

Full wwPDB X-ray Structure Validation Report (i)

Dec 16, 2023 – 11:31 PM EST

PDB ID	:	2030
Title	:	Crystal Structure of the sensor histidine kinase regulator YycI from Bacillus
		subtitlis
Authors	:	Santelli, E.; Liddington, R.C.
Deposited on	:	2006-12-01
Resolution	:	2.89 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.89 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution		
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	1957 (2.90-2.90)		
Clashscore	141614	2172 (2.90-2.90)		
Ramachandran outliers	138981	2115 (2.90-2.90)		
Sidechain outliers	138945	2117 (2.90-2.90)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	254	74%	19%	• 5%
1	В	254	76%	16%	• 6%
1	С	254	77%	14%	• 6%
1	D	254	72%	20%	• 5%
1	Е	254	72%	17%	• 7%
1	F	254	76%	16%	• 6%
1	G	254	77%	14%	• 7%

α $\cdot \cdot$ \cdot	C		
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Length	Quality of chain		
1	Н	254	77%	16%	• 5%
1	Ι	254	76%	17%	••
1	J	254	75%	16%	• 6%
1	Κ	254	75%	16%	• 7%
1	L	254	74%	19%	• 6%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 23401 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	Atoms	5			ZeroOcc	AltConf	Trace
1	Δ	9.41	Total	С	Ν	0	S	Se	0	0	0
	A	241	1965	1251	313	394	1	6	0	0	0
1	В	230	Total	С	Ν	0	S	Se	0	0	0
	D	209	1947	1241	310	389	1	6	0	0	0
1	С	230	Total	С	Ν	Ο	\mathbf{S}	Se	0	0	0
	U	209	1947	1240	310	390	1	6	0	0	0
1	п	941	Total	С	Ν	Ο	\mathbf{S}	Se	0	0	0
L	D	241	1965	1249	313	396	1	6	0	0	0
1	E	237	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
L	Ľ	201	1932	1232	308	385	1	6	0	0	0
1	F	240	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
1	Ľ	240	1958	1248	313	390	1	6	0	0	0
1	C	237	Total	\mathbf{C}	Ν	0	\mathbf{S}	Se	0	0	0
	G	201	1929	1228	306	388	1	6	0	0	0
1	н	941	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
1	11	241	1965	1249	313	396	1	6	0	0	0
1	т	944	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
1	T	244	1986	1264	318	397	1	6	0	0	0
1	Т	238	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
1	5	230	1941	1238	310	386	1	6	0	0	0
1	K	235	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
	17	200	1913	1219	304	383	1	6	0	U	0
1	L.	239	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	Se	0	0	0
		205	1947	1237	309	394	1	6		U	U

• Molecule 1 is a protein called YycI protein.

There are 120 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	27	GLY	-	cloning artifact	UNP Q45612
А	28	SER	-	cloning artifact	UNP Q45612
А	29	HIS	-	cloning artifact	UNP Q45612
А	30	MSE	-	cloning artifact	UNP Q45612
А	47	MSE	MET	modified residue	UNP Q45612

2030

Chain Besidue		Modelled	Actual	Comment	Reference		
	80	MSE	MET	modified residue	UNP 045612		
	01	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
	103	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
	167	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
	204	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
B	204			cloning artifact	$\frac{0001}{1000} \frac{00012}{0000}$		
B	21	SEB	_	cloning artifact	$\frac{0001}{1000} \frac{00012}{0000}$		
B	20	HIS	-	cloning artifact	$\frac{0001}{1000} \frac{00012}{0000}$		
B	30	MSE	_	cloning artifact	$\frac{0001}{1000} \frac{00012}{0000}$		
B	<u> </u>	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
B	80	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
B	01	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
D B	103	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
D	103	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
B	204	MSE	MET	modified residue	$\frac{\text{UNP}}{\text{UNP}} \frac{045612}{045612}$		
	204			aloning artifact	$\frac{000}{1000} \frac{0000}{0000} \frac$		
	21	GLI SED	-	cloning artifact	$\frac{\text{UNI}}{\text{UND}} \frac{045012}{045612}$		
	20		-	cloning artifact	$\frac{0001}{1000} \frac{00012}{0000}$		
	29	MCE	-	cloning artifact	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	30	MSE	- MET	modified residue	$\frac{\text{UNP} \text{ Q43012}}{\text{UND} $		
	47	MSE		modified residue	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	01	MSE		modified residue	$\frac{\text{UNP} \text{ Q43012}}{\text{UND} $		
	91	MSE		modified residue	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	105	MSE		modified residue	$\frac{\text{UNP} \text{ Q43012}}{\text{UND} $		
	107	MSE		modified residue	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	204	MSE CLV		aloning ortifact	$\frac{\text{UNP} \text{ Q43012}}{\text{UND} \text{ O45612}}$		
	21	GLI	-	cloning artifact	$\frac{\text{UNP} \text{ Q43012}}{\text{UND} $		
	20		-	cloning artifact	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	29	MSE	-	cloning artifact	$\frac{\text{UNF} \text{ Q45012}}{\text{UND} \text$		
	30	MSE	- MET	modified residue	$\frac{000}{1000} \frac{000}{1000} 0$		
	41 80	MSE	MET	modified residue	$\frac{\text{UNI}}{\text{UND}} \frac{\text{Q43012}}{\text{45612}}$		
	01	MSE	MET	modified residue	$\frac{0001}{1000} \frac{00012}{0000}$		
	102	MSE	MET	modified residue	$\frac{000}{1000} \frac{0000}{0000} \frac$		
	103	MSE	MET	modified residue	$\frac{\text{UNI}}{\text{UND}} \frac{045012}{045612}$		
	204	MSE	MET	modified residue	$\frac{000}{1000} \frac{000}{1000} 0$		
	204			aloning artifact	$\frac{\text{UNF}}{\text{UND}} \frac{045012}{045612}$		
	21	GLI	-	cloning artifact	$\frac{0001}{100012}$		
	20		-	eloning artifact	$\frac{0101}{040012}$		
	29		-	eloning artifact	$\frac{\text{UNF}}{\text{UND}} \frac{043012}{045619}$		
	30		- MET	modified residue	$\frac{0101}{040012}$		
	<u>41</u> <u>90</u>	MCE		modified residue	$\frac{\text{UNF}}{\text{UND}} \frac{043012}{045619}$		
	09			modified residue	$\frac{0001}{1000} \text{ (Q43012)}$		
	1 91	INISE		moamea restaue	UNF Q40012		

Chain	Residue	Modelled	Actual	Comment	Reference
Е	103	MSE	MET	modified residue	UNP Q45612
Е	167	MSE	MET	modified residue	UNP Q45612
Е	204	MSE	MET	modified residue	UNP Q45612
F	27	GLY	-	cloning artifact	UNP Q45612
F	28	SER	-	cloning artifact	UNP Q45612
F	29	HIS	-	cloning artifact	UNP Q45612
F	30	MSE	-	cloning artifact	UNP Q45612
F	47	MSE	MET	modified residue	UNP Q45612
F	89	MSE	MET	modified residue	UNP Q45612
F	91	MSE	MET	modified residue	UNP Q45612
F	103	MSE	MET	modified residue	UNP Q45612
F	167	MSE	MET	modified residue	UNP Q45612
F	204	MSE	MET	modified residue	UNP Q45612
G	27	GLY	-	cloning artifact	UNP Q45612
G	28	SER	-	cloning artifact	UNP Q45612
G	29	HIS	-	cloning artifact	UNP Q45612
G	30	MSE	-	cloning artifact	UNP Q45612
G	47	MSE	MET	modified residue	UNP Q45612
G	89	MSE	MET	modified residue	UNP Q45612
G	91	MSE	MET	modified residue	UNP Q45612
G	103	MSE	MET	modified residue	UNP Q45612
G	167	MSE	MET	modified residue	UNP Q45612
G	204	MSE	MET	modified residue	UNP Q45612
Н	27	GLY	-	cloning artifact	UNP Q45612
Н	28	SER	-	cloning artifact	UNP Q45612
Н	29	HIS	-	cloning artifact	UNP Q45612
Н	30	MSE	-	cloning artifact	UNP Q45612
Н	47	MSE	MET	modified residue	UNP Q45612
Н	89	MSE	MET	modified residue	UNP Q45612
Н	91	MSE	MET	modified residue	UNP Q45612
Н	103	MSE	MET	modified residue	UNP Q45612
Н	167	MSE	MET	modified residue	UNP Q45612
Н	204	MSE	MET	modified residue	UNP Q45612
Ι	27	GLY	-	cloning artifact	UNP Q45612
Ι	28	SER	-	cloning artifact	UNP Q45612
Ι	29	HIS	-	cloning artifact	UNP Q45612
Ι	30	MSE	-	cloning artifact	UNP Q45612
Ι	47	MSE	MET	modified residue	UNP Q45612
Ι	89	MSE	MET	modified residue	UNP Q45612
Ι	91	MSE	MET	modified residue	UNP Q45612
Ι	103	MSE	MET	modified residue	UNP Q45612
Ι	167	MSE	MET	modified residue	UNP Q45612

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	204	MSE	MET	modified residue	UNP Q45612
J	27	GLY	-	cloning artifact	UNP Q45612
J	28	SER	-	cloning artifact	UNP Q45612
J	29	HIS	-	cloning artifact	UNP Q45612
J	30	MSE	-	cloning artifact	UNP Q45612
J	47	MSE	MET	modified residue	UNP Q45612
J	89	MSE	MET	modified residue	UNP Q45612
J	91	MSE	MET	modified residue	UNP Q45612
J	103	MSE	MET	modified residue	UNP Q45612
J	167	MSE	MET	modified residue	UNP Q45612
J	204	MSE	MET	modified residue	UNP Q45612
K	27	GLY	-	cloning artifact	UNP Q45612
K	28	SER	-	cloning artifact	UNP Q45612
K	29	HIS	-	cloning artifact	UNP Q45612
K	30	MSE	-	cloning artifact	UNP Q45612
K	47	MSE	MET	modified residue	UNP Q45612
K	89	MSE	MET	modified residue	UNP Q45612
K	91	MSE	MET	modified residue	UNP Q45612
K	103	MSE	MET	modified residue	UNP Q45612
K	167	MSE	MET	modified residue	UNP Q45612
K	204	MSE	MET	modified residue	UNP Q45612
L	27	GLY	-	cloning artifact	UNP Q45612
L	28	SER	-	cloning artifact	UNP Q45612
L	29	HIS	-	cloning artifact	UNP Q45612
L	30	MSE	-	cloning artifact	UNP Q45612
L	47	MSE	MET	modified residue	UNP Q45612
L	89	MSE	MET	modified residue	UNP Q45612
L	91	MSE	MET	modified residue	UNP Q45612
L	103	MSE	MET	modified residue	UNP Q45612
L	167	MSE	MET	modified residue	UNP Q45612
L	204	MSE	MET	modified residue	UNP $Q45612$

• Molecule 2 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Cl 1 1	0	0
2	D	1	Total Cl 1 1	0	0
2	Ε	1	Total Cl 1 1	0	0
2	F	1	Total Cl 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	K	1	Total Cl 1 1	0	0
2	L	1	Total Cl 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: YycI protein

• Molecule 1: YycI protein

• Molecule 1: YycI protein

• Molecule 1: YycI protein

• Molecule 1: YycI protein

• Molecule 1: YycI protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	60.79Å 161.92 Å 180.16 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.90° 90.00°	Depositor
D ecolution $(\hat{\lambda})$	90.00 - 2.89	Depositor
Resolution (A)	48.43 - 2.89	EDS
% Data completeness	92.2 (90.00-2.89)	Depositor
(in resolution range)	92.2 (48.43-2.89)	EDS
R _{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.20 (at 2.91 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
D D	0.212 , 0.262	Depositor
Λ, Λ_{free}	0.254 , 0.295	DCC
R_{free} test set	3605 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	53.2	Xtriage
Anisotropy	0.245	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , -10.7	EDS
L-test for $twinning^2$	$< L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	0.037 for h,-k,-l	Xtriage
F_o, F_c correlation	0.89	EDS
Total number of atoms	23401	wwPDB-VP
Average B, all atoms $(Å^2)$	30.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 19.67% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.51	0/1994	0.59	0/2679
1	В	0.50	0/1976	0.61	0/2656
1	С	0.50	0/1976	0.59	0/2656
1	D	0.50	0/1994	0.62	0/2679
1	Ε	0.50	0/1961	0.60	0/2635
1	F	0.50	0/1987	0.62	0/2668
1	G	0.49	0/1958	0.58	0/2634
1	Н	0.47	0/1994	0.57	0/2679
1	Ι	0.53	0/2016	0.62	0/2709
1	J	0.51	0/1970	0.61	0/2646
1	Κ	0.48	0/1942	0.58	0/2612
1	L	0.46	0/1976	0.57	0/2657
All	All	0.49	0/23744	0.60	0/31910

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1965	0	1943	30	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1947	0	1926	30	0
1	С	1947	0	1924	34	0
1	D	1965	0	1936	47	0
1	Е	1932	0	1913	44	0
1	F	1958	0	1943	31	0
1	G	1929	0	1898	32	0
1	Н	1965	0	1936	33	0
1	Ι	1986	0	1968	37	0
1	J	1941	0	1926	36	0
1	K	1913	0	1885	36	0
1	L	1947	0	1910	29	0
2	А	1	0	0	0	0
2	D	1	0	0	0	0
2	Е	1	0	0	0	0
2	F	1	0	0	0	0
2	Κ	1	0	0	0	0
2	L	1	0	0	0	0
All	All	23401	0	23108	393	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (393) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:89:MSE:HE2	1:C:91:MSE:HE1	1.22	1.12
1:C:79:ILE:HG23	1:C:103:MSE:HE1	1.33	1.06
1:A:89:MSE:HE2	1:A:91:MSE:HE1	1.34	1.05
1:A:89:MSE:HE2	1:A:91:MSE:CE	1.93	0.97
1:E:235:LEU:HD13	1:G:235:LEU:HD13	1.49	0.91
1:C:89:MSE:HE2	1:C:91:MSE:CE	2.01	0.90
1:C:150:GLN:HE22	1:C:189:LEU:H	1.20	0.89
1:F:210:LEU:HD23	1:H:275:ILE:HD11	1.55	0.88
1:K:150:GLN:HE22	1:K:189:LEU:H	1.21	0.88
1:A:109:ILE:HD13	1:A:123:LEU:HD11	1.56	0.88
1:L:163:ASN:HD21	1:L:166:ASN:HD22	1.21	0.87
1:I:109:ILE:HG21	1:I:123:LEU:HD13	1.57	0.85
1:K:89:MSE:HE2	1:K:91:MSE:HE1	1.59	0.83
1:H:79:ILE:HG23	1:H:103:MSE:HE1	1.60	0.82
1:H:109:ILE:HD13	1:H:123:LEU:HD11	1.61	0.82
1:K:79:ILE:HG23	1:K:103:MSE:HE1	1.59	0.82

	A h o	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:I:150:GLN:HE22	1:I:189:LEU:H	1.26	0.81	
1:B:150:GLN:HE22	1:B:189:LEU:H	1.28	0.81	
1:E:150:GLN:HE22	1:E:189:LEU:H	1.29	0.80	
1:F:89:MSE:HE2	1:F:91:MSE:CE	2.12	0.80	
1:C:79:ILE:CG2	1:C:103:MSE:HE1	2.12	0.79	
1:G:150:GLN:HE22	1:G:189:LEU:H	1.28	0.79	
1:J:89:MSE:HE2	1:J:91:MSE:HE1	1.63	0.79	
1:F:150:GLN:HE22	1:F:189:LEU:H	1.32	0.78	
1:C:89:MSE:CE	1:C:91:MSE:HE1	2.12	0.77	
1:F:109:ILE:HD12	1:F:123:LEU:HD11	1.64	0.77	
1:E:79:ILE:HG23	1:E:103:MSE:HE1	1.68	0.75	
1:J:231:ALA:HA	1:J:241:LEU:HD23	1.66	0.75	
1:A:89:MSE:CE	1:A:91:MSE:HE1	2.14	0.74	
1:D:91:MSE:HE2	1:D:91:MSE:HA	1.69	0.74	
1:K:136:LEU:HD12	1:K:137:TRP:N	2.02	0.74	
1:D:89:MSE:HE3	1:D:101:LEU:HD23	1.69	0.74	
1:E:160:LYS:HZ1	1:K:176:ASN:HD21	1.33	0.74	
1:E:238:THR:HG21	1:G:235:LEU:HD21	1.70	0.73	
1:L:150:GLN:HE22	1:L:189:LEU:H	1.36	0.73	
1:K:89:MSE:HE2	1:K:91:MSE:CE	2.18	0.73	
1:D:79:ILE:HG23	1:D:103:MSE:HE1	1.70	0.72	
1:D:124:VAL:HA	1:D:128:ILE:HD12	1.69	0.72	
1:D:150:GLN:HE22	1:D:189:LEU:H	1.36	0.72	
1:B:89:MSE:HE2	1:B:91:MSE:HE1	1.72	0.71	
1:H:163:ASN:HD21	1:H:166:ASN:HD22	1.37	0.71	
1:I:79:ILE:HG21	1:I:91:MSE:HE1	1.73	0.71	
1:F:89:MSE:HE2	1:F:91:MSE:HE1	1.73	0.70	
1:H:150:GLN:HE22	1:H:189:LEU:H	1.39	0.70	
1:D:79:ILE:HD13	1:D:91:MSE:HE1	1.74	0.69	
1:B:34:LYS:HA	1:D:214:ASN:HD21	1.58	0.69	
1:L:163:ASN:HD21	1:L:166:ASN:ND2	1.91	0.69	
1:D:164:PRO:HA	1:D:167:MSE:HE2	1.73	0.69	
1:E:160:LYS:NZ	1:K:176:ASN:HD21	1.91	0.68	
1:K:91:MSE:HE2	1:K:91:MSE:HA	1.75	0.68	
1:G:79:ILE:HG23	1:G:103:MSE:HE1	1.74	0.68	
1:J:150:GLN:HE22	1:J:189:LEU:H	1.39	0.68	
1:H:89:MSE:HE3	1:H:98:VAL:HG11	1.75	0.68	
1:J:163:ASN:H	1:J:163:ASN:HD22	1.39	0.67	
1:K:204:MSE:HE2	1:K:208:GLU:HG3	1.76	0.67	
1:H:109:ILE:HD13	1:H:123:LEU:CD1	2.24	0.67	
1:H:91:MSE:HA	1:H:91:MSE:HE2	1.77	0.67	

	io ao pagoini	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:204:MSE:HE2	1:G:208:GLU:HG3	1.76	0.67
1:B:89:MSE:HE2	1:B:91:MSE:CE	2.25	0.66
1:B:235:LEU:HD13	1:D:235:LEU:HD12	1.77	0.66
1:I:109:ILE:HD13	1:I:123:LEU:CD1	2.24	0.66
1:K:216:LEU:CD2	1:K:249:VAL:HG21	2.26	0.66
1:I:136:LEU:HD12	1:I:137:TRP:N	2.11	0.66
1:H:163:ASN:HD21	1:H:166:ASN:ND2	1.94	0.66
1:E:91:MSE:HE2	1:E:91:MSE:HA	1.78	0.66
1:D:231:ALA:HA	1:D:241:LEU:HD23	1.79	0.65
1:F:89:MSE:HE2	1:F:91:MSE:HE2	1.78	0.65
1:F:163:ASN:H	1:F:163:ASN:HD22	1.43	0.65
1:E:136:LEU:HD12	1:E:137:TRP:N	2.12	0.65
1:C:150:GLN:NE2	1:C:189:LEU:H	1.94	0.65
1:K:216:LEU:HD21	1:K:249:VAL:HG21	1.79	0.64
1:I:217:LYS:O	1:I:220:SER:OG	2.16	0.64
1:F:89:MSE:CE	1:F:91:MSE:HE1	2.27	0.64
1:F:109:ILE:HD12	1:F:123:LEU:CD1	2.28	0.64
1:J:47:MSE:HE1	1:J:207:VAL:HG12	1.80	0.64
1:J:89:MSE:HE2	1:J:91:MSE:CE	2.28	0.63
1:G:79:ILE:HD13	1:G:89:MSE:HE1	1.80	0.63
1:G:136:LEU:HD12	1:G:137:TRP:N	2.13	0.63
1:E:68:THR:HG23	1:E:195:ILE:HG21	1.82	0.61
1:L:91:MSE:HE2	1:L:91:MSE:HA	1.81	0.61
1:C:230:VAL:HG11	1:C:267:THR:HG21	1.82	0.61
1:F:159:GLN:HE22	1:F:169:GLY:H	1.49	0.61
1:L:280:GLN:C	1:L:280:GLN:HE21	2.04	0.61
1:H:273:SER:O	1:H:274:THR:HG23	2.00	0.61
1:A:191:THR:HG22	1:A:191:THR:O	2.01	0.61
1:D:79:ILE:CG2	1:D:103:MSE:HE1	2.30	0.61
1:I:232:GLN:O	1:I:233:TYR:HB3	2.01	0.61
1:J:124:VAL:HG21	1:J:148:PHE:CZ	2.36	0.60
1:B:159:GLN:HE22	1:B:169:GLY:H	1.50	0.60
1:A:163:ASN:HD21	1:A:166:ASN:CG	2.04	0.60
1:J:175:LEU:CD2	1:J:181:VAL:HG22	2.32	0.60
1:D:230:VAL:HG13	1:D:244:VAL:HG11	1.83	0.60
1:E:238:THR:HG21	1:G:235:LEU:CD2	2.32	0.59
1:A:150:GLN:HE22	1:A:189:LEU:H	1.50	0.59
1:L:89:MSE:HE3	1:L:101:LEU:HD23	1.84	0.59
1:B:191:THR:HG22	1:B:193:LYS:HE3	1.85	0.59
1:C:91:MSE:HA	1:C:91:MSE:HE2	1.84	0.59
1:C:164:PRO:HA	1:C:167:MSE:HE2	1.84	0.59

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:275:ILE:HG22	1:H:275:ILE:O	2.02	0.59
1:I:109:ILE:CD1	1:I:123:LEU:HD11	2.33	0.59
1:D:175:LEU:CD2	1:D:181:VAL:HG22	2.33	0.58
1:I:123:LEU:HD12	1:I:127:LYS:HD2	1.84	0.58
1:B:160:LYS:NZ	1:H:176:ASN:OD1	2.35	0.58
1:J:79:ILE:HG23	1:J:103:MSE:HE1	1.84	0.58
1:E:238:THR:CG2	1:G:235:LEU:HD21	2.33	0.58
1:E:89:MSE:HE2	1:E:91:MSE:HE1	1.84	0.58
1:E:175:LEU:CD2	1:E:181:VAL:HG22	2.34	0.58
1:H:67:ILE:HD12	1:H:194:GLN:HG2	1.84	0.58
1:E:89:MSE:HE2	1:E:91:MSE:CE	2.34	0.57
1:B:164:PRO:HA	1:B:167:MSE:HE2	1.86	0.57
1:E:134:TYR:CD2	1:E:171:VAL:HG23	2.40	0.57
1:I:150:GLN:NE2	1:I:189:LEU:H	2.01	0.57
1:F:196:GLN:NE2	1:F:198:GLU:OE2	2.37	0.57
1:E:160:LYS:NZ	1:K:176:ASN:ND2	2.52	0.57
1:H:168:ILE:HD13	1:H:231:ALA:HB2	1.86	0.57
1:I:175:LEU:HD23	1:I:181:VAL:HG22	1.87	0.57
1:G:69:ALA:O	1:G:238:THR:HG23	2.05	0.57
1:D:236:THR:HG22	1:D:237:SER:N	2.20	0.56
1:A:89:MSE:HE2	1:A:91:MSE:HE2	1.86	0.56
1:D:89:MSE:HE3	1:D:101:LEU:CD2	2.34	0.56
1:B:163:ASN:N	1:B:163:ASN:HD22	2.04	0.56
1:E:168:ILE:HD13	1:E:231:ALA:HB2	1.88	0.56
1:G:204:MSE:HE3	1:G:207:VAL:HB	1.87	0.56
1:I:109:ILE:HD13	1:I:123:LEU:HD11	1.87	0.56
1:E:66:ARG:HE	1:E:232:GLN:HE22	1.53	0.56
1:E:168:ILE:CD1	1:E:231:ALA:HB2	2.36	0.56
1:K:89:MSE:CE	1:K:91:MSE:HE1	2.34	0.56
1:C:67:ILE:HD12	1:C:194:GLN:HG2	1.88	0.56
1:A:204:MSE:HE3	1:A:208:GLU:HG3	1.88	0.55
1:C:79:ILE:HG23	1:C:103:MSE:CE	2.22	0.55
1:F:34:LYS:HA	1:H:214:ASN:HD21	1.69	0.55
1:J:44:GLU:OE2	1:J:204:MSE:HE2	2.06	0.55
1:C:202:THR:HG23	1:C:205:ASP:OD2	2.06	0.55
1:H:163:ASN:N	1:H:163:ASN:HD22	2.05	0.55
1:K:236:THR:HG22	1:K:237:SER:N	2.22	0.55
1:A:159:GLN:HE22	1:A:169:GLY:H	1.54	0.55
1:I:89:MSE:HE2	1:I:91:MSE:CE	2.37	0.55
1:G:67:ILE:HD12	1:G:194:GLN:HG2	1.87	0.54
1:K:59:LYS:O	1:K:202:THR:HG21	2.07	0.54

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:68:THR:HG23	1:I:195:ILE:HG21	1.89	0.54
1:K:168:ILE:HD13	1:K:231:ALA:HB2	1.89	0.54
1:E:150:GLN:NE2	1:E:189:LEU:H	2.03	0.54
1:J:68:THR:HG23	1:J:195:ILE:HD13	1.90	0.54
1:L:232:GLN:NE2	1:L:242:ALA:HB2	2.23	0.54
1:B:79:ILE:HG23	1:B:103:MSE:HE1	1.90	0.54
1:K:150:GLN:NE2	1:K:189:LEU:H	1.98	0.53
1:L:116:ILE:HD12	1:L:179:ASN:ND2	2.24	0.53
1:H:89:MSE:HE2	1:H:91:MSE:HE1	1.91	0.53
1:K:134:TYR:CE2	1:K:171:VAL:HG23	2.44	0.53
1:A:178:LYS:O	1:A:180:GLU:N	2.42	0.53
1:C:235:LEU:O	1:C:236:THR:C	2.47	0.53
1:D:89:MSE:HE2	1:D:91:MSE:CE	2.39	0.53
1:J:67:ILE:HG22	1:J:194:GLN:HA	1.90	0.53
1:B:217:LYS:O	1:B:220:SER:OG	2.26	0.53
1:I:238:THR:HG21	1:K:235:LEU:HD22	1.91	0.53
1:I:236:THR:HG22	1:I:237:SER:H	1.74	0.52
1:F:261:THR:O	1:F:261:THR:HG22	2.10	0.52
1:L:66:ARG:C	1:L:67:ILE:HD13	2.28	0.52
1:I:159:GLN:HE22	1:I:169:GLY:H	1.56	0.52
1:C:82:LEU:HD12	1:C:103:MSE:HE2	1.91	0.52
1:H:236:THR:HG22	1:H:237:SER:N	2.24	0.52
1:K:204:MSE:HE3	1:K:207:VAL:HB	1.91	0.52
1:L:171:VAL:HG22	1:L:186:GLN:HG3	1.91	0.52
1:A:91:MSE:HE2	1:A:91:MSE:HA	1.92	0.52
1:E:167:MSE:HE1	1:E:185:ASP:CB	2.40	0.52
1:F:136:LEU:HD12	1:F:137:TRP:N	2.25	0.52
1:L:280:GLN:HE21	1:L:280:GLN:CA	2.23	0.52
1:E:140:ASP:OD1	1:E:142:SER:OG	2.27	0.52
1:H:168:ILE:CD1	1:H:231:ALA:HB2	2.40	0.52
1:D:136:LEU:HD12	1:D:137:TRP:N	2.25	0.51
1:F:175:LEU:HA	1:F:180:GLU:O	2.10	0.51
1:J:215:GLN:HE21	1:L:275:ILE:HD13	1.74	0.51
1:G:150:GLN:NE2	1:G:189:LEU:H	2.04	0.51
1:F:164:PRO:HA	1:F:167:MSE:HE2	1.92	0.51
1:E:274:THR:OG1	1:G:213:GLN:NE2	2.43	0.51
1:I:178:LYS:O	1:I:179:ASN:C	2.49	0.51
1:D:124:VAL:HG22	1:D:128:ILE:CD1	2.40	0.51
1:J:231:ALA:HB1	1:J:239:GLN:NE2	2.26	0.51
1:I:41:ASN:HA	1:I:44:GLU:HB2	1.93	0.51
1:J:159:GLN:HE22	1:J:169:GLY:H	1.57	0.51

	io ao pagoini	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:101:LEU:HD22	1:G:103:MSE:SE	2.60	0.51
1:H:89:MSE:HE2	1:H:91:MSE:CE	2.40	0.51
1:I:231:ALA:HA	1:I:241:LEU:HD23	1.93	0.51
1:G:79:ILE:HD13	1:G:89:MSE:CE	2.39	0.51
1:D:150:GLN:NE2	1:D:189:LEU:H	2.07	0.51
1:E:68:THR:CG2	1:E:195:ILE:HG21	2.40	0.50
1:D:92:PRO:HB3	1:D:98:VAL:HG23	1.92	0.50
1:G:152:TYR:OH	1:G:194:GLN:NE2	2.44	0.50
1:D:89:MSE:CE	1:D:101:LEU:CD2	2.89	0.50
1:D:163:ASN:HB2	1:D:164:PRO:HD2	1.93	0.50
1:E:274:THR:CG2	1:G:209:LEU:HD21	2.42	0.50
1:G:91:MSE:HE2	1:G:91:MSE:HA	1.93	0.50
1:L:68:THR:HG22	1:L:240:VAL:HG22	1.94	0.50
1:J:120:ALA:O	1:J:124:VAL:HG23	2.12	0.50
1:E:167:MSE:HE1	1:E:185:ASP:HB3	1.94	0.50
1:C:235:LEU:O	1:C:237:SER:N	2.45	0.49
1:L:41:ASN:HA	1:L:44:GLU:HB2	1.93	0.49
1:B:91:MSE:HE2	1:B:91:MSE:HA	1.95	0.49
1:E:68:THR:HG23	1:E:195:ILE:CG2	2.42	0.49
1:E:261:THR:HG22	1:E:261:THR:O	2.11	0.49
1:J:112:SER:OG	1:J:113:LYS:N	2.45	0.49
1:J:163:ASN:H	1:J:163:ASN:ND2	2.10	0.49
1:C:136:LEU:HD12	1:C:137:TRP:N	2.27	0.49
1:L:175:LEU:CD2	1:L:181:VAL:HG22	2.42	0.49
1:K:136:LEU:HD12	1:K:136:LEU:C	2.32	0.49
1:B:231:ALA:HA	1:B:241:LEU:HD23	1.95	0.49
1:J:163:ASN:HD21	1:J:166:ASN:ND2	2.11	0.49
1:L:230:VAL:HG13	1:L:244:VAL:HG21	1.95	0.49
1:H:231:ALA:HA	1:H:241:LEU:HD23	1.95	0.49
1:L:134:TYR:CD2	1:L:171:VAL:HG23	2.48	0.49
1:L:262:VAL:HG12	1:L:263:GLN:N	2.27	0.49
1:B:36:TYR:HB2	1:D:212:TYR:CE1	2.48	0.48
1:C:43:VAL:O	1:C:47:MSE:HG3	2.12	0.48
1:C:66:ARG:C	1:C:67:ILE:HD13	2.32	0.48
1:D:67:ILE:HD12	1:D:194:GLN:HG2	1.93	0.48
1:A:136:LEU:HD12	1:A:137:TRP:H	1.78	0.48
1:E:94:ASP:OD1	1:E:94:ASP:N	2.47	0.48
1:H:134:TYR:CE2	1:H:171:VAL:HG23	2.48	0.48
1:H:150:GLN:NE2	1:H:189:LEU:H	2.09	0.48
1:B:261:THR:HG22	1:B:261:THR:O	2.14	0.48
1:I:136:LEU:HD12	1:I:137:TRP:H	1.76	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:175:LEU:HD22	1:D:181:VAL:HG22	1.94	0.48
1:E:159:GLN:HE22	1:E:169:GLY:H	1.61	0.48
1:H:136:LEU:HD12	1:H:137:TRP:N	2.29	0.48
1:C:54:TYR:CE2	1:C:204:MSE:HE1	2.49	0.48
1:E:89:MSE:CE	1:E:91:MSE:HE1	2.43	0.48
1:A:163:ASN:HD21	1:A:166:ASN:ND2	2.12	0.48
1:E:40:LYS:HE2	1:E:205:ASP:OD1	2.13	0.48
1:H:121:GLN:HE22	1:H:135:LYS:HA	1.79	0.48
1:K:157:ILE:O	1:K:159:GLN:HG2	2.14	0.48
1:A:163:ASN:C	1:A:163:ASN:HD22	2.17	0.48
1:A:231:ALA:HA	1:A:241:LEU:HD23	1.96	0.48
1:H:230:VAL:HG13	1:H:244:VAL:HG11	1.94	0.48
1:B:171:VAL:HG22	1:B:186:GLN:HG3	1.96	0.48
1:C:175:LEU:HD23	1:C:181:VAL:HA	1.96	0.48
1:C:216:LEU:CD2	1:C:249:VAL:HG21	2.44	0.48
1:D:124:VAL:HG22	1:D:128:ILE:HD12	1.95	0.48
1:K:164:PRO:HB3	1:K:167:MSE:HE2	1.96	0.48
1:F:163:ASN:H	1:F:163:ASN:ND2	2.11	0.47
1:D:66:ARG:C	1:D:67:ILE:HD13	2.35	0.47
1:D:163:ASN:HD22	1:D:163:ASN:C	2.18	0.47
1:D:87:PRO:N	1:D:103:MSE:HE3	2.29	0.47
1:D:157:ILE:O	1:D:159:GLN:HG3	2.14	0.47
1:D:109:ILE:HD12	1:D:123:LEU:HD11	1.96	0.47
1:C:216:LEU:HD21	1:C:249:VAL:HG21	1.95	0.47
1:E:157:ILE:O	1:E:159:GLN:HG3	2.14	0.47
1:G:89:MSE:HE2	1:G:91:MSE:CE	2.45	0.47
1:E:57:LEU:HD11	1:E:207:VAL:HG21	1.96	0.47
1:H:79:ILE:HG23	1:H:103:MSE:CE	2.38	0.47
1:E:134:TYR:CE2	1:E:171:VAL:HG23	2.50	0.47
1:J:47:MSE:HE1	1:J:207:VAL:CG1	2.44	0.47
1:J:150:GLN:NE2	1:J:189:LEU:H	2.09	0.47
1:A:201:ILE:HG22	1:A:272:GLU:HB2	1.97	0.47
1:I:89:MSE:HE2	1:I:91:MSE:HE1	1.97	0.47
1:A:178:LYS:O	1:A:179:ASN:C	2.53	0.47
1:B:89:MSE:CE	1:B:91:MSE:HE1	2.41	0.47
1:B:134:TYR:CE2	1:B:171:VAL:HG23	2.51	0.46
1:C:272:GLU:O	1:C:274:THR:HG23	2.15	0.46
1:G:79:ILE:HG12	1:G:101:LEU:HD21	1.98	0.46
1:B:163:ASN:HD22	1:B:163:ASN:H	1.61	0.46
1:F:109:ILE:HG21	1:F:123:LEU:HD13	1.96	0.46
1:G:204:MSE:HE2	1:G:208:GLU:CG	2.44	0.46

	A h o	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:B:191:THR:HG22	1:B:191:THR:O	2.16	0.46	
1:D:89:MSE:HE2	1:D:91:MSE:HE1	1.97	0.46	
1:H:117:GLU:HB3	1:H:136:LEU:HD23	1.97	0.46	
1:E:178:LYS:O	1:E:179:ASN:C	2.55	0.46	
1:K:204:MSE:HE3	1:K:204:MSE:O	2.16	0.46	
1:F:231:ALA:HA	1:F:241:LEU:HD23	1.98	0.45	
1:F:249:VAL:HG12	1:F:250:GLU:N	2.31	0.45	
1:J:79:ILE:CG2	1:J:103:MSE:HE1	2.46	0.45	
1:A:164:PRO:HB3	1:A:167:MSE:HE2	1.98	0.45	
1:C:157:ILE:O	1:C:159:GLN:HG3	2.16	0.45	
1:K:201:ILE:HG22	1:K:272:GLU:HG3	1.97	0.45	
1:F:136:LEU:HD12	1:F:137:TRP:H	1.81	0.45	
1:H:57:LEU:HD11	1:H:207:VAL:HG21	1.98	0.45	
1:A:175:LEU:HD22	1:A:181:VAL:HG22	1.99	0.45	
1:A:275:ILE:HD11	1:C:210:LEU:HD23	1.98	0.45	
1:F:163:ASN:HD22	1:F:163:ASN:N	2.09	0.45	
1:D:234:PRO:O	1:D:235:LEU:HD23	2.17	0.45	
1:E:150:GLN:HE22	1:E:189:LEU:N	2.07	0.45	
1:G:201:ILE:HG23	1:G:270:ALA:O	2.16	0.45	
1:C:79:ILE:HD13	1:C:89:MSE:CE	2.46	0.45	
1:C:136:LEU:HD12	1:C:137:TRP:H	1.82	0.45	
1:I:116:ILE:HG23	1:I:117:GLU:N	2.31	0.45	
1:I:233:TYR:HE1	1:I:235:LEU:HD12	1.81	0.45	
1:B:150:GLN:NE2	1:B:189:LEU:H	2.07	0.45	
1:D:134:TYR:CE2	1:D:171:VAL:HG23	2.52	0.45	
1:K:41:ASN:HA	1:K:44:GLU:HB2	1.99	0.45	
1:G:140:ASP:OD1	1:G:142:SER:OG	2.30	0.44	
1:H:163:ASN:N	1:H:163:ASN:ND2	2.65	0.44	
1:G:123:LEU:O	1:G:123:LEU:HD12	2.18	0.44	
1:C:67:ILE:HD13	1:C:67:ILE:N	2.32	0.44	
1:L:89:MSE:CE	1:L:101:LEU:CD2	2.96	0.44	
1:L:117:GLU:O	1:L:120:ALA:HB3	2.18	0.44	
1:B:212:TYR:CE1	1:D:36:TYR:HA	2.52	0.44	
1:I:68:THR:HG23	1:I:195:ILE:CG2	2.46	0.44	
1:I:274:THR:HB	1:K:209:LEU:HD21	1.99	0.44	
1:K:216:LEU:HD22	1:K:249:VAL:HG21	2.00	0.44	
1:A:233:TYR:HH	1:C:233:TYR:HH	1.57	0.44	
1:A:140:ASP:OD1	1:A:142:SER:OG	2.32	0.44	
1:B:54:TYR:CZ	1:B:204:MSE:HE1	2.52	0.44	
1:H:54:TYR:HB2	1:H:57:LEU:HD12	1.98	0.44	
1:E:204:MSE:HE2	1:E:208:GLU:HG3	2.00	0.44	

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:116:ILE:HD12	1:A:179:ASN:ND2	2.33	0.43
1:J:87:PRO:CB	1:J:91:MSE:HE1	2.48	0.43
1:J:198:GLU:OE1	1:J:271:LEU:HD22	2.18	0.43
1:K:89:MSE:HE3	1:K:101:LEU:HD23	2.00	0.43
1:E:160:LYS:HZ3	1:K:176:ASN:ND2	2.17	0.43
1:F:91:MSE:HE2	1:F:91:MSE:HA	2.00	0.43
1:J:163:ASN:HD22	1:J:163:ASN:N	2.06	0.43
1:B:102:LYS:HG3	1:B:185:ASP:OD1	2.19	0.43
1:G:43:VAL:O	1:G:47:MSE:HG3	2.18	0.43
1:I:89:MSE:HE3	1:I:101:LEU:CD2	2.48	0.43
1:B:230:VAL:HG13	1:B:244:VAL:HG11	1.99	0.43
1:C:163:ASN:N	1:C:163:ASN:HD22	2.14	0.43
1:G:157:ILE:O	1:G:159:GLN:HG2	2.19	0.43
1:J:274:THR:HB	1:L:209:LEU:HD21	2.01	0.43
1:C:272:GLU:O	1:C:274:THR:N	2.52	0.43
1:D:61:ALA:HA	1:D:202:THR:HG22	2.01	0.43
1:D:163:ASN:HB2	1:D:164:PRO:CD	2.48	0.43
1:A:102:LYS:HG3	1:A:185:ASP:OD1	2.18	0.43
1:E:89:MSE:HE3	1:E:101:LEU:HD23	2.00	0.43
1:E:175:LEU:HD22	1:E:181:VAL:HG22	2.01	0.43
1:J:150:GLN:HE22	1:J:188:THR:HA	1.83	0.43
1:F:102:LYS:HG3	1:F:185:ASP:OD1	2.19	0.43
1:I:109:ILE:HD12	1:I:123:LEU:HD11	2.00	0.43
1:L:235:LEU:O	1:L:238:THR:N	2.48	0.42
1:J:79:ILE:HG23	1:J:103:MSE:CE	2.48	0.42
1:J:275:ILE:HD11	1:L:210:LEU:HD23	2.01	0.42
1:C:89:MSE:O	1:C:91:MSE:HE3	2.19	0.42
1:D:67:ILE:HD13	1:D:67:ILE:N	2.34	0.42
1:G:67:ILE:HD13	1:G:67:ILE:N	2.34	0.42
1:G:175:LEU:HD23	1:G:181:VAL:HG22	2.01	0.42
1:J:253:LYS:C	1:J:259:LYS:HA	2.40	0.42
1:B:178:LYS:O	1:B:179:ASN:C	2.57	0.42
1:D:159:GLN:HE22	1:D:169:GLY:H	1.67	0.42
1:D:136:LEU:HD12	1:D:136:LEU:C	2.40	0.42
1:E:47:MSE:HE3	1:E:52:ILE:HG21	2.02	0.42
1:I:113:LYS:NZ	1:I:178:LYS:HE3	2.35	0.42
1:J:109:ILE:HD13	1:J:123:LEU:HD13	2.01	0.42
1:A:124:VAL:O	1:A:128:ILE:HB	2.20	0.42
1:B:67:ILE:HG13	1:B:241:LEU:HD12	2.01	0.41
1:D:94:ASP:OD1	1:D:94:ASP:N	2.52	0.41
1:E:142:SER:CB	1:K:164:PRO:HG2	2.50	0.41

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:J:87:PRO:HB2	1:J:91:MSE:HE1	2.01	0.41	
1:H:174:HIS:C	1:H:175:LEU:HD23	2.41	0.41	
1:I:89:MSE:HE2	1:I:91:MSE:HE2	2.01	0.41	
1:I:117:GLU:HG2	1:I:136:LEU:HD21	2.01	0.41	
1:L:89:MSE:HE2	1:L:91:MSE:CE	2.50	0.41	
1:L:275:ILE:C	1:L:276:LEU:HD23	2.41	0.41	
1:C:54:TYR:CD2	1:C:204:MSE:HE1	2.55	0.41	
1:D:65:TYR:HB2	1:D:67:ILE:HD11	2.02	0.41	
1:F:262:VAL:HG12	1:F:263:GLN:N	2.36	0.41	
1:G:123:LEU:HD12	1:G:123:LEU:C	2.41	0.41	
1:A:136:LEU:HD12	1:A:137:TRP:N	2.35	0.41	
1:L:121:GLN:HE22	1:L:135:LYS:HA	1.84	0.41	
1:B:89:MSE:HE2	1:B:91:MSE:HE2	2.01	0.41	
1:F:66:ARG:HG3	1:F:271:LEU:HD11	2.01	0.41	
1:D:230:VAL:HG13	1:D:244:VAL:CG1	2.50	0.41	
1:D:230:VAL:CG1	1:D:244:VAL:HG11	2.48	0.41	
1:I:254:LYS:HA	1:I:259:LYS:HA	2.03	0.41	
1:K:230:VAL:HG13	1:K:244:VAL:HG11	2.01	0.41	
1:A:159:GLN:NE2	1:A:169:GLY:H	2.18	0.41	
1:A:168:ILE:CD1	1:A:231:ALA:HB2	2.51	0.41	
1:I:204:MSE:HE2	1:I:208:GLU:HG3	2.03	0.41	
1:G:175:LEU:CD2	1:G:181:VAL:HG22	2.50	0.41	
1:I:36:TYR:HB3	1:K:212:TYR:O	2.20	0.41	
1:I:271:LEU:HD23	1:I:271:LEU:HA	1.96	0.41	
1:J:175:LEU:HD21	1:J:181:VAL:HG22	1.99	0.41	
1:K:134:TYR:CD2	1:K:171:VAL:HG23	2.56	0.41	
1:B:262:VAL:HG12	1:B:263:GLN:N	2.36	0.41	
1:D:72:LYS:HD3	1:D:190:GLU:OE2	2.21	0.41	
1:G:89:MSE:HE2	1:G:91:MSE:HE2	2.02	0.41	
1:K:128:ILE:HD13	1:K:171:VAL:HG11	2.03	0.41	
1:E:250:GLU:HB2	1:E:262:VAL:O	2.21	0.41	
1:H:249:VAL:HG12	1:H:250:GLU:N	2.36	0.41	
1:I:150:GLN:HE22	1:I:189:LEU:N	2.04	0.41	
1:K:159:GLN:HE22	1:K:168:ILE:H	1.69	0.41	
1:A:134:TYR:CE2	1:A:171:VAL:HG23	2.57	0.40	
1:F:162:ASP:N	1:F:162:ASP:OD1	2.55	0.40	
1:F:168:ILE:CD1	1:F:231:ALA:HB2	2.51	0.40	
1:L:134:TYR:CE2	1:L:171:VAL:HG23	2.56	0.40	
1:F:210:LEU:HD13	1:F:216:LEU:HD21	2.04	0.40	
1:F:276:LEU:N	1:F:276:LEU:HD23	2.36	0.40	
1:J:41:ASN:HA	1:J:44:GLU:HB2	2.03	0.40	

J	1.5		
Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:65:TYR:CZ	1:F:194:GLN:NE2	2.90	0.40
1:J:150:GLN:HE22	1:J:189:LEU:N	2.13	0.40
1:D:235:LEU:O	1:D:236:THR:C	2.57	0.40
1:D:262:VAL:HG12	1:D:263:GLN:N	2.36	0.40
1:I:157:ILE:O	1:I:159:GLN:HG3	2.22	0.40
1:L:66:ARG:O	1:L:67:ILE:HD13	2.21	0.40
1:J:231:ALA:CA	1:J:241:LEU:HD23	2.46	0.40
1:L:175:LEU:HD22	1:L:181:VAL:HG22	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	237/254~(93%)	224 (94%)	12 (5%)	1 (0%)	34	66
1	В	235/254~(92%)	219~(93%)	15 (6%)	1 (0%)	34	66
1	С	235/254~(92%)	220 (94%)	13 (6%)	2 (1%)	17	48
1	D	237/254~(93%)	221 (93%)	15~(6%)	1 (0%)	34	66
1	Е	233/254~(92%)	215 (92%)	16 (7%)	2(1%)	17	48
1	F	236/254~(93%)	219~(93%)	16 (7%)	1 (0%)	34	66
1	G	233/254~(92%)	217~(93%)	16 (7%)	0	100	100
1	Н	237/254~(93%)	223 (94%)	12 (5%)	2(1%)	19	51
1	Ι	242/254~(95%)	223 (92%)	15 (6%)	4 (2%)	9	31
1	J	234/254~(92%)	221 (94%)	13 (6%)	0	100	100
1	Κ	231/254~(91%)	218 (94%)	13 (6%)	0	100	100
1	L	235/254~(92%)	222 (94%)	12 (5%)	1 (0%)	34	66
All	All	2825/3048~(93%)	2642 (94%)	168 (6%)	15 (0%)	29	61

Mol	Chain	Res	Type
1	А	179	ASN
1	С	236	THR
1	С	273	SER
1	Ι	233	TYR
1	В	179	ASN
1	D	236	THR
1	F	179	ASN
1	Ι	235	LEU
1	Н	236	THR
1	L	273	SER
1	Ι	256	ASN
1	Е	163	ASN
1	Н	274	THR
1	Ι	162	ASP
1	Е	169	GLY

All (15) Ramachandran outliers are listed below:

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	221/224~(99%)	203~(92%)	18 (8%)	11	33
1	В	219/224~(98%)	206 (94%)	13 (6%)	19	49
1	С	219/224~(98%)	207~(94%)	12 (6%)	21	53
1	D	221/224~(99%)	207~(94%)	14 (6%)	18	46
1	Е	217/224~(97%)	198 (91%)	19 (9%)	10	30
1	F	220/224~(98%)	204~(93%)	16 (7%)	14	38
1	G	217/224~(97%)	202~(93%)	15 (7%)	15	41
1	Н	221/224~(99%)	209~(95%)	12~(5%)	22	54
1	Ι	223/224~(100%)	207~(93%)	16 (7%)	14	39
1	J	218/224~(97%)	205~(94%)	13 (6%)	19	49
1	K	215/224~(96%)	202 (94%)	13~(6%)	19	49
1	L	219/224~(98%)	204 (93%)	15 (7%)	16	42

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	2630/2688~(98%)	2454~(93%)	176 (7%)	16 43

All (176) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	37	GLU
1	А	41	ASN
1	А	44	GLU
1	А	66	ARG
1	А	77	GLU
1	А	83	LYS
1	А	89	MSE
1	А	113	LYS
1	А	119	ASP
1	А	129	GLN
1	А	163	ASN
1	А	168	ILE
1	А	175	LEU
1	А	197	LYS
1	А	232	GLN
1	А	235	LEU
1	А	246	ARG
1	А	274	THR
1	В	37	GLU
1	В	48	LYS
1	В	89	MSE
1	В	113	LYS
1	В	163	ASN
1	В	165	SER
1	В	167	MSE
1	В	175	LEU
1	В	197	LYS
1	В	220	SER
1	В	236	THR
1	В	246	ARG
1	B	273	SER
1	C	53	THR
1	C	54	TYR
1	С	67	ILE
1	C	89	MSE
1	C	103	MSE
1	С	121	GLN

Mol	Chain	Res	Type
1	С	135	LYS
1	С	163	ASN
1	С	199	SER
1	С	262	VAL
1	С	267	THR
1	С	269	ASN
1	D	83	LYS
1	D	89	MSE
1	D	94	ASP
1	D	103	MSE
1	D	113	LYS
1	D	115	ASP
1	D	136	LEU
1	D	163	ASN
1	D	193	LYS
1	D	223	LYS
1	D	232	GLN
1	D	246	ARG
1	D	274	THR
1	D	276	LEU
1	Е	37	GLU
1	Е	41	ASN
1	Е	83	LYS
1	Е	89	MSE
1	Е	94	ASP
1	Е	103	MSE
1	Е	113	LYS
1	Е	136	LEU
1	Е	163	ASN
1	Е	175	LEU
1	E	197	LYS
1	Е	209	LEU
1	Е	232	GLN
1	Ε	235	LEU
1	Е	236	THR
1	Е	246	ARG
1	Е	253	LYS
1	Е	262	VAL
1	Е	274	THR
1	F	52	ILE
1	F	65	TYR
1	F	89	MSE

Mol	Chain	Res	Type
1	F	94	ASP
1	F	103	MSE
1	F	113	LYS
1	F	162	ASP
1	F	163	ASN
1	F	165	SER
1	F	175	LEU
1	F	193	LYS
1	F	230	VAL
1	F	254	LYS
1	F	273	SER
1	F	276	LEU
1	F	277	ASP
1	G	41	ASN
1	G	54	TYR
1	G	89	MSE
1	G	100	SER
1	G	115	ASP
1	G	123	LEU
1	G	136	LEU
1	G	159	GLN
1	G	163	ASN
1	G	193	LYS
1	G	232	GLN
1	G	235	LEU
1	G	246	ARG
1	G	252	GLU
1	G	269	ASN
1	Н	45	HIS
1	Н	54	TYR
1	Н	89	MSE
1	Н	103	MSE
1	Н	113	LYS
1	Н	115	ASP
1	Н	163	ASN
1	Н	193	LYS
1	Н	204	MSE
1	Н	246	ARG
1	Н	260	LYS
1	Н	274	THR
1	I	44	GLU
1	Ι	65	TYR

Mol	Chain	Res	Type
1	Ι	83	LYS
1	Ι	89	MSE
1	Ι	97	LYS
1	Ι	113	LYS
1	Ι	119	ASP
1	Ι	129	GLN
1	Ι	163	ASN
1	Ι	168	ILE
1	Ι	175	LEU
1	Ι	220	SER
1	Ι	235	LEU
1	Ι	236	THR
1	Ι	246	ARG
1	Ι	256	ASN
1	J	41	ASN
1	J	44	GLU
1	J	76	LYS
1	J	83	LYS
1	J	89	MSE
1	J	100	SER
1	J	103	MSE
1	J	113	LYS
1	J	116	ILE
1	J	163	ASN
1	J	193	LYS
1	J	232	GLN
1	J	269	ASN
1	Κ	44	GLU
1	Κ	45	HIS
1	Κ	54	TYR
1	K	89	MSE
1	Κ	95	ASP
1	Κ	100	SER
1	K	136	LEU
1	K	159	GLN
1	Κ	162	ASP
1	K	163	ASN
1	K	176	ASN
1	Κ	223	LYS
1	K	274	THR
1	L	42	ASP
1	L	45	HIS

Mol	Chain	Res	Type
1	L	55	GLU
1	L	89	MSE
1	L	94	ASP
1	L	103	MSE
1	L	113	LYS
1	L	115	ASP
1	L	163	ASN
1	L	193	LYS
1	L	199	SER
1	L	217	LYS
1	L	246	ARG
1	L	278	THR
1	L	280	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (82) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	71	GLN
1	А	121	GLN
1	А	150	GLN
1	А	159	GLN
1	А	163	ASN
1	А	166	ASN
1	А	214	ASN
1	А	232	GLN
1	В	107	ASN
1	В	150	GLN
1	В	159	GLN
1	В	163	ASN
1	В	170	GLN
1	В	232	GLN
1	В	269	ASN
1	С	71	GLN
1	С	150	GLN
1	С	159	GLN
1	С	194	GLN
1	С	232	GLN
1	С	269	ASN
1	D	71	GLN
1	D	129	GLN
1	D	150	GLN
1	D	159	GLN

Mol	Chain	Res	Type
1	D	163	ASN
1	D	166	ASN
1	D	194	GLN
1	D	232	GLN
1	D	269	ASN
1	Е	150	GLN
1	Е	159	GLN
1	Е	232	GLN
1	F	71	GLN
1	F	150	GLN
1	F	159	GLN
1	F	163	ASN
1	F	196	GLN
1	F	213	GLN
1	F	232	GLN
1	G	71	GLN
1	G	129	GLN
1	G	150	GLN
1	G	159	GLN
1	G	163	ASN
1	G	194	GLN
1	G	213	GLN
1	G	232	GLN
1	G	239	GLN
1	G	269	ASN
1	Н	71	GLN
1	Н	121	GLN
1	Н	150	GLN
1	Н	159	GLN
1	Н	163	ASN
1	Н	214	ASN
1	Н	269	ASN
1	Ι	71	GLN
1	I	129	GLN
1	Ι	150	GLN
1	Ι	159	GLN
1	Ι	163	ASN
1	Ι	194	GLN
1	Ι	232	GLN
1	J	150	GLN
1	J	159	GLN
1	J	163	ASN

Mol	Chain	Res	Type
1	J	215	GLN
1	J	232	GLN
1	J	239	GLN
1	J	269	ASN
1	Κ	71	GLN
1	Κ	150	GLN
1	Κ	159	GLN
1	Κ	176	ASN
1	Κ	232	GLN
1	Κ	269	ASN
1	L	150	GLN
1	L	159	GLN
1	L	163	ASN
1	L	232	GLN
1	L	280	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

