

wwPDB EM Validation Summary Report (i)

Dec 19, 2022 - 02:35 am GMT

PDB ID	:	7NVM
EMDB ID	:	EMD-12606
Title	:	Human TRiC complex in closed state with nanobody Nb18, actin and PhLP2A
		bound
Authors	:	Kelly, J.J.; Chi, G.; Bulawa, C.; Paavilainen, V.O.; Bountra, C.; Huiskonen,
		J.T.; Yue, W.; Structural Genomics Consortium (SGC)
Deposited on	:	2021-03-15
Resolution	:	3.10 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${ m EM} { m structures} \ (\#{ m Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	556	96%	••
1	a	556	95%	• •
2	В	535	97%	•••
2	b	535	97%	•••
3	D	539	96%	••
3	d	539	96%	·
4	Е	541	98%	
4	е	541	99%	•
5	G	545	96%	

Mol	Chain	Length	Quality of chain	
5	g	545	<u>5%</u> 98%	
6	Н	543	96%	• •
6	h	543	96%	• •
7	Ν	129	92%	8%
7	n	129	92%	8%
8	Q	548	97%	••
8	q	548	97%	•
9	Z	531	98%	
9	Z	531	99%	
10	K	375	61%	15%
11	Р	239	71%	21%

Continued from previous page...

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 71008 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called T-complex protein 1 subunit alpha.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	536	Total 4069	C 2548	N 711	O 787	S 23	0	0
1	a	532	Total 4041	C 2533	N 707	0 778	S 23	0	0

• Molecule 2 is a protein called T-complex protein 1 subunit beta.

Mol	Chain	Residues		At		AltConf	Trace		
2	В	526	Total 3952	C 2473	N 696	0 764	S 19	0	0
2	b	525	Total 3943	C 2467	N 694	O 763	S 19	0	0

• Molecule 3 is a protein called T-complex protein 1 subunit delta.

Mol	Chain	Residues		At		AltConf	Trace		
3 D	520	Total	С	Ν	Ο	\mathbf{S}	0	0	
	D	520	3923	2453	683	764	23	0	0
2	d	520	Total	С	Ν	Ο	\mathbf{S}	0	0
3	u	520	3917	2450	680	764	23	0	U

• Molecule 4 is a protein called T-complex protein 1 subunit epsilon.

Mol	Chain	Residues		At		AltConf	Trace		
4	Е	535	Total 4132	C 2590	N 719	O 792	S 31	1	0
4	е	540	Total 4169	C 2610	N 724	0 804	S 31	1	0

• Molecule 5 is a protein called T-complex protein 1 subunit gamma.

Mol	Chain	Residues		At	oms		AltConf	Trace
5 G	526	Total	С	Ν	0	\mathbf{S}	0	0
	G	520	4089	2548	726	785	30	0
5 g	538	Total	С	Ν	0	S	0	0
	g	000	4169	2590	740	809	30	0

• Molecule 6 is a protein called T-complex protein 1 subunit eta.

Mol	Chain	Residues		At		AltConf	Trace		
6	Ц	528	Total	С	Ν	0	\mathbf{S}	0	0
0 11	528	4054	2561	699	769	25	0	0	
6	h	525	Total	С	Ν	0	S	0	0
0	11	n 525	4032	2548	696	763	25	0	U

• Molecule 7 is a protein called Nanobody Nb18.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	Ν	110	Total	С	Ν	0	S	0	0
	11	115	924	570	169	181	4	0	0
7	n	110	Total	С	Ν	0	S	0	0
1	11	119	924	570	169	181	4	0	0

• Molecule 8 is a protein called T-complex protein 1 subunit theta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
8	0	538	Total	С	Ν	0	\mathbf{S}	0	0
0	Q	000	4086	2579	696	784	27	0	0
8	a	522	Total	С	Ν	0	S	0	0
0	Ч	000	4053	2558	690	778	27	0	0

• Molecule 9 is a protein called T-complex protein 1 subunit zeta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
0	9 Z	525	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
9			4022	2528	704	769	21		0
0	9 z	597	Total	С	Ν	0	\mathbf{S}	0	0
9		Z	027	4033	2534	706	772	21	0

• Molecule 10 is a protein called Actin, cytoplasmic 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	K	317	Total 2459	C 1563	N 409	O 469	S 18	0	0

• Molecule 11 is a protein called Phosducin-like protein 3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
11	Р	190	Total 1486	C 955	N 239	0 287	${ m S}{ m 5}$	0	0

• Molecule 12 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
19	Λ	1	Total	С	Ν	0	Р	0
	A	1	27	10	5	10	2	0
10	D	1	Total	С	Ν	0	Р	0
	12 D	1	27	10	5	10	2	0
10	Л	1	Total	С	Ν	0	Р	0
	D	1	27	10	5	10	2	0
19	F	1	Total	С	Ν	Ο	Р	0
12	Ľ	1	27	10	5	10	2	0
19	C	1	Total	С	Ν	0	Р	0
12	G	T	27	10	5	10	2	0
19	н	1	Total	С	Ν	0	Р	0
12	11	1	27	10	5	10	2	0
19	0	1	Total	С	Ν	Ο	Р	0
12	Q	1	27	10	5	10	2	0
19	Z	1	Total	Ċ	N	Ō	Р	0
12		1	27	10	5	10	2	0
19	9	1	Total	\mathbf{C}	Ν	Ο	Р	0
	a	1	27	10	5	10	2	U

Continued from previous page...

Mol	Chain	Residues		Ate	oms			AltConf	
10	h	1	Total	С	Ν	0	Р	0	
12	D	L	27	10	5	10	2	0	
10 1	1	Total	С	Ν	0	Р	0		
12	u	L	27	10	5	10	2	0	
10	0	1	Total	С	Ν	0	Р	0	
12	е	e	e I	27	10	5	10	2	0
10	12 g	1	Total	С	Ν	0	Р	0	
12		L	27	10	5	10	2	0	
19	h	1	Total	С	Ν	Ο	Р	0	
12	11	T	27	10	5	10	2	0	
19	a	1	Total	С	Ν	0	Р	0	
12	q	L	27	10	5	10	2	0	
10	7	1	Total	С	Ν	0	Р	0	
12	Z	1	27	10	5	10	2	0	

• Molecule 13 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
13	А	1	Total Mg 1 1	0
13	В	1	Total Mg 1 1	0
13	D	1	Total Mg 1 1	0
13	Е	1	Total Mg 1 1	0
13	G	1	Total Mg 1 1	0
13	Н	1	Total Mg 1 1	0
13	Q	1	Total Mg 1 1	0
13	Ζ	1	Total Mg 1 1	0
13	a	1	Total Mg 1 1	0
13	b	1	Total Mg 1 1	0
13	d	1	Total Mg 1 1	0
13	е	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
13	g	1	Total Mg 1 1	0
13	h	1	Total Mg 1 1	0
13	q	1	Total Mg 1 1	0
13	Z	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
14	А	1	Total Al F 4 1 3	0
14	В	1	TotalAlF413	0
14	D	1	TotalAlF413	0
14	Е	1	TotalAlF413	0
14	G	1	Total Al F 4 1 3	0
14	Н	1	TotalAlF413	0
14	Q	1	TotalAlF413	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
14	Ζ	1	Total Al F 4 1 3	0
14	a	1	TotalAlF413	0
14	b	1	TotalAlF413	0
14	d	1	Total Al F 4 1 3	0
14	е	1	TotalAlF413	0
14	g	1	Total Al F 4 1 3	0
14	h	1	Total Al F 4 1 3	0
14	q	1	TotalAlF413	0
14	Z	1	Total Al F 4 1 3	0

• Molecule 15 is water.

Mol	Chain	Residues	Atoms	AltConf
15	А	2	Total O 2 2	0
15	В	2	Total O 2 2	0
15	D	1	Total O 1 1	0
15	Е	1	Total O 1 1	0
15	G	1	Total O 1 1	0
15	Н	1	Total O 1 1	0
15	Q	1	Total O 1 1	0
15	Ζ	1	Total O 1 1	0
15	a	2	Total O 2 2	0
15	b	1	Total O 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
15	d	1	Total O 1 1	0
15	е	1	Total O 1 1	0
15	g	1	Total O 1 1	0
15	h	1	Total O 1 1	0
15	q	1	Total O 1 1	0
15	Z	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: T-complex protein 1 subunit alpha

• Molecule 5: T-complex protein 1	subunit gamma	
Chain g:	98%	
MET MET MET GLY HIS ARG VAL VAL L8 M54 8147 8147 M1235 M235 M235 C366 C366 C366 C366 C366 C366 C366 C3	K367 D393 K527 K529 K529 K529 K529 C530 C530 C531 C531 C533 C533 C533 C533 C533 C533	P 5539 D 541 A 542 C 543 C 543 E 545 E 545 E 545
• Molecule 6: T-complex protein 1	subunit eta	
Chain H:	96%	
M1 P3 F4 F3 F4 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	D147 K148 D188 D251 D402 S404 V405 P428 P428 P428 P428 P428 P428 F126 S255 T460	DS28 DS28 AL2 AL2 AL2 AL4 AL4 AL4 AL4 AL5 GLY AR5 GLY AR5 GLY AR5 AR5 AR5 AR5 HLS
• Molecule 6: T-complex protein 1	subunit eta	
Chain h:	96%	
MI M2 P3 F3 F3 F3 F3 F3 F4 F3 F4 F4 F4 F4 F4 F4 F4 F4 F4 F4 F4 F4 F4	D147 K148 D188 D251 D251 D340 E379 D456 D456 S524 S525 S524 T132	ASL ASP PRO PRO ALA ALA ALA ALA GLY ARG GLY ARG GLY ARG GLY PRO
SIH		
• Molecule 7: Nanobody Nb18		
Chain N:	92%	8%
	52.70	
Q1 Q1 Q2 Q3 Q5 Q5 Q3 Q1 Q13 Q13 Q13 Q15 Q15 C15 C15 C15 C15 C15 C15 C15 C15 C15 C	 S21 S22 C22 G23 G26 G26 G26 G26 G26 G28 G33 G39 G39 G42 G42 G42 G42 G42 G42 K43 	944 R45 E47 147 151 151 151 152 850 955 755 755 755 756 758 758 758 758 758 758 758 758 758 758
G65 F67 F67 T68 T68 168 168 870 877 873 K75 K75 K75 K75 K75 K75 K75 K78 K78 K78 K78 K78 K78 K78 K78 K78 K78	L85 K86 E88 E88 E88 D93 A91 Y94 Y93 Y93 Y93 Y93 K96 K96 W106 W106	ALLA ALLA ALLA ALLA ALLA ALLA ALLA ALLA
• Molecule 7: Nanobody Nb18		
Chain n:	92%	8%
	·	9 L 8 9 9 1 1 8 8 4 9 9 9 9 9 1 9 9 9 1 9 9 9 1 9 9 9 9 9
22122222222222222222222222222222222222		86666666666666666666666666666666666666
F67 T68 169 870 871 871 772 777 777 177 777 884 884 884 884 884 884 884 884	Par Esa Par Par Par Par Par Par Par Par Par Pa	G112 7113 9114 9115 9116 9116 9116 9116 9116 9116 9116 9116 9117 9118 918 <

• Molecule 8: T-complex protein 1 subunit theta

Chain Q:	97%			
MET A2 A2 A2 A3 A1	D333 E485 E485 E485 €333 €5532 F533	K534 P535 S537 S537 C538 K539 C1YS LYS ASP ASP ASP ASP ASN ASP ASN ASP ASP ASN ASP ASP ASP	1	
• Molecule 8: T-complex protein	n 1 subunit theta			
Chain q:	97%		·	
ET 117 1193 1194 1195 1285 1285 1285 1285 1316 1316 1336	1484 1484 1484 1533 1533 1533 1533 1533 1533 1533 153	RAU SER XYS XYS XYS XSP RRP RRP RRP SSP SSP SSP SSP SSP SSP S		
• Molecule 9: T-complex protein	n 1 subunit zeta			
Chain Z:	98%		-	
ET 2 2 2 4 2 5 2 5 2 6 2 7 1 6 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆	367 333 415 415 415 415 415 415 415 415 415 415		
• Molecule 9: T-complex protein	n 1 subunit zeta			
Chain z:	99%			
2 2 1 1 1 1 1 1 1 1 1 1 2 2 8 1 1 1 1 1	337 3387 403 415 415	418 475 401 401 526 526 526 517 517 517 517 517 517 517 517 517 517		
• Molecule 10: Actin, cytoplasm				
Chain K:	80%	• 15%	_	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	**	•• ••••	•••
MET GLUU GLUU GLUU GLUU GLU H12 GLU GLU CL17 CL17 CL17 CL17 CL17 CL17 CL17 CL17	A26 P27 A29 A29 P32 P32 P32 S33 S33 VAL	ARG ARG ARG ARG ARG ARG ALY ALL ACC ALY ACC ALY ACC ACL	552 Y533 G557 G557 D566 A588 C61 S600 S600	L65 L67
K68 Y69 P70 P71 171 H73 G74 175 V76 W78 W78 W78 W78 W78 W78 W78 W78	Y91 N92 E93 E93 L94 R95 A97 P98 E99 E99	H101 E107 E107 A108 P109 P109 P112 P112 A114 A115 H115 H115 E117	K118 M119 1122 Q137 A144 S145 C146 C146	1151 V152 M153 D154 S155
			- 것 집 적 번 전 단 전 전 이 -	1 0 0 4 0 0 N
615 015 015 015 015 116 116 116 116 117 016 117 016 117 016 117 117 117	R17 L17 L18 L18 L18 C18 C18 C18 L18 L18 L18 L18 L18 L18 L18 L18 L18 L	D18 Y18 L18 M19 L18 L18 L18 L18 L19 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	T20 T20 A20 A20 A20 A20 V20 V20 V20	E21 K21 E21 K21 L21 C21
Y218 V219 A220 L221 P222 F223 E224 Q226 M228 M228 A228 A228 A228 A228 A228 A228	LYS SER TYR GLU CLU CLU LEU PRO PRO GLY CLY CLY CLY THR	GLY ASN ASN ASN ANG ANG ANG CYS PHE ANG CU ANG ANG ANG ANG ANG ANG ANG ANG ANG ANG	F250 F267 G268 M269 E270 E270 C272 G273 G273 F1274 H275	E276
여 한 당 김 김 집 김 집 영 사 여 여 여 년 여 여 수수수 수수수수수수수수수 수수수	۲ ۵ ۵ ۵ ۲ ۸ ۵ ۹ ۵ ۵ • • • • • • • • • • • • • •	, g <u>o</u> o -i oi u -a ru a ru a v		이 프 이 이 이 4 미 이 노
127 727 828 828 828 828 728 728 728 729 729 729 729 729 729 729 729 729 729	T29 V29 L29 L29 G30 G30 G30 G30 G30 G30 G30 G30 T30 Y30	P30 630 630 731 831 831 831 831 831 131 731 831	L32 A32 P32 S32 C32 M32 K32 K32 K32 K32 K32 K32 K32 K32 K32 K	133 A33 P33 P33 F33 E33 R33 R33 R33 Y33

• Molecule 11: Phosducin-like protein 3

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	63082	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	43	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.148	Depositor
Minimum map value	-0.075	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	423.99997, 423.99997, 423.99997	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, AF3, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.31	0/4109	0.49	0/5548	
1	a	0.31	0/4081	0.49	0/5510	
2	В	0.30	0/3995	0.49	0/5386	
2	b	0.31	0/3986	0.50	1/5375~(0.0%)	
3	D	0.30	0/3955	0.48	0/5338	
3	d	0.30	0/3949	0.50	0/5331	
4	Е	0.32	0/4183	0.51	0/5635	
4	е	0.33	0/4220	0.51	0/5684	
5	G	0.31	0/4136	0.50	0/5579	
5	g	0.31	0/4215	0.49	0/5683	
6	Н	0.34	0/4111	0.49	0/5550	
6	h	0.33	0/4089	0.48	0/5519	
7	N	0.26	0/941	0.53	0/1270	
7	n	0.28	0/941	0.54	0/1270	
8	Q	0.33	0/4147	0.50	1/5606~(0.0%)	
8	q	0.33	0/4112	0.49	0/5558	
9	Ζ	0.31	0/4069	0.49	0/5486	
9	Z	0.31	0/4080	0.49	0/5501	
10	К	0.29	0/2510	0.48	0/3401	
11	Р	0.26	0/1518	0.44	0/2062	
All	All	0.31	0/71347	0.49	2/96292~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	е	0	2

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	b	316	ASP	CB-CG-OD2	5.20	122.98	118.30
8	Q	480	LEU	CA-CB-CG	5.03	126.88	115.30

All (2) bond angle outliers are listed below:

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
4	е	8	ALA	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	534/556~(96%)	508~(95%)	26~(5%)	0	100	100
1	a	530/556~(95%)	502~(95%)	28~(5%)	0	100	100
2	В	524/535~(98%)	502 (96%)	21 (4%)	1 (0%)	47	79
2	b	523/535~(98%)	503~(96%)	19 (4%)	1 (0%)	47	79
3	D	518/539~(96%)	507~(98%)	11 (2%)	0	100	100
3	d	518/539~(96%)	487 (94%)	31~(6%)	0	100	100
4	Ε	534/541~(99%)	511 (96%)	20 (4%)	3~(1%)	25	59
4	е	539/541~(100%)	516~(96%)	22~(4%)	1 (0%)	47	79
5	G	524/545~(96%)	502 (96%)	22~(4%)	0	100	100
5	g	536/545~(98%)	519 (97%)	17 (3%)	0	100	100
6	Η	526/543~(97%)	506 (96%)	20 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	h	523/543~(96%)	505~(97%)	18 (3%)	0	100	100
7	Ν	117/129~(91%)	110 (94%)	7 (6%)	0	100	100
7	n	117/129~(91%)	111 (95%)	6 (5%)	0	100	100
8	Q	536/548~(98%)	516 (96%)	18 (3%)	2~(0%)	34	69
8	q	531/548~(97%)	512 (96%)	18 (3%)	1 (0%)	47	79
9	Ζ	523/531~(98%)	504 (96%)	18 (3%)	1 (0%)	47	79
9	Z	525/531~(99%)	505 (96%)	19 (4%)	1 (0%)	47	79
10	Κ	309/375~(82%)	275 (89%)	32 (10%)	2(1%)	25	59
11	Р	186/239~(78%)	169 (91%)	17 (9%)	0	100	100
All	All	9173/9548 (96%)	8770 (96%)	390 (4%)	13 (0%)	54	83

Continued from previous page...

5 of 13 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	Ε	10	ASP
9	Ζ	16	ALA
4	е	10	ASP
8	q	530	ALA
9	Z	16	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	tiles
1	А	447/463~(96%)	442 (99%)	5 (1%)	73	89
1	a	444/463~(96%)	441 (99%)	3 (1%)	84	93
2	В	418/427~(98%)	414 (99%)	4 (1%)	76	90
2	b	417/427~(98%)	413 (99%)	4 (1%)	76	90
3	D	442/452~(98%)	439 (99%)	3 (1%)	84	93
3	d	441/452 (98%)	440 (100%)	1 (0%)	93	97
4	Ε	452/456~(99%)	449 (99%)	3 (1%)	84	93

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	е	456/456~(100%)	452 (99%)	4 (1%)	78	91
5	G	456/469~(97%)	453 (99%)	3 (1%)	84	93
5	g	463/469~(99%)	461 (100%)	2 (0%)	91	96
6	Н	435/443~(98%)	430 (99%)	5 (1%)	73	89
6	h	432/443~(98%)	427~(99%)	5 (1%)	71	88
7	Ν	96/105~(91%)	96 (100%)	0	100	100
7	n	96/105~(91%)	96 (100%)	0	100	100
8	Q	442/452~(98%)	440 (100%)	2 (0%)	88	94
8	q	438/452~(97%)	437 (100%)	1 (0%)	93	97
9	Z	437/442~(99%)	436 (100%)	1 (0%)	93	97
9	Z	438/442~(99%)	436 (100%)	2 (0%)	88	94
10	Κ	264/318~(83%)	249 (94%)	15 (6%)	20	52
11	Р	155/215~(72%)	148 (96%)	7 (4%)	27	60
All	All	7669/7951~(96%)	7599~(99%)	70 (1%)	79	91

Continued from previous page...

 $5~{\rm of}~70$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
10	Κ	325	MET
10	Κ	336	LYS
11	Р	96	GLU
8	Q	537	SER
8	Q	369	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 123 such side chains are listed below:

Mol	Chain	Res	Type
9	Ζ	438	GLN
9	Z	17	GLN
2	b	285	HIS
9	Z	8	ASN
10	К	111	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 48 ligands modelled in this entry, 16 are monoatomic - leaving 32 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ $ $ # $ Z$	> 2	
14	AF3	h	603	-	0,3,3	-	-	-			
12	ADP	D	601	13	24,29,29	0.93	1 (4%)	$29,\!45,\!45$	1.55	<mark>13%)</mark>	
14	AF3	Z	603	-	0,3,3	-	-	-			
14	AF3	Е	603	-	0,3,3	-	-	-			
12	ADP	G	601	13	24,29,29	0.94	1 (4%)	$29,\!45,\!45$	1.19 <mark>3 (1</mark>	<mark>10%)</mark>	
14	AF3	b	603	-	0,3,3	-	-	-			
12	ADP	Н	601	13	24,29,29	0.97	1 (4%)	$29,\!45,\!45$	1.37 <mark>3 (1</mark>	<mark>10%)</mark>	
12	ADP	Q	601	13	24,29,29	0.93	1 (4%)	$29,\!45,\!45$	1.39 <mark>3 (</mark> 1	<mark>10%)</mark>	
14	AF3	Z	603	-	0,3,3	-	-	-			
14	AF3	Q	603	-	0,3,3	-	-	-			
12	ADP	q	601	13	24,29,29	0.95	1(4%)	$29,\!45,\!45$	1.41 3 (1	<mark>10%)</mark>	
12	ADP	a	601	13	24,29,29	0.97	1 (4%)	$29,\!45,\!45$	1.40 5 (1	<mark>17%)</mark>	
14	AF3	q	603	-	0,3,3	-	-	-			
14	AF3	a	603	-	0,3,3	-	-	-			
12	ADP	Ζ	601	13	$24,\!29,\!29$	0.93	1(4%)	$29,\!45,\!45$	1.53 <mark>5 (1</mark>	<mark>17%)</mark>	
12	ADP	h	601	13	24,29,29	0.91	1 (4%)	$29,\!45,\!45$	1.33 4 (1	<mark>13%)</mark>	
12	ADP	Е	601	13	24,29,29	0.96	1 (4%)	$29,\!45,\!45$	1.41 6 (2	<mark>20%)</mark>	
14	AF3	g	603	-	0,3,3	-	-	-			
12	ADP	е	601	13	24,29,29	0.93	1 (4%)	29,45,45	1.41 6 (2	<mark>20%)</mark>	
12	ADP	b	601	13	24,29,29	0.92	1 (4%)	$29,\!45,\!45$	1.51 <mark>5 (1</mark>	<mark>17%)</mark>	

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
1VIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
12	ADP	g	601	13	24,29,29	0.94	1 (4%)	29,45,45	1.33	3 (10%)
14	AF3	G	603	-	0,3,3	-	-	-		
14	AF3	d	603	-	0,3,3	-	-	-		
14	AF3	Н	603	-	0,3,3	-	-	-		
14	AF3	е	603	-	0,3,3	-	-	-		
12	ADP	d	601	13	24,29,29	0.95	1 (4%)	29,45,45	1.61	5 (17%)
12	ADP	А	601	13	$24,\!29,\!29$	0.97	1 (4%)	29,45,45	1.44	5 (17%)
14	AF3	В	603	-	0,3,3	-	-	-		
14	AF3	А	603	-	0,3,3	-	-	-		
14	AF3	D	603	-	0,3,3	-	-	-		
12	ADP	В	601	13	$24,\!29,\!29$	0.91	1 (4%)	29,45,45	1.50	5 (17%)
12	ADP	Z	601	13	24,29,29	0.95	1 (4%)	29,45,45	1.53	5 (17%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	ADP	Н	601	13	-	6/12/32/32	0/3/3/3
12	ADP	Q	601	13	-	3/12/32/32	0/3/3/3
12	ADP	D	601	13	-	2/12/32/32	0/3/3/3
12	ADP	b	601	13	-	2/12/32/32	0/3/3/3
12	ADP	G	601	13	-	6/12/32/32	0/3/3/3
12	ADP	a	601	13	-	1/12/32/32	0/3/3/3
12	ADP	d	601	13	-	0/12/32/32	0/3/3/3
12	ADP	g	601	13	-	6/12/32/32	0/3/3/3
12	ADP	А	601	13	-	0/12/32/32	0/3/3/3
12	ADP	q	601	13	-	3/12/32/32	0/3/3/3
12	ADP	Ζ	601	13	-	0/12/32/32	0/3/3/3
12	ADP	h	601	13	-	6/12/32/32	0/3/3/3
12	ADP	е	601	13	-	2/12/32/32	0/3/3/3
12	ADP	Е	601	13	-	3/12/32/32	0/3/3/3
12	ADP	В	601	13	-	2/12/32/32	0/3/3/3
12	ADP	Z	601	13	-	0/12/32/32	0/3/3/3

The worst 5 of 16 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
12	Z	601	ADP	C5-C4	2.40	1.47	1.40
12	Е	601	ADP	C5-C4	2.32	1.47	1.40
12	a	601	ADP	C5-C4	2.31	1.47	1.40
12	g	601	ADP	C5-C4	2.30	1.47	1.40
12	G	601	ADP	C5-C4	2.28	1.47	1.40

The worst 5 of 70 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	Ζ	601	ADP	PA-O3A-PB	-4.32	118.00	132.83
12	Z	601	ADP	PA-O3A-PB	-4.20	118.42	132.83
12	d	601	ADP	PA-O3A-PB	-3.73	120.03	132.83
12	Q	601	ADP	N3-C2-N1	-3.53	123.17	128.68
12	g	601	ADP	PA-O3A-PB	-3.51	120.77	132.83

There are no chirality outliers.

5 of 42 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
12	G	601	ADP	PA-O3A-PB-O3B
12	G	601	ADP	C5'-O5'-PA-O2A
12	Н	601	ADP	PA-O3A-PB-O2B
12	Н	601	ADP	PB-O3A-PA-O5'
12	Н	601	ADP	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12606. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 169

Z Index: 166

6.3.2 Raw map

X Index: 173

Y Index: 212

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$6.5.1 \quad \mathrm{emd_12606_msk_1.map}~\textcircled{i}$

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 321 nm^3 ; this corresponds to an approximate mass of 290 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.10	-	-	
Author-provided FSC curve	3.12	3.63	3.18	
Unmasked-calculated*	3.81	6.89	3.91	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.81 differs from the reported value 3.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12606 and PDB model 7NVM. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.025).

9.4 Atom inclusion (i)

At the recommended contour level, 70% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.025) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6949	0.5290
А	0.7382	0.5380
В	0.7219	0.5310
D	0.7330	0.5420
Е	0.7547	0.5440
G	0.7389	0.5360
Н	0.7797	0.5680
K	0.2582	0.4280
N	0.1696	0.2840
Р	0.1826	0.4180
Q	0.7485	0.5530
Z	0.7352	0.5380
a	0.7466	0.5420
b	0.7289	0.5270
d	0.7340	0.5380
е	0.7381	0.5420
g	0.7282	0.5360
h	0.7747	0.5630
n	0.1529	0.2660
q	0.7667	0.5560
Z	0.7322	0.5320

