

Full wwPDB X-ray Structure Validation Report (i)

May 23, 2020 – 12:56 am BST

PDB ID	:	5N2K
Title	:	Structure of unbound Briakinumab FAb
Authors	:	Bloch, Y.; Savvides, S.N.
Deposited on	:	2017-02-07
Resolution	:	2.22 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.22 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries}, { m resolution\ range}({ m \AA}))$
R _{free}	130704	5912(2.24-2.20)
Clashscore	141614	6646 (2.24-2.20)
Ramachandran outliers	138981	6543 (2.24-2.20)
Sidechain outliers	138945	6544 (2.24-2.20)
RSRZ outliers	127900	5797(2.24-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
-		2.15	3%		
	A	245	86%	•	12%
			4%		
1	С	245	86%	•	12%
			% ■		
1	E	245	86%	•	13%
			2%		
1	I	245	84%	•	13%
			11%		
1	K	245	82%	5%	13%
			4%		
1	M	245	86%	•	13%

Mol	Chain	Length	Quality of chain	
1	0	245	9% 83%	• 14%
2	В	289	71%	• 27%
2	D	289	7%	• 23%
2	F	289	2% 71%	• 27%
2	Н	289	64%	33%
2	L	289	5%	• 28%
2	Ν	289	4%	• 28%
2	Р	289	6% 68%	• 28%
3	G	245	83%	• 13%
4	J	289	6% 70%	• 27%

5N2K

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 50584 atoms, of which 24272 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	s			ZeroOcc	AltConf	Trace
1	Δ	216	Total	С	Η	Ν	Ο	S	0	7	0
	A	210	3271	1043	1605	280	338	5	0	1	0
1	C	215	Total	С	Н	Ν	Ο	S	0	0	0
		210	3106	997	1521	262	321	5	0	0	0
1	F	214	Total	С	Η	Ν	0	S	0	0	0
L T		214	3153	1001	1554	270	324	4	0	0	0
1	т	214	Total	С	Η	Ν	0	S	0	10	0
L T	1		3299	1050	1624	284	337	4	0	10	0
1	K	214	Total	С	Η	Ν	0	S	0	0	0
L T	IX	214	3082	989	1509	262	318	4	0	0	U
1	М	919	Total	С	Η	Ν	0	S	0	0	0
			3035	977	1477	259	318	4	0	0	0
1	0	010	Total	С	Н	Ν	Ο	S	0	0	0
		210	3026	974	1476	255	317	4	0	0	0

• Molecule 1 is a protein called Briakinumab FAb light chain.

• Molecule 2 is a protein called Briakinumab FAb heavy chain.

Mol	Chain	Residues			Atom	IS			ZeroOcc	AltConf	Trace
0	р	212	Total	С	Η	Ν	Ο	S	0	Б	0
	D		3138	1007	1539	274	308	10	0	0	0
9	П	202	Total	С	Η	Ν	Ο	S	0	2	0
		220	3253	1044	1594	282	323	10	0	5	0
9	F	210	Total	С	Η	Ν	Ο	S	0	3	0
	Ľ		3101	995	1524	270	303	9	0	5	0
0	ц	102	Total	С	Η	Ν	Ο	S	0	2	0
	11	195	2731	897	1309	248	269	8	0	Δ	0
0	т	200	Total	С	Η	Ν	Ο	S	0	2	0
		209	3096	993	1524	268	303	8	0	2	0
0	N	200	Total	С	Η	Ν	0	S	0	2	0
		209	3076	987	1510	270	301	8	0	2	0
9	9 D	207	Total	С	Η	Ν	Ο	S	0	2	0
	1		3048	981	1490	268	301	8			

• Molecule 3 is a protein called Briakinumab FAb light chain.

Mol	Chain	Residues	Atoms						ZeroOcc	AltConf	Trace
3	G	213	Total 3061	C 982	H 1496	N 259	O 319	${ m S}{ m 5}$	0	2	0

• Molecule 4 is a protein called Briakinumab FAb heavy chain.

Mol	Chain	Residues	Atoms						ZeroOcc	AltConf	Trace
4	J	211	Total 3093	C 994	Н 1514	N 270	O 307	S 8	0	2	0

• Molecule 5 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
5	Ι	1	Total 10	$\begin{array}{c} \mathrm{C} \\ 2 \end{array}$	Н 6	O 2	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	138	Total O 138 138	0	0
6	В	84	Total O 84 84	0	0
6	С	59	Total O 59 59	0	0
6	D	44	$\begin{array}{c c} Total & O \\ 44 & 44 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	Е	72	Total O 72 72	0	0
6	F	60	Total O 60 60	0	0
6	G	67	Total O 67 67	0	0
6	Н	35	Total O 35 35	0	0
6	Ι	103	Total O 103 103	0	0
6	J	36	Total O 36 36	0	0
6	Κ	28	Total O 28 28	0	0
6	L	56	Total O 56 56	0	0
6	М	37	Total O 37 37	0	0
6	Ν	56	Total O 56 56	0	0
6	Р	63	Total O 63 63	0	0
6	О	67	Total O 67 67	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Briakinumab FAb light chain

T150 V151 A152 M153 A155 A155 A155 A162 A162 A162 A162 A163 A163 A163 A164 A191 A191 A191 A191 A191 A191 A191 A19
• Molecule 1: Briakinumab FAb light chain
Chain M: 86% · 13%
MET GLY LLEU CLEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
• Molecule 1: Briakinumab FAb light chain
9% Chain O: 83% • 14%
MET LILE LILE PRO ELLEU MET LILEU MET ALA PRO ELLEU LI
L185 11185 11185 11185 11185 11185 11185 11185 11185 11195 119
• Molecule 2: Briakinumab FAb heavy chain
Chain B: 71% · 27%
MET LILE LILE LILE PRO PRO PRO PRO PRO PRO PRO PRO
THR SER CLY CLY CLEU CLEU CLEU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY
• Molecule 2: Briakinumab FAb heavy chain
Chain D: 74% • 23%
MET ILEW PRO CICK PRO CICK PRO CICK PRO CICK CICK CICK CICK CICK CICK CICK CIC
Side Side Lint Lint Vacob Vacob Vacob Lint Vacob Lint Vacob Cold Cold Cold <tr< td=""></tr<>
• Molecule 2: Briakinumab FAb heavy chain
Chain F: 71% · 27%
MET RELY CLLZ CLLZ CLLZ CLLZ CLLZ CLLZ CLLZ CL

R L D W I D E PDB TEIN DATA BANK

• Molecule 2: Briakinumab FAb heavy chain

HIS GLU GLV GLV GLV GLV HIS HIS HIS HIS HIS

• Molecule 3: Briakinumab FAb light chain

• Molecule 4: Briakinumab FAb heavy chain

С	h	air	ı J	J:	69	%											70 ⁰	%													·				2	279	%		_		-				
MET	LT F	TEU	PRO CER	PRO	GLY	PRO	ALA	DEU LEU	SER	LEU VAT	SER	TEU	LEU	SER	VAL	LEU TRII	MET	GLY	CYS	VAL ALA	10 T		V12	P14	G15		G66 B67		060	G100		S115	S117	T118	D1 70	SER	SER	LYS	SER THR	SER	G135	F148	P149	E150	-
S155	т16.)	4	0173	V186	4 7 4	тат	N201	н202 К203	H	N206	V209		S217	CYS	ASP	LYS	THR	SER	GLY	LEU VAL.	PRO	ARG	4T5	UTA UTA	GLY	S 四 記	GLY GLY	SER	GLY GLY	ASN	ASP	ILE	0TD	ALA	GLN T VS	TLE	GLU	TRP	GLU	GLY	ARG	SV.1 AHT	SIH	SIH	HIS
SIH	HIS																																												

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	85.25Å 172.54Å 138.16Å	Deperitor
a, b, c, α , β , γ	90.00° 106.16° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	81.88 - 2.22	Depositor
Resolution (A)	81.88 - 2.22	EDS
% Data completeness	94.5 (81.88-2.22)	Depositor
(in resolution range)	94.5 (81.88-2.22)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.05 (at 2.22 \text{\AA})$	Xtriage
Refinement program	PHENIX (dev_2614: ???)	Depositor
D D.	0.204 , 0.234	Depositor
Π, Π_{free}	0.204 , 0.235	DCC
R_{free} test set	2154 reflections $(1.21%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	42.5	Xtriage
Anisotropy	0.308	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 46.5	EDS
L-test for twinning ²	$< L >=0.47, < L^2>=0.29$	Xtriage
Estimated twinning fraction	0.014 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	50584	wwPDB-VP
Average B, all atoms $(Å^2)$	70.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 31.57 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.0840e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PCA, EDO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.27	0/1714	0.47	0/2345
1	С	0.25	0/1625	0.45	0/2226
1	Е	0.25	0/1639	0.46	0/2242
1	Ι	0.27	0/1735	0.48	0/2373
1	Κ	0.26	0/1613	0.46	0/2211
1	М	0.26	0/1598	0.46	0/2192
1	0	0.26	0/1589	0.46	0/2178
2	В	0.27	0/1658	0.48	0/2256
2	D	0.26	0/1711	0.47	0/2328
2	F	0.26	0/1627	0.47	0/2215
2	Н	0.26	0/1465	0.48	0/1993
2	L	0.28	0/1620	0.49	0/2203
2	Ν	0.26	0/1614	0.47	0/2196
2	Р	0.26	0/1605	0.48	0/2183
3	G	0.26	0/1606	0.46	0/2203
4	J	0.26	0/1620	0.48	0/2207
All	All	0.26	0/26039	0.47	0/35551

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1666	1605	1599	5	0
1	С	1585	1521	1514	3	0
1	Е	1599	1554	1552	2	0
1	Ι	1675	1624	1607	7	0
1	Κ	1573	1509	1505	7	0
1	М	1558	1477	1475	1	0
1	0	1550	1476	1475	5	0
2	В	1599	1539	1517	3	1
2	D	1659	1594	1576	4	1
2	F	1577	1524	1508	3	1
2	Н	1422	1309	1294	3	1
2	L	1572	1524	1508	4	1
2	Ν	1566	1510	1496	3	0
2	Р	1558	1490	1470	6	1
3	G	1565	1496	1479	6	0
4	J	1579	1514	1496	5	0
5	Ι	4	6	6	0	0
6	А	138	0	0	0	0
6	В	84	0	0	0	0
6	С	59	0	0	0	0
6	D	44	0	0	0	0
6	Е	72	0	0	0	0
6	F	60	0	0	0	0
6	G	67	0	0	0	0
6	Н	35	0	0	0	1
6	Ι	103	0	0	0	0
6	J	36	0	0	1	0
6	Κ	28	0	0	0	0
6	L	56	0	0	0	1
6	М	37	0	0	0	0
6	Ν	56	0	0	0	0
6	Ο	67	0	0	1	0
6	Р	63	0	0	0	0
All	All	26312	24272	24077	54	4

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (54) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:I:133:ASN:ND2	2:L:72:ARG:O	2.30	0.64

	lio ao pagoin	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlan (Å)		
2:F:67:ARG:NH2	2:F:90:ASP:OD2	2.35	0.57		
4:J:67:ARG:NH2	4:J:90:ASP:OD2	2.33	0.57		
4:J:173:GLN:NE2	6:J:302:HOH:O	2.39	0.55		
$2 \cdot F \cdot 197 \cdot ILE \cdot HD13$	$2 \cdot F \cdot 212 \cdot LYS \cdot HA$	1.89	0.53		
2:H:67:ABG:NH2	2:H:90:ASP:OD2	2.36	0.53		
1.1.97[A]·HIS·HB3	1·I·98[A]·PBO·CD	2.39	0.53		
$2 \cdot D \cdot 67 \cdot ABG \cdot NH2$	$2 \cdot D \cdot 90 \cdot ASP \cdot OD2$	2.30	0.53		
3.G.188.GLU.N	3.G.188.GLU.OE1	2.39	0.52		
1:K:140:LEU:CD1	2:L:183:VAL:HG11	$\frac{2.30}{2.40}$	0.52		
$2 \cdot N \cdot 67 \cdot ABG \cdot NH2$	$2 \cdot N \cdot 90 \cdot ASP \cdot OD2$	2.39	0.52		
$1 \cdot \text{E} \cdot 80 \cdot \text{GLN} \cdot \text{NE2}$	1.1.54.GLN.OE1	2.33	0.51		
$2 \cdot P \cdot 100 \cdot GLY \cdot O$	1:0:35·LVS·NZ	2.12	0.51		
1:C:35:LVS:NZ	2.D.100.GLV.0	2.10	0.51		
2·L·85·SEB·HB2	2.D.100.0L1.0	1 93	0.51		
$1 \cdot I \cdot 93 [A] \cdot ASP \cdot OD1$	$1 \cdot I \cdot 94 [A] \cdot ABG \cdot N$	2.44	0.51		
$1 \cdot \Delta \cdot 82 \cdot GLU \cdot OE1$	1.1.94[A].ARU.ND2	2.44	0.50		
2·H·87·ABC·HD2	2.H.89.GLU.OE2	2.00	0.50		
1.C.154.LVS.HD3	1·C·159·PRO·HΔ	1.03	0.50		
1.0.194.015.003 $1.0.97[\Delta] \cdot HIS \cdot HB3$	1.0.155.1 RO.HD $1.0.98[\Delta] \cdot \text{PRO} \cdot \text{HD}$	1.95	0.50		
3.C.35.LVS.NZ	2.H.100.GLV.0	2 /3	0.49		
$2 \cdot P \cdot 67 \cdot \Delta R G \cdot NH2$	$2 \cdot P \cdot 90 \cdot \Delta SP \cdot OD 2$	2.40	0.43		
$2.1 \cdot .07.107.GLN \cdot OE1$	2:N:107:GLN:N	2.05	0.40		
$\frac{2.14.107.6D14.0D1}{1.167.5EB.0}$	1.K.93.ASP.0	2.40	0.40		
$\frac{1.\text{K}.27.\text{SDR.O}}{1.4.35.\text{LVS}\cdot\text{NZ}}$	2·B·100·GLV·O	2.35	0.40		
$2 \cdot D \cdot 142 \cdot CVS \cdot SG$	2.D.100.GD1.0 $2.D.198[B] \cdot CVS \cdot HB2$	2.40	0.45		
1.1.35.LVS.NZ	4.1.100.GLV.0	2.00	0.45		
$\frac{1.1.35.115.132}{1.0.120}$	1.C.209.LVS·NZ	2.40	0.45		
2·P·147·TVB·OH	2:P:150:CLU:OE2	2.41	0.45		
$1 \cdot \Delta \cdot 97 [\text{B}] \cdot \text{HIS} \cdot \text{HB}3$	$\frac{2.1 \cdot 150.0 \text{B} \cdot 08}{1 \cdot 4 \cdot 98} \text{B} \cdot \text{PB} \cap \text{CD}$	2.17	0.45		
$\frac{1.1.37[D].1115.11D3}{2.113.(LN)NE2}$	2·N·116·ALA·O	2.41	0.44		
$1 \cdot K \cdot 118 \cdot PRO \cdot HR2$	$\frac{1 \cdot K \cdot 1/1 \cdot IL E \cdot HG23}{1 \cdot K \cdot 1/1 \cdot IL E \cdot HG23}$	1.98	0.44		
$2 \cdot \text{F} \cdot 197 \cdot \text{ILE} \cdot \text{CD1}$	2·F·212·LVS·HΔ	2.48	0.44		
$1 \cdot \Delta \cdot 97 [\text{B}] \cdot \text{HIS} \cdot \text{HB3}$	$1 \cdot \Delta \cdot 98 [\text{R}] \cdot \text{PRO-HD3}$	2.40	0.44		
1.0.185.LEU.HB3	1.0.189.GLN.HG3	2.00	0.43		
1.0.100.000.000	1.0.105.0LIV.II05	2.00	0.43		
1.K.14.PRO.HD3	1.K.111.LEU.O	2.10	0.40		
1.K.149.SER.HR9	1.K.172.CLN.OF1	2.10	0.43		
1.Ω.142.5ΕΠ.ΠD2 1.Ω.189.CI N·HΔ	$1 \cdot () \cdot 102 \cdot \text{SER} \cdot \text{HR}3$	2.13	0.40		
3.C.28.ASN.OD1	3.C.20.II.E.N	2.01	0.42		
1.E.171.IVC.HF9	1.E.177.TVP.OH	2.42	0.42		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	$\frac{1.0.177.1110.011}{3.0.1701}$	2.13	0.42		
3:G:120:VAL:HA	3:G:140:LEU:O	2.19	0.42		

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:G:27:SER:O	3:G:93:ASP:O	2.38	0.42
4:J:118:THR:HA	4:J:148:PHE:O	2.20	0.42
2:D:142:CYS:HB3	2:D:198[B]:CYS:SG	2.61	0.41
4:J:14:PRO:HD2	4:J:115:SER:HB3	2.02	0.41
2:P:169:PRO:HG2	1:0:170:SER:OG	2.20	0.41
1:K:165:GLU:HB3	2:L:171:VAL:HG21	2.02	0.41
1:A:170:SER:OG	2:B:169:PRO:HG2	2.21	0.41
2:B:201:ASN:CG	2:B:208:LYS:HE2	2.42	0.41
1:K:113:GLN:HG3	1:K:145:TYR:CD2	2.56	0.41
1:O:55:ARG:NH2	6:O:306:HOH:O	2.49	0.40
2:P:150:GLU:OE1	2:P:151:PRO:HA	2.22	0.40

All (4) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:D:59:TYR:OH	2:P:59:TYR:OH[2_445]	1.91	0.29
2:B:59:TYR:OH	2:F:59:TYR:OH[2_454]	1.92	0.28
2:H:59:TYR:OH	2:L:59:TYR:OH[2_445]	1.95	0.25
6:H:329:HOH:O	6:L:330:HOH:O[2_445]	2.12	0.08

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	221/245~(90%)	210~(95%)	9 (4%)	2(1%)	17	15
1	С	213/245~(87%)	205~(96%)	8 (4%)	0	100	100
1	E	212/245~(86%)	204~(96%)	8 (4%)	0	100	100
1	Ι	222/245~(91%)	212~(96%)	10 (4%)	0	100	100
1	K	212/245~(86%)	205~(97%)	7 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	М	210/245~(86%)	202~(96%)	8 (4%)	0	100	100
1	Ο	206/245~(84%)	199~(97%)	7(3%)	0	100	100
2	В	213/289~(74%)	210~(99%)	3 (1%)	0	100	100
2	D	222/289~(77%)	218~(98%)	3 (1%)	1 (0%)	29	30
2	F	209/289~(72%)	206~(99%)	3 (1%)	0	100	100
2	Н	187/289~(65%)	183~(98%)	4 (2%)	0	100	100
2	L	207/289~(72%)	204 (99%)	3 (1%)	0	100	100
2	Ν	207/289~(72%)	204 (99%)	3 (1%)	0	100	100
2	Р	203/289~(70%)	200~(98%)	3 (2%)	0	100	100
3	G	213/245~(87%)	206~(97%)	7 (3%)	0	100	100
4	J	209/289~(72%)	205~(98%)	4 (2%)	0	100	100
All	All	3366/4272 (79%)	3273 (97%)	90 (3%)	3 (0%)	51	60

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	D	222	THR
1	А	97[A]	HIS
1	А	97[B]	HIS

5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	А	186/207~(90%)	186~(100%)	0	100	100
1	С	173/207~(84%)	173~(100%)	0	100	100
1	Ε	179/207~(86%)	179~(100%)	0	100	100
1	Ι	189/207~(91%)	189~(100%)	0	100	100
1	Κ	172/207~(83%)	172~(100%)	0	100	100
1	М	170/207~(82%)	170~(100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	Ο	171/207~(83%)	171~(100%)	0	100	100
2	В	179/240~(75%)	178~(99%)	1 (1%)	86	92
2	D	183/240~(76%)	179~(98%)	4 (2%)	52	64
2	F	174/240~(72%)	173~(99%)	1 (1%)	86	92
2	Н	146/240~(61%)	145~(99%)	1 (1%)	84	91
2	L	174/240~(72%)	172 (99%)	2 (1%)	73	84
2	Ν	173/240~(72%)	170~(98%)	3 (2%)	60	73
2	Р	170/240~(71%)	169~(99%)	1 (1%)	86	92
3	G	171/206~(83%)	171 (100%)	0	100	100
4	J	173/239~(72%)	173~(100%)	0	100	100
All	All	2783/3574 (78%)	2770 (100%)	13 (0%)	91	94

All (13) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	В	166	HIS
2	D	107	GLN
2	D	166	HIS
2	D	198[A]	CYS
2	D	198[B]	CYS
2	F	166	HIS
2	Н	1	GLN
2	L	172	LEU
2	L	211	LYS
2	Ν	198	CYS
2	N	201	ASN
2	Ν	211	LYS
2	Р	166	HIS

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
2	D	201	ASN
1	Κ	199	GLN
2	L	173	GLN
2	L	206	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	True	Chain	Dec	Tinle	Bond lengths			Bond angles		
	туре		nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	PCA	J	1	4	7,8,9	1.77	1 (14%)	9,10,12	1.63	3 (33%)
3	PCA	G	1	3	7,8,9	1.77	1 (14%)	9,10,12	1.70	4 (44%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	PCA	J	1	4	-	0/0/11/13	0/1/1/1
3	PCA	G	1	3	-	0/0/11/13	0/1/1/1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
3	G	1	PCA	CD-N	4.55	1.46	1.34
4	J	1	PCA	CD-N	4.54	1.46	1.34

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	G	1	PCA	OE-CD-CG	-2.58	122.26	126.76
4	J	1	PCA	OE-CD-CG	-2.49	122.43	126.76
3	G	1	PCA	CB-CA-N	2.20	109.61	103.30
3	G	1	PCA	CB-CA-C	-2.16	109.73	112.70
4	J	1	PCA	CB-CA-N	2.14	109.44	103.30

4

-2.05

106.57

Ideal(°)

113.58

113.58

COmu	Solutinaed from previous page												
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$							
3	G	1	PCA	CA-N-CD	-2.08	106.46							

CA-N-CD

PCA

Continued from previous page...

1

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

J

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol T	Tuno	Chain	Res	Link	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	EDO	I	301	-	3,3,3	0.47	0	$2,\!2,\!2$	0.25	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	EDO	Ι	301	-	-	0/1/1/1	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	216/245~(88%)	0.46	7 (3%) 47 45	26, 41, 71, 139	0
1	С	215/245~(87%)	0.53	10 (4%) 31 29	28, 60, 114, 144	0
1	E	214/245~(87%)	0.37	3 (1%) 75 73	30, 50, 86, 111	0
1	I	214/245~(87%)	0.41	5 (2%) 60 58	28, 42, 65, 121	0
1	K	214/245~(87%)	0.83	26 (12%) 4 3	35, 71, 132, 152	0
1	М	212/245~(86%)	0.54	10 (4%) 31 29	31, 65, 125, 157	0
1	Ο	210/245~(85%)	0.76	23 (10%) 5 4	30, 58, 144, 170	0
2	В	212/289~(73%)	0.50	3 (1%) 75 73	27, 50, 101, 152	0
2	D	223/289~(77%)	0.67	19 (8%) 10 9	35, 70, 105, 143	0
2	F	210/289~(72%)	0.48	5 (2%) 59 57	32, 57, 108, 134	0
2	Н	193/289~(66%)	1.34	48 (24%) 0 0	33, 70, 162, 191	0
2	L	209/289~(72%)	0.61	15 (7%) 15 14	30, 64, 110, 138	0
2	N	209/289~(72%)	0.61	12 (5%) 23 22	32,65,117,131	0
2	Р	207/289~(71%)	0.81	18 (8%) 10 8	28, 57, 135, 158	0
3	G	212/245~(86%)	0.91	25(11%) 4 3	29, 55, 136, 162	0
4	J	210/289~(72%)	0.71	16 (7%) 13 12	37, 63, 107, 148	0
All	All	3380/4272 (79%)	0.65	245 (7%) 15 14	26, 57, 125, 191	0

All (245) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Н	170	ALA	9.3
1	0	196	TYR	8.6
2	Н	169	PRO	7.3
2	Р	195	THR	7.2
2	Н	142	CYS	7.2

Mol	Chain	Res	Type	RSRZ	
3	G	196	TYR	7.1	
2	D	129	SER	6.5	
2	Р	196	TYR	6.4	
2	Н	127	ALA	6.2	
2	Н	125	PRO	6.1	
2	Н	153	THR	5.9	
4	J	15	GLY	5.9	
2	Н	167	THR	5.8	
3	G	123	PHE	5.7	
3	G	190	TRP	5.7	
2	L	160	ALA	5.4	
3	G	187	PRO	5.2	
3	G	129	GLU	5.2	
2	H	183	VAL	5.0	
4	J	191	LEU	5.0	
1	K	194	ARG	4.9	
2	Р	127	ALA	4.9	
1	K	212	ALA	4.8	
2	L	196	TYR	4.8	
3	G	191	LYS	4.8	
2	Н	149	PRO	4.7	
2	Н	123	VAL	4.6	
2	Н	194	GLN	4.5	
3	G	130	LEU	4.5	
3	G	211	VAL	4.5	
2	Р	184	VAL	4.5	
3	G	124	PRO	4.4	
1	K	162	ALA	4.4	
2	Р	138	ALA	4.3	
2	Н	180	LEU	4.3	
2	Н	199	ASN	4.3	
2	D	130	SER	4.3	
2	H	120	GLY	4.2	
2	Н	156	TRP	4.2	
2	Н	196	TYR	4.2	
1	0	194	ARG	4.1	
1	K	211	VAL	4.1	
3	G	136	THR	4.1	
2	Р	140	LEU	4.1	
1	0	183	LEU	4.1	
1	0	159	PRO	4.0	
1	0	190	TRP	4.0	

Mol	Chain	Res	Type	RSRZ
1	K	137	LEU	4.0
2	N	129	SER	4.0
2	В	191	LEU	4.0
1	М	137	LEU	4.0
2	Н	128	PRO	4.0
2	Н	182	SER	3.9
1	K	149	VAL	3.8
1	0	185	LEU	3.8
2	D	209	VAL	3.8
1	0	160	VAL	3.8
2	Р	125	PRO	3.8
2	Н	144	VAL	3.7
3	G	186	THR	3.7
4	J	135	GLY	3.7
1	K	166	THR	3.7
1	E	1	GLN	3.6
1	0	195	SER	3.6
2	Н	124	PHE	3.6
3	G	135	ALA	3.6
1	A	194	ARG	3.6
2	Н	154	VAL	3.6
1	K	214	THR	3.6
1	M	185	LEU	3.5
2	D	200	VAL	3.5
2	H	116	ALA	3.5
2	H	214	GLU	3.5
1	0	186	THR	3.5
2	L	191	LEU	3.5
1	0	129	GLU	3.5
2	Н	151	PRO	3.4
1	0	124	PRO	3.4
2	P	126	LEU	3.4
1	M	156	ASP	3.4
2	H	158	SER	3.4
2	P	129	SER	3.4
3	G	126	SER	3.4
3	G	127	SER	3.4
2	H	140	LEU	3.4
2	H	141	GLY	3.3
2	H	215	PRO	3.3
2	N	204	PRO	3.3
1	C	93	ASP	3.3

Mol	Chain	Res	Res Type	
1	0	130	LEU	3.3
2	N	195	THR	3.3
1	М	155	ALA	3.3
1	K	157	SER	3.3
2	L	129	SER	3.3
2	D	220	LYS	3.2
4	J	206	ASN	3.2
2	L	204	PRO	3.2
1	М	158	SER	3.2
3	G	197	SER	3.2
3	G	134	LYS	3.2
3	G	160	VAL	3.2
2	D	221	GLY	3.2
1	K	58	GLY	3.1
2	N	136	GLY	3.1
2	L	194	GLN	3.1
2	Н	168	PHE	3.1
3	G	212	ALA	3.1
1	Κ	153	TRP	3.1
2	F	191	LEU	3.1
2	Р	139	ALA	3.0
1	A	95[A]	TYR	3.0
1	0	126	SER	3.0
2	N	160	ALA	3.0
4	J	148	PHE	3.0
1	С	155	ALA	2.9
1	0	134	LYS	2.9
1	A	96[A]	THR	2.9
2	Р	137	THR	2.9
2	Н	117	SER	2.9
1	M	196	TYR	2.9
1	K	158	SER	2.9
1	K	163	GLY	2.9
2	D	222	THR	2.9
2	H	212	LYS	2.9
2	Ĺ	159 GLY		2.8
2	N	127	ALA	2.8
2	P	161	LEU	2.8
1	A	51	TYR	2.8
2	D	148	PHE	2.8
1	K	148	ALA	2.8
1	O	51	TYR	2.8

Mol	Chain	Res	Type	RSRZ	
2	Н	184	VAL	2.8	
2	L	140	LEU	2.8	
1	K	192	SER	2.8	
3	G	192	SER	2.8	
1	K	215	GLU	2.8	
2	L	158	SER	2.8	
2	Н	203	LYS	2.8	
1	М	190	TRP	2.8	
1	Е	2	SER	2.8	
1	С	96	THR	2.7	
4	J	150	GLU	2.7	
1	M	195	SER	2.7	
2	D	193	THR	2.7	
2	L	180	LEU	2.7	
2	F	129	SER	2.7	
1	0	188	GLU	2.7	
2	L	193	THR	2.7	
2	В	190	SER	2.7	
1	K	196	TYR	2.7	
1	0	207	VAL	2.7	
2	Р	124	PHE	2.7	
2	Н	129	SER	2.6	
1	K	155	ALA	2.6	
2	Н	204	PRO	2.6	
2	N	139	ALA	2.6	
1	Ι	95[A]	TYR	2.6	
2	Н	148	PHE	2.6	
2	L	208	LYS	2.6	
1	Ι	97[A]	HIS	2.6	
1	I	96[A]	THR	2.6	
1	K	138	VAL	2.6	
2	H	171	VAL	2.6	
4	J	12	VAL	2.6	
2	F	216	LYS	2.6	
1	0	164	VAL	2.6	
2	H	201	ASN	2.5	
2	H	197	ILE	2.5	
2	P	193	THR	2.5	
1	A	1	GLN	2.5	
2	D	226	VAL	2.5	
2	P	186	VAL	2.5	
1	K	190	TRP	2.5	

Mol	Chain	Res	Type	RSRZ	
1	С	137	LEU	2.5	
2	L	137	THR	2.4	
4	J	203	LYS	2.4	
1	А	216	CYS	2.4	
1	С	216	CYS	2.4	
2	Н	143	LEU	2.4	
1	С	211	VAL	2.4	
2	Н	200	VAL	2.4	
2	D	163	SER	2.4	
1	М	152	ALA	2.4	
2	D	198[A]	CYS	2.4	
2	N	138	ALA	2.3	
4	J	66	GLY	2.3	
2	N	196	TYR	2.3	
3	G	210	THR	2.3	
3	G	158	SER	2.3	
2	D	218	CYS	2.3	
4	J	13	GLN	2.3	
1	K	151	VAL	2.3	
1	С	163	GLY	2.3	
1	K	198	CYS	2.3	
3	G	208	GLU	2.3	
2	N	191	LEU	2.3	
2	Р	194	GLN	2.3	
1	А	97[A]	HIS	2.3	
1	K	133	ASN	2.3	
2	D	126	LEU	2.3	
2	D	217	SER	2.3	
2	L	23	ALA	2.3	
2	Р	141	GLY	2.2	
2	Н	155	SER	2.2	
2	Н	195	THR	2.2	
1	K	210	THR	2.2	
2	F	65	LYS	2.2	
2	N	184	VAL	2.2	
4	J	209	VAL	2.2	
2	Н	202	HIS	2.2	
2	В	161	LEU	2.2	
2	Ν	140	LEU	2.2	
3	G	185	LEU	2.2	
2	Н	205	SER	2.2	
4	J	117	SER	2.2	

Mol	Chain	Res	Type	RSRZ
2	L	184	VAL	2.1
1	С	196	TYR	2.1
4	J	162	THR	2.1
1	К	195	SER	2.1
2	Н	121	PRO	2.1
4	J	201	ASN	2.1
2	D	153	THR	2.1
2	Н	137	THR	2.1
3	G	138	VAL	2.1
1	Ι	1	GLN	2.1
2	D	177	LEU	2.1
1	0	95	TYR	2.1
1	Ι	26	ARG	2.1
2	Н	208	LYS	2.1
1	K	121	THR	2.1
2	Р	156	TRP	2.1
4	J	186	VAL	2.1
1	0	123	PHE	2.1
1	Е	156	ASP	2.0
1	0	136	THR	2.0
1	0	127	SER	2.0
1	М	153	TRP	2.0
1	С	51	TYR	2.0
4	J	155	SER	2.0
2	D	156	TRP	2.0
2	F	156	TRP	2.0
1	С	156	ASP	2.0
1	0	210	THR	2.0
3	G	195	SER	2.0
2	D	116	ALA	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
3	PCA	G	1	8/9	0.80	0.30	$116,\!124,\!146,\!149$	0
4	PCA	J	1	8/9	0.87	0.17	68,77,92,92	0

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
5	EDO	Ι	301	4/4	0.90	0.18	$44,\!59,\!65,\!71$	0

6.5 Other polymers (i)

There are no such residues in this entry.

