540
R2	0.7601	0.3950
S1	0.9730	0.6220
S2	0.8097	0.3730
T1	0.9423	0.6060
T2	0.8991	0.4280
U1	0.8656	0.4930
U2	0.8318	0.3990
V1	0.9536	0.5990
V2	0.8797	0.5180
W1	0.9628	0.5890
W2	0.9257	0.5050
X1	0.9325	0.5930
X2	0.8828	0.4930
Y1	0.9422	0.5890
Y2	0.7760	0.3070
Z1	0.9552	0.5570
Z2	0.7767	0.3320
al	0.9691	0.6070
a2	0.8979	0.4490
b1	0.9433	0.5940
b2	0.8355	0.3450
c1	0.9703	0.5630
c2	0.7734	0.3430
d1	0.9321	0.5840
d2	0.9365	0.4270
e1	0.9729	0.6190
e2	0.7786	0.3640
f1	0.9759	0.6320
g1	0.9699	0.5990
<u>g2</u>	0.8046	0.3800
hl	0.9229	0.5820
il	0.9259	0.5740
j1	0.9746	0.6200
<u>k1</u>	0.8438	0.5270
	0.9249	0.5740
<u>m1</u>	0.9651	0.6110
n1	0.8714	0.5300
o1	0.9373	0.5960
p1	0.9375	0.5820

Chain	Atom inclusion	Q-score
r1	0.9637	0.5940

