

wwPDB EM Validation Summary Report (i)

Nov 4, 2023 – 09:24 AM EDT

PDB ID	:	7LVK
EMDB ID	:	EMD-23539
Title	:	Cfr-modified 50S subunit from Escherichia coli
Authors	:	Stojkovic, V.; Myasnikov, A.G.; Frost, A.; Fujimori, D.G.
Deposited on	:	2021-02-25
Resolution	:	2.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	Ι	2904	9%	18% •
2	J	120	≟ 77%	18% • •
3	K	273	86%	12% ••
4	L	209	91%	9%
5	М	201	• 95%	•
6	Ν	179	47% 92%	7% •
7	Ο	177	93%	7% •

Mal	Chain	Longth	Quality of chain	
IVIOI	Unam	Length		
8	Р	149	70%	28% •
0	D	149	-	
9	n	142	89%	10% •
10	S	123	86%	12% ••
11	Т	144	94%	6% •
12	U	136	• 90%	10%
13	V	127	• 84%	10% 6%
14	W	117	86%	11%
15	N N	115	÷	1170
15	X	115	87%	11% ••
16	Y	118	91% 5%	7% ••
17	Z	103	82%	17% •
18	a	110	95%	5%
19	b	100	5% 92%	• 7%
20	с	104	8%	
21	d	94	 100%	
22	e	85	970/	. 12%
	C C	70	•	• 1270
23	İ	78	96% 5%	•••
24	g	63	98%	•
25	h	59	98%	•
26	i	57	96%	• •
27	j	55	5% 89%	• 9%
28	k	46	- 98%	
20	1	65	050/	
43	1	00	יעכצ.	• •
30	m	38	100%	

Continued from previous page...

2 Entry composition (i)

There are 34 unique types of molecules in this entry. The entry contains 151692 atoms, of which 58960 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues				AltConf	Trace			
1	Ι	2898	Total 93535	C 27769	H 31305	N 11448	O 20115	Р 2898	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	J	118	Total 3809	C 1126	Н 1280	N 464	O 821	Р 118	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues			AltConf	Trace				
3	K	271	Total 4236	C 1288	Н 2154	N 423	0 364	S 7	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues			AltConf	Trace				
4	т	200	Total	С	Η	Ν	0	\mathbf{S}	0	0
4		209	3182	979	1617	288	294	4	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues			Atom	.S		Atoms						
5	М	201	Total 3171	C 974	Н 1619	N 283	O 290	${S \atop 5}$	0	0				

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues			AltConf	Trace				
6	Ν	177	Total 2854	C 899	Н 1444	N 249	O 256	S 6	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues			AltConf	Trace				
7	О	176	Total 2694	C 832	Н 1371	N 243	0 246	${S \over 2}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues			AltConf	Trace				
8	Р	149	Total 2258	C 699	Н 1148	N 197	0 213	S 1	0	0

• Molecule 9 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues			Atom	S			AltConf	Trace
9	R	142	Total 2291	С 714	Н 1162	N 212	0 199	S 4	0	0

• Molecule 10 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	S	122	Total 1950	C 587	Н 1012	N 180	O 165	${ m S}{ m 6}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
11	Т	144	Total 2182	C 654	Н 1129	N 207	O 190	${ m S} { m 2}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues			Atom	S			AltConf	Trace
12	U	136	Total 2229	C 686	Н 1154	N 205	0 178	S 6	0	0

• Molecule 13 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues			AltConf	Trace				
13	V	120	Total 1960	C 593	Н 1000	N 196	0 166	${f S}{5}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Α	toms			AltConf	Trace
14	W	116	Total 1815	C 552	Н 923	N 178	O 162	0	0

• Molecule 15 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues			AltConf	Trace				
15	Х	114	Total 1879	C 574	Н 962	N 179	O 163	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		A	AltConf	Trace			
16	Y	117	Total 1967	C 604	Н 1020	N 192	0 151	0	0

• Molecule 17 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
17	Z	103	Total 1655	C 516	Н 839	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
18	a	110	Total 1779	C 532	Н 922	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
19	b	93	Total 1545	C 466	Н 807	N 139	0 131	$\frac{S}{2}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	с	102	Total 1610	C 492	Н 831	N 146	0 141	0	0

• Molecule 21 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
21	d	94	Total 1533	C 479	Н 780	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Atoms						Trace
22	е	75	Total 1150	C 353	Н 581	N 113	O 102	S 1	0	0

• Molecule 23 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atoms						Trace
23	f	77	Total 1277	C 388	Н 652	N 129	0 106	${S \over 2}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
24	g	62	Total 1032	C 308	Н 531	N 98	0 94	S 1	0	0

• Molecule 25 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
25	h	58	Total 937	C 281	H 488	N 87	O 79	${ m S} { m 2}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
26	i	56	Total 902	C 269	Н 458	N 94	O 80	S 1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Atoms					Trace
27	j	50	Total 849	C 263	Н 440	N 75	0 71	0	0

• Molecule 28 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
28	k	46	Total 795	C 228	Н 418	N 90	O 57	${ m S} { m 2}$	0	0

 $\bullet\,$ Molecule 29 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms						AltConf	Trace
29	1	64	Total 1077	C 323	Н 573	N 105	0 74	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms						AltConf	Trace
30	m	38	Total 642	C 185	Н 340	N 65	0 48	$\frac{S}{4}$	0	0

• Molecule 31 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
31	Ι	175	Total Mg 175 175	0
31	J	1	Total Mg 1 1	0
31	K	1	Total Mg 1 1	0
31	L	1	Total Mg 1 1	0
31	W	1	Total Mg 1 1	0

• Molecule 32 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Ator	ns	AltConf
32	K	1	Total 1	Na 1	0

• Molecule 33 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues Atoms		AltConf
33	m	1	Total Zi 1 1	n 0

• Molecule 34 is water.

Mol	Chain	Residues	Atoms	AltConf
34	Ι	2340	Total O 2340 2340	0
34	J	34	$\begin{array}{cc} \text{Total} & \text{O} \\ 34 & 34 \end{array}$	0
34	K	58	$\begin{array}{cc} \text{Total} & \text{O} \\ 58 & 58 \end{array}$	0
34	L	44	Total O 44 44	0
34	М	22	TotalO2222	0
34	Р	1	Total O 1 1	0
34	R	10	Total O 10 10	0
34	S	11	TotalO1111	0
34	Т	28	TotalO2828	0
34	U	20	TotalO2020	0
34	V	15	Total O 15 15	0
34	W	1	Total O 1 1	0
34	Х	14	Total O 14 14	0
34	Y	16	Total O 16 16	0
34	Ζ	12	Total O 12 12	0
34	a	16	Total O 16 16	0
34	b	6	Total O 6 6	0
34	с	1	Total O 1 1	0
34	d	3	Total O 3 3	0
34	e	13	Total O 13 13	0
34	f	6	Total O 6 6	0
34	h	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
34	i	10	Total O 10 10	0
34	j	2	Total O 2 2	0
34	k	11	Total O 11 11	0
34	1	13	Total O 13 13	0
34	m	4	$\begin{array}{cc} \text{Total} & \text{O} \\ 4 & 4 \end{array}$	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S rRNA

G1 407 G1 410 G1 416 G1 416 G1 418 A1 420 C1 437 C1 436 G1 456 G1 455 G1 456 G1 510 G1 550 G1 551 A1 555 G1 556 G1 557 G1 556 A1 569 A1 569 A1 603 A1 60
A1616 A1618 V1647 V1648 V1647 V1648 A1618 A1618 V1648 A1668 A1668 A1668 A1668 A1668 A1668 A1668 A1668 C1712 C1732 A1755 A1756 A1756 A1756 A1756 A1756 A1800 A1800 A1800 A1800
C1835 C1835 C1835 C1835 A1847 A1847 A1846 C1870 C1870 A1872 C1870 C1873 A1872 C1996 C1996 C1967 C1967 C1967 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1991 C1991 C1992 C1966 C1997 C1996 C1996 C1997 C1996 C1996 C1997 C1997 C1997 C1997 C1997 C1996 C19977 C19977 C19977 C19977 C199777 C19977 C19977 C19977777 C1997
C2000 C2006 C2012 G2012 G2012 G2012 G2012 G2012 G2012 G2012 G2012 G2021 G2022 G2021 G2022 G2023 G2024 G2023 G2033 G2033 G2033 G2033 G2033 G2033 G2034 G2035 G2035 G2036 G2033 G2034 G2035 G2036 G2037 G2038 G2039 G2039 G2030 G2031 G2032 G2103 G2103 G2103 G2103 G2103 G2103 G2103 G2103 G2103 G2103<
U2113 A2114 C2115 C2115 C2115 C2123 C2123 C2123 C2123 C2123 C2123 C2123 C2124 C2123 C2123 C2124 C2125 C2125 C2124 C2123 C2124 C2123 C2124 C2125 C2124 C2125 C2124 C2125 C2145 C2125 C2145 C2125 C2145 C2145 C2145
A2173 C2175 C2175 C2177 C2177 C2177 C2177 C2179 C2189 U2182 A2184 A2184 A2184 A2185 A2189 C2189 C2189 C2189 C2180 A2198 A2196 C2190 A2196 C2285 C2855 C2855 C2855 C2855 C2855 C2855 C2855 C2855
U2334 U2335 C2347 C2347 C2347 C2347 C2357 C2357 C2351 C2355 C2357 C2357 C2357 C2357 C2357 C2357 C2355 C2355 C2355 C2356 C2426 C2426 C2426 C2426 C2426 C2426 C2436 C2447 C2447 C2446 C2456 C2457 C2456 C2457 C2456 C2457 C2456 C2457 C2456 C2457<
C2499 025003 84/12503 84/12503 84/12503 84/12503 84/12503 62504 62505 62505 62506 62529 62529 62529 62529 62529 62554 72564 72565 72576 72565 72566 72565 72569 72565 72569 72565 72569 72565 72569 72565 72569 72569 72565 72569 72565 72569 72565 72569 72565 72569 72565 72569 72565 72569 72565 7257 72569 75
U2647 Q2648 Q2648 Q2648 Q2663 Q2663 Q26697 Q26697 Q26697 Q2690 Q2697 Q2697 Q2714 Q2714 Q2714 Q2714 Q2714 Q2714 Q2715 Q2714 Q2715 Q2716 Q2716 Q2716 Q2716 Q2716 Q2718 Q2728 Q2718 Q2728 Q2728 Q278 Q278 Q278 Q2819 Q2819 Q2823 Q2819 Q2823 Q
A2872 A2873 C2880 A2883 A2883 C2885 C2901 U2903 U2904
• Molecule 2: 5S rRNA
Chain J: 77% 18% •••
• Molecule 3: 50S ribosomal protein L2
Chain K: 86% 12%

wwPDB EM Validation Summary Report

• Molecule 4: 50S ribosomal protein L3 Chain L: 91% 9% • Molecule 5: 50S ribosomal protein L4 Chain M: 95% K6 D7 A8 • Molecule 6: 50S ribosomal protein L5 47% Chain N: 92% 7% • • Molecule 7: 50S ribosomal protein L6 15% Chain O: 93% 7% •

• Molecule 8: 50S ribosomal protein L9

K176

• Molecule 14: 50S ribosomal protein L18 Chain W: 86% 11% ... MET • Molecule 15: 50S ribosomal protein L19 Chain X: 87% 11% .. • Molecule 16: 50S ribosomal protein L20 Chain Y: 91% 7% •• • Molecule 17: 50S ribosomal protein L21 Chain Z: 82% 17% V51 P52 • Molecule 18: 50S ribosomal protein L22 Chain a: 95% 5% • Molecule 19: 50S ribosomal protein L23 Chain b: 92% • 7% VAL GLY GLU GLU • Molecule 20: 50S ribosomal protein L24 8% Chain c: 96% • •

• Molecule 21: 50S ribosomal protein L25

Chain d:	100%	
M1 K10 K34 B66 A94		
• Molecule 22	2: 50S ribosomal protein L27	
Chain e:	87%	• 12%
MET ALA ALA HIS LYS LYS LYS GLY GLY SER THR		
• Molecule 23	: 50S ribosomal protein L28	
Chain f:	96%	
MET S2 R3 R13 K1 Y7 Y78		
• Molecule 24	: 50S ribosomal protein L29	
Chain g:	98%	
MET K2 A61 G62 A63		
• Molecule 25	: 50S ribosomal protein L30	
Chain h:	98%	
MET A2 K3 E59		
• Molecule 26	: 50S ribosomal protein L32	
Chain i:	96%	•••
MET A2 R50 A56 K57		

 \bullet Molecule 27: 50S ribosomal protein L33

5%		
Chain j:	89%	• 9%
MET ALA LVS C4 G4 A52 K63 K11E LVS		
• Molecule 28:	50S ribosomal protein L34	
<u>.</u>		
Chain k:	98%	•
•		
M1 R19 K46		
• Molecule 29:	50S ribosomal protein L35	
Chain l:	95%	
MET P2 R13 H31 H31 A65		
• Molecule 30:	50S ribosomal protein L36	
	-	
Chain m:	100%	
M1 D20 G38		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	141549	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION; Relion	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	80	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	29000	Depositor
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.226	Depositor
Minimum map value	-0.114	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	420.864, 420.864, 420.864	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.822, 0.822, 0.822	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 5MC, 5MU, 6MZ, 2MG, G7M, MG, OMU, 8AH, 4D4, OMG, PSU, ZN, NA, 3TD, OMC, 1MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	Ι	0.94	5/69165~(0.0%)	0.97	51/107896~(0.0%)	
2	J	0.72	0/2828	0.92	4/4410~(0.1%)	
3	К	0.53	1/2121~(0.0%)	0.79	3/2852~(0.1%)	
4	L	0.57	1/1586~(0.1%)	0.73	3/2134~(0.1%)	
5	М	0.47	0/1571	0.65	1/2113~(0.0%)	
6	Ν	0.32	0/1434	0.62	0/1926	
7	0	0.35	0/1343	0.57	0/1816	
8	Р	0.37	0/1121	0.77	2/1515~(0.1%)	
9	R	0.48	0/1152	0.67	2/1551~(0.1%)	
10	S	0.48	0/947	0.71	2/1268~(0.2%)	
11	Т	0.49	0/1062	0.72	1/1413~(0.1%)	
12	U	0.47	0/1081	0.66	0/1443	
13	V	0.48	0/973	0.72	1/1301~(0.1%)	
14	W	0.54	1/902~(0.1%)	0.79	2/1209~(0.2%)	
15	Х	0.45	0/929	0.69	2/1242~(0.2%)	
16	Y	0.56	0/960	0.77	4/1278~(0.3%)	
17	Ζ	0.53	0/829	0.73	0/1107	
18	a	0.54	0/864	0.75	0/1156	
19	b	0.40	0/744	0.64	0/994	
20	с	0.43	0/787	0.70	2/1051~(0.2%)	
21	d	0.44	0/766	0.62	0/1025	
22	е	0.50	0/576	0.72	2/762~(0.3%)	
23	f	0.48	0/635	0.80	2/848~(0.2%)	
24	g	0.35	0/502	0.59	0/667	
25	h	0.37	0/453	0.65	0/605	
26	i	0.45	0/450	0.87	2/599~(0.3%)	
27	j	0.50	0/416	0.77	1/554~(0.2%)	
28	k	0.48	0/380	0.89	1/498~(0.2%)	
29	1	0.54	0/513	0.79	2/676~(0.3%)	
30	m	0.46	0/303	0.67	0/397	
All	All	0.83	8/97393~(0.0%)	0.92	90/146306~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
8	Р	0	7
14	W	0	1
All	All	0	8

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
14	W	101	GLY	C-O	-9.96	1.07	1.23
1	Ι	1757	А	O3'-P	8.88	1.71	1.61
4	L	151	THR	C-O	-7.90	1.08	1.23
1	Ι	108	G	O3'-P	5.99	1.68	1.61
1	Ι	2500	U	O3'-P	5.49	1.67	1.61

The worst 5 of 90 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ι	111	А	N9-C1'-C2'	-9.82	101.20	112.00
1	Ι	6	А	N9-C1'-C2'	-9.36	101.70	112.00
2	J	16	G	N9-C1'-C2'	-9.23	101.84	112.00
1	Ι	1136	G	N9-C1'-C2'	-8.69	102.44	112.00
2	J	14	U	P-O3'-C3'	8.57	129.99	119.70

There are no chirality outliers.

5 of 8 planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
8	Р	100	ALA	Peptide
8	Р	102	ALA	Peptide
8	Р	108	VAL	Peptide
8	Р	116	ARG	Peptide
8	Р	47	PHE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Ι	62230	31305	31306	138	0
2	J	2529	1280	1281	8	0
3	K	2082	2154	2154	30	0
4	L	1565	1617	1616	9	0
5	М	1552	1619	1619	6	0
6	N	1410	1444	1444	7	0
7	0	1323	1371	1371	8	0
8	Р	1110	1148	1148	31	0
9	R	1129	1162	1162	11	0
10	S	938	1012	1012	14	0
11	Т	1053	1129	1129	8	0
12	U	1075	1154	1154	7	0
13	V	960	1000	1000	9	0
14	W	892	923	923	9	0
15	Х	917	962	962	8	0
16	Y	947	1020	1019	8	0
17	Ζ	816	839	839	20	0
18	a	857	922	922	0	0
19	b	738	807	807	0	0
20	с	779	831	831	0	0
21	d	753	780	780	0	0
22	е	569	581	581	0	0
23	f	625	652	652	0	0
24	g	501	531	531	0	0
25	h	449	488	488	0	0
26	i	444	458	458	0	0
27	j	409	440	440	0	0
28	k	377	418	418	0	0
29	1	504	573	572	0	0
30	m	302	340	340	0	0
31	Ι	175	0	0	0	0
31	J	1	0	0	0	0
31	K	1	0	0	0	0
31	L	1	0	0	0	0
31	W	1	0	0	0	0
32	K	1	0	0	0	0
33	m	1	0	0	0	0
34	I	2340	0	0	22	0
34	J	34	0	0	2	0
34	K	58	0	0	1	0
34	L	44	0	0	0	0
34	М	22	0	0	0	0

the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
34	Р	1	0	0	0	0
34	R	10	0	0	0	0
34	S	11	0	0	0	0
34	Т	28	0	0	0	0
34	U	20	0	0	0	0
34	V	15	0	0	0	0
34	W	1	0	0	0	0
34	Х	14	0	0	0	0
34	Y	16	0	0	0	0
34	Ζ	12	0	0	0	0
34	a	16	0	0	0	0
34	b	6	0	0	0	0
34	с	1	0	0	0	0
34	d	3	0	0	0	0
34	е	13	0	0	0	0
34	f	6	0	0	0	0
34	h	5	0	0	0	0
34	i	10	0	0	0	0
34	j	2	0	0	0	0
34	k	11	0	0	0	0
34	1	13	0	0	0	0
34	m	4	0	0	0	0
All	All	92732	58960	58959	290	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 290 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
14:W:56:LYS:O	14:W:60:GLU:HG2	1.20	1.27
3:K:124:ILE:CD1	3:K:130:LEU:HD11	1.71	1.19
1:I:1250:G:N7	11:T:18:ARG:NH1	1.92	1.16
3:K:124:ILE:HD13	3:K:130:LEU:HD11	1.31	1.09
8:P:108:VAL:O	8:P:139:PHE:O	1.77	1.02

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Κ	269/273~(98%)	259~(96%)	10 (4%)	0	100	100
4	L	207/209~(99%)	198 (96%)	8 (4%)	1 (0%)	29	31
5	М	199/201~(99%)	193 (97%)	6 (3%)	0	100	100
6	Ν	175/179~(98%)	162 (93%)	13 (7%)	0	100	100
7	Ο	174/177~(98%)	162 (93%)	12 (7%)	0	100	100
8	Р	147/149~(99%)	108 (74%)	39 (26%)	0	100	100
9	R	140/142~(99%)	140 (100%)	0	0	100	100
10	S	120/123~(98%)	115 (96%)	5 (4%)	0	100	100
11	Т	142/144 (99%)	136 (96%)	6 (4%)	0	100	100
12	U	133/136~(98%)	130 (98%)	3 (2%)	0	100	100
13	V	118/127~(93%)	115 (98%)	3 (2%)	0	100	100
14	W	114/117~(97%)	108 (95%)	5 (4%)	1 (1%)	17	16
15	Х	112/115~(97%)	109 (97%)	3 (3%)	0	100	100
16	Y	115/118 (98%)	115 (100%)	0	0	100	100
17	Ζ	101/103~(98%)	95 (94%)	5 (5%)	1 (1%)	15	14
18	a	108/110~(98%)	100 (93%)	7~(6%)	1 (1%)	17	16
19	b	91/100 (91%)	88 (97%)	3(3%)	0	100	100
20	с	100/104~(96%)	91 (91%)	9~(9%)	0	100	100
21	d	92/94~(98%)	89 (97%)	3(3%)	0	100	100
22	е	73/85~(86%)	72 (99%)	1 (1%)	0	100	100
23	f	75/78~(96%)	73 (97%)	2 (3%)	0	100	100
24	g	60/63~(95%)	57 (95%)	3(5%)	0	100	100
25	h	56/59~(95%)	53 (95%)	3 (5%)	0	100	100
26	i	54/57~(95%)	52 (96%)	2 (4%)	0	100	100
27	j	48/55~(87%)	45 (94%)	2 (4%)	1 (2%)	7	4

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
28	k	44/46~(96%)	43 (98%)	1 (2%)	0	100	100
29	1	62/65~(95%)	59~(95%)	3~(5%)	0	100	100
30	m	36/38~(95%)	33~(92%)	3 (8%)	0	100	100
All	All	3165/3267~(97%)	3000~(95%)	160 (5%)	5~(0%)	50	55

Continued from previous page...

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
14	W	102	ARG
18	a	65	ASP
17	Ζ	52	PRO
27	j	51	GLU
4	L	152	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	Κ	216/218~(99%)	214~(99%)	2(1%)	78 88
4	L	164/164~(100%)	163~(99%)	1 (1%)	86 93
5	М	165/165~(100%)	163~(99%)	2(1%)	71 83
6	Ν	148/150~(99%)	148 (100%)	0	100 100
7	Ο	137/138~(99%)	137~(100%)	0	100 100
8	Р	114/114~(100%)	113 (99%)	1 (1%)	78 88
9	R	116/116~(100%)	116 (100%)	0	100 100
10	S	103/104~(99%)	103 (100%)	0	100 100
11	Т	103/103~(100%)	102 (99%)	1 (1%)	76 86
12	U	108/108~(100%)	108 (100%)	0	100 100
13	V	100/103~(97%)	98~(98%)	2(2%)	55 69
14	W	86/87~(99%)	85 (99%)	1 (1%)	71 83

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	Х	99/100~(99%)	98~(99%)	1 (1%)	76	86
16	Y	89/90~(99%)	89 (100%)	0	100	100
17	Z	84/84~(100%)	82 (98%)	2(2%)	49	62
18	a	93/93~(100%)	89~(96%)	4 (4%)	29	36
19	b	80/84~(95%)	79~(99%)	1 (1%)	69	81
20	с	83/85~(98%)	83 (100%)	0	100	100
21	d	78/78~(100%)	78~(100%)	0	100	100
22	е	56/63~(89%)	56 (100%)	0	100	100
23	f	67/68~(98%)	67~(100%)	0	100	100
24	g	54/55~(98%)	54 (100%)	0	100	100
25	h	48/49~(98%)	48 (100%)	0	100	100
26	i	47/48~(98%)	47 (100%)	0	100	100
27	j	45/49~(92%)	45 (100%)	0	100	100
28	k	38/38~(100%)	38 (100%)	0	100	100
29	1	51/52~(98%)	50 (98%)	1 (2%)	55	69
30	m	34/34~(100%)	34 (100%)	0	100	100
All	All	2606/2640~(99%)	2587 (99%)	19 (1%)	84	91

Continued from previous page...

5 of 19 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
18	а	96	ILE
19	b	12	ARG
29	l	31	HIS
18	a	108	SER
13	V	20	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	Ι	2892/2904~(99%)	391~(13%)	30 (1%)
2	J	117/120~(97%)	16 (13%)	1 (0%)

Continued from previous page...

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	3009/3024~(99%)	407 (13%)	31 (1%)

5 of 407 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	Ι	7	G
1	Ι	10	А
1	Ι	15	G
1	Ι	34	U
1	Ι	42	А

5 of 31 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	Ι	1758	U
1	Ι	2866	U
1	Ι	2031	А
1	Ι	2903	U
1	Ι	2501	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

23 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	B	ond ang	gles
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	PSU	I	2580	1	18,21,22	1.77	6 (33%)	22,30,33	1.72	5 (22%)
1	OMG	Ι	2251	1	18,26,27	2.30	8 (44%)	19,38,41	1.34	3 (15%)
1	PSU	Ι	1911	1	18,21,22	1.45	4 (22%)	22,30,33	1.86	3 (13%)
1	OMC	Ι	2498	31,1	19,22,23	2.65	7 (36%)	26,31,34	0.72	0
12	4D4	U	81	12	9,11,12	2.52	2 (22%)	8,13,15	0.61	0
1	1MG	Ι	745	1	18,26,27	2.81	5 (27%)	19,39,42	1.48	4 (21%)
1	8AH	Ι	2503	31,1	20,26,27	3.78	6 (30%)	23,39,42	1.81	4 (17%)

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
	Type	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	PSU	Ι	2504	1	18,21,22	1.44	3 (16%)	22,30,33	2.32	8 (36%)
1	PSU	Ι	955	1	18,21,22	1.60	5 (27%)	22,30,33	1.71	4 (18%)
1	PSU	Ι	746	1	18,21,22	1.54	5 (27%)	22,30,33	1.74	4 (18%)
1	6MZ	Ι	1618	1	18,25,26	1.80	2 (11%)	16,36,39	2.57	2 (12%)
1	2MG	Ι	2445	1	18,26,27	2.19	7 (38%)	16,38,41	1.09	2 (12%)
1	PSU	Ι	1917	1	18,21,22	1.41	3 (16%)	22,30,33	1.88	4 (18%)
1	PSU	Ι	2457	1	18,21,22	1.67	4 (22%)	22,30,33	1.75	3 (13%)
1	3TD	Ι	1915	1	18,22,23	4.25	8 (44%)	22,32,35	1.60	2 (9%)
1	5MU	Ι	1939	1	19,22,23	4.58	7 (36%)	28,32,35	3.61	9 (32%)
1	2MG	Ι	1835	1	$18,\!26,\!27$	2.28	7 (38%)	16,38,41	1.18	3 (18%)
1	5MU	Ι	747	1	19,22,23	4.67	7 (36%)	28,32,35	<mark>3.58</mark>	8 (28%)
1	G7M	Ι	2069	1	20,26,27	2.12	7 (35%)	17,39,42	1.29	2 (11%)
1	OMU	Ι	2552	1	19,22,23	2.84	7 (36%)	26,31,34	1.67	4 (15%)
1	5MC	Ι	1962	1	18,22,23	3.16	7 (38%)	26,32,35	1.03	2(7%)
1	6MZ	Ι	2030	1	18,25,26	1.88	4 (22%)	16,36,39	2.65	6 (37%)
1	PSU	Ι	2605	1	18,21,22	1.67	4 (22%)	22,30,33	1.64	4 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	Ι	2580	1	-	0/7/25/26	0/2/2/2
1	OMG	Ι	2251	1	-	0/5/27/28	0/3/3/3
1	PSU	Ι	1911	1	-	0/7/25/26	0/2/2/2
1	OMC	Ι	2498	31,1	-	0/9/27/28	0/2/2/2
12	4D4	U	81	12	-	1/11/12/14	-
1	1MG	Ι	745	1	-	0/3/25/26	0/3/3/3
1	8AH	Ι	2503	31,1	-	2/3/25/26	0/3/3/3
1	PSU	Ι	2504	1	-	2/7/25/26	0/2/2/2
1	PSU	Ι	955	1	-	0/7/25/26	0/2/2/2
1	PSU	Ι	746	1	-	1/7/25/26	0/2/2/2
1	6MZ	Ι	1618	1	-	0/5/27/28	0/3/3/3
1	2MG	Ι	2445	1	-	1/5/27/28	0/3/3/3
1	PSU	Ι	1917	1	-	0/7/25/26	0/2/2/2
1	PSU	Ι	2457	1	-	0/7/25/26	0/2/2/2
1	3TD	Ι	1915	1	-	1/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5MU	Ι	1939	1	-	0/7/25/26	0/2/2/2
1	$2 \mathrm{MG}$	Ι	1835	1	-	2/5/27/28	0/3/3/3
1	5MU	Ι	747	1	-	0/7/25/26	0/2/2/2
1	G7M	Ι	2069	1	-	2/3/25/26	0/3/3/3
1	OMU	Ι	2552	1	-	0/9/27/28	0/2/2/2
1	5MC	Ι	1962	1	-	0/7/25/26	0/2/2/2
1	6MZ	Ι	2030	1	-	2/5/27/28	0/3/3/3
1	PSU	Ι	2605	1	-	0/7/25/26	0/2/2/2

Continued from previous page...

The worst 5 of 125 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Ι	1915	3TD	C6-C5	12.42	1.49	1.35
1	Ι	2503	8AH	O4'-C1'	-10.59	1.26	1.41
1	Ι	747	5MU	C2-N1	10.30	1.55	1.38
1	Ι	747	5MU	C6-N1	10.28	1.55	1.38
1	Ι	1939	5MU	C6-N1	9.94	1.55	1.38

The worst 5 of 86 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ι	1939	5MU	C5-C4-N3	11.90	125.47	115.31
1	Ι	747	5MU	C5-C4-N3	11.63	125.24	115.31
1	Ι	1939	5MU	C5-C6-N1	-9.85	113.20	123.34
1	Ι	747	5MU	C5-C6-N1	-9.45	113.62	123.34
1	Ι	1618	6MZ	C1'-N9-C4	-8.68	111.38	126.64

There are no chirality outliers.

5 of 14 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	Ι	2030	6MZ	O4'-C4'-C5'-O5'
1	Ι	2030	6MZ	C3'-C4'-C5'-O5'
1	Ι	2504	PSU	C3'-C4'-C5'-O5'
1	Ι	2504	PSU	O4'-C4'-C5'-O5'
1	Ι	2445	2MG	C3'-C4'-C5'-O5'

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	Ι	2498	OMC	1	0
1	Ι	1939	5MU	1	0
1	Ι	2030	6MZ	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 181 ligands modelled in this entry, 181 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23539. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 265

Y Index: 247

Z Index: 259

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 389 $\rm nm^3;$ this corresponds to an approximate mass of 352 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.455 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23539 and PDB model 7LVK. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 86% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8590	0.6460
Ι	0.8760	0.6460
J	0.8650	0.6430
K	0.9270	0.7040
L	0.9050	0.6950
М	0.8520	0.6740
N	0.4640	0.5220
0	0.6740	0.5900
Р	0.2050	0.1920
R	0.9140	0.7020
S	0.8830	0.6800
Т	0.8960	0.6870
U	0.9010	0.6880
V	0.9360	0.7120
W	0.8080	0.6490
Х	0.8790	0.6870
Y	0.9470	0.7200
Z	0.8620	0.6530
a	0.8820	0.6840
b	0.8170	0.6460
с	0.7930	0.6310
d	0.8250	0.6580
е	0.9100	0.7020
f	0.8920	0.6940
g	0.7910	0.6410
h	0.8760	0.6720
i	0.8900	0.6850
j	0.8000	0.6360
k	0.9520	0.7180
1	0.9510	0.7190
m	0.9010	0.6850

