

Full wwPDB NMR Structure Validation Report (i)

May 28, 2020 – 10:37 pm BST

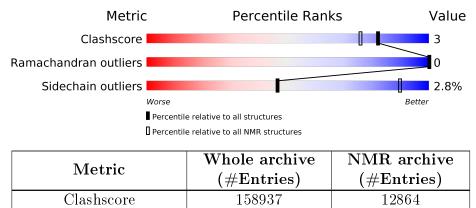
PDB ID	:	2KKQ
Title	:	Solution NMR Structure of the Ig-like C2-type 2 Domain of Human Myotilin.
		Northeast Structural Genomics Target HR3158.
Authors	:	Rossi, P.; Shastry, R.; Ciccosanti, C.; Hamilton, K.; Xiao, R.; Acton, T.B.;
		Swapna, G.V.T.; Nair, R.; Everett, J.K.; Rost, B.; Montelione, G.T.; North-
		east Structural Genomics Consortium (NESG)
Deposited on	:	2009-06-29

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
$\operatorname{MolProbity}$:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11


Ramachandran outliers

Overall quality at a glance (i) 1

The following experimental techniques were used to determine the structure: SOLUTION NMR

The overall completeness of chemical shifts assignment is 88%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154571

	Sidechain outliers	154315	11428	
-				
1	The table below summari	ses the geometric issu	ues observed across t	the polymeric chains and their
	fit to the experimental d	ata. The red, orange	e, yellow and green s	segments indicate the fraction
	of residues that contain o	outliers for $>=3, 2, 1$	and 0 types of geom	netric quality criteria. A cyan
1	segment indicates the frac	tion of residues that a	re not part of the we	ll-defined cores, and a grey seg-
	ment represents the fraction	on of residues that are	e not modelled. The	numeric value for each fraction
	is indicated below the cor	responding segment,	with a dot represent	ing fractions $<=5\%$

11451

Mol	Chain	Length	Quality of chain		
1	А	116	81%	•	16%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 7 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model					
1	A:13-A:109 (97)	0.30	7			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 5 clusters and 4 single-model clusters were found.

Cluster number	Models
1	8, 12, 15, 17
2	2, 9, 16, 18
3	3, 13, 20
4	4, 10, 19
5	6, 7
Single-model clusters	1; 5; 11; 14

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 1875 atoms, of which 938 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Myotilin.

Mol	Chain	Residues		Atoms					Trace
1	Λ	116	Total	С	Η	Ν	Ο	\mathbf{S}	0
	A 116	1875	587	938	175	170	5	0	

There are 10 discrepancies between the modelled and reference sequences:

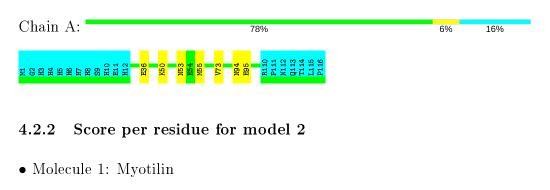
Chain	Residue	Modelled	Actual	Comment	Reference
A	1	MET	-	expression tag	UNP Q9UBF9
A	2	GLY	-	expression tag	UNP Q9UBF9
A	3	HIS	-	expression tag	UNP Q9UBF9
А	4	HIS	-	expression tag	UNP Q9UBF9
А	5	HIS	-	expression tag	UNP Q9UBF9
A	6	HIS	-	expression tag	UNP Q9UBF9
А	7	HIS	-	expression tag	UNP Q9UBF9
A	8	HIS	-	expression tag	UNP Q9UBF9
А	9	SER	-	expression tag	UNP Q9UBF9
А	10	HIS	-	expression tag	UNP Q9UBF9

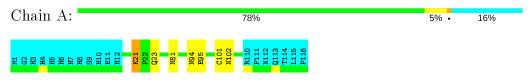
4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Myotilin

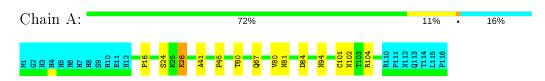

Chain A:	81%	•	16%
전 1 1 1 0 1 0	M85 M81 M113 M1		


4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Myotilin



4.2.3 Score per residue for model 3

• Molecule 1: Myotilin

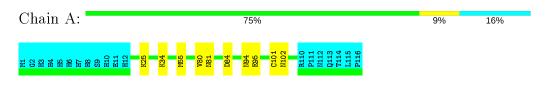
4.2.4 Score per residue for model 4

• Molecule 1: Myotilin

Chain A:	77%	7%	16%
M 62 62 88 88 89 89 89 81 11 12 11 12 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	P16 K21 K80 N84 N84 P111 P1112 P1112 P1112 P1115 P1115 P1115 P1115 P1115 P1115 P115 P115 P16 P16 P16 P16 P16 P16 P16 P16		

4.2.5 Score per residue for model 5

• Molecule 1: Myotilin

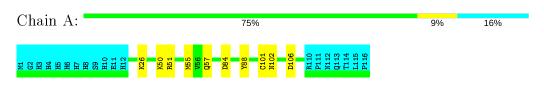

4.2.6 Score per residue for model 6

• Molecule 1: Myotilin

Chain A:	72%	11% 16%
M1 622 832 83 83 83 83 83 811 811 811 811 811 811		R110 P111 0113 0113 1114 P115 P115

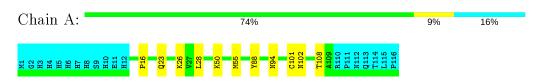
4.2.7 Score per residue for model 7 (medoid)

 \bullet Molecule 1: Myotilin

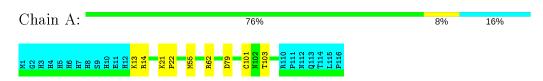

4.2.8 Score per residue for model 8

• Molecule 1: Myotilin

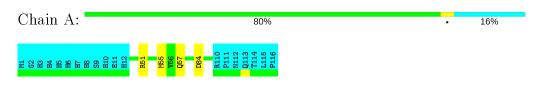
Chain A:	72%	11%	16%
西 1111 1111 1111 1111 1111 1111 1111 1	P16 256 236 236 236 243 255 264 264 264 264 264 264 264 264 264 264	N11 N12 Q133 L144 P165 P16	


4.2.9 Score per residue for model 9

• Molecule 1: Myotilin


4.2.10 Score per residue for model 10

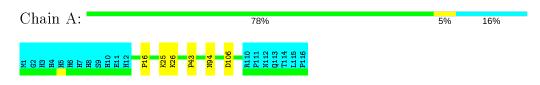
• Molecule 1: Myotilin


4.2.11 Score per residue for model 11

• Molecule 1: Myotilin

4.2.12 Score per residue for model 12

 \bullet Molecule 1: Myotilin


4.2.13 Score per residue for model 13

• Molecule 1: Myotilin

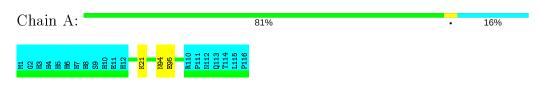
4.2.14 Score per residue for model 14

• Molecule 1: Myotilin

4.2.15 Score per residue for model 15

• Molecule 1: Myotilin

Chain A:	74%	9%	16%
M1 62 H1 H1 H1 H1 H1 K11 K11 H10 K11	K26 K50 K50 M53 M53 M55 M55 M55 M55 M55 M55 M55 M55		

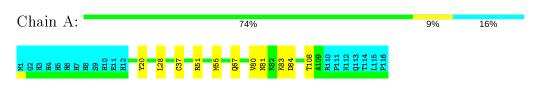

4.2.16 Score per residue for model 16

• Molecule 1: Myotilin

Chain A:		74%	9% 16%
M1 62 63 85 85 87 811 811 811 112	K26 V27 L28 K50 V80 N81 D84	T88 N94 N94 N96 T108 N100 N112 N111 N112 N112 N1114 T114 T114 T114	

4.2.17 Score per residue for model 17

• Molecule 1: Myotilin


4.2.18 Score per residue for model 18

• Molecule 1: Myotilin

Chain A:	81%	·	16%
전 1 1 0 1 1 1 1	055 057 057 057 0112 0113 0113 0113 0115 0115		

4.2.19 Score per residue for model 19

• Molecule 1: Myotilin

4.2.20 Score per residue for model 20

 \bullet Molecule 1: Myotilin

Chain A:	78%	••	16%
M1 62 83 83 84 81 83 83 81 81 11 12 11 12 11 12 11 12 11 12 12 12 12	P16 P22 P22 P22 P16 P110 P1115 P1115 P1115 P116		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *molecular dynamics*.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: target function.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CYANA	structure solution	3.0
CNS	refinement	1.3

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	input_cs.cif
Number of chemical shift lists	1
Total number of shifts	1297
Number of shifts mapped to atoms	1297
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	88%

No validations of the models with respect to experimental NMR restraints is performed at this time.

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	772	790	790	4 ± 2
All	All	15440	15800	15800	79

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2		Distance(A)	Worst	Total
1:A:21:LYS:HE2	1:A:101:CYS:SG	0.62	2.35	11	1
1:A:80:VAL:HG23	1:A:84:ASP:HB2	0.57	1.76	3	5
1:A:101:CYS:SG	1:A:102:ASN:N	0.55	2.79	9	9
1:A:50:LYS:HD3	1:A:53:ASN:HA	0.55	1.77	1	1
1:A:62:ARG:HD2	1:A:79:ASP:HB3	0.54	1.77	11	1
1:A:51:ARG:NH1	1:A:84:ASP:HA	0.54	2.17	8	2
1:A:81:ASN:OD1	1:A:83:LYS:HG2	0.54	2.03	19	1
1:A:51:ARG:HD2	1:A:84:ASP:O	0.53	2.04	19	2
1:A:22:PRO:HG2	1:A:103:THR:OG1	0.50	2.07	13	3
1:A:16:PRO:HD3	1:A:94:ASN:HB3	0.49	1.84	20	7
1:A:26:LYS:NZ	1:A:26:LYS:HB3	0.48	2.23	3	1
1:A:62:ARG:HG2	1:A:79:ASP:HB3	0.48	1.86	5	1
1:A:94:ASN:OD1	1:A:95:GLU:N	0.47	2.48	13	8
1:A:50:LYS:HD2	1:A:53:ASN:HA	0.47	1.86	15	1

All unique clashes are listed below, sorted by their clash magnitude.

Continued on next page...

2KKQ

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2		Distance(A)	Worst	Total
1:A:80:VAL:CG2	1:A:84:ASP:HB2	0.47	2.39	16	8
1:A:50:LYS:O	1:A:88:TYR:HA	0.46	2.10	10	5
1:A:82:LYS:HE2	1:A:109:ALA:N	0.46	2.25	13	1
1:A:21:LYS:HB3	1:A:21:LYS:NZ	0.46	2.25	2	1
1:A:26:LYS:HB3	1:A:106:ASP:HB2	0.45	1.88	6	2
1:A:62:ARG:HA	1:A:78:LYS:HD2	0.44	1.88	6	1
1:A:43:PRO:O	1:A:94:ASN:ND2	0.44	2.51	14	3
1:A:26:LYS:HA	1:A:106:ASP:O	0.44	2.12	9	4
1:A:59:ASN:HD22	1:A:59:ASN:N	0.43	2.12	20	1
1:A:24:SER:HA	1:A:104:ARG:O	0.43	2.14	3	1
1:A:36:GLU:HA	1:A:73:VAL:O	0.43	2.14	8	3
1:A:28:LEU:HD23	1:A:108:THR:HB	0.43	1.90	19	3
1:A:41:ALA:HB3	1:A:45:PRO:HD3	0.42	1.91	3	1
1:A:13:LYS:O	1:A:14:ARG:HD2	0.42	2.14	11	1
1:A:20:TYR:O	1:A:37:CYS:HB2	0.41	2.15	19	1

Continued from previous page...

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	tiles
1	А	97/116~(84%)	$95\pm1 (98\pm1\%)$	$2\pm1~(2\pm1\%)$	0±0 (0±0%)	100	100
All	All	1940/2320~(84%)	1908~(98%)	32 (2%)	0 (0%)	100	100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	87/105~(83%)	85 ± 1 (97 $\pm1\%$)	$2\pm1 (3\pm1\%)$	46 90	
All	All	1740/2100~(83%)	$1691 \ (97\%)$	49 (3%)	46 90	

All 14 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	55	MET	12
1	А	81	ASN	10
1	А	57	GLN	4
1	А	59	ASN	3
1	А	26	LYS	3
1	А	21	LYS	3
1	А	60	THR	3
1	А	67	GLN	2
1	А	25	LYS	2
1	А	34	LYS	2
1	А	23	GLN	2
1	А	52	ASN	1
1	А	68	ASP	1
1	А	22	PRO	1

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no carbohydrates in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 88% for the well-defined parts and 78% for the entire structure.

7.1 Chemical shift list 1

File name: input_cs.cif

Chemical shift list name: assigned_chem_shift_list_1

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	1297
Number of shifts mapped to atoms	1297
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	1

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction}\pm{\bf precision},ppm$	Suggested action
$^{13}C_{\alpha}$	105	0.03 ± 0.07	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	100	-0.19 ± 0.15	None needed (< 0.5 ppm)
$^{13}C'$	103	0.26 ± 0.13	None needed (< 0.5 ppm)
¹⁵ N	98	-0.63 ± 0.33	None needed (imprecise)

7.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 88%, i.e. 1072 atoms were assigned a chemical shift out of a possible 1223. 16 out of 16 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	473/475~(100%)	189/189~(100%)	192/194~(99%)	92/92~(100%)
Sidechain	526/673~(78%)	324/394~(82%)	190/243~(78%)	12/36~(33%)

Continued on next page...

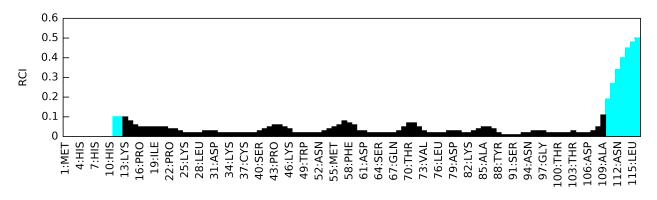
	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	15 N
Aromatic	73/75~(97%)	38/39~(97%)	34/34~(100%)	1/2~(50%)
Overall	1072/1223~(88%)	551/622~(89%)	416/471 (88%)	105/130~(81%)

Continued from previous page...

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 78%, i.e. 1155 atoms were assigned a chemical shift out of a possible 1486. 16 out of 17 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	15 N
Backbone	509/566~(90%)	203/225~(90%)	208/232~(90%)	98/109~(90%)
Sidechain	573/781~(73%)	355/461~(77%)	204/279~(73%)	14/41~(34%)
Aromatic	73/139~(53%)	38/71~(54%)	34/50~(68%)	1/18~(6%)
Overall	1155/1486~(78%)	596/757~(79%)	446/561~(80%)	113/168~(67%)

7.1.4 Statistically unusual chemical shifts (i)


The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

Mo	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	А	90	VAL	HB	-0.23	3.59 - 0.39	-6.9

7.1.5 Random Coil Index (RCI) plots ()

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

