

wwPDB X-ray Structure Validation Summary Report (i)

Feb 20, 2024 – 02:08 PM EST

54-RNAP

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIETIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1257 (3.70-3.50)
Clashscore	141614	1353 (3.70-3.50)
Ramachandran outliers	138981	1307 (3.70-3.50)
Sidechain outliers	138945	1307 (3.70-3.50)
RSRZ outliers	127900	1161 (3.70-3.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	268	% • 84%	9%	8%
	 	200	% •	570	0.00
	В	268	85%	7%	8%
1	\mathbf{C}	268	84%	9%	8%
1	D	268	80%	11%	. 8%
					0,0
1	Ε	268	83%	9%	8%

Mol	Chain	Length	Quality of chain		
1	F	268	81%	10% •	8%
1	G	268	9%	8%	8%
1	Н	268	85%	7%	8%
1	Ι	268	81%	11%	8%
1	J	268	79 79%	13%	8%
1	Κ	268	83%	9%	• 8%
1	L	268	81%	10% •	8%
1	М	268	82%	10%	8%
1	Ν	268	% • 86%	6%	8%
1	0	268	79%	12% •	8%
1	Р	268	79%	12% •	8%
1	Q	268	82%	10%	8%
1	R	268	76%	15% •	8%
1	S	268	8%	7%	8%
1	Т	268	82%	9% •	8%
1	U	268	82%	10%	8%
1	V	268	83%	8% •	8%
1	W	268	84%	8%	8%
1	Х	268	76%	15% •	8%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 97439 atoms, of which 49249 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	s			ZeroOcc	AltConf	Trace
1	Δ	9.47	Total	С	Η	Ν	0	S	0	0	0
	A	247	4020	1278	2041	333	364	4	0	0	0
1	D	247	Total	С	Н	Ν	0	S	0	0	0
	D	241	4021	1278	2042	333	364	4	0	0	0
1	С	247	Total	С	Η	Ν	0	S	0	0	0
	U	241	4021	1278	2042	333	364	4	0	0	0
1	а	947	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
	D	241	4021	1278	2042	333	364	4	0	0	0
1	E	247	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
		211	4021	1278	2042	333	364	4	0	0	0
1	F	247	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
-	1	211	4021	1278	2042	333	364	4	0	0	0
1	G	247	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
-	ŭ		4021	1278	2042	333	364	4	Ŭ		0
1	Н	247	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
			4021	1278	2042	333	364	4			0
1	T	247	Total	С	Η	Ν	Ο	S	0	0	0
	-		4020	1278	2041	333	364	4	Ŭ		
1	J	247	Total	С	Η	Ν	Ο	S	0	0	0
	, in the second		4021	1278	2042	333	364	4	Ŭ		0
1	K	247	Total	С	Н	Ν	0	S	0	0	0
			4021	1278	2042	333	364	4			
1	L	247	Total	C	Н	N	0	S	0	0	0
			4021	1278	2042	333	364	4			
1	М	247	Total	C	H	N	0	S	0	0	0
			4021	1278	2042	333	364	4			
1	Ν	247	Total	C	H	N	0	S	0	0	0
			4021	1278	2042	333	364	4			
1	Ο	247	Total	U 1070	H	N	U OC t	S	0	0	0
			4021	1278	2042	333	364	4			
1	Р	247	'I'otal	C	H	N	U Oct	S	0	0	0
	_		4021	1278	2042	333	364	4	, v	0	,

• Molecule 1 is a protein called Transcriptional regulator (NtrC family).

Mol	Chain	Residues	-		Atoms	5			ZeroOcc	AltConf	Trace
1	0	247	Total	С	Н	Ν	0	S	0	0	0
	Q	241	4021	1278	2042	333	364	4	0	0	0
1	В	247	Total	С	Η	Ν	0	S	0	0	0
1	n	241	4021	1278	2042	333	364	4	0	0	0
1	q	247	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	U U	241	4021	1278	2042	333	364	4	0	0	0
1	т	247	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	T	241	4020	1278	2041	333	364	4			0
1	I	247	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0	0
1	U	241	4021	1278	2042	333	364	4	0	0	
1	V	947	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	v	241	4021	1278	2042	333	364	4	0	0	0
1	W	947	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	1 VV	241	4021	1278	2042	333	364	4	0	0	0
1	x	247	Total	С	Н	Ν	0	S	0	0	0
1		247	4021	1278	2042	333	364	4	0	U	0

Continued from previous page...

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	120	MET	-	initiating methionine	UNP O67198
В	120	MET	-	initiating methionine	UNP 067198
С	120	MET	-	initiating methionine	UNP 067198
D	120	MET	-	initiating methionine	UNP 067198
Е	120	MET	-	initiating methionine	UNP 067198
F	120	MET	-	initiating methionine	UNP O67198
G	120	MET	-	initiating methionine	UNP 067198
Н	120	MET	_	initiating methionine	UNP 067198
Ι	120	MET	-	initiating methionine	UNP 067198
J	120	MET	_	initiating methionine	UNP O67198
К	120	MET	_	initiating methionine	UNP 067198
L	120	MET	-	initiating methionine	UNP O67198
М	120	MET	-	initiating methionine	UNP O67198
N	120	MET	-	initiating methionine	UNP O67198
0	120	MET	-	initiating methionine	UNP O67198
Р	120	MET	-	initiating methionine	UNP O67198
Q	120	MET	-	initiating methionine	UNP O67198
R	120	MET	-	initiating methionine	UNP 067198
S	120	MET	-	initiating methionine	UNP 067198
Т	120	MET	-	initiating methionine	UNP 067198
U	120	MET	-	initiating methionine	UNP 067198
V	120	MET	-	initiating methionine	UNP O67198
W	120	MET	-	initiating methionine	UNP O67198

Chain	Residue	Modelled	Actual	Comment	Reference
Х	120	MET	-	initiating methionine	UNP 067198

• Molecule 2 is [[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-bis(oxidanyl)oxolan-2-yl]methox y-oxidanyl-phosphoryl]oxy-oxidanyl-phosphoryl]oxy-tris(fluoranyl)beryllium (three-letter code: 08T) (formula: C₁₀H₁₄BeF₃N₅O₁₀P₂).

Mol	Chain	Residues			A	ton	ns				ZeroOcc	AltConf	
2	Δ	1	Total	Be	С	F	Η	Ν	Ο	Р	0	Ο	
2	Π	1	42	1	10	3	11	5	10	2	0	0	
2	2 B	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
		±	42	1	10	3	11	5	10	2	0	0	
2	С	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
	0	1	42	1	10	3	11	5	10	2	0	0	
2	Л	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
		1	42	1	10	3	11	5	10	2			
2	E	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
		-	42	1	10	3	11	5	10	2			
2	G	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
	<u> </u>	1	42	1	10	3	11	5	10	2	0	0	
2	Н	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
		1	42	1	10	3	11	5	10	2	0	0	
2	T	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
	-	1	42	1	10	3	11	5	10	2	0	0	
2	I	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0	
	ے ا	1	42	1	10	3	11	5	10	2	0	0	
2	2 K	K 1	Total	Be	С	\mathbf{F}	Η	Ν	Ο	Р	0	0	
	17	1	42	1	10	3	11	5	10	2	U	U	

4LY6	
------	--

Mol	Chain	Residues	_		Α	ton	ns				ZeroOcc	AltConf		
9	М	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	111	T	42	1	10	3	11	5	10	2	0	0		
2	2 N	Ν	N	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0
		1	42	1	10	3	11	5	10	2	0	0		
2	0	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	0	1	42	1	10	3	11	5	10	2	0	0		
2	Р	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
2 1	1	42	1	10	3	11	5	10	2	0	0			
2	2 0	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	<u>ل</u>		42	1	10	3	11	5	10	2				
2	S	S 1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	2		42	1	10	3	11	5	10	2		0		
2	Т	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	-	1	42	1	10	3	11	5	10	2				
2	U	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	Ű	-	42	1	10	3	11	5	10	2	Ŭ	Ŭ		
2	V	1	Total	Be	С	F	Η	Ν	Ο	Р	0	0		
	2 V	L	42	1	10	3	11	5	10	2		0		
2	W	1	Total	Be	\mathbf{C}	\mathbf{F}	Η	Ν	Ο	Р	0	0		
	**	1	42	1	10	3	11	5	10	2	0	0		

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mg 1 1	0	0
3	В	1	Total Mg 1 1	0	0
3	С	1	Total Mg 1 1	0	0
3	D	1	Total Mg 1 1	0	0
3	Е	1	Total Mg 1 1	0	0
3	G	1	Total Mg 1 1	0	0
3	Н	1	Total Mg 1 1	0	0
3	Ι	1	Total Mg 1 1	0	0
3	J	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	K	1	Total Mg 1 1	0	0
3	М	1	Total Mg 1 1	0	0
3	Ν	1	Total Mg 1 1	0	0
3	Ο	1	Total Mg 1 1	0	0
3	Р	1	Total Mg 1 1	0	0
3	Q	1	Total Mg 1 1	0	0
3	S	1	Total Mg 1 1	0	0
3	Т	1	Total Mg 1 1	0	0
3	U	1	Total Mg 1 1	0	0
3	V	1	Total Mg 1 1	0	0
3	W	1	Total Mg 1 1	0	0

• Molecule 4 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf			
4	т	1	Total	С	Η	Ν	Ο	Р	0	0
4		1	39	10	12	5	10	2	0	0
4	v	1	Total	С	Η	Ν	Ο	Р	0	0
4	Λ	1	39	10	12	5	10	2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Transcriptional regulator (NtrC family)

Chain T:		82%			9% •	8%	
MET LEU ARG CLV ARG CLV GLU GLU CLV CLV LV CLV CLV CLV CLV CLV CLV CLV	S169 8173 8173 8174	V175 R178 L179 H181 K182	S187 S187 E189 E189 N195 V196 A197 V220	R253 F260 R293	Y297 Y298	K314	1318 P319 F328

Chain U:	82%		10% 8%	I
MET LEU ARG LLYS GLU GLU CLU CLU CLU CLU CLU CLU S143 S143 S143 S143 S143 S143 S143 S143	N195 V196 A197 S198 1199 P200 F203 E205 E205 G214 G214	1217 0218 0218 524 8244 X247 K250	F260 E270 N280 I283	F292
(301) (301) (311) (3				
• Molecule 1: Transcriptional	regulator (NtrC far	nily)		
Chain V:	83%		8% • 8%	I
MET LEU LEU LARG LARG CLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	E1 74 E1 74 R1 78 R1 86 F204 F204 F204 F205 F205	K213 6214 A215 7216 7217 7217 6219 V220 ¥250 K250	\$257 F260 E268	G301 V302 I303 I318
P319 W362 V384 ASN SER LYS				
• Molecule 1: Transcriptional	regulator (NtrC far	nily)		
Chain W:	84%		8% 8%	-
MET LEU LLYS CLU CLU CLU CLU ASP ARG ARG ARG CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CI58 2169 8169 8173 8173 8173 8173 1194 1194 1194 1194	E212 K213 K214 A215 F216 E242 E242 N272 R293 R293 B294	D295 K314 I318 P319	W352 R357 R365
V384 SER LYS LYS				

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	119.34Å 130.04Å 206.37Å	Deneriter
a, b, c, α , β , γ	90.00° 89.73° 89.90°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	37.85 - 3.60	Depositor
Resolution (A)	37.86 - 3.60	EDS
% Data completeness	76.2(37.85-3.60)	Depositor
(in resolution range)	69.7(37.86-3.60)	EDS
R _{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.66 (at 3.56 \text{\AA})$	Xtriage
Refinement program	gram PHENIX 1.8.2_1309	
B B.	0.258 , 0.308	Depositor
It, Itfree	0.255 , 0.302	DCC
R_{free} test set	5533 reflections (5.04%)	wwPDB-VP
Wilson B-factor $(Å^2)$	86.8	Xtriage
Anisotropy	0.943	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.32 , 72.9	EDS
L-test for $twinning^2$	$< L >=0.47, < L^2>=0.30$	Xtriage
	0.237 for h,-k,-l	
Estimated twinning fraction	0.319 for -h,k,-l	Xtriage
	0.219 for -h,-k,l	
F_o, F_c correlation	0.92	EDS
Total number of atoms	97439	wwPDB-VP
Average B, all atoms $(Å^2)$	161.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 8.26% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: $08\mathrm{T},$ MG, ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/2013	0.45	0/2700
1	В	0.25	0/2013	0.48	0/2700
1	С	0.26	0/2013	0.50	0/2700
1	D	0.27	0/2013	0.50	0/2700
1	Е	0.26	0/2013	0.50	0/2700
1	F	0.27	0/2013	0.52	0/2700
1	G	0.24	0/2013	0.46	0/2700
1	Н	0.26	0/2013	0.49	0/2700
1	Ι	0.26	0/2013	0.51	0/2700
1	J	0.27	0/2013	0.49	0/2700
1	Κ	0.26	0/2013	0.51	0/2700
1	L	0.25	0/2013	0.51	0/2700
1	М	0.25	0/2013	0.48	0/2700
1	Ν	0.26	0/2013	0.48	0/2700
1	0	0.26	0/2013	0.53	0/2700
1	Р	0.27	0/2013	0.52	0/2700
1	Q	0.26	0/2013	0.50	0/2700
1	R	0.27	0/2013	0.65	0/2700
1	S	0.24	0/2013	0.47	0/2700
1	Т	0.26	0/2013	0.50	0/2700
1	U	0.26	0/2013	0.51	0/2700
1	V	0.26	0/2013	0.51	0/2700
1	W	0.26	0/2013	0.50	0/2700
1	Х	0.28	0/2013	0.62	1/2700~(0.0%)
All	All	0.26	0/48312	0.51	1/64800~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	1
1	D	0 1	
1	F	0 1	
1	Κ	0	1
1	L	0	1
1	N	0	1
1	0	0	1
1	U	0	1
1	V	0	2
1	Х	0	1
All	All	0	11

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Х	218	GLY	N-CA-C	5.07	125.78	113.10

There are no chirality outliers.

5 of 11 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	215	ALA	Peptide
1	D	216	PHE	Peptide
1	F	215	ALA	Peptide
1	Κ	214	GLY	Peptide
1	L	216	PHE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1979	2041	2039	15	0
1	В	1979	2042	2040	11	0
1	С	1979	2042	2040	13	0
1	D	1979	2042	2040	22	0
1	Е	1979	2042	2040	18	0

4LY6

		NT TT	<i>puye</i>			C
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
	F	1979	2042	2040	23	0
	G	1979	2042	2040	14	0
1	H	1979	2042	2040	13	0
	l	1979	2041	2039	17	0
	J	1979	2042	2040	21	0
1	K	1979	2042	2040	17	0
1	L	1979	2042	2040	18	0
1	М	1979	2042	2040	16	0
1	N	1979	2042	2040	9	0
1	0	1979	2042	2040	27	0
1	Р	1979	2042	2040	26	0
1	Q	1979	2042	2040	16	0
1	R	1979	2042	2040	22	0
1	S	1979	2042	2040	14	0
1	Т	1979	2041	2039	17	0
1	U	1979	2042	2040	14	0
1	V	1979	2042	2040	16	0
1	W	1979	2042	2040	11	0
1	Х	1979	2042	2040	30	0
2	А	31	11	13	2	0
2	В	31	11	13	1	0
2	С	31	11	13	0	0
2	D	31	11	13	3	0
2	Е	31	11	13	3	0
2	G	31	11	13	4	0
2	Н	31	11	13	1	0
2	Ι	31	11	13	0	0
2	J	31	11	13	2	0
2	K	31	11	13	1	0
2	М	31	11	13	2	0
2	N	31	11	13	2	0
2	0	31	11	13	7	0
2	Р	31	11	13	1	0
2	Q	31	11	13	0	0
2	S	31	11	13	2	0
2	Т	31	11	13	1	0
2	U	31	11	13	0	0
2	V	31	11	13	0	0
2	W	31	11	13	1	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	С	1	0	0	0	0

4LY6	
------	--

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	G	1	0	0	0	0
3	Н	1	0	0	0	0
3	Ι	1	0	0	0	0
3	J	1	0	0	0	0
3	Κ	1	0	0	0	0
3	М	1	0	0	0	0
3	Ν	1	0	0	0	0
3	0	1	0	0	0	0
3	Р	1	0	0	0	0
3	Q	1	0	0	0	0
3	S	1	0	0	0	0
3	Т	1	0	0	0	0
3	U	1	0	0	0	0
3	V	1	0	0	0	0
3	W	1	0	0	0	0
4	L	27	12	12	3	0
4	Х	27	12	12	3	0
All	All	48190	49249	49241	383	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

The worst 5 of 383 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:B:205:GLU:OE1	1:B:250:LYS:NZ	2.11	0.84	
1:K:242:GLU:OE2	1:L:293:ARG:NH2	2.13	0.81	
1:V:205:GLU:OE1	1:V:250:LYS:NZ	2.12	0.81	
1:A:242:GLU:OE2	1:B:293:ARG:NH1	2.14	0.81	
1:C:205:GLU:OE2	1:C:250:LYS:NZ	2.13	0.81	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	245/268~(91%)	232~(95%)	12~(5%)	1 (0%)	34	71
1	В	245/268~(91%)	231~(94%)	13~(5%)	1 (0%)	34	71
1	С	245/268~(91%)	230 (94%)	14 (6%)	1 (0%)	34	71
1	D	245/268~(91%)	228 (93%)	14 (6%)	3 (1%)	13	51
1	Е	245/268~(91%)	230 (94%)	13 (5%)	2 (1%)	19	59
1	F	245/268~(91%)	221 (90%)	20 (8%)	4 (2%)	9	46
1	G	245/268~(91%)	230 (94%)	14 (6%)	1 (0%)	34	71
1	Н	245/268~(91%)	230 (94%)	13 (5%)	2 (1%)	19	59
1	Ι	245/268~(91%)	233~(95%)	11 (4%)	1 (0%)	34	71
1	J	245/268~(91%)	230 (94%)	12 (5%)	3 (1%)	13	51
1	Κ	245/268~(91%)	227~(93%)	15 (6%)	3 (1%)	13	51
1	L	245/268~(91%)	226 (92%)	17 (7%)	2 (1%)	19	59
1	М	245/268~(91%)	229 (94%)	15 (6%)	1 (0%)	34	71
1	Ν	245/268~(91%)	231 (94%)	12 (5%)	2 (1%)	19	59
1	Ο	245/268~(91%)	230 (94%)	14 (6%)	1 (0%)	34	71
1	Р	245/268~(91%)	230 (94%)	13~(5%)	2(1%)	19	59
1	Q	245/268~(91%)	228~(93%)	14 (6%)	3 (1%)	13	51
1	R	245/268~(91%)	235~(96%)	6 (2%)	4 (2%)	9	46
1	S	245/268~(91%)	232~(95%)	12 (5%)	1 (0%)	34	71
1	Т	245/268~(91%)	229 (94%)	14 (6%)	2(1%)	19	59
1	U	245/268~(91%)	230 (94%)	14 (6%)	1 (0%)	34	71
1	V	245/268~(91%)	228 (93%)	14 (6%)	3 (1%)	13	51
1	W	245/268~(91%)	229 (94%)	13 (5%)	3 (1%)	13	51
1	Х	245/268~(91%)	234 (96%)	8 (3%)	3 (1%)	13	51
All	All	5880/6432~(91%)	5513 (94%)	317 (5%)	50 (1%)	17	57

5 of 50 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	В	196	VAL
1	Н	196	VAL
1	J	216	PHE
1	Ν	196	VAL
1	Р	216	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	212/233~(91%)	212 (100%)	0	100	100
1	В	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	С	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	D	212/233~(91%)	209 (99%)	3 (1%)	67	85
1	Ε	212/233~(91%)	209~(99%)	3 (1%)	67	85
1	F	212/233~(91%)	210 (99%)	2 (1%)	78	90
1	G	212/233~(91%)	212 (100%)	0	100	100
1	Н	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	Ι	212/233~(91%)	212 (100%)	0	100	100
1	J	212/233~(91%)	212 (100%)	0	100	100
1	К	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	L	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	М	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	Ν	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	Ο	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	Р	212/233~(91%)	209~(99%)	3~(1%)	67	85
1	Q	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	R	212/233 (91%)	208 (98%)	4 (2%)	57	80
1	S	212/233~(91%)	211 (100%)	1 (0%)	88	95

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Т	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	U	212/233~(91%)	210 (99%)	2(1%)	78	90
1	V	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	W	212/233~(91%)	211 (100%)	1 (0%)	88	95
1	Х	212/233~(91%)	210~(99%)	2(1%)	78	90
All	All	5088/5592~(91%)	5056 (99%)	32 (1%)	86	94

5 of 32 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	V	260	PHE
1	W	216	PHE
1	L	260	PHE
1	Κ	260	PHE
1	Х	281	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 42 ligands modelled in this entry, 20 are monoatomic - leaving 22 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	В	Bond lengths			Bond angles			
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
2	08T	J	400	3	26,33,33	<mark>3.31</mark>	10 (38%)	25,52,52	2.01	6 (24%)		
4	ADP	Х	400	-	24,29,29	0.95	1 (4%)	29,45,45	1.48	4 (13%)		
4	ADP	L	400	-	24,29,29	0.95	1 (4%)	29,45,45	1.47	4 (13%)		
2	08T	С	400	3	26,33,33	<mark>3.31</mark>	10 (38%)	25,52,52	2.01	6 (24%)		
2	08T	Q	400	-	26,33,33	<mark>3.30</mark>	10 (38%)	25,52,52	2.17	6 (24%)		
2	08T	Ν	400	1,3	26,33,33	<mark>3.32</mark>	10 (38%)	25,52,52	2.12	7 (28%)		
2	08T	V	400	3	26,33,33	<mark>-3.32</mark>	10 (38%)	25,52,52	1.90	6 (24%)		
2	08T	Ο	400	3	26,33,33	<mark>-3.35</mark>	10 (38%)	25,52,52	1.93	4 (16%)		
2	08T	Ι	400	1,3	26,33,33	<mark>3.30</mark>	10 (38%)	25,52,52	1.93	4 (16%)		
2	08T	D	400	3	26,33,33	<mark>3.33</mark>	10 (38%)	25,52,52	2.00	5 (20%)		
2	08T	U	400	1,3	26,33,33	<mark>3.33</mark>	10 (38%)	25,52,52	1.98	6 (24%)		
2	08T	G	400	3	26,33,33	<mark>-3.37</mark>	10 (38%)	25,52,52	2.13	6 (24%)		
2	08T	А	400	1,3	26,33,33	<mark>3.34</mark>	10 (38%)	25,52,52	2.00	5 (20%)		
2	08T	Р	400	3	26,33,33	<mark>3.35</mark>	10 (38%)	25,52,52	1.93	5 (20%)		
2	08T	Е	400	3	26,33,33	<mark>-3.32</mark>	10 (38%)	25,52,52	2.03	5 (20%)		
2	08T	К	400	-	26,33,33	<mark>3.30</mark>	10 (38%)	25,52,52	2.03	6 (24%)		
2	08T	В	400	3	26,33,33	<mark>3.33</mark>	10 (38%)	25,52,52	2.05	5 (20%)		
2	08T	W	400	3	26,33,33	<mark>3.31</mark>	10 (38%)	25,52,52	1.98	6 (24%)		
2	08T	Н	400	1,3	26,33,33	<mark>3.36</mark>	10 (38%)	25,52,52	2.00	7 (28%)		
2	08T	S	400	3	26,33,33	<mark>3.33</mark>	10 (38%)	25,52,52	2.05	5 (20%)		
2	08T	М	400	3	26,33,33	<mark>3.31</mark>	10 (38%)	25,52,52	2.10	5 (20%)		
2	08T	Т	400	1,3	26,33,33	<mark>3.32</mark>	10 (38%)	25,52,52	2.00	5 (20%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	08T	J	400	3	-	9/12/38/38	0/3/3/3
4	ADP	Х	400	-	-	4/12/32/32	0/3/3/3
4	ADP	L	400	-	-	2/12/32/32	0/3/3/3

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
2	08T	С	400	3	-	4/12/38/38	0/3/3/3
2	08T	Q	400	-	-	0/12/38/38	0/3/3/3
2	08T	Ν	400	1,3	-	3/12/38/38	0/3/3/3
2	08T	V	400	3	-	4/12/38/38	0/3/3/3
2	08T	Ο	400	3	-	7/12/38/38	0/3/3/3
2	08T	Ι	400	1,3	-	3/12/38/38	0/3/3/3
2	08T	D	400	3	-	0/12/38/38	0/3/3/3
2	08T	U	400	1,3	-	6/12/38/38	0/3/3/3
2	08T	G	400	3	-	4/12/38/38	0/3/3/3
2	08T	А	400	1,3	-	5/12/38/38	0/3/3/3
2	08T	Р	400	3	-	5/12/38/38	0/3/3/3
2	08T	Е	400	3	-	1/12/38/38	0/3/3/3
2	08T	К	400	-	-	4/12/38/38	0/3/3/3
2	08T	В	400	3	-	2/12/38/38	0/3/3/3
2	08T	W	400	3	-	3/12/38/38	0/3/3/3
2	08T	Н	400	1,3	-	3/12/38/38	0/3/3/3
2	08T	S	400	3	-	5/12/38/38	0/3/3/3
2	08T	М	400	3	-	4/12/38/38	0/3/3/3
2	08T	Т	400	1,3	-	5/12/38/38	0/3/3/3

The worst 5 of 202 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	G	400	08T	F2-BE	-8.09	1.34	1.54
2	0	400	08T	F2-BE	-7.94	1.34	1.54
2	Н	400	08T	F2-BE	-7.86	1.35	1.54
2	D	400	08T	F2-BE	-7.72	1.35	1.54
2	N	400	08T	F2-BE	-7.70	1.35	1.54

The worst 5 of 118 bond angle outliers are listed below:

Mol	Chain	Res	Type	Type Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	W	400	08T	C4-C5-N7	5.67	115.31	109.40
2	Ν	400	08T	C4-C5-N7	5.61	115.25	109.40
2	В	400	08T	N3-C2-N1	-5.59	119.94	128.68
2	D	400	08T	N3-C2-N1	-5.59	119.95	128.68
2	А	400	08T	N3-C2-N1	-5.58	119.95	128.68

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	А	400	08T	C5'-O5'-PA-O3A
2	А	400	08T	O4'-C4'-C5'-O5'
2	G	400	08T	C5'-O5'-PA-O1A
2	G	400	08T	C5'-O5'-PA-O2A
2	J	400	08T	C5'-O5'-PA-O2A

5 of 83 torsion outliers are listed below:

There are no ring outliers.

17 monomers are involved in 39 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	J	400	08T	2	0
4	Х	400	ADP	3	0
4	L	400	ADP	3	0
2	Ν	400	08T	2	0
2	0	400	08T	7	0
2	D	400	08T	3	0
2	G	400	08T	4	0
2	А	400	08T	2	0
2	Р	400	08T	1	0
2	Ε	400	08T	3	0
2	Κ	400	08T	1	0
2	В	400	08T	1	0
2	W	400	08T	1	0
2	Н	400	08T	1	0
2	S	400	08T	2	0
2	М	400	08T	2	0
2	Т	400	08T	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	247/268~(92%)	-0.12	2 (0%) 86 75	141, 179, 214, 236	0
1	В	247/268~(92%)	-0.03	4 (1%) 72 57	87, 146, 181, 196	0
1	С	247/268~(92%)	-0.08	2 (0%) 86 75	90, 138, 183, 202	0
1	D	247/268~(92%)	-0.11	0 100 100	78, 122, 152, 179	0
1	Е	247/268~(92%)	-0.04	0 100 100	80, 123, 154, 195	0
1	F	247/268~(92%)	-0.09	3 (1%) 79 66	91, 154, 216, 241	0
1	G	247/268~(92%)	0.32	23 (9%) 8 4	156, 188, 226, 240	0
1	Н	247/268~(92%)	-0.07	0 100 100	89, 144, 180, 196	0
1	Ι	247/268~(92%)	-0.07	1 (0%) 92 86	92, 129, 184, 211	0
1	J	247/268~(92%)	-0.02	2 (0%) 86 75	88, 128, 160, 180	0
1	K	247/268~(92%)	0.02	0 100 100	87, 125, 159, 189	0
1	L	247/268~(92%)	0.17	15 (6%) 21 12	95, 165, 254, 273	0
1	М	247/268~(92%)	-0.03	4 (1%) 72 57	128, 173, 203, 219	0
1	Ν	247/268~(92%)	-0.04	2 (0%) 86 75	87, 141, 177, 209	0
1	Ο	247/268~(92%)	-0.10	0 100 100	89, 134, 184, 220	0
1	Р	247/268~(92%)	-0.06	0 100 100	83, 126, 157, 186	0
1	Q	247/268~(92%)	-0.00	1 (0%) 92 86	74, 124, 154, 195	0
1	R	247/268~(92%)	-0.00	5 (2%) 65 49	97, 161, 224, 242	0
1	S	247/268~(92%)	0.28	21 (8%) 10 6	155, 190, 226, 239	0
1	Т	247/268~(92%)	-0.07	0 100 100	95, 146, 181, 199	0
1	U	247/268~(92%)	-0.06	1 (0%) 92 86	86, 135, 187, 210	0
1	V	247/268~(92%)	-0.07	2 (0%) 86 75	82, 126, 158, 200	0
1	W	247/268~(92%)	-0.10	1 (0%) 92 86	83, 125, 161, 192	0
1	Х	$24\overline{7/268}~(92\%)$	0.17	13 (5%) 26 16	102, 165, 252, 273	0

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
All	All	5928/6432~(92%)	-0.01	102 (1%) 70	55	74, 143, 210, 273	0

The worst 5 of 102 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	L	363	ILE	7.6
1	Х	363	ILE	7.3
1	L	344	GLN	7.0
1	Х	344	GLN	6.9
1	G	215	ALA	5.6

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	MG	Q	401	1/1	0.67	0.22	125,125,125,125	1
3	MG	G	401	1/1	0.72	0.32	$155,\!155,\!155,\!155$	1
3	MG	Р	401	1/1	0.75	0.21	113,113,113,113	0
3	MG	Н	401	1/1	0.81	0.12	111,111,111,111	1
3	MG	Ι	401	1/1	0.84	0.27	109,109,109,109	0
4	ADP	Х	400	27/27	0.85	0.21	153,178,207,214	0
3	MG	0	401	1/1	0.86	0.14	110,110,110,110	0
4	ADP	L	400	27/27	0.87	0.21	148,178,213,214	39
3	MG	Ν	401	1/1	0.87	0.14	96,96,96,96	1
3	MG	В	401	1/1	0.88	0.16	112,112,112,112	0
3	MG	Е	401	1/1	0.89	0.16	$95,\!95,\!95,\!95$	0
2	08T	G	400	31/31	0.89	0.24	117,149,177,182	42
2	08T	Н	400	31/31	0.89	0.30	77,111,128,146	42

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	08T	S	400	31/31	0.89	0.22	127,163,203,237	42
2	08T	А	400	31/31	0.89	0.22	124,147,166,181	42
2	08T	0	400	31/31	0.90	0.27	72,118,139,159	42
3	MG	D	401	1/1	0.90	0.12	105,105,105,105	0
2	08T	Ι	400	31/31	0.90	0.28	75,109,129,136	42
2	08T	J	400	31/31	0.91	0.28	93,118,134,159	42
2	08T	N	400	31/31	0.91	0.28	95,118,141,155	42
2	08T	Т	400	31/31	0.91	0.27	97,122,150,150	42
2	08T	Q	400	31/31	0.92	0.27	64,105,127,134	0
2	08T	Е	400	31/31	0.92	0.27	86,115,137,160	42
3	MG	V	401	1/1	0.92	0.27	113,113,113,113	0
3	MG	W	401	1/1	0.92	0.13	109,109,109,109	0
2	08T	М	400	31/31	0.92	0.20	129,155,180,188	42
2	08T	W	400	31/31	0.92	0.26	72,105,127,133	42
2	08T	В	400	31/31	0.93	0.29	79,125,156,158	42
2	08T	U	400	31/31	0.93	0.24	85,112,140,153	42
2	08T	V	400	31/31	0.93	0.24	84,112,126,143	42
2	08T	С	400	31/31	0.93	0.27	97,123,139,149	42
2	08T	Κ	400	31/31	0.93	0.29	83,110,130,143	42
2	08T	D	400	31/31	0.93	0.26	54,97,124,136	42
2	08T	Р	400	31/31	0.94	0.29	80,102,124,131	42
3	MG	S	401	1/1	0.95	0.14	$153,\!153,\!153,\!153$	0
3	MG	Т	401	1/1	0.95	0.23	129,129,129,129	0
3	MG	K	401	1/1	0.96	0.19	118,118,118,118	1
3	MG	U	401	1/1	0.96	0.20	125,125,125,125	0
3	MG	С	401	1/1	0.96	0.27	82,82,82,82	0
3	MG	М	401	1/1	0.97	0.15	133,133,133,133	1
3	MG	J	401	1/1	0.97	0.25	85,85,85,85	0
3	MG	A	401	1/1	0.97	0.18	140,140,140,140	1

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

