

wwPDB EM Validation Summary Report (i)

Dec 19, 2022 - 06:31 am GMT

PDB ID	:	7NSH
EMDB ID	:	EMD-12567
Title	:	$39\mathrm{S}$ mammalian mitochondrial large ribosomal subunit with mtRRF (post) and mtEFG2
Authors	:	Kummer, E.; Schubert, K.; Ban, N.
Deposited on	:	2021-03-07
Resolution	:	3.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	B0	148	• 74%	26%
2	BY	216	94%	• 5%
3	Ba	423	93%	7%
4	B8	188	51%	49%
5	Bb	380	93%	7%
6	Bc	334	88%	12%
7	Bd	206	50%	32%
8	Be	135	• 90%	10%

Mol	Chain	Length	Quality of chain	
9	Bf	142	74%	24%
10	Bg	159	93%	7%
11	Bh	332	87%	13%
12	Bi	306	20%	15%
13	Bi	279	63%	22%
14	Bk	269	33%	
15	Bl	166	• 80%	20%
16	Bm	198	16% 55% 45%	
17	Bn	128	75%	24%
18	Bo	124	78%	22%
19	Bn	112	9%	13%
20	Ba	138	9% 57%	
20	Bt	100	57% · 42%	00/
21	Du Du	205	92% 13%	8%
22	Du	205	8%	26%
23	Bv	222	61% 39	%
24	Bw	433	89%	11%
25	Bx	196	83%	17%
26	CL	198	23% 77%	
26	DL	198	13% 13% • 86%	
26	EL	198	14% 14% 86%	
26	FL	198	14% 14% 86%	
26	GL	198	14% 86%	
26	HL	198	13% 13% 87%	
26	LL	198	35% 35% 65%	
27	B1	256	95%	5%

Mol	Chain	Length	Quality of chain	
28	B9	100	38% 62%	
29	ВА	1571	74%	24% •
30	B2	252	71%	29%
31	B3	161	73%	• 27%
32	B4	126	30% 48%	51%
33	B5	188	● 59%	41%
34	B6	65	5%	20%
35	B7	95	48%	52%
36	BB	73	19%	21% 8%
37	BC	755	92%	7%
38	BD	306	·	. 22%
39	BG	257	6%	2/%
40	BO	251	•	1.20/
41	BE	300	•	22%
42	BE	204	// %	25%
42		294	85%	
43	DI	208	37% 63% 21%	
44	BJ	262	80%	• 19%
45	BK	192	92%	8%
46	BN	178	99%	
47	BO	145	79%	21%
48	BP	296	97%	
49	BR	169	91%	9%
50	BS	180	79%	21%
51	BT	292	76%	24%
52	BU	149	5% 93%	• 6%

Mol	Chain	Length	Quality of chain					
53	BV	209	74%	26%				
54	BW	210	79%	21%				
55	BX	150	13%	•				

2 Entry composition (i)

There are 61 unique types of molecules in this entry. The entry contains 112448 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Mitochondrial ribosomal protein L27.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	B0	110	Total 857	$\begin{array}{c} \mathrm{C} \\ 553 \end{array}$	N 156	0 145	${ m S} { m 3}$	0	0

• Molecule 2 is a protein called uL24m.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	BY	206	Total 1678	C 1056	N 308	O 309	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called Mitochondrial ribosomal protein L37.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	Ba	393	Total 3173	C 2040	N 556	O 565	S 12	0	0

• Molecule 4 is a protein called Mitochondrial ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	B8	95	Total 833	C 539	N 163	0 129	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called Mitochondrial ribosomal protein L38.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Bb	354	Total 2952	C 1876	N 542	O 525	S 9	0	0

• Molecule 6 is a protein called Mitochondrial ribosomal protein L39.

Mol	Chain	Residues		At	AltConf	Trace			
6	Bc	295	Total 2408	C 1541	N 410	0 441	S 16	0	0

• Molecule 7 is a protein called Mitochondrial ribosomal protein L40.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	Bd	140	Total 1177	С 742	N 213	0 221	S 1	0	0

• Molecule 8 is a protein called Mitochondrial ribosomal protein L41.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	Be	122	Total 972	C 628	N 168	0 173	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called mL42.

Mol	Chain	Residues		At	AltConf	Trace			
9	Bf	108	Total 827	C 519	N 154	0 150	$\frac{S}{4}$	0	0

• Molecule 10 is a protein called Mitochondrial ribosomal protein L43.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Bg	148	Total 1167	C 727	N 225	0 212	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called mL44.

Mol	Chain	Residues		Ate	AltConf	Trace			
11	Bh	289	Total 2319	C 1486	N 399	0 426	S 8	0	0

• Molecule 12 is a protein called Mitochondrial ribosomal protein L45.

Mol	Chain	Residues		At	AltConf	Trace			
12	Bi	260	Total 2138	C 1370	N 379	O 379	S 10	0	0

• Molecule 13 is a protein called Mitochondrial ribosomal protein L46.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
13	Bj	217	Total 1775	C 1137	N 311	0 321	S 6	0	0

• Molecule 14 is a protein called 39S ribosomal protein L48, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Bk	155	Total 1246	C 796	N 214	0 231	${f S}{5}$	0	0

• Molecule 15 is a protein called Mrpl34.

Mol	Chain	Residues		At	AltConf	Trace			
15	Bl	133	Total 1097	C 709	N 192	0 194	${S \over 2}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Bl	59	ARG	LYS	conflict	UNP A0A0R4J8D6

• Molecule 16 is a protein called Mitochondrial ribosomal protein L50.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Bm	109	Total 893	C 568	N 160	0 162	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called Mitochondrial ribosomal protein L51.

Mol	Chain	Residues		At	AltConf	Trace			
17	Bn	97	Total 837	C 539	N 166	0 128	$\frac{S}{4}$	0	0

• Molecule 18 is a protein called mL52.

Mol	Chain	Residues		At	AltConf	Trace			
18	Во	97	Total 772	C 481	N 148	0 141	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called mL53.

Mol	Chain	Residues		At	AltConf	Trace			
19	Вр	97	Total 742	C 459	N 143	0 134	S 6	0	0

There are 2 discrepancies between the modelled and reference sequences:

	Residue	Modelled	Actual	Comment	Reference
Bp	12	ALA	SER	conflict	UNP A0A341D604

Chain	Residue	Modelled	Actual	Comment	Reference
Bp	107	SER	GLY	conflict	UNP A0A341D604

• Molecule 20 is a protein called mL54.

Mol	Chain	Residues		At	AltConf	Trace			
20	Bq	80	Total 672	C 431	N 123	0 116	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called Mitochondrial ribosomal protein L57.

Mol	Chain	Residues		At	AltConf	Trace			
21	Bt	94	Total 780	$\begin{array}{c} \mathrm{C} \\ 485 \end{array}$	N 168	O 126	S 1	0	0

• Molecule 22 is a protein called mL62 (ICT1).

Mol	Chain	Residues		At	AltConf	Trace			
22	Bu	151	Total 1198	C 738	N 233	0 222	${ m S}{ m 5}$	0	0

• Molecule 23 is a protein called mL64.

Mol	Chain	Residues		At	AltConf	Trace			
23	Bv	135	Total 1131	C 692	N 223	0 211	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 39S ribosomal protein S30, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
24	Bw	387	Total 3126	C 2011	N 548	O 555	S 12	0	0

• Molecule 25 is a protein called Mitochondrial ribosomal protein S18A.

Mol	Chain	Residues		At	AltConf	Trace			
25	Bx	162	Total 1325	C 845	N 249	0 224	S 7	0	0

• Molecule 26 is a protein called Mitochondrial ribosomal protein L12.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
26	CI	45	Total	С	Ν	0	0	0
20		40	317	203	52	62	0	0
26	ות	27	Total	С	Ν	0	0	0
20		21	213	137	33	43	0	0
26	FI	28	Total	С	Ν	0	0	0
20		20	222	143	35	44	0	0
26	FI	27	Total	С	Ν	0	0	0
20	LL	21	213	137	33	43	0	0
26	CI	27	Total	С	Ν	0	0	0
20	GL	21	213	137	33	43	0	0
26	ш	26	Total	С	Ν	0	0	0
20		20	205	131	32	42	0	0
26	тт	70	Total	С	Ν	0	0	0
20		10	537	346	93	98	0	U

• Molecule 27 is a protein called Mitochondrial ribosomal protein L28.

Mol	Chain	Residues		Ate	AltConf	Trace			
27	B1	244	Total 2036	C 1315	N 363	O 353	${S \atop 5}$	0	0

• Molecule 28 is a protein called Ribosomal protein.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	B9	38	Total 335	C 214	N 70	0 47	$\frac{S}{4}$	0	0

• Molecule 29 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1			AltConf	Trace	
29	BA	1544	Total 32844	C 14750	N 5972	O 10578	Р 1544	0	0

• Molecule 30 is a protein called Mitochondrial ribosomal protein L47.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	B2	179	Total 1548	C 992	N 290	O 260	S 6	0	0

• Molecule 31 is a protein called uL30m.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
31	B3	118	Total 968	C 622	N 178	0 165	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called bL31m.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
32	B4	62	Total	С	Ν	0	S	0	0
	21	-	474	296	94	81	3	Ŭ	Ŭ

• Molecule 33 is a protein called bL32m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	B5	110	Total 902	C 553	N 181	0 162	S 6	0	0

• Molecule 34 is a protein called bL33m.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
34	R6	59	Total	С	Ν	Ο	S	0	0
04	D0	52	425	274	78	71	2	0	0

• Molecule 35 is a protein called Mitochondrial ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
35	Β7	46	Total 387	C 239	N 89	O 58	S 1	0	0

• Molecule 36 is a RNA chain called CP tRNAPhe.

Mol	Chain	Residues		A	toms	AltConf	Trace		
36	BB	67	Total 1427	C 640	N 261	O 459	Р 67	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BB	71	С	-	insertion	GB 76262549

• Molecule 37 is a protein called Ribosome-releasing factor 2, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
37	BC	700	Total 5434	C 3428	N 936	O 1045	S 25	0	0

There are 20 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BC	25	MET	-	initiating methionine	UNP Q969S9
BC	26	HIS	-	expression tag	UNP Q969S9
BC	27	HIS	-	expression tag	UNP Q969S9
BC	28	HIS	-	expression tag	UNP Q969S9
BC	29	HIS	-	expression tag	UNP Q969S9
BC	30	HIS	-	expression tag	UNP Q969S9
BC	31	HIS	-	expression tag	UNP Q969S9
BC	32	GLU	-	expression tag	UNP Q969S9
BC	33	ASN	-	expression tag	UNP Q969S9
BC	34	LEU	-	expression tag	UNP Q969S9
BC	35	TYR	-	expression tag	UNP Q969S9
BC	36	PHE	-	expression tag	UNP Q969S9
BC	37	GLN	-	expression tag	UNP Q969S9
BC	38	SER	-	expression tag	UNP Q969S9
BC	39	GLY	-	expression tag	UNP Q969S9
BC	40	GLY	-	expression tag	UNP Q969S9
BC	41	SER	-	expression tag	UNP Q969S9
BC	42	GLY	-	expression tag	UNP Q969S9
BC	43	SER	-	expression tag	UNP Q969S9
BC	44	GLY	-	expression tag	UNP Q969S9

• Molecule 38 is a protein called uL2m.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	BD	240	Total 1860	C 1160	N 371	O 319	S 10	0	0

• Molecule 39 is a protein called Ribosome-recycling factor, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	BG	196	Total 1520	C 940	N 273	O 299	S 8	0	0

There are 20 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BG	6	MET	-	initiating methionine	UNP Q96E11

Chain	Residue	Modelled	Actual	Comment	Reference
BG	7	HIS	-	expression tag	UNP Q96E11
BG	8	HIS	-	expression tag	UNP Q96E11
BG	9	HIS	-	expression tag	UNP Q96E11
BG	10	HIS	-	expression tag	UNP Q96E11
BG	11	HIS	-	expression tag	UNP Q96E11
BG	12	HIS	-	expression tag	UNP Q96E11
BG	13	GLU	-	expression tag	UNP Q96E11
BG	14	ASN	-	expression tag	UNP Q96E11
BG	15	LEU	-	expression tag	UNP Q96E11
BG	16	TYR	-	expression tag	UNP Q96E11
BG	17	PHE	-	expression tag	UNP Q96E11
BG	18	GLN	-	expression tag	UNP Q96E11
BG	19	SER	-	expression tag	UNP Q96E11
BG	20	GLY	-	expression tag	UNP Q96E11
BG	21	GLY	-	expression tag	UNP Q96E11
BG	22	SER	-	expression tag	UNP Q96E11
BG	23	GLY	-	expression tag	UNP Q96E11
BG	24	SER	-	expression tag	UNP Q96E11
BG	25	GLY	-	expression tag	UNP Q96E11

• Molecule 40 is a protein called uL16m.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
40	BQ	222	Total 1803	C 1156	N 331	O 306	S 10	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BQ	237	HIS	TYR	conflict	UNP F1RI89

• Molecule 41 is a protein called ICT1.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	BE	307	Total 2420	C 1554	N 426	O 430	S 10	0	0

• Molecule 42 is a protein called Mitochondrial ribosomal protein L4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
42	BF	250	Total 2011	C 1294	N 367	0 344	S 6	0	0

• Molecule 43 is a protein called Mitochondrial ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
43	BI	98	Total 805	C 509	N 155	0 141	0	0

• Molecule 44 is a protein called Mitochondrial ribosomal protein L10.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
44	BJ	212	Total 1705	C 1100	N 306	O 290	S 9	0	0

• Molecule 45 is a protein called Mitochondrial ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	BK	176	Total 1339	C 851	N 243	0 243	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 46 is a protein called uL13m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
46	BN	177	Total 1444	C 926	N 258	O 253	S 7	0	0

• Molecule 47 is a protein called uL14m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
47	ВО	115	Total 896	C 562	N 176	0 154	S 4	0	0

• Molecule 48 is a protein called uL15m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
48	BP	288	Total 2312	C 1473	N 430	O 403	S 6	0	0

• Molecule 49 is a protein called bL17m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
49	BR	153	Total 1240	C 777	N 236	0 222	${f S}{5}$	0	0

• Molecule 50 is a protein called Mitochondrial ribosomal protein L18.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	BS	143	Total 1168	C 733	N 227	O 204	$\frac{S}{4}$	0	0

• Molecule 51 is a protein called Mitochondrial ribosomal protein L19.

Mol	Chain	Residues	Atoms			AltConf	Trace		
51	BT	223	Total 1851	C 1184	N 322	O 336	S 9	0	0

• Molecule 52 is a protein called Mitochondrial ribosomal protein L20.

Mol	Chain	Residues	Atoms				AltConf	Trace	
52	BU	140	Total 1159	C 732	N 239	0 185	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called Mitochondrial ribosomal protein L21.

Mol	Chain	Residues	Atoms				AltConf	Trace	
53	BV	155	Total 1231	C 789	N 219	O 219	${S \over 4}$	0	0

• Molecule 54 is a protein called uL22m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
54	BW	166	Total 1374	C 876	N 258	0 234	S 6	0	0

• Molecule 55 is a protein called uL23m.

Mol	Chain	Residues	Atoms			AltConf	Trace		
55	BX	149	Total 1181	C 752	N 227	O 200	${ m S} { m 2}$	0	0

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
56	B0	1	Total Mg 1 1	0
56	Bb	1	Total Mg 1 1	0
56	Be	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
56	Bl	1	Total Mg 1 1	0
56	Bt	1	Total Mg 1 1	0
56	ВА	205	Total Mg 205 205	0
56	B3	1	Total Mg 1 1	0
56	BC	1	Total Mg 1 1	0
56	BD	3	Total Mg 3 3	0
56	BQ	1	Total Mg 1 1	0
56	BE	1	Total Mg 1 1	0
56	BJ	1	Total Mg 1 1	0
56	BP	2	Total Mg 2 2	0
56	BR	1	Total Mg 1 1	0

Continued from previous page...

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	Bx	1	Total Zn 1 1	0
57	B9	1	Total Zn 1 1	0
57	B5	1	Total Zn 1 1	0

• Molecule 58 is GUANOSINE-5'-MONOPHOSPHATE (three-letter code: 5GP) (formula: $C_{10}H_{14}N_5O_8P$).

Mol	Chain	Residues		At	oms			AltConf
59	ΡΛ	1	Total	С	Ν	Ο	Р	0
00 1	DA	L	48	20	10	16	2	0
59	50 DA	DA 1	Total	С	Ν	Ο	Р	0
58	DA		48	20	10	16	2	

• Molecule 59 is SPERMINE (three-letter code: SPM) (formula: $\mathrm{C_{10}H_{26}N_4}).$

Mol	Chain	Residues	Atoms	AltConf
50	BΔ	1	Total C N	0
- 59	DA	1	28 20 8	0
50	ΡΛ	1	Total C N	0
59	BA	T	28 20 8	0

• Molecule 60 is PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER (three-letter code: GNP) (formula: $C_{10}H_{17}N_6O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
60	ВС	1	Total	С	Ν	Ο	Р	0
60 E	BC I	32	10	6	13	3	0	

• Molecule 61 is water.

Mol	Chain	Residues	Atoms	AltConf
61	BC	2	Total O 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Mitochondrial ribosomal protein L27

Chain Bg:

7%

93%

Chain Bp: 87%	13%
x x	
$\mathbf{z} = \mathbf{o} \mathbf{x} = \mathbf{z} = \mathbf{o} \mathbf{o} \mathbf{o} = \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} e$	
• Molecule 20: IIIL54 	
Chain Bq: 57% · 42%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA VAL VAL GLY GLY ALA LEU LEU LEU LEV LSY PS9
M73 E80 681 681 681 681 894 K105 F136 K137 F138	
• Molecule 21: Mitochondrial ribosomal protein L57	
Chain Bt: 92%	8%
• Molecule 22: mL62 (ICT1)	
13%	
Chain Bu: 73% 20	6%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA TRP CLY CLY CLY CLY CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	R82 S83 S84 S84 C85 C1Y C1Y C1Y C1X C1X C1X C1X C1X C1X C1X C1X C1X C1X
P163 A164 E166 E166 E166 E170 E170 D171 A172 A195 A195 A195 A195 A195 A195 A195 A195	
• Molecule 23: mL64	
Chain Bv: 61% 39%	
MET ALA ALA ALA ALA ALA ALA ALA ALA CLN CLN ARG CLN ARG ARG CLN VUL LEU CLV VUL LEU CLY VUL LEU CLY VUL LEU CLY V14 CLY V15 CLN V15 C CLN V15 C C C C C C C C C C C C C C C C C C C	A158 E159 A15 A15 A15 GLN GLU GLU GLU GLU GLU GLU A15 A15 A15 A15 A15 A15 A15 A15 A15 A15
ARG PHE CLUU CLUU CLUU CLUU CLUU CLUU CLUU CLU	
\bullet Molecule 24: 39S ribosomal protein S30, mitochondrial	
Chain Bw: 89%	11%

MET ALA ALA ALA ALA ARG CYS PHE PHE	LEU ARG ALA ALA ALA CLY CLY CLY CLY ALA ALA ALA ALA ALA ALA	ALLA PRO GLU CILU CILY PRO ASP VAL PRO	ALA THR P40 A123 K124 L125 E126 P127 E128	K155 R156 A157 P158 V159 C160 Q161 Q161	R163
LYS SER GLN LEU LEU GLU ASN					
• Molecule 2	5: Mitochondrial ribosc	mal protein S	18A		
Chain Bx:		83%		17%	
MET VAL GLY GLY LEU ASN VAL LEU VAL SER	OLY OLY ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA ARG PRO PRO SER GLY GLY F35 F35	644 644 644 845 8137 8142 H196		
• Molecule 2	6: Mitochondrial ribosc	mal protein L	12		
Chain CL:	23%		77%		
MET LEU PRO ALA ALA SER SER SER SER SER	GLY GLY CYS CYS CYS CYS CYS GLY CYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY PRO ARG CYS CYS GLY VAL LEU MET	ARG CYS SER SER HIS ARG LYS CLY E46 A47 CLY CLY CLY CLY	ASS ASS AS1 P52 L53 AS5 AS5 AS5 AS5	→ → → → → → → → → → → → → → → → → → →
P61 P62 K63 I64 Q65 Q66	V68 969 070 171 A72 873 873 174 L74 L76 L76 L77 L75 S19 S10 S10	L82 L82 E84 L85 L85 K87 K87 K88 K88	L900 L1900 L1XS L1XS GLN GLN ASP ASP CLN MET PHE PHC MET MET GLY GLY	ALA VAL ALA PRO GLY PRO PRO PRO ALA	ALA ALA PRO GLU ALA ALA GLU GLU SSP
LEU PRO LYS ARG LYS GLU GLU GLN HIS	THE THE VAL ANG LEU LEU CLU ALA ALA ANA LYS VAL VAL VAL LYS LYS LYS TLEU LEU	GLU ILE LYS SER HIS FLE GLN GLY ASN	LEU VAL GLN GLN LYS LYS LYS LEU SER ZLU SER LEU SER PRO	GLU TLE LYS ALA ASN VAL PRO LYS ALA	der c
ALA GLU LYS LYS LYS LYS ALA ALA ALA LEU GLU	VAL VAL GLY GLY THR VAL LEU CLU GLU				
• Molecule 2	6: Mitochondrial ribosc	mal protein L	12		
Chain DL:	13% 13%	86%			
MET LEU PRO ALA ALA ALA SER SER SER LEU	GLY GLY PRO PRO PRO PRO CYS GLY ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY GLY ARG LEU CYS GLY GLY VAL LEU MET	ARG CYS SER SER HIS ARG LYS GLY GLU ALA LEU	ALA PRO LEU ASP ASP ASP ASP PRO LYS CLYS	110
PRO PRO LIYS 164 965 167 VCS	q69 D70 171 A72 A72 174 177 E78 E78 E78 E78 E78 E78 E78 E78 D81	L52 1152 1183 1184 1186 1186 1189 1189	LUSO LUS LUE CLN CLN ASP ASP VAL NET NET CLY ALA	VAL ALA PRO GLY ALA ALA ALA ALA ALA	ALA PRO GLU ALA ALA GLU GLU ASP
LEU PRO LYS ARG LYS GLU GLU GLN HITS	THE THE VAL ARG LEU THR GLU ALA ALA ALA ALA CLU SY LEU LEU TLE	GLU GLU FLFS SER HTS HTS TLE GLN GLN GLY ASN	LEU VAL GLN ALA ALA LYS LYS LYS LYS LEU VAL GLU SER LEU FLU	GLU GLU LYS ASN ASN VAL PRO LYS ALA	075
ALA GLU CYS LYS LYS LYS ALA ALA LEU GLU	VALA VAL GLY GLY THR VAL LEU GLU GLU				
• Molecule 2	6: Mitochondrial ribosc	mal protein L	12		
Chain EL:	14% 14%	86%			
MET LEU PRO ALA ALA SER SER SER LEU	011 PRO CYS PHE 017 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY PRO ARG LEU CYS GLY VAL ARG LEU MET	ARG CYS SER SER HIS ARG CVS GLY GLY GLY GLY ALA ALA	ALT ALA PRO LEU ASP ASN ALA PRO CLYS GLU	411

PRO PRO PRO PRO PFO PFO PFO PFO PFO PFO PFO PFO PFO PF
LEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL
ALA LYS LYS LYS ALA ALA ALA CLU CLU VAL CLU CLU
• Molecule 26: Mitochondrial ribosomal protein L12
Chain FL: 14% 86%
MET PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
LEU LEU LYS CIVS CIVS CIVS CIVS CIVS CIVS CIV THR VAL ALA ALA CIU CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIV CIVS CIVS
ALA LYS LYS LYS ALA ALA CLU CLU CLU VAL CLU CLU CLU CLU
• Molecule 26: Mitochondrial ribosomal protein L12
Chain GL: 14% 86%
MET NET PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
PRO PRO LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS
LEU LEU LYS CLYS CLYS CLYS CLYS CLYS CLYS CLY THR THR THR THR THR THR THR THR THR THR
ALA LYS LYS LYS ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU
• Molecule 26: Mitochondrial ribosomal protein L12
Chain HL: 13% 87%
MET PRO PRO ALA ALA ALA ALA ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
PRO PRO IS4 PRO IS4 PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
LEU LEU LEU CIVS CLVS CLVS CLVS CLVS CLVS CLVS CLV CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU

ALA GLU LYS LYS LYS ALA ALA ALA CEU GLU CEU VAL CEU VAL LEU VAL CEU CEU

• Molecule 26: Mitochondrial ribosomal protein L12

MET LEU GLN GLN ALA ALA ALA ALA ALA ALA PRG CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
• Molecule 43: Mitochondrial ribosomal protein L9
Chain BI: 37% 63%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
R147 C148 C149 C148 C150 C150 C150 C150 C150 C150 C150 C150 C150 C150 C150 C178
LYS PRO CLU PRO CLU PRO CLU PRO CLU PRO CLU VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
• Molecule 44: Mitochondrial ribosomal protein L10
Chain BJ: 80% · 19%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
E206 E207 1.207 V208 C209 C210 C205 C211 C211 C211 C211 C221 C211 C221 C211 C221 C211 C221 C211 C222 C223
\bullet Molecule 45: Mitochondrial ribosomal protein L11
Chain BK: 92% 8%
MET SER LEU SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
R179 E180 A181 A184 A185 A185 A190 K191 K192
• Molecule 46: uL13m
Chain BN: 99%

 \bullet Molecule 47: uL14m

Chain BO: 79%	21%
MET MALA ALA ALA ALA ALA CYS CYS CYS CYS PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 48: uL15m	
Chain BP: 97%	
MET GLY GLY GLY GLY GLY GLY GLY GLY GLY GLY	
\bullet Molecule 49: bL17m	
Chain BR: 91%	9%
MET ARG LEUU SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 50: Mitochondrial ribosomal protein I	-18
Chain BS: 79%	21%
MET LEU ALA ALA ALA ALA ARG ARG TRP PHE TRP CYS SER ARG CYS CYS CYS SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ASP P38 E47
• Molecule 51: Mitochondrial ribosomal protein I	-19
Chain BT: 76%	24%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LEU ALEU GLY GLY GLY ARG GLN VAL VAL VAL VAL CLN GLN PRO GLN PRO GLN PRO FRO FRO FRO FRO FRO FRO FRO FRO FRO F
VAL ILE VAL ASP ASP ARG ARG PRO PRO CIA R70 P71 E72 T73 M212 C213 S292	
• Molecule 52: Mitochondrial ribosomal protein I	220
Chain BU:	• 6%
MET PHE THR THR THR PRO FIEU FIIO FIIO FIIO FIIO FIIO FIIO FIIO FII	
• Molecule 53: Mitochondrial ribosomal protein I	L21
Chain BV: 74%	26%

MET ALA ALA ALA ALA ALA ALA ALA ALA CLY CLN CLN CLN CLN CLY CLY CLY CLY	LEU VAL SER ALA ALA ALA ARG ARG ARG ARG ALA ALA ALA ARG PRO PRO ARG ARG	SER SER GLN HIR HIR SER SER SER CG0 CC00
• Molecule 54: uL22n	n	
Chain BW:	79%	21%
MET ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLV CLV ASN ASN	LEU LEU CYS CYS CYS CYS CIS ARG LEU LEU LEU LEU CIS FER SER SER SER SER THR SER THS SER THS SER SER SER SER SER SER SER SER SER SE	GLU 145 131 1210
• Molecule 55: uL23n 13%	n	
Chain BX:	99%	·
A2 K115 G116 G116 S118 S118 V119 D120 V121 V121 V122 V123 H124	D125 0125 0126 E129 D130 0131 N132 N133 N133 N133 L150	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	224731	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	0.284	Depositor
Minimum map value	-0.144	Depositor
Average map value	-0.001	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.028	Depositor
Map size (Å)	521.76, 521.76, 521.76	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.087, 1.087, 1.087	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GNP, MG, ZN, 5GP, SPM

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	B0	0.27	0/880	0.41	0/1189	
2	BY	0.24	0/1719	0.42	0/2329	
3	Ba	0.25	0/3267	0.43	0/4455	
4	B8	0.24	0/853	0.38	0/1136	
5	Bb	0.26	0/3047	0.41	0/4139	
6	Bc	0.25	0/2464	0.42	0/3330	
7	Bd	0.24	0/1203	0.38	0/1622	
8	Be	0.26	0/1000	0.43	0/1345	
9	Bf	0.25	0/851	0.52	2/1159~(0.2%)	
10	Bg	0.25	0/1191	0.43	0/1614	
11	Bh	0.25	0/2372	0.42	0/3211	
12	Bi	0.25	0/2199	0.41	0/2980	
13	Bj	0.24	0/1811	0.49	1/2436~(0.0%)	
14	Bk	0.24	0/1270	0.43	0/1714	
15	Bl	0.25	0/1135	0.42	0/1549	
16	Bm	0.23	0/917	0.36	0/1248	
17	Bn	0.25	0/860	0.42	0/1150	
18	Bo	0.24	0/787	0.37	0/1056	
19	Bp	0.24	0/752	0.42	0/1013	
20	Bq	0.23	0/692	0.42	1/936~(0.1%)	
21	Bt	0.24	0/798	0.39	0/1073	
22	Bu	0.24	0/1214	0.46	1/1630~(0.1%)	
23	Bv	0.23	0/1157	0.35	0/1560	
24	Bw	0.25	0/3206	0.42	0/4354	
25	Bx	0.26	0/1364	0.43	0/1849	
26	CL	0.23	0/319	0.42	0/435	
26	DL	0.21	0/212	0.43	0/286	
26	EL	0.22	0/221	0.40	0/297	
26	FL	0.43	0/212	0.45	0/286	
26	GL	0.22	0/212	0.44	0/286	
26	HL	0.22	0/204	0.39	0/275	
26	LL	0.23	0/542	0.42	0/729	

Mal	Chain	Bo	Bond lengths Bond ang		Bond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
27	B1	0.24	0/2093	0.38	0/2835
28	B9	0.24	0/342	0.42	0/450
29	BA	0.24	0/36784	0.78	15/57270~(0.0%)
30	B2	0.24	0/1586	0.39	0/2123
31	B3	0.25	0/993	0.43	0/1341
32	B4	0.23	0/481	0.53	1/653~(0.2%)
33	B5	0.24	0/917	0.40	0/1227
34	B6	0.24	0/430	0.41	0/570
35	B7	0.23	0/395	0.37	0/524
36	BB	0.31	1/1595~(0.1%)	0.74	0/2475
37	BC	0.26	1/5523~(0.0%)	0.49	3/7495~(0.0%)
38	BD	0.26	0/1898	0.46	1/2555~(0.0%)
39	BG	0.24	0/1529	0.42	0/2058
40	BQ	0.25	0/1850	0.42	0/2491
41	BE	0.26	0/2493	0.43	0/3387
42	BF	0.25	0/2069	0.42	0/2816
43	BI	0.23	0/819	0.44	0/1101
44	BJ	0.24	0/1742	0.44	0/2358
45	BK	0.25	0/1359	0.43	0/1828
46	BN	0.24	0/1487	0.38	0/2017
47	BO	0.24	0/912	0.43	0/1231
48	BP	0.26	0/2368	0.42	0/3198
49	BR	0.24	0/1262	0.41	0/1700
50	BS	0.24	0/1197	0.45	0/1624
51	BT	0.25	0/1894	0.42	0/2555
52	BU	0.24	0/1179	0.37	0/1578
53	BV	0.24	0/1256	0.44	0/1706
54	BW	0.26	0/1407	0.41	0/1891
55	BX	0.26	0/1211	0.40	$0/1\overline{646}$
All	All	0.25	2/118002~(0.0%)	0.58	$25/167374~(0.0\overline{\%})$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
17	Bn	0	1
26	FL	1	0
38	BD	0	1
All	All	1	2

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
36	BB	1	G	OP3-P	-10.59	1.48	1.61
37	BC	659	PRO	CG-CD	-5.65	1.32	1.50

The worst 5 of 25 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
37	BC	659	PRO	N-CD-CG	-8.85	89.93	103.20
29	BA	1527	U	C2-N1-C1'	7.12	126.24	117.70
9	Bf	80	PRO	N-CA-CB	6.61	111.23	103.30
22	Bu	167	PRO	N-CA-CB	6.54	111.15	103.30
9	Bf	78	PRO	N-CA-CB	6.53	111.14	103.30

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
26	FL	89	THR	CB

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
38	BD	207	TYR	Peptide
17	Bn	65	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	B0	108/148~(73%)	106 (98%)	2 (2%)	0	100	100
2	BY	204/216~(94%)	199 (98%)	5 (2%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Ba	391/423~(92%)	371~(95%)	20~(5%)	0	100	100
4	B8	93/188~(50%)	91~(98%)	2(2%)	0	100	100
5	Bb	352/380~(93%)	334 (95%)	18 (5%)	0	100	100
6	Bc	293/334~(88%)	278 (95%)	15 (5%)	0	100	100
7	Bd	138/206~(67%)	131 (95%)	7 (5%)	0	100	100
8	Be	120/135~(89%)	114 (95%)	6 (5%)	0	100	100
9	Bf	106/142~(75%)	100 (94%)	4 (4%)	2(2%)	8	39
10	Bg	146/159~(92%)	136 (93%)	10 (7%)	0	100	100
11	Bh	287/332~(86%)	272 (95%)	15 (5%)	0	100	100
12	Bi	258/306~(84%)	245 (95%)	13 (5%)	0	100	100
13	Bj	211/279~(76%)	203 (96%)	8 (4%)	0	100	100
14	Bk	151/269~(56%)	146 (97%)	5 (3%)	0	100	100
15	Bl	131/166~(79%)	128 (98%)	3 (2%)	0	100	100
16	Bm	107/198~(54%)	103 (96%)	4 (4%)	0	100	100
17	Bn	95/128 (74%)	92~(97%)	3 (3%)	0	100	100
18	Bo	95/124 (77%)	93~(98%)	2 (2%)	0	100	100
19	Bp	95/112~(85%)	88 (93%)	7 (7%)	0	100	100
20	Bq	78/138~(56%)	72 (92%)	6 (8%)	0	100	100
21	Bt	92/102~(90%)	88 (96%)	4 (4%)	0	100	100
22	Bu	147/205~(72%)	141 (96%)	4 (3%)	2 (1%)	11	46
23	Bv	133/222~(60%)	133 (100%)	0	0	100	100
24	Bw	385/433~(89%)	367 (95%)	18 (5%)	0	100	100
25	Bx	160/196~(82%)	153 (96%)	7 (4%)	0	100	100
26	CL	43/198 (22%)	40 (93%)	3 (7%)	0	100	100
26	DL	25/198~(13%)	25 (100%)	0	0	100	100
26	EL	26/198 (13%)	26 (100%)	0	0	100	100
26	FL	25/198~(13%)	25 (100%)	0	0	100	100
26	GL	25/198~(13%)	25 (100%)	0	0	100	100
26	HL	24/198~(12%)	24 (100%)	0	0	100	100
26	LL	68/198~(34%)	67 (98%)	1 (2%)	0	100	100
27	B1	242/256~(94%)	240 (99%)	2 (1%)	0	100	100

a 1	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
28	B9	36/100~(36%)	36 (100%)	0	0	100	100
30	B2	177/252~(70%)	174 (98%)	3~(2%)	0	100	100
31	B3	116/161~(72%)	114 (98%)	2(2%)	0	100	100
32	B4	60/126~(48%)	52 (87%)	8 (13%)	0	100	100
33	B5	108/188~(57%)	108 (100%)	0	0	100	100
34	B6	50/65~(77%)	49 (98%)	1 (2%)	0	100	100
35	B7	44/95~(46%)	43 (98%)	1 (2%)	0	100	100
37	BC	696/755~(92%)	637~(92%)	58 (8%)	1 (0%)	51	83
38	BD	238/306~(78%)	226 (95%)	12 (5%)	0	100	100
39	BG	194/257~(76%)	178 (92%)	14 (7%)	2 (1%)	15	54
40	BQ	220/251~(88%)	215 (98%)	5 (2%)	0	100	100
41	BE	305/399~(76%)	289 (95%)	16 (5%)	0	100	100
42	BF	248/294~(84%)	241 (97%)	7 (3%)	0	100	100
43	BI	96/268~(36%)	94 (98%)	2 (2%)	0	100	100
44	BJ	210/262~(80%)	199 (95%)	11 (5%)	0	100	100
45	BK	174/192~(91%)	164 (94%)	10 (6%)	0	100	100
46	BN	175/178~(98%)	171 (98%)	4 (2%)	0	100	100
47	BO	113/145~(78%)	111 (98%)	2(2%)	0	100	100
48	BP	286/296~(97%)	275 (96%)	11 (4%)	0	100	100
49	BR	151/169~(89%)	143 (95%)	8 (5%)	0	100	100
50	BS	141/180 (78%)	133 (94%)	8 (6%)	0	100	100
51	BT	221/292~(76%)	218 (99%)	3 (1%)	0	100	100
52	BU	138/149~(93%)	137 (99%)	1 (1%)	0	100	100
53	BV	153/209~(73%)	147 (96%)	6 (4%)	0	100	100
54	BW	164/210 (78%)	158 (96%)	6 (4%)	0	100	100
55	BX	147/150 (98%)	143 (97%)	4 (3%)	0	100	100
All	All	9515/13132 (72%)	9111 (96%)	397 (4%)	7 (0%)	54	83

5 of 7 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
9	Bf	80	PRO
22	Bu	167	PRO

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
9	Bf	78	PRO
37	BC	65	PRO
22	Bu	166	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	B0	90/115~(78%)	90~(100%)	0	100 100
2	BY	185/192~(96%)	183~(99%)	2 (1%)	73 88
3	Ba	348/365~(95%)	348 (100%)	0	100 100
4	B8	87/162~(54%)	87 (100%)	0	100 100
5	Bb	310/328~(94%)	310 (100%)	0	100 100
6	Bc	271/299~(91%)	271 (100%)	0	100 100
7	Bd	129/181~(71%)	129 (100%)	0	100 100
8	Be	100/108~(93%)	100 (100%)	0	100 100
9	Bf	80/133~(60%)	79~(99%)	1 (1%)	69 87
10	Bg	128/136~(94%)	128 (100%)	0	100 100
11	Bh	251/284~(88%)	251 (100%)	0	100 100
12	Bi	236/275~(86%)	236 (100%)	0	100 100
13	Bj	190/242~(78%)	190 (100%)	0	100 100
14	Bk	135/226~(60%)	135~(100%)	0	100 100
15	Bl	122/147~(83%)	122 (100%)	0	100 100
16	Bm	103/178~(58%)	103 (100%)	0	100 100
17	Bn	88/113~(78%)	88 (100%)	0	100 100
18	Bo	77/97~(79%)	77~(100%)	0	100 100
19	Bp	79/88~(90%)	79~(100%)	0	100 100
20	Bq	70/114~(61%)	70 (100%)	0	100 100
21	Bt	75/82~(92%)	75 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
22	Bu	126/177~(71%)	$126\ (100\%)$	0	100	100
23	Bv	115/183~(63%)	115 (100%)	0	100	100
24	Bw	340/373~(91%)	340 (100%)	0	100	100
25	Bx	149/173~(86%)	149 (100%)	0	100	100
26	CL	30/157~(19%)	30 (100%)	0	100	100
26	DL	26/157~(17%)	25~(96%)	1 (4%)	33	67
26	EL	27/157~(17%)	27 (100%)	0	100	100
26	FL	26/157~(17%)	26 (100%)	0	100	100
26	GL	26/157~(17%)	26 (100%)	0	100	100
26	HL	25/157~(16%)	25 (100%)	0	100	100
26	LL	59/157~(38%)	59 (100%)	0	100	100
27	B1	219/229~(96%)	219 (100%)	0	100	100
28	B9	36/77~(47%)	36 (100%)	0	100	100
30	B2	164/228~(72%)	164 (100%)	0	100	100
31	B3	110/150~(73%)	109 (99%)	1 (1%)	78	91
32	B4	45/114 (40%)	45 (100%)	0	100	100
33	B5	99/163~(61%)	99 (100%)	0	100	100
34	B6	49/60~(82%)	49 (100%)	0	100	100
35	B7	41/78~(53%)	41 (100%)	0	100	100
37	BC	600/651~(92%)	599 (100%)	1 (0%)	93	98
38	BD	193/248~(78%)	193 (100%)	0	100	100
39	BG	175/224~(78%)	175 (100%)	0	100	100
40	BQ	190/210~(90%)	190 (100%)	0	100	100
41	BE	263/320~(82%)	263 (100%)	0	100	100
42	BF	217/251~(86%)	217 (100%)	0	100	100
43	BI	88/228~(39%)	88 (100%)	0	100	100
44	BJ	192/230~(84%)	190 (99%)	2 (1%)	76	90
45	BK	138/151~(91%)	138 (100%)	0	100	100
46	BN	156/157~(99%)	156 (100%)	0	100	100
47	BO	99/123~(80%)	99 (100%)	0	100	100
48	BP	245/249~(98%)	244 (100%)	1 (0%)	91	95

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
49	BR	132/143~(92%)	132~(100%)	0	100	100
50	BS	123/153~(80%)	123~(100%)	0	100	100
51	BT	205/258~(80%)	205 (100%)	0	100	100
52	BU	118/127~(93%)	117~(99%)	1 (1%)	81	93
53	BV	136/178~(76%)	$136\ (100\%)$	0	100	100
54	BW	144/180~(80%)	144 (100%)	0	100	100
55	BX	116/134~(87%)	116 (100%)	0	100	100
All	All	8396/11184 (75%)	8386 (100%)	10 (0%)	93	98

5 of 10 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
44	BJ	63	ARG
48	BP	44	ARG
52	BU	149	ARG
26	DL	88	LYS
31	B3	142	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 24 such side chains are listed below:

Mol	Chain	Res	Type
32	B4	60	GLN
40	BQ	98	HIS
37	BC	637	GLN
41	BE	69	ASN
12	Bi	251	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
29	BA	1542/1571~(98%)	373 (24%)	1 (0%)
36	BB	64/73~(87%)	14 (21%)	0
All	All	1606/1644~(97%)	387 (24%)	1 (0%)

5 of 387 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
29	BA	4	А
29	BA	7	G
29	BA	11	G
29	BA	15	А
29	BA	19	U

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
29	BA	48	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 229 ligands modelled in this entry, 224 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Iol Type Chain Bea		Tink	Bond lengths			Bond angles			
	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
59	SPM	BA	3208	-	13,13,13	0.31	0	12,12,12	0.79	0
59	SPM	BA	3209	-	13,13,13	0.34	0	12,12,12	0.75	0
58	5GP	BA	3206	-	22,26,26	1.23	2 (9%)	26,40,40	1.27	4 (15%)
60	GNP	BC	1000	56	29,34,34	1.61	7 (24%)	33,54,54	2.13	6 (18%)
58	5GP	BA	3207	56	22,26,26	1.25	2 (9%)	26,40,40	1.25	4 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	SPM	BA	3208	-	-	2/11/11/11	-
59	SPM	BA	3209	-	-	2/11/11/11	-
58	5GP	BA	3206	-	-	1/6/26/26	0/3/3/3
60	GNP	BC	1000	56	-	2/14/38/38	0/3/3/3
58	5GP	BA	3207	56	-	0/6/26/26	0/3/3/3

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

The worst 5 of 11 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
60	BC	1000	GNP	PB-O3A	4.37	1.64	1.59
58	BA	3207	5GP	C5-C6	-4.15	1.39	1.47
58	BA	3206	5GP	C5-C6	-4.02	1.39	1.47
60	BC	1000	GNP	C6-N1	3.12	1.38	1.33
60	BC	1000	GNP	PB-O1B	3.06	1.51	1.46

The worst 5 of 14 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
60	BC	1000	GNP	C5-C6-N1	-8.39	111.96	123.43
60	BC	1000	GNP	C2-N1-C6	5.84	125.21	115.93
58	BA	3206	5GP	C5-C6-N1	3.21	119.62	113.95
58	BA	3207	5GP	C5-C6-N1	3.13	119.47	113.95
60	BC	1000	GNP	N3-C2-N1	-2.80	123.49	127.22

There are no chirality outliers.

5 of 7 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
60	BC	1000	GNP	PG-N3B-PB-O1B
60	BC	1000	GNP	PG-N3B-PB-O3A
59	BA	3208	SPM	C7-C8-C9-N10
59	BA	3209	SPM	C7-C8-C9-N10
59	BA	3208	SPM	C7-C6-N5-C4

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12567. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Z Index: 240

6.2.2 Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 246

Y Index: 219

Z Index: 247

6.3.2 Raw map

X Index: 246

Y Index: 219

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.028. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.5.1 emd_12567_msk_1.map (i)

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 742 $\rm nm^3;$ this corresponds to an approximate mass of 670 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.20	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.68	4.56	3.76

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.68 differs from the reported value 3.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12567 and PDB model 7NSH. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.028 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.028).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.028) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8019	0.4900
B0	0.9133	0.5640
B1	0.8251	0.5160
B2	0.8651	0.5270
B3	0.8632	0.5440
B4	0.3604	0.2400
B5	0.8622	0.5290
B6	0.7692	0.4910
B7	0.9268	0.5790
B8	0.9009	0.5690
B9	0.9283	0.5790
BA	0.9288	0.5330
BB	0.6762	0.2790
BC	0.6051	0.4180
BD	0.8979	0.5540
BE	0.8935	0.5450
BF	0.8848	0.5470
BG	0.6687	0.4700
BI	0.7792	0.4800
BJ	0.5607	0.3680
BK	0.5484	0.3740
BN	0.9001	0.5560
BO	0.9000	0.5560
BP	0.8887	0.5430
BQ	0.8738	0.5390
BR	0.8926	0.5440
BS	0.8686	0.5200
BT	0.8664	0.5260
BU	0.8726	0.5390
BV	0.8731	0.5380
BW	0.8849	0.5500
BX	0.8311	0.5150
BY	0.7049	0.4750
Ba	0.8817	0.5320
Bb	0.8464	0.4930

Chain	Atom inclusion	Q-score
Bc	0.8086	0.4770
Bd	0.2537	0.2300
Be	0.8396	0.4990
Bf	0.7910	0.4800
Bg	0.8990	0.5490
Bh	0.8469	0.5030
Bi	0.6122	0.4210
Bj	0.2092	0.1820
Bk	0.3775	0.3010
Bl	0.8821	0.5320
Bm	0.5505	0.4460
Bn	0.8821	0.5480
Bo	0.8389	0.5200
Bp	0.6630	0.4130
Bq	0.6580	0.4240
Bt	0.8779	0.5540
Bu	0.6964	0.4440
Bv	0.7300	0.4450
Bw	0.8611	0.5240
Bx	0.8547	0.5120
CL	0.0443	0.1680
DL	0.0282	0.0720
EL	0.0000	0.0540
FL	0.0000	0.0730
GL	0.0000	0.0210
HL	0.0000	0.0750
LL	0.0000	0.0820

