

Full wwPDB X-ray Structure Validation Report (i)

Oct 11, 2023 – 06:56 AM EDT

PDB ID	:	7M3T
Title	:	Crystallographic structure of a cubic crystal of STMV (80.7 degree rotation
		about 111) grown from chloride
Authors	:	McPherson, A.
Deposited on	:	2021-03-19
Resolution	:	3.20 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1133 (3.20-3.20)
Clashscore	141614	1253 (3.20-3.20)
Ramachandran outliers	138981	1234 (3.20-3.20)
Sidechain outliers	138945	1233 (3.20-3.20)
RSRZ outliers	127900	1095 (3.20-3.20)
RNA backbone	3102	1010 (3.50-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	159	% 8 4%	7%	9%
1	В	159	84%	6%	10%
1	С	159	82%	8%	11%
1	D	159	% 81%	10%	9%

Chain Length Quality of chain Mol .% Е 1 15981% 10% 9% .% F 1 15981% 10% 9% GG1591 80% 11% 9% .% Η 1 15984% 8% 9% 1 ΗH 15983% 8% 9% Ι 1591 87% 9% . .% Π 1591 80% 10% 10% J 1 15982% 8% 9% JJ 1591 84% 7% 9% 2% Κ 1 15985% 7% 8% .% KK 1 15980% 11% 9% 2% L 10% • 1591 89% М 1591 87% 9% .% Ο 1 15985% 6% 9% 2 \mathbf{G} 15983% 8% 9% 3 Ν 15983% 8% 9% 30% Р 4 10 30% 30% 10% 30% 10% \mathbf{S} 4 1040% 10% 50% 10% Т 104 20% 30% 50% 50% TT1040% 4 10% 20% 30% 40% UU 4 1050% 10% 40% 50% V 104 40% 20% 20% 20% 80% Х 104 30% 40% 20% 10% 40% Υ 104 60% 10% 30% 50% 4 10 \mathbf{a} 20% 40% 40%

Continued from previous page...

Mol	Chain	Length		Quality	y of chain		
5	WW	12	42% 25%	33%	8%	33%	
5	е	12	17%	83%	75%		8%
6	h	12	33% 42%		25%	33%	
7	i	11	9% 18%	27%	55	%	
7	11	11	36% 36%	9%	55	%	
8	kk	10	30% 40%		30%	30%	
8	m	10	40%		50%		10%
9	n	8	38%			50%	
9	qq	8	38% 12%	38%		50%	
10	bb	12	42%	1	00% 58%	, 0	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
11	PO4	Н	503	-	-	-	Х
12	CL	HH	201	-	-	Х	-
12	CL	KK	202	-	-	-	Х
12	CL	N	201	-	-	-	Х
13	MG	G	201	-	-	-	Х

2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 26451 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	1.4.4	Total	С	Ν	0	S	0	6	0
1	A	144	1118	703	199	210	6	0	0	0
1	D	149	Total	С	Ν	0	S	0	10	0
	D	140	1115	703	197	208	7	0	10	0
1	С	149	Total	С	Ν	0	S	0	12	0
		142	1104	696	196	206	6	0	15	0
1	п	144	Total	С	Ν	0	S	0	19	0
	D	144	1118	703	199	210	6	0	12	0
1	F	144	Total	С	Ν	Ο	\mathbf{S}	0	11	0
L L		144	1118	703	199	210	6	0	11	0
1	F	144	Total	С	Ν	Ο	\mathbf{S}	0	6	0
	Г	144	1121	705	199	211	6	0	0	0
1	н	145	Total	С	Ν	0	\mathbf{S}	0	8	0
	11	140	1126	707	200	213	6	0	0	0
1	т	144	Total	С	Ν	0	\mathbf{S}	0	8	0
1	L	144	1118	703	199	210	6	0	0	0
1	т	144	Total	С	Ν	0	\mathbf{S}	0	8	0
	0	144	1118	703	199	210	6		0	0
1	K	146	Total	С	Ν	0	\mathbf{S}	0	6	0
	17	140	1150	723	206	215	6	0	0	0
1	T	157	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Ľ	101	1215	761	221	227	6	0	0	0
1	М	144	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	111	144	1118	703	199	210	6	0	0	0
1	0	150	Total	С	Ν	Ο	\mathbf{S}	0	17	0
1	U	150	1168	732	209	220	7	0	11	0
1	GG	G 144	Total	\mathbf{C}	Ν	Ο	S	0	11	0
		111	1118	703	199	210	6	0	11	0
1	нн	144	Total	С	Ν	Ο	S	0	7	0
	1111	177	1118	703	199	210	6		7	0
1	TT	1/13	Total	С	Ν	0	S	0	8	0
	11	641	1110	699	197	208	6		0	0

• Molecule 1 is a protein called Coat protein.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	TT	144	Total	С	Ν	0	\mathbf{S}	0	12	0
T	11	144	1118	703	199	210	6	0	13	0
1	KK	144	Total	С	Ν	0	S	0	0	0
1	IXIX	144	1118	703	199	210	6		0	0

• Molecule 2 is a protein called Coat protein.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	G	144	Total 1117	C 702	N 199	0 210	S 6	0	7	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	128	SER	THR	conflict	UNP P17574

• Molecule 3 is a protein called Coat protein.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	Ν	144	Total 1125	C 709	N 199	O 210	${ m S} 7$	0	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
N	137	VAL	ALA	$\operatorname{conflict}$	UNP P17574

• Molecule 4 is a RNA chain called RNA (5'-R(P*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*A)-3').

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
4	D	7	Total	С	Ν	Ο	Р	0	7	0
4	1	1	154	70	35	42	7	0	1	0
4	C	5	Total	С	Ν	Ο	Р	0	Б	0
4	C C	5	110	50	25	30	5	0	5	0
4	т	۲.	Total	С	Ν	Ο	Р	0	5	0
4	1	5	110	50	25	30	5	0		0
4	V	0	Total	С	Ν	Ο	Р	0	6	0
4	v	0	176	80	40	48	8	0	0	0
4	v	0	Total	С	Ν	Ο	Р	0	8	0
4		9	198	90	45	54	9	0	8	U

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	V	7	Total	С	Ν	Ο	Р	0	6	0
4	I		154	70	35	42	$\overline{7}$	0	0	0
4	0	6	Total	С	Ν	Ο	Р	0	6	0
4	4 a	0	132	60	30	36	6	0	0	0
4	ΥŢ	7	Total	С	Ν	Ο	Р	0	6	0
4	11	1	154	70	35	42	$\overline{7}$	0	0	U
4	1 111	6	Total	С	Ν	Ο	Р	0	и	0
4 00	00		132	60	30	36	6	0	5	0

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	0	11	Total	С	Ν	Ο	Р	0	10	0
0	o e	11	220	99	22	88	11	0	10	
5	XX/XX/	0	Total	tal C N O P O		0	2	0		
0	VV VV	0	160	72	16	64	8	0	2	0

• Molecule 6 is a RNA chain called RNA (5'-R(P*UP*AP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP)-3').

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
6	h	8	Total 162	C 73	N 19	O 62	Р 8	0	7	0

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
7	;	5	Total	С	Ν	Ο	Р	0	5	0
(1	5	100	45	10	40	5	0		
7	11	5	Total	С	Ν	Ο	Р	0	5	0
	í II	5	100	45	10	40	5	0	5	0

• Molecule 8 is a RNA chain called RNA (5'-R(P*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP)-3').

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	m	0	Total	С	Ν	Ο	Р	0	0	0
0	8 111	9	180	81	18	72	9	0	9	
0	1-1-	7	Total	С	Ν	Ο	Р	0	6	0
O KK	KK	1	140	63	14	56	$\overline{7}$	0	0	U

• Molecule 9 is a RNA chain called RNA (5'-R(P*UP*UP*UP*UP*UP*UP*UP*UP*U)-3').

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	n	4	Total	С	Ν	Ο	Р	0	4	0
9		4	80	36	8	32	4	0	4	
0	aa	4	Total	С	Ν	0	Р	0	2	0
9 qq		4	80	36	8	32	4	0		0

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
10	bb	12	Total 264	C 120	N 60	0 72	Р 12	0	8	0

• Molecule 11 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
11	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
11	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
11	L	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
11	S	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	GG	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
11	11	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 12 is CHLORIDE ION (three-letter code: CL) (formula: Cl) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
12	С	1	Total Cl 1 1	0	0
12	D	1	Total Cl 1 1	0	0
12	G	1	Total Cl 1 1	0	0
12	М	1	Total Cl 1 1	0	0
12	Ν	1	Total Cl 1 1	0	0
12	Т	1	Total Cl 1 1	0	0
12	HH	1	Total Cl 1 1	0	0
12	JJ	1	Total Cl 1 1	0	0
12	KK	2	Total Cl 2 2	0	0
12	bb	3	Total Cl 3 3	0	0
12	qq	1	Total Cl 1 1	0	0
12	U	1	Total Cl 1 1	0	0

• Molecule 13 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
13	G	1	Total Mg 1 1	0	0
13	Н	1	Total Mg 1 1	0	0
13	L	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
13	II	1	Total Mg 1 1	0	0
13	JJ	2	Total Mg 2 2	0	0

• Molecule 14 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	А	28	TotalO2828	0	0
14	В	41	Total O 41 41	0	0
14	С	33	Total O 33 33	0	0
14	D	48	Total O 48 48	0	0
14	Е	32	TotalO3232	0	0
14	F	32	TotalO3232	0	0
14	G	44	Total O 44 44	0	0
14	Н	38	Total O 38 38	0	0
14	Ι	17	Total O 17 17	0	0
14	J	39	Total O 39 39	0	0
14	К	51	$\begin{array}{cc} \text{Total} & \text{O} \\ 51 & 51 \end{array}$	0	0
14	L	28	Total O 28 28	0	0
14	М	30	Total O 30 30	0	0
14	Ν	20	TotalO2020	0	0
14	О	62	TotalO6262	0	0
14	Р	14	Total O 14 14	0	0
14	S	7	$\begin{array}{cc} \text{Total} & \text{O} \\ 7 & 7 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	Т	9	Total O 9 9	0	0
14	V	25	$\begin{array}{cc} \text{Total} & \text{O} \\ 25 & 25 \end{array}$	0	0
14	Х	13	Total O 13 13	0	0
14	Y	18	Total O 18 18	0	0
14	a	6	Total O 6 6	0	0
14	е	30	Total O 30 30	0	0
14	h	21	TotalO2121	0	0
14	i	3	Total O 3 3	0	0
14	m	15	Total O 15 15	0	0
14	n	9	Total O 9 9	0	0
14	GG	36	$\begin{array}{cc} \text{Total} & \text{O} \\ 36 & 36 \end{array}$	0	0
14	HH	57	$\begin{array}{cc} \text{Total} & \text{O} \\ 57 & 57 \end{array}$	0	0
14	II	65	$\begin{array}{cc} \text{Total} & \text{O} \\ 65 & 65 \end{array}$	0	0
14	JJ	30	Total O 30 30	0	0
14	KK	56	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 56 & 56 \end{array}$	0	0
14	TT	3	Total O 3 3	0	0
14	UU	6	Total O 6 6	0	0
14	WW	14	Total O 14 14	0	0
14	bb	37	Total O 37 37	0	0
14	kk	30	$\begin{array}{ccc} \hline \text{Total} & \text{O} \\ 30 & 30 \end{array}$	0	0
14	11	5	$\begin{array}{c c} \hline \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	$\mathbf{q}\mathbf{q}$	6	Total O 6 6	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Coat protein

• Molecule 1: Coat protein

(M31

Chain O:	85%	9% 6%
MET GLY GLY GLY GLY CLY GLY VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	481 184 184 199 199 117 8121 8121 8121 8121 8121 8121 8121	
• Molecule 1: Coat prote	in	
Chain GG:	80%	11% 9%
CITY CITY CITY CITY CITY CITY CITY CITY	V20 V75 V75 W81 W81 832 C83 C83 C812 M112 S121 S121 P127 P127	01440 0150 0151 1154 2155 0156 0156 0156
• Molecule 1: Coat prote	in	
Chain HH:	83%	8% 9%
MBL 1 GLY GLY GLY GLY CLYS CLYS ARG ARD PRO ASN ASP GLY ASP GLY SER TTHR GLY	K30 134 134 171 171 171 171 171 171 171 171 171 17	2 0 1 2 2
• Molecule 1: Coat prote	in	
Chain II:	80%	10% 10%
drb1 drb2 drb3 drb3 drb3 drb3 drb3 drb3 drb4 drb3 drb4 drb4 drb3 drb4 drb4 drb4 drb4 drb4 drb4 drb4 drb4	V19 V12 M22 M22 M21 M21 M22 M22 M22 M22 M23 M21 M22 M23 M21 M22 M22 M22 M22 M22 M22 M22 M22 M22	N121 143 149 149 149 149 149 149 149 149 149
• Molecule 1: Coat prote	in	
Chain JJ:	84%	7% 9%
GILY GILY GILY GILY GILY FIR ARG CILY GILY GILY GILY GILY GILY GILY GILY G	Re6 Wa1 Wa1 La4 K97 K97 S121 P127 P127 P127 F148 R148 R148 R148	7 7 7 7 7
• Molecule 1: Coat prote	in	
Chain KK:	80%	11% 9%
A MEL ARG ARG CLYS LVAL LVS VAL LVS ARS SIT SIT SIT	726 E44 V57 W31 W31 W31 W31 W31 W31 W31 C52 R32 R32 R32 R32 R32 R32 R32 R32 R32 R3	V140 C141 A151 C156 N159 N159
• Molecule 2: Coat prote	2 in	
Chain G:	83%	8% 9%
MEL GLY GLY GLY CVAL LYS CVAL LYS ASN ASN ASN ASN ASP GLY M16 M16 M16 M16 M16	P33 R66 L99 L99 S121 C141 C141 C141 C141 C141 C141 C141 C	
• Molecule 3: Coat prote	in	

Chain N:		83%		8% 9%
MET GLY GLY GLY CLYS LYS LYS PRO ASN ARG	LYS SER THR GLY GLY V19 V19 Q48	151 V73 W81 184 L84 R95 R95 R116 R144	R148 A151 F158 N159	
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain P:	30% 30%	30%	10%	30%
A163 A164 A165 A166 A167 A167 A169 A169 A 169 A 169 A 169				
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain S:	40%	10%	50%	
A163 A164 A167 A167 A A A A A A A A A				
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain T:	20%	30%	50%	
A164 A165 A166 A167 A168 A A A A A A A A A A A A A A A A A A A				
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain V:	50% 40%	20%	20%	20%
A162 A164 A164 A165 A165 A166 A166 A168 A168 A169 A168 A169 A168 A				
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain X:	30%	80% 40%		20% 10%
A162 A164 A164 A165 A165 A165 A167 A169 A169 A170 A				
• Molecule 4:	RNA (5'-R(P*	AP*AP*AP*AP*	AP*AP*AP*A	AP*AP*A)-3')
Chain Y:	40%	0%	10%	30%
A163 A167 A169 A169 A A A A A A A A				

• Molecule 4: RNA (5'-R(P*AP*AP*AP*AP*AP*AP*AP*AP*AP*A)-3') 50% Chain a: 40% 20% 40% • Molecule 4: RNA (5'-R(P*AP*AP*AP*AP*AP*AP*AP*AP*AP*A)-3') 50% Chain TT: 10% 40% 20% 30% • Molecule 4: RNA (5'-R(P*AP*AP*AP*AP*AP*AP*AP*AP*AP*A)-3') Chain UU: 50% 10% 40% • Molecule 5: RNA (5'-R(P*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*U)-3') 83% Chain e: 75% 17% 8% 1184 J185 J186 • Molecule 5: RNA (5'-R(P*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*U)-3') Chain WW: 25% 33% 33% 8% • Molecule 6: RNA (5'-R(P*UP*AP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*U)-3') 33% Chain h: 42% 25% 33% • Molecule 7: RNA (5'-R(P*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*U)-3') 9% Chain i: 18% 27% 55%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 2 3	Depositor
Cell constants	234.05Å 234.05 Å 234.05 Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	46.81 - 3.20	Depositor
Resolution (A)	46.81 - 3.20	EDS
% Data completeness	99.3 (46.81-3.20)	Depositor
(in resolution range)	98.7 (46.81 - 3.20)	EDS
R _{merge}	0.23	Depositor
R _{sym}	0.21	Depositor
$< I/\sigma(I) > 1$	$4.54 (at 3.19 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.19_4092	Depositor
D D.	0.215 , 0.254	Depositor
Π, Π_{free}	0.222 , 0.261	DCC
R_{free} test set	3531 reflections $(5.05%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	34.5	Xtriage
Anisotropy	0.000	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.28 , 1.0	EDS
L-test for twinning ²	$< L >=0.42, < L^2>=0.24$	Xtriage
Estimated twinning fraction	0.046 for l,-k,h	Xtriage
F_o, F_c correlation	0.85	EDS
Total number of atoms	26451	wwPDB-VP
Average B, all atoms $(Å^2)$	35.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.58% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, MG, CL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/1142	0.53	0/1556	
1	В	0.28	0/1142	0.54	0/1555	
1	С	0.28	0/1128	0.54	0/1537	
1	D	0.29	0/1142	0.53	0/1556	
1	Е	0.29	0/1142	0.53	0/1556	
1	F	0.28	0/1148	0.53	0/1564	
1	GG	0.28	0/1142	0.53	0/1556	
1	Н	0.28	0/1150	0.53	0/1567	
1	HH	0.29	0/1142	0.53	0/1556	
1	Ι	0.28	0/1142	0.53	0/1556	
1	II	0.28	0/1134	0.54	0/1545	
1	J	0.28	0/1142	0.53	0/1556	
1	JJ	0.30	0/1142	0.54	0/1556	
1	Κ	0.27	0/1181	0.53	0/1608	
1	KK	0.31	0/1142	0.54	0/1556	
1	L	0.27	0/1240	0.53	0/1685	
1	М	0.26	0/1142	0.53	0/1556	
1	0	0.27	0/1195	0.53	0/1625	
2	G	0.29	0/1141	0.53	0/1554	
3	Ν	0.29	0/1152	0.52	0/1569	
4	Р	0.37	0/174	0.90	0/269	
4	S	0.20	0/124	0.72	0/191	
4	Т	0.30	0/124	0.83	0/191	
4	TT	0.35	0/174	0.98	0/269	
4	UU	0.15	0/149	0.64	0/230	
4	V	0.25	0/199	0.74	0/308	
4	Х	0.28	0/223	0.75	0/343	
4	Y	0.14	0/173	0.64	0/265	
4	a	0.27	0/149	0.77	0/230	
5	WW	0.29	0/175	1.25	3/268 (1.1%)	
5	е	0.30	0/241	1.08	1/370 (0.3%)	
6	h	0.18	0/178	0.72	0/273	

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
7	i	0.24	0/109	0.88	0/166
7	ll	0.30	0/109	1.16	1/166~(0.6%)
8	kk	0.22	0/153	0.82	0/234
8	m	0.30	0/197	0.97	0/302
9	n	0.24	0/87	0.94	0/132
9	qq	0.33	0/86	1.41	3/128~(2.3%)
10	bb	0.28	0/299	0.87	0/464
All	All	0.28	0/26154	0.60	8/36168~(0.0%)

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	WW	166[A]	U	C2-N1-C1'	7.80	127.06	117.70
5	е	181[A]	U	OP1-P-OP2	-7.33	108.61	119.60
5	WW	166[A]	U	N3-C2-O2	-6.38	117.74	122.20
5	WW	166[A]	U	N1-C2-O2	6.03	127.02	122.80
9	qq	188	U	C2-N1-C1'	6.01	124.91	117.70
9	qq	188	U	N1-C2-O2	5.94	126.96	122.80
7	ll	184[A]	U	C2-N1-C1'	5.32	124.09	117.70
9	qq	188	U	N3-C2-O2	-5.26	118.52	122.20

All (8) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1118	0	1110	8	0
1	В	1115	0	1112	5	0
1	С	1104	0	1094	6	2
1	D	1118	0	1103	14	0
1	Е	1118	0	1105	12	0
1	F	1121	0	1113	11	0
1	GG	1118	0	1103	11	0

	Chain	Non H	puye	II(addad)	Clashag	Summe Clashes
		INOII-П	п(model)		Clashes	Symm-Clasnes
	П	1120	0	1110	9	0
	ПН	1118	0	1109	10	0
		1118	0	1106	0	0
		1110	0	1105	10	0
	J	1118	0	1108	10	0
	JJ	1118	0	1105	8	0
	K	1150	0	1149	10	0
	KK	1118	0	1106		0
	L	1215	0	1216	9	0
	M	1118	0	1112	3	0
1	0	1168	0	1155	9	0
2	G	1117	0	1106	9	0
3	N	1125	0	1125	7	0
4	Р	154	0	78	5	0
4	S	110	0	56	0	0
4	Т	110	0	56	1	0
4	TT	154	0	78	3	0
4	UU	132	0	67	0	0
4	V	176	0	89	3	0
4	Х	198	0	101	4	0
4	Y	154	0	79	0	0
4	a	132	0	67	0	0
5	WW	160	0	75	1	0
5	е	220	0	111	0	0
6	h	162	0	82	0	0
7	i	100	0	51	0	0
7	11	100	0	51	0	1
8	kk	140	0	71	0	0
8	m	180	0	91	0	0
9	n	80	0	41	0	0
9	qq	80	0	42	0	0
10	bb	264	0	133	0	0
11	А	5	0	0	0	0
11	GG	5	0	0	0	0
11	Н	10	0	0	1	0
11	L	5	0	0	0	0
11	S	5	0	0	0	0
11	11	5	0	0	0	0
12	С	1	0	0	0	0
12	D	1	0	0	0	0
12	G	1	0	0	0	0
12	HH	1	0	0	2	0

	Chain	Non H	$\mathbf{H}(\mathbf{modol})$	H(addad)	Clashos	Symm Clashes
10		11011-11			Clashes	Symm-Clashes
12		1	0	0	0	0
12	N M		0	0	0	0
12	IVI N	1	0	0	0	0
12		1	0	0	0	0
12	I	1	0	0	0	0
12		1	0	0	0	0
12	dd	3 1	0	0	0	0
12	qq	1	0	0	0	0
13	G H	1	0	0	0	0
13	П	1	0	0	0	0
13		1	0	0	0	0
13	JJ	2 1	0	0	0	0
13		1	0	0	0	0
14	A	28	0	0	0	0
14	B	41	0	0	0	0
14		33	0	0	0	0
14	D	48	0	0	0	0
14	E	32	0	0	0	0
14	F'	32	0	0	2	0
14	G	44	0	0	1	0
14	GG	36	0	0	0	0
14	H	38	0	0	0	0
14	HH	57	0	0	0	0
14	l	17	0	0	0	0
14		65	0	0	1	0
14	J	39	0	0	0	0
14]]	30	0	0	0	0
14	K	51	0	0	0	0
14	KK	56	0	0	1	0
14	L	28	0	0	0	0
14	M	30	0	0	0	0
14	N	20	0	0	0	0
14	0	62	0	0	1	0
14	Р	14	0	0	1	0
14	S	7	0	0	0	0
14	Т	9	0	0	0	0
14	TT	3	0	0	1	0
14	UU	6	0	0	0	0
14	V	25	0	0	0	0
14	WW	14	0	0	0	0
14	Х	13	0	0	2	0
14	Y	18	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
14	a	6	0	0	0	0
14	bb	37	0	0	0	0
14	е	30	0	0	0	0
14	h	21	0	0	0	0
14	i	3	0	0	0	0
14	kk	30	0	0	0	0
14	11	5	0	0	0	0
14	m	15	0	0	0	0
14	n	9	0	0	0	0
14	$\mathbf{q}\mathbf{q}$	6	0	0	0	0
All	All	26451	0	23771	152	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (152) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:HH:71:THR:OG1	12:HH:201:CL:CL	2.39	0.76
1:KK:28:TYR:O	14:KK:301:HOH:O	2.09	0.70
1:II:143:VAL:HG11	1:II:150:VAL:HG11	1.73	0.69
1:I:38:VAL:HB	4:X:163[A]:A:C2	2.32	0.64
1:H:68:ASP:N	11:H:503:PO4:O4	2.31	0.63
1:J:24:ARG:NH2	4:P:167[A]:A:OP2	2.33	0.61
1:L:12:SER:OG	1:L:16:ASN:O	2.19	0.61
4:TT:170[A]:A:N6	14:TT:201:HOH:O	2.34	0.60
1:KK:57:VAL:HG22	1:KK:140:VAL:HG13	1.84	0.60
4:X:162[A]:A:N6	14:X:201:HOH:O	2.35	0.59
1:O:10:ARG:O	14:O:201:HOH:O	2.17	0.58
1:II:83:GLN:NE2	14:II:303:HOH:O	2.36	0.57
3:N:48:GLN:HG3	3:N:51:ILE:HB	1.84	0.57
1:K:84:LEU:HG	1:K:149:GLN:HB3	1.87	0.57
3:N:84:LEU:HD12	3:N:148:ARG:HB3	1.87	0.57
1:L:11:LYS:HE2	1:L:21:THR:HB	1.87	0.56
1:II:105[A]:SER:OG	1:II:107:GLU:OE1	2.22	0.56
1:D:22:MET:H	4:V:164[A]:A:H5'	1.70	0.56
4:T:165[A]:A:H4'	1:HH:17:SER:HA	1.87	0.55
1:L:48:GLN:HB2	1:L:51:ILE:HG22	1.89	0.55
4:V:166[A]:A:H2'	4:V:167[A]:A:O4'	2.05	0.55
2:G:159:ASN:OXT	14:G:301:HOH:O	2.18	0.55
3:N:81:TRP:O	3:N:151:ALA:N	2.35	0.54

A + 1	A t and D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:84:LEU:HG	1:B:149[A]:GLN:HB2	1.90	0.53
1:E:84:LEU:HG	1:E:149[A]:GLN:HB2	1.90	0.53
1:GG:84:LEU:HD12	1:GG:148:ARG:HB2	1.90	0.53
1:D:81:TRP:CD1	1:D:121:SER:HB3	2.44	0.53
1:M:84:LEU:HG	1:M:149:GLN:HB2	1.91	0.52
1:C:79:ARG:HG3	1:C:123:GLY:HA3	1.90	0.52
1:I:117:ASN:HB3	1:J:116:ILE:HG12	1.92	0.52
1:E:84:LEU:HD12	1:E:148:ARG:HB2	1.93	0.51
1:J:79:ARG:HG2	1:J:123:GLY:HA3	1.91	0.51
1:II:19:VAL:HG22	1:II:20:VAL:H	1.75	0.51
1:J:81:TRP:CD1	1:J:121:SER:HB3	2.45	0.51
1:A:39:ARG:NH2	1:0:33:PRO:0	2.44	0.51
1:A:121:SER:O	1:F:30:LYS:NZ	2.37	0.51
1:F:110:GLU:HB3	1:K:31:VAL:HG23	1.93	0.51
3:N:95:ARG:HB2	3:N:144:ARG:HB2	1.93	0.51
1:GG:78:VAL:HG13	1:GG:154:ILE:HG12	1.93	0.51
1:D:31:VAL:HG23	1:JJ:110:GLU:HB3	1.93	0.51
1:J:31:VAL:HB	1:K:42:PRO:HG3	1.94	0.50
1:I:38:VAL:HB	4:X:163[A]:A:H2	1.74	0.50
1:F:81:TRP:CD1	1:F:121:SER:HB3	2.47	0.49
1:GG:83:GLN:OE1	1:GG:151:ALA:HB2	2.13	0.49
1:E:125:ARG:NH1	14:F:201:HOH:O	2.45	0.49
1:B:159:ASN:HD22	3:N:19:VAL:HG12	1.77	0.49
1:KK:75:VAL:HA	1:KK:156:CYS:HB3	1.94	0.49
2:G:33:PRO:O	1:HH:39:ARG:NH2	2.46	0.48
1:II:84:LEU:HG	1:II:149[A]:GLN:HB2	1.95	0.48
1:E:127:PRO:HG2	1:E:130:LEU:HB2	1.96	0.48
1:H:106:THR:HG23	12:HH:201:CL:CL	2.49	0.48
4:P:163[A]:A:N7	14:P:201:HOH:O	2.35	0.48
1:D:39:ARG:NH2	1:II:33:PRO:O	2.46	0.48
1:D:109:PHE:CD1	1:II:22:MET:HB2	2.49	0.47
1:GG:83:GLN:HB3	1:GG:149:GLN:HB3	1.96	0.47
1:E:30:LYS:NZ	2:G:121:SER:O	2.38	0.47
1:M:117:ASN:HB3	3:N:116:ILE:HG12	1.96	0.47
1:O:84:LEU:HG	1:O:149:GLN:HB3	1.96	0.47
1:II:81:TRP:CD1	1:II:121:SER:HB3	2.50	0.47
1:JJ:81:TRP:CD1	1:JJ:121:SER:HB3	2.50	0.47
1:A:84:LEU:HG	1:A:149[A]:GLN:HB2	1.96	0.47
1:HH:78:VAL:HG13	1:HH:154:ILE:HG12	1.97	0.47
1:C:84:LEU:HD12	1:C:148:ARG:HB2	1.97	0.47
4:V:164[A]:A:H2	1:HH:39:ARG:HD2	1.80	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:44:GLU:OE2	1:I:112:ARG:NH2	2.39	0.47
1:GG:81:TRP:CD1	1:GG:121:SER:HB3	2.50	0.46
1:A:78:VAL:HG13	1:A:154:ILE:HG12	1.98	0.46
1:M:81:TRP:CD1	1:M:121:SER:HB3	2.50	0.46
1:0:81:TRP:CD1	1:0:121:SER:HB3	2.50	0.46
1:C:84:LEU:HG	1:C:149[A]:GLN:HB2	1.96	0.46
1:K:116:ILE:HG12	1:0:117:ASN:HB3	1.97	0.46
1:GG:75:VAL:HA	1:GG:156:CYS:HB3	1.98	0.46
1:F:84:LEU:HG	1:F:149:GLN:HB2	1.96	0.45
1:H:121:SER:O	1:HH:30:LYS:NZ	2.41	0.45
4:P:165[A]:A:H2'	4:P:165[A]:A:N3	2.32	0.45
1:H:81:TRP:CD1	1:H:121:SER:HB3	2.52	0.45
1:C:52:ALA:HB2	1:C:144:ARG:HE	1.80	0.45
1:0:127:PRO:0	1:O:131:ARG:HG3	2.17	0.45
1:GG:117:ASN:HB3	1:HH:116:ILE:HG12	1.98	0.45
1:K:66:ARG:NH2	1:L:106:THR:OG1	2.33	0.45
1:HH:81:TRP:CD1	1:HH:121:SER:HB3	2.52	0.45
1:JJ:44:GLU:OE2	1:KK:112:ARG:NH1	2.36	0.45
1:A:112:ARG:NH2	1:E:44:GLU:OE2	2.38	0.45
2:G:84:LEU:HG	2:G:149:GLN:HB2	1.98	0.45
1:H:37:TRP:CE2	1:H:39:ARG:HD3	2.52	0.45
1:GG:19:VAL:HG12	1:GG:20:VAL:H	1.82	0.44
1:HH:40:ALA:HA	1:HH:154:ILE:O	2.17	0.44
1:H:74:THR:OG1	1:H:133:ASN:OD1	2.31	0.44
1:D:127:PRO:O	1:D:131:ARG:HG3	2.17	0.44
1:JJ:97:LYS:HB3	1:JJ:142:GLU:HB2	1.98	0.44
2:G:117:ASN:HB3	1:H:116:ILE:HG12	1.98	0.44
1:JJ:127:PRO:O	1:JJ:131:ARG:HG3	2.18	0.44
1:B:97[A]:LYS:HB3	1:B:142:GLU:HB2	2.00	0.43
1:0:105[A]:SER:HB3	1:O:107:GLU:OE1	2.18	0.43
2:G:99:LEU:HG	2:G:141:CYS:HA	2.00	0.43
1:L:84:LEU:HD12	1:L:148:ARG:HB2	1.99	0.43
1:K:117:ASN:HB3	1:L:116:ILE:HG12	2.00	0.43
4:P:166[A]:A:H2'	4:P:167[A]:A:O4'	2.18	0.43
1:L:81:TRP:O	1:L:151:ALA:N	2.37	0.43
1:I:81:TRP:CD1	1:I:121:SER:HB3	2.54	0.43
1:D:30:LYS:NZ	1:JJ:121:SER:O	2.37	0.43
1:A:37:TRP:CE2	1:A:39:ARG:HD3	2.53	0.42
1:D:117:ASN:HB3	1:E:116:ILE:HG12	2.01	0.42
1:E:34:THR:HB	1:F:66:ARG:NH2	2.33	0.42
1:JJ:66:ARG:NH2	1:KK:106:THR:OG1	2.31	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:GG:127:PRO:O	1:GG:131:ARG:HG3	2.19	0.42
1:F:129:ASN:ND2	1:K:131:ARG:O	2.47	0.42
1:H:99:LEU:HD11	1:H:142:GLU:HG3	2.01	0.42
1:O:99:LEU:HG	1:0:141:CYS:HA	2.01	0.42
1:GG:112:ARG:NH2	1:KK:44:GLU:OE2	2.40	0.42
1:A:34:THR:HB	1:O:66:ARG:NH2	2.35	0.42
1:KK:99:LEU:HG	1:KK:141:CYS:HA	2.02	0.42
1:B:117:ASN:HB3	1:C:116:ILE:HG12	2.01	0.42
1:KK:83:GLN:OE1	1:KK:151:ALA:HB2	2.20	0.42
1:F:37:TRP:CE2	1:F:39:ARG:HD3	2.54	0.42
1:D:31:VAL:HB	1:II:42:PRO:HG3	2.01	0.42
1:L:37:TRP:CE2	1:L:39:ARG:HD3	2.55	0.42
1:D:83:GLN:HB3	1:D:149:GLN:HB3	2.01	0.42
1:GG:81:TRP:O	1:GG:151:ALA:N	2.47	0.42
1:J:34:THR:HB	1:K:66:ARG:NH2	2.34	0.41
1:K:127:PRO:O	1:K:131:ARG:HG3	2.19	0.41
4:X:164[A]:A:H5'	14:X:204:HOH:O	2.20	0.41
1:E:37:TRP:CE2	1:E:39:ARG:HD3	2.55	0.41
1:F:99:LEU:HG	1:F:141:CYS:HA	2.02	0.41
1:J:127:PRO:O	1:J:131:ARG:HG3	2.21	0.41
1:KK:81:TRP:CD1	1:KK:121:SER:HB3	2.55	0.41
4:TT:165:A:H2'	4:TT:165:A:N3	2.34	0.41
1:D:33:PRO:O	1:II:65:PHE:HA	2.20	0.41
1:J:79:ARG:NH1	1:J:81:TRP:HH2	2.18	0.41
1:E:99:LEU:HG	1:E:141:CYS:HA	2.03	0.41
1:F:24:ARG:NH2	14:F:203:HOH:O	2.53	0.41
1:JJ:84:LEU:HD12	1:JJ:148:ARG:HB2	2.03	0.41
3:N:73:VAL:HG23	3:N:158:PHE:HA	2.03	0.41
1:C:81:TRP:O	1:C:151:ALA:N	2.41	0.41
1:L:127:PRO:HB2	1:L:129:ASN:OD1	2.21	0.41
1:D:34:THR:HB	1:II:66:ARG:NH2	2.36	0.41
1:I:118:THR:HA	1:J:114:SER:O	2.21	0.41
1:KK:16:ASN:HB3	1:KK:17:SER:H	1.67	0.41
1:A:81:TRP:CD1	1:A:121:SER:HB3	2.56	0.40
1:F:60:LEU:HD21	1:F:154:ILE:HD12	2.03	0.40
1:F:116:ILE:HG12	1:J:117:ASN:HB3	2.03	0.40
2:G:78:VAL:HG13	2:G:154:ILE:HG12	2.03	0.40
1:B:81:TRP:CD1	1:B:121:SER:HB3	2.57	0.40
1:D:22:MET:HE1	2:G:32:ASN:HB2	2.04	0.40
1:K:105:SER:HB2	1:K:107:GLU:OE1	2.22	0.40
4:TT:168[A]:A:H2'	4:TT:169[A]:A:O4'	2.22	0.40

Atom-1	Atom-1 Atom-2		Clash overlap (Å)	
4:P:166[A]:A:H3'	4:P:167[A]:A:H8	1.87	0.40	
1:D:44:GLU:OE2	1:E:112:ARG:NH2	2.44	0.40	
2:G:66:ARG:NH2	1:HH:34:THR:HB	2.37	0.40	

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:49[A]:SER:OG	1:C:49[A]:SER:OG[2_675]	2.04	0.16
1:C:155[A]:SER:OG	7:ll:187[A]:U:O2'[12_665]	2.04	0.16

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	142/159~(89%)	136 (96%)	5 (4%)	1 (1%)	22	61
1	В	142/159~(89%)	134 (94%)	7 (5%)	1 (1%)	22	61
1	С	140/159~(88%)	132 (94%)	8 (6%)	0	100	100
1	D	142/159~(89%)	136 (96%)	6 (4%)	0	100	100
1	Е	142/159~(89%)	131 (92%)	11 (8%)	0	100	100
1	F	143/159~(90%)	133 (93%)	10 (7%)	0	100	100
1	GG	142/159~(89%)	135 (95%)	7 (5%)	0	100	100
1	Н	143/159~(90%)	132 (92%)	11 (8%)	0	100	100
1	HH	142/159~(89%)	133 (94%)	9 (6%)	0	100	100
1	Ι	142/159~(89%)	134 (94%)	8 (6%)	0	100	100
1	II	141/159~(89%)	129 (92%)	12 (8%)	0	100	100
1	J	142/159~(89%)	134 (94%)	7 (5%)	1 (1%)	22	61
1	JJ	142/159~(89%)	136 (96%)	6 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Κ	147/159~(92%)	137~(93%)	10 (7%)	0	100	100
1	KK	142/159~(89%)	133 (94%)	9 (6%)	0	100	100
1	L	155/159~(98%)	140 (90%)	15 (10%)	0	100	100
1	М	142/159~(89%)	135~(95%)	7 (5%)	0	100	100
1	Ο	149/159~(94%)	141 (95%)	7 (5%)	1 (1%)	22	61
2	G	142/159~(89%)	132 (93%)	10 (7%)	0	100	100
3	Ν	143/159~(90%)	136 (95%)	7 (5%)	0	100	100
All	All	2865/3180~(90%)	2689 (94%)	172 (6%)	4 (0%)	51	83

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	37	TRP
1	0	12	SER
1	А	42	PRO
1	J	42	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	128/140~(91%)	128 (100%)	0	100	100
1	В	128/140~(91%)	128 (100%)	0	100	100
1	С	126/140~(90%)	126 (100%)	0	100	100
1	D	128/140~(91%)	127~(99%)	1 (1%)	81	93
1	Ε	128/140~(91%)	128 (100%)	0	100	100
1	F	129/140~(92%)	129 (100%)	0	100	100
1	GG	128/140~(91%)	128 (100%)	0	100	100
1	Н	129/140~(92%)	129 (100%)	0	100	100
1	HH	128/140~(91%)	127 (99%)	1 (1%)	81	93

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Ι	128/140~(91%)	128 (100%)	0	100	100
1	II	127/140~(91%)	127 (100%)	0	100	100
1	J	128/140~(91%)	128 (100%)	0	100	100
1	JJ	128/140~(91%)	128 (100%)	0	100	100
1	Κ	132/140~(94%)	132 (100%)	0	100	100
1	KK	128/140~(91%)	128 (100%)	0	100	100
1	L	138/140~(99%)	138 (100%)	0	100	100
1	М	128/140~(91%)	128 (100%)	0	100	100
1	Ο	134/140~(96%)	134 (100%)	0	100	100
2	G	128/140~(91%)	128 (100%)	0	100	100
3	Ν	130/141 (92%)	130 (100%)	0	100	100
All	All	2581/2801 (92%)	2579 (100%)	2 (0%)	93	98

All (2) residues with a non-rotameric sidechain are listed below:

Mol	ol Chain Res		Type	
1	D	19	VAL	
1	HH	148	ARG	

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	bb	11/12~(91%)	7~(63%)	0
4	Р	6/10~(60%)	1 (16%)	0
4	S	4/10~(40%)	1 (25%)	0
4	Т	4/10~(40%)	2(50%)	1 (25%)
4	TT	6/10~(60%)	4 (66%)	1(16%)
4	UU	5/10~(50%)	1 (20%)	0
4	V	7/10~(70%)	3(42%)	0
4	Х	7/10~(70%)	5 (71%)	0
4	Y	5/10~(50%)	1 (20%)	0
4	a	5/10~(50%)	2(40%)	0
5	WW	8/12~(66%)	4 (50%)	1 (12%)
5	е	10/12~(83%)	8 (80%)	0

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
6	h	7/12~(58%)	3(42%)	0
7	i	4/11~(36%)	3~(75%)	0
7	ll	4/11~(36%)	4 (100%)	0
8	kk	6/10~(60%)	3~(50%)	0
8	m	8/10 (80%)	5 (62%)	0
9	n	3/8~(37%)	0	0
9	qq	2/8~(25%)	2 (100%)	0
All	All	112/196~(57%)	59~(52%)	3(2%)

All (59) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
4	Р	166[A]	А
4	S	164[A]	А
4	Т	166[A]	А
4	Т	167[A]	А
4	V	164[A]	А
4	V	166[A]	А
4	V	169[A]	А
4	Х	163[A]	А
4	Х	164[A]	А
4	Х	165[A]	А
4	Х	167[A]	А
4	Х	169[A]	А
4	Y	168[A]	А
4	a	168[A]	А
4	a	169[A]	А
5	е	182[A]	U
5	е	183[A]	U
5	е	184[A]	U
5	е	185[A]	U
5	е	186[A]	U
5	е	187[A]	U
5	е	188[A]	U
5	е	189[A]	U
6	h	184[A]	U
6	h	187[A]	U
6	h	190[A]	U
7	i	185[A]	U
7	i	187[A]	U
7	i	188[A]	U
8	m	183[A]	U

Mol	Chain	Res	Type
8	m	185[A]	U
8	m	188[A]	U
8	m	189[A]	U
8	m	190[A]	U
4	TT	165	А
4	TT	166[A]	А
4	TT	167[A]	А
4	TT	170[A]	А
4	UU	163[A]	А
5	WW	166[A]	U
5	WW	167[A]	U
5	WW	171	U
5	WW	172	U
10	bb	158	А
10	bb	159	А
10	bb	160	А
10	bb	161[A]	А
10	bb	162[A]	А
10	bb	165[A]	А
10	bb	166[A]	А
8	kk	183[A]	U
8	kk	184[A]	U
8	kk	188[A]	U
7	11	185[A]	U
7	11	186[A]	U
7	11	187[A]	U
7	11	188[A]	U
9	qq	185[A]	U
9	qq	186	U

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
4	Т	166[A]	А
4	TT	166[A]	А
5	WW	165	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 28 ligands modelled in this entry, 21 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	\mathbf{gths}	E	Bond ang	gles
	Type	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
11	PO4	Н	501	-	4,4,4	1.02	0	6,6,6	0.47	0
11	PO4	L	901	-	4,4,4	1.05	0	6,6,6	0.48	0
11	PO4	11	201	-	4,4,4	0.90	0	6,6,6	0.48	0
11	PO4	Н	503	-	4,4,4	0.99	0	6,6,6	0.37	0
11	PO4	А	701	-	4,4,4	1.03	0	6,6,6	0.42	0
11	PO4	GG	401	-	4,4,4	1.07	0	6,6,6	0.47	0
11	PO4	S	201	-	4,4,4	0.94	0	6,6,6	0.43	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	Н	503	PO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
4	Х	1
4	Y	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Х	169[A]:A	O3'	170:A	Р	4.35
1	Y	168[A]:A	O3'	169:A	Р	3.93

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	144/159~(90%)	-0.31	1 (0%) 87 81	15, 25, 46, 78	0
1	В	143/159~(89%)	-0.42	0 100 100	16, 24, 40, 53	0
1	С	142/159~(89%)	-0.44	0 100 100	15,21,34,54	0
1	D	144/159~(90%)	-0.27	1 (0%) 87 81	13, 22, 35, 71	0
1	E	144/159~(90%)	-0.37	1 (0%) 87 81	13, 20, 34, 94	0
1	F	144/159~(90%)	-0.41	1 (0%) 87 81	17, 25, 38, 89	0
1	GG	144/159~(90%)	-0.40	0 100 100	13, 19, 35, 84	0
1	Н	145/159~(91%)	-0.41	1 (0%) 87 81	13, 21, 39, 78	0
1	HH	144/159~(90%)	-0.44	0 100 100	14, 20, 33, 64	0
1	Ι	144/159~(90%)	-0.32	0 100 100	19, 26, 41, 67	0
1	II	143/159~(89%)	-0.33	1 (0%) 87 81	13,21,34,69	0
1	J	144/159~(90%)	-0.32	0 100 100	22, 29, 43, 57	0
1	JJ	144/159~(90%)	-0.37	0 100 100	13,18,28,61	0
1	K	146/159~(91%)	-0.15	3 (2%) 63 49	21, 31, 56, 110	0
1	KK	144/159~(90%)	-0.45	1 (0%) 87 81	11, 17, 29, 63	0
1	L	157/159~(98%)	-0.10	3 (1%) 66 53	25,33,75,97	0
1	М	144/159~(90%)	-0.23	1 (0%) 87 81	25, 32, 49, 72	0
1	Ο	150/159~(94%)	-0.18	1 (0%) 87 81	17, 32, 53, 88	0
2	G	144/159~(90%)	-0.36	0 100 100	16, 23, 40, 81	0
3	N	144/159~(90%)	-0.23	0 100 100	20, 29, 49, 72	0
4	Р	7/10~(70%)	1.78	3~(42%)~0~0	71, 78, 107, 109	0
4	S	5/10 (50%)	1.33	1 (20%) 1 1	75, 77, 86, 105	0
4	Т	5/10~(50%)	1.89	1 (20%) 1 1	80, 101, 109, 109	0
4	TT	7/10~(70%)	2.36	5(71%) 0 0	91, 98, 125, 131	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2		$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9	
4	UU	6/10~(60%)	2.09	4 (66%) (0	0	67, 79, 97, 130	0
4	V	8/10~(80%)	2.77	5 (62%) (0	0	79, 88, 96, 127	0
4	X	9/10~(90%)	3.09	8 (88%) (0	0	94, 109, 141, 152	0
4	Y	7/10~(70%)	3.06	4 (57%) (0	0	81, 90, 117, 124	0
4	a	6/10~(60%)	3.39	5 (83%) (0	0	87, 96, 121, 138	0
5	WW	8/12~(66%)	2.24	5 (62%) (0	0	77, 105, 135, 139	0
5	e	11/12~(91%)	3.41	10 (90%)	0	0	103, 121, 132, 133	0
6	h	8/12~(66%)	1.92	4 (50%) (0	0	71, 81, 115, 166	0
7	i	5/11~(45%)	1.18	1 (20%) 1	1	1	63, 73, 100, 115	0
7	11	5/11~(45%)	3.50	4 (80%) (0	0	78,86,95,113	0
8	kk	7/10~(70%)	2.40	3 (42%) (0	0	75, 82, 103, 108	0
8	m	9/10~(90%)	2.11	4 (44%) (0	0	85, 98, 128, 133	0
9	n	4/8~(50%)	4.05	3 (75%) (0	0	92, 108, 110, 113	0
9	qq	4/8~(50%)	4.24	3 (75%) (0	0	110, 122, 124, 129	0
10	bb	12/12~(100%)	4.72	12 (100%)	0	0	79, 111, 131, 146	0
All	All	3031/3376 (89%)	-0.19	100 (3%) 4	16	30	11, 25, 73, 166	0

Continued from previous page...

All (100) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
10	bb	160	А	9.5
9	qq	188	U	9.2
9	n	185[A]	U	7.7
10	bb	157	А	7.6
4	Y	169	А	7.1
5	е	190[A]	U	7.0
4	a	169[A]	А	6.3
10	bb	161[A]	А	6.3
10	bb	158	А	6.1
7	ll	188[A]	U	6.1
10	bb	159	А	5.8
8	kk	182	U	5.6
9	n	184[A]	U	5.6
5	е	189[A]	U	5.5
4	V	164[A]	А	5.2
8	m	189[A]	U	5.0
4	a	168[A]	А	5.0

Mol	Chain	Res	Type	RSRZ
4	Х	162[A]	А	4.8
1	K	15	ASP	4.7
5	е	185[A]	U	4.4
6	h	183	А	4.3
4	Х	164[A]	А	4.3
8	m	190[A]	U	4.3
4	Х	165[A]	А	4.2
10	bb	162[A]	А	4.0
4	V	165[A]	А	4.0
1	L	15	ASP	3.9
7	11	187[A]	U	3.9
10	bb	165[A]	А	3.9
4	TT	165	А	3.8
5	е	186[A]	U	3.8
4	Y	168[A]	А	3.8
9	qq	184[A]	U	3.7
5	WW	171	U	3.5
4	Т	164[A]	А	3.5
8	kk	183[A]	U	3.5
1	K	14	GLY	3.4
1	II	17	SER	3.4
4	TT	168[A]	А	3.3
1	L	5	LYS	3.3
10	bb	163[A]	А	3.2
6	h	189[A]	U	3.2
4	Р	167[A]	А	3.2
4	Х	163[A]	A	3.2
4	Y	167[A]	A	3.1
5	е	188[A]	U	3.1
7	11	186[A]	U	3.1
4	V	166[A]	A	3.1
4	a	167[A]	A	3.1
10	bb	$167[\overline{A}]$	A	3.1
7^{-}	i	$188[\overline{A}]$	U	3.0
4	V	169[A]	A	3.0
7	11	185[A]	U	3.0
4	P	166[A]	A	3.0
4	a	$165[\overline{A}]$	A	2.9
1	M	16	ASN	2.8
4	TT	$164[\overline{A}]$	A	2.8
8	kk	188[A]	U	2.8
5	е	180	U	2.8

Mol	Chain	Res	Type	RSRZ
9	qq	185[A]	U	2.8
4	Х	170	А	2.8
4	UU	163[A]	А	2.7
5	е	183[A]	U	2.7
5	WW	167[A]	U	2.7
1	Н	15	ASP	2.7
4	a	164[A]	А	2.7
4	Х	169[A]	А	2.7
4	UU	162	А	2.6
5	е	184[A]	U	2.6
4	V	163	А	2.6
4	Y	163[A]	А	2.5
4	UU	164[A]	А	2.5
10	bb	168[A]	А	2.5
9	n	183[A]	U	2.5
10	bb	164[A]	А	2.5
5	е	182[A]	U	2.4
1	А	48	GLN	2.4
6	h	190[A]	U	2.4
6	h	187[A]	U	2.4
1	D	16	ASN	2.3
5	WW	165	U	2.3
8	m	188[A]	U	2.3
5	WW	172	U	2.3
4	Х	166[A]	А	2.2
5	WW	168	U	2.2
4	UU	166[A]	А	2.2
5	е	181[A]	U	2.2
4	TT	169[A]	А	2.2
8	m	187[A]	U	2.2
1	F	16	ASN	2.2
4	Х	167[A]	А	2.2
1	Е	16	ASN	2.1
1	KK	16	ASN	2.1
1	0	14	GLY	2.1
4	S	164[A]	А	2.1
4	TT	166[A]	А	2.1
4	Р	169[A]	А	2.0
10	bb	166[A]	А	2.0
1	Κ	18	ASN	2.0
1	L	6	VAL	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
12	CL	N	201	1/1	-0.20	0.92	102,102,102,102	0
12	CL	KK	202	1/1	0.54	0.46	68,68,68,68	1
12	CL	Т	201	1/1	0.58	0.34	86,86,86,86	0
12	CL	JJ	203	1/1	0.71	0.20	104,104,104,104	1
13	MG	JJ	202	1/1	0.72	0.34	26,26,26,26	0
11	PO4	Н	503	5/5	0.75	0.40	54,58,70,92	0
12	CL	bb	201	1/1	0.78	0.28	67,67,67,67	1
13	MG	G	201	1/1	0.79	0.81	44,44,44,44	0
11	PO4	S	201	5/5	0.82	0.35	75,76,94,104	0
11	PO4	11	201	5/5	0.83	0.35	80,85,109,116	0
12	CL	bb	203	1/1	0.85	0.11	$65,\!65,\!65,\!65$	1
13	MG	JJ	201	1/1	0.86	0.65	20,20,20,20	0
12	CL	С	201	1/1	0.87	0.30	68,68,68,68	0
12	CL	D	201	1/1	0.88	0.50	71,71,71,71	1
12	CL	KK	201	1/1	0.88	0.77	34,34,34,34	1
12	CL	qq	201	1/1	0.90	0.17	71,71,71,71	0
12	CL	G	202	1/1	0.92	0.46	39,39,39,39	0
12	CL	HH	201	1/1	0.93	0.25	$50,\!50,\!50,\!50$	0
13	MG	L	902	1/1	0.94	0.13	31,31,31,31	0
12	CL	М	201	1/1	0.95	0.30	$52,\!52,\!52,\!52$	1
13	MG	Н	502	1/1	0.96	0.48	28,28,28,28	0
12	CL	bb	202	1/1	0.96	0.08	73,73,73,73	1
11	PO4	Н	501	5/5	0.97	0.21	24,24,27,43	0
13	MG	II	201	1/1	0.97	0.41	$51,\!51,\!51,\!51$	0
11	PO4	GG	401	5/5	0.98	0.14	$14,\!15,\!19,\!2\overline{1}$	0
11	PO4	А	701	5/5	0.98	0.17	$18,\!21,\!25,\!29$	0
11	PO4	L	901	5/5	0.99	0.15	24,24,33,38	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q < 0.9
12	CL	U	5	1/1	1.00	0.22	$171,\!171,\!171,\!171$	1

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

