

wwPDB EM Validation Summary Report (i)

Nov 27, 2023 – 08:51 PM JST

PDB ID 8KG9 : EMDB ID EMD-37215 : Title : Yeast replisome in state III Authors Dang, S.; Zhai, Y.; Feng, J.; Yu, D.; Xu, Z. : Deposited on 2023-08-17 : 4.52 Å(reported) Resolution : Based on initial model 6SKL ·

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.52 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(# Entries)	(#Entries)
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain				
1	2	868	28%	28% 49%				
2	3	971	23%	42% ·	34%			
3	4	933	29%	43%	• 28%			
4	5	775	• 34%	53%	• 13%			
5	6	1017	20%	40% •	38%			
6	7	845	28%	46%	• 25%			
7	А	208	34%	55%	7% •			
8	В	213	34%	57%	9%			

Mol	Chain	Length		Qua	lity of chain	
9	С	194	37%		51%	• 11%
10	D	294	33%		49%	17%
11	Е	650	32%		56%	13%
12	F	927	21%	25%	54%	
12	G	927	20%	25%	• 54%	
12	Н	927	18%	28%	54%	
13	Ι	71	6% 15%		79%	
14	J	61	10% •		87%	
15	М	2222	17%	19% •	63%	
16	Ν	689	• 35%		41%	23%

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
18	ADP	2	902	-	-	Х	-
18	ADP	3	1001	-	-	Х	-
20	AGS	5	803	-	-	Х	-
20	AGS	7	903	-	-	Х	-

2 Entry composition (i)

There are 20 unique types of molecules in this entry. The entry contains 63507 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA replication licensing factor MCM2.

Mol	Chain	Residues		At	AltConf	Trace			
1	2	668	Total 5270	C 3310	N 948	O 993	S 19	0	0

• Molecule 2 is a protein called DNA replication licensing factor MCM3.

Mol	Chain	Residues		At	AltConf	Trace			
2	3	637	Total 4948	C 3116	N 881	O 938	S 13	0	0

• Molecule 3 is a protein called DNA replication licensing factor MCM4.

Mol	Chain	Residues		A	AltConf	Trace			
3	4	676	Total	С	Ν	0	\mathbf{S}	0	0
	I	010	5390	3386	937	1036	31		

• Molecule 4 is a protein called Minichromosome maintenance protein 5.

Mol	Chain	Residues		A		AltConf	Trace		
4	5	676	Total 5325	C 3347	N 919	O 1035	S 24	0	0

• Molecule 5 is a protein called DNA replication licensing factor MCM6.

Mol	Chain	Residues		At	AltConf	Trace			
5	6	629	Total 4955	C 3124	N 868	O 938	S 25	0	0

• Molecule 6 is a protein called DNA replication licensing factor MCM7.

Mol	Chain	Residues		At	AltConf	Trace			
6	7	636	Total 4945	C 3125	N 861	O 933	S 26	0	0

• Molecule 7 is a protein called DNA replication complex GINS protein PSF1.

Mol	Chain	Residues		Ate		AltConf	Trace		
7	А	200	Total 1633	C 1024	N 282	0 318	S 9	0	0

• Molecule 8 is a protein called DNA replication complex GINS protein PSF2.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	В	193	Total 1617	C 1039	N 286	0 287	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called DNA replication complex GINS protein PSF3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	С	172	Total 1387	C 904	N 223	0 253	S 7	0	0

• Molecule 10 is a protein called DNA replication complex GINS protein SLD5.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	D	243	Total 2004	C 1276	N 327	O 389	S 12	0	0

• Molecule 11 is a protein called Cell division control protein 45.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	Е	568	Total 4599	C 2935	N 778	0 872	S 14	0	0

• Molecule 12 is a protein called DNA polymerase alpha-binding protein.

Mol	Chain	Residues	Atoms					AltConf	Trace		
19	Б	494	Total	С	Ν	Ο	\mathbf{S}	0	0		
	Г	424	3404	2188	564	637	15	0	0		
10	С	499	Total	С	Ν	0	S	0	0		
	G	422	3380	2172	557	636	15	0	0		
10	ц	425	Total	С	Ν	0	S	0	0		
12	H	H	H	425	3411	2193	565	638	15	0	

• Molecule 13 is a DNA chain called DNA (70-mer).

Mol	Chain	Residues	Atoms					AltConf	Trace
13	Ι	15	Total 307	C 150	N 42	O 100	Р 15	0	0

• Molecule 14 is a DNA chain called DNA (61-mer).

Mol	Chain	Residues	Atoms				AltConf	Trace	
14	J	8	Total 159	C 76	N 29	O 46	Р 8	0	0

• Molecule 15 is a protein called DNA polymerase epsilon catalytic subunit A.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	М	812	Total 6447	C 4162	N 1059	O 1192	S 34	0	0

• Molecule 16 is a protein called DNA polymerase epsilon subunit B.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	Ν	529	Total 4199	C 2684	N 716	0 782	S 17	0	0

• Molecule 17 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
17	2	1	Total Zn 1 1	0
17	4	1	Total Zn 1 1	0
17	5	1	Total Zn 1 1	0
17	6	1	Total Zn 1 1	0
17	7	1	Total Zn 1 1	0
17	М	2	Total Zn 2 2	0

• Molecule 18 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf		
10	0	1	Total	С	Ν	Ο	Р	0	
10	2	1	27	10	5	10	2	0	
10	2	1	Total	С	Ν	0	Р	0	
10	9	3 1		27	10	5	10	2	0

• Molecule 19 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
19	2	1	Total Mg 1 1	0
19	5	2	Total Mg 2 2	0
19	7	1	Total Mg 1 1	0

• Molecule 20 is PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER (three-letter code: AGS) (formula: C₁₀H₁₆N₅O₁₂P₃S) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf						
20 5	Б	1	Total	С	Ν	Ο	Р	S	0	
	5	L	31	10	5	12	3	1	0	
20	20 7	1	Total	С	Ν	Ο	Р	S	0	
20	1	L	31	10	5	12	3	1	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA replication licensing factor MCM2

R7 47 R7 47 R7 47 R7 48 R7 76 R7 76

• Molecule 2: DNA replication licensing factor MCM3

Chain 3: 23%	42%	• 34%	-
MET MET GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	(22 22 223 224 225 225 229 229 229 229 229 229 229 229	42 43 843 844 845 145 145 846 846 846 850 850 850 850 850 850 850 850 850 850	ASP ASP ALA ASP GLU ARG
ASP LEU CLU CLU CLU CLU ASP ASP ASP ASP CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER SER THR SER SER SER N90 L91 191 196 198 198 198 198 198 198 198 198 198 198	L103 L104 E104 E106 E106 F106 7107 7110 7111 7115 7113 7115 7115 7115 7115 7115	F121 1122 P123 E126 E126 K127
A128 1129 1129 1133 1133 1133 1133 1133 1133	1,115 1,115 1,115 1,155 1,155 1,155 1,155 1,155 1,156 1,156 1,151 1,171 1,172 1,177	H 75 L1 76 L1 79 L1 79 L1 78 H1 78 H1 86 H1 86 H1 91 H1 91 H1 93 H1 76 H1 76 H	L196 1197 R198 S199 V200 H201
Y202 A203 A203 A204 A206 T206 T206 T206 T206 T210 T216 T215 T215 T215 T215 T215 T215	R223 R224 1225 1225 1227 1227 7228 1228 1229 1223 1224 1241 1241 1241 1241 1241 1245 1245	Y247 2248 F250 F251 1251 H253 H255 H255 H255 R256 C356 C356 C356 C356 C356 C356 C356 C3	A265 P266 A267 G268 Q269 L270
271 8273 8275 8275 8275 8275 1276 1276 1276 1276 1276 1278 1278 1288 1288 1288 1288 1288 1288	2389 2290 2291 2294 2995 2995 2996 2996 2996 2996 2996 2998 2998 2998	L314 F317 1319 1321 1321 1321 1322 1322 1322 1322	A338 R339 Q340 M341 L342 T343
D344 1345 1347 1347 1349 1349 1353 1355 1355 1355 1355 1355 1355 135	S366 L367 Y372 Y372 A373 H376 H376 H376 L387 L381 L381 L381 L381 L383 L385 L385	M386 E390 K391 K391 N392 R400 R400 R400 R400 R400 R400 R400 R40	D410 P411 S412 T413 A414 K415
8416 1417 1417 1418 1418 1420 1422 1423 1425 1428 1428 1428 1428 1433 1433 1433	6434 6435 8435 8436 8436 8444 8444 8444 8444 8444 8444	A459 6460 1461 1461 1465 1465 1466 1466 1471 1475 1477 1477 1477 1477 1477	1479 D480 R483 1486
H487 E-488 F-488 M490 M490 P492 P495 P495 P495 F499 R499 R499 R499 R499 R499 R499 R499	1505 1506 1506 1506 1507 1508 1509 1515 1516 1524 1523 1523 1523 1523 1523 1523	FP20 FP21 FP23 FP23 FP23 FP23 FP23 FP33 FP33 FP33 FP33 FP33 FP33 FP33 FP33 FP34 FP44 L545 L545	F547 D551 D552 1553 N554
E555 1556 1556 1556 1558 1556 1566 1566 1	Y 1576 L577 E578 E578 E578 E578 E580 P581 P581 P581 P583 E584 R585 R585 L590 L590 L590 E594	D597 11.E ASN ASN ASN CUU CUU ALX ALX ALX CUU CUU CUU CUU CUU CUU	GLY GLU ASP GLU GLU ASP
HIS VAL PHE CLU CLU CLU CLU ASN ASN ASN ASN ASN ALA ALA ALA ALA ALA ALA CLU	ASN ASN CLY ASN ASN ASN ASN ASN CLU TASN FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	K658 Y659 Y665 Y661 Y661 Y661 X664 E665 F666 P666 P666 P666 P666 P667 E671 L671 L671 E674 A675	1676 N677 V678 1679 V680 K681
N682 T683 T684 T684 L686 L686 R684 N681 N689 N691 T690 R696 R696 R696 R699 R699 R699 R699 R	1701 1704 1706 1706 1708 1711 1711 1711 1711 1711 1711 1721 172	N722 V724 V725 V726 N726 N726 N727 N728 N728 N728 N734 N734 N734 N734 N734 N734 N734 N734	ASN ASP ILE ASP GLU GLU
GLU SER GLU TYR GLU GLU GLU ALA ALA ALA ALA CLU SER FRO CLY SER FRO CLY SER FRO CLY SER FRO CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ARG ARG ARG VAR ARG ARG ARG ARG ARG ARA ARA ARA ARA A	THR ARG ARG ARG ARG SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG ILEU LEU ARG PHE GLN
ASP ASP GLU GLU GLU GLU AISN ASN ASP ASP ASP ASP TLE MET TLE PRO FLEU CUT	ALA ALA GLU GLU GLU GLU GLU CLU LEU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	PR0 ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	THR GLU VAL GLY THR PRO

• Molecule 4: Minichromosome maintenance protein 5

• Molecule 5: DNA replication licensing factor MCM6

Chain 6:

20%

40%

• Molecule 6: DNA replication licensing factor MCM7

28%

•

46%

• Molecule 7: DNA replication complex GINS protein PSF1

• Molecule 8: DNA replication complex GINS protein PSF2

LEU	GLY	GLN	LYS	LEU	LYS	LEU SER	PHE	VAL ASN	SER	ASN	LEU	PHE	GLU ALA	ARG 1 VS	LEU	LEU	ARG PRO	ILE	GLN	ASP	ALA	ASN	ASN	VAL	ARG	ASN ILE	TYR	VAL	ALA ALA	ASN GLY	SER	LYS	VAL ASP	ALA	SIH	GLU GLU
ASP	ARG	GLU TYR	ASP	PRO	SIH	VAL	VAL	SER	ASP	LYS	ILE	ARG	VAL GLY	LYS	TYR	LYS	VAL THR	GLN	GLY	PHE	GLU	ASP	ARG	LYS	ALA	PHE ALA	ASP	VAL	VAL MET	ALA PHE	ASP	GLU	TH	LYS	PRO 1 EU	PHE
PRO	SER	ALA VAL	ASP	ILE	MET	ILE SFR	TYR	MET	ASP	CL II	GLY	PHE	LEU ILE	THR	ARG	GLU	ILE	SER	GLU ASP	ILE	ASP	PHE	TYR	THR	TAS	PRO GLU	TYR	GLY	PHE	THR TLE	PHE	GLU	ASP	GLU	ALA	GLN
ARG	PHE	GLU HIS	ILE	ASP	ALARG	PRO THR	VAL	ILE SER	THR	PHE	GLY	ASP	PHE	ASP	PRO	PHE	ILE	ASN	ARG	TYS	HIS	GLY	ASP	MET	ASP	GLU ILE	GLY	ALA	PR0 ASP	ALA GLU	dL Y	TYR	LYS SER	SER	CYS	HIS MET
ASP	PHE	ARG TRP	VAL	ARG	SER	T YR I FII	PRO	GLY	SER	GLN	LEU	LYS	ALA VAL	THR	SER	LYS	GLY	TYR	ASN PRO	ILE	LEU	ASP	GLU	LEU MFT	THR	PRO TYR	ALA	GLU	LYS PRO	GLN	LEU	GLU	TYR SER	VAL	ASP	ALA ALA
THR	TYR	LEU TYR	MET	TYR	VAL	PRO DHF	ILE	PHE SER	LEU	CYS	ILE	ILE	PRO LEU	ASN	ASP	GLU	THR	ARG	GLY	THR	THR	LEU	GLU	MET	LEU	MET VAL	GLN	TYR	GLN	ASN TLF	LEU	PRO	ASN LYS	SIH	ASP	GLU
ARG	TYR	ASP GLY	HIS	LEU LEU	SER	GLU	TYR	VAL GLY	GLY	HIS	GLU	SER	GLU	ALA CI V	VAL	PHE	ARG	ASP	LEU LYS	ASN	PHE	LYS	ASP	PR0 SFR	ALA	ILE ASP	GLU	LEU	GLU	LEU PRO	GLU	LEU	LYS PHE	SER	GLU	GLU ASN
LYS	SER	VAL ASP	LYS	THR	PHE	CL U	ILE	LYS ASN	GLN	ILE	CLN	LYS	LEU	GLU	LYS	GLU	ASN	ILE	ARG	GLU	PRO	LEU	TYR	UAL.	ASP	VAL ALA	SER	TYR	ASN	TLE MET	THR	ASN	ARG LEU	GLN	ASP	ILE
ALA	ARG	ASP CYS	ALA	CYS	PHE	ASN	PRO	GLY	THR	CYS	ALA ARG	LYS	LEU	TRP	TRP	ARG	GLY	PHE	PHE PRO	SER	MET	ASP	TYR	ASN	ILE	LYS ARG	ALA	GLN	GLU	THR PHE	PRO	LYS	ASN	PHE	T VG	LYS VAL
LEU	PHE	ASP GLU	LEU	TYR	ALA	GLN	ILE	HIS	LYS	LYS	LEU	THR	GLU TYR	SER	LYS	VAL	TYR HIS	ARG	VAL LYS	VAL	GLU	ILE	GLU	ARG	ALA	ILE VAL	CYS	ARG	GLU	PRO PHE	TYR	ASP	THR VAL	TYS	PHE	ASP ARG
ARG	GLU	PHE LYS	CLY GLY	ALA	THR	TRP	GLY	ASN	SER	LYS	ASP	PRO	SER	LYS	ALA	ARG	ASP GLU	ALA	LYS	MET	VAL	LEU	ASP	SER	GLN	LEU ALA	SIH	VAL	ILEU	ASN	PHE	GLY	TYR VAL	MET	LYS	GER ARG
TRP	SER	MET GLU	MET	GLY	THR	CYS	THR	GLY ALA	THR	ILE	GLN	MET	AL.A ARG	ALA	VAL	GLU	ARG VAL	GLY	ARG PRO	LEU	LEU	ASP	ASP	GLY	TRP	CYS ILE	LEU	LYS	SER	PRO GLU	THR	PHE	PHE THR	LEU	ASN	LYS
LEU	LEU	SER TYR	PRO	SER	LEU	ASN	ARG	VAL HIS	GLN	LYS	THR	ASN	GLN	TYR	GLU	LEU	LYS ASP	PRO	LEU ASN	TYR	TYR	GLU	SIH	SER	ASN	THR ILE	PHE	GLU	VAL ASP	GLY PRO	TYR	ALA	MET ILE	LEU	SER	019 LYS
GLU	LYS	GLY ILE	LYS	ARG	ALA	VAL	ASN	GLU ASP	GLY	SER	ALA	GLU	LEU	GLY	GLU	LEU	LYS ARG	ARG	GLU	LEU	LEU	ILE	ASN	PHE	SER	ASP ILE	PHE	VAL	PHE	GLU	ASP	LEU	GLU	CYS	SER	ALA VAL ALA
SER	CYS	ASN ARG	TRP	ASP	LEU	ASP SFR	HIS	GLY LEU	MET	LEU	ASP	GLU	ASP LEU	VAL	LEU	ILE	GLU	ASN	ARG	MET	LYS	THR	LYS	GLU TVR	GLU	GLN GLN	LYS	THR	SER	THR THR	ALA	ARG	LEU GLY	ASP	LEU	GLU ASP
MET	VAL LYS	ASP LYS	GLY	GLN	LYS	TYR	ILE	SER	LYS	PRO DHF	ASN	ALA	PRO VAL	THR	ARG	ALA	TLE PRO	VAL	ALA ILE	PHE	ALA	ASP	PRO	ILE	ARG	SER PHE	LEU	ARG	TRP THR	LEU ASP	PRO	LEU	GLU ASP	LEU	ILE	THR
ILE	TRP	GLY TYR	TYR	GLU	LEU	GLY	ALA	GLN	LYS	ILE	THR	ILE	PRO ALA	ALA	GLN	GLY	VAL SER	ASN	PRO VAL	PRO	VAL	GLU	PRO	ASP TRP	TEU	LYS ARG	LYS	ALA	THR LYS	GLU	LYS	LYS	GLN THR	SER	THR	PHE PHE
SER	THR	LYS ASN	VAL	THR	GLY	LYS	TAS	ASP ILE	GLU	ASP I EII	PHE	GLU	THR	VAL	GLU	ASP	ASN ALA	LYS	ILE	TLE	ALA ARG	THR	LYS	LYS	ALA	VAL SER	LYS	LYS	ARG ASN	GLN	THR	GLU	GLU ASP	PRO	VAL	PRO SER
GLU TI F	PRO	SER MET	ASP	ASP	VAL	GLY	LEU	ASN TYR	GLN	LYS	LYS	TRP	LYS ILE	GLN AT A	ALG	ASP	ARG	ARG	ASP	GLN	PHE	GLY	THR	ASN	SER	ARG GLU	ARG	ALA	GLY	SER MET	ILE	LYS	GLN ALA	GLU 61216	1010	11321 W1322 E1323
		•																						•									• •	•		_
V1324	1370	E1332	G1334	V1335 L1336	E1337 V1338	F1339	V1340 T1341	11342 N1242	01344 G1344	K1345	V1346 01347	N1348	11349 T1360	F1351	H1352 T1353	P1354		1135/ Y1358	M1359	F1361	K1362	Q1364	01369	K1370	11371 V1270	N1373	C1374 L1375	11376 E1377	K1378		L1383 P1384	N1385	N1386	K1388	T1389 S1390	N1391 P1392 ALA GLY
																				W P F			DAT													

wwPDB EM Validation Summary Report

 \bullet Molecule 16: DNA polymerase epsilon subunit B

35%

Chain N:

41%

23%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	17199	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	53	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	1.030	Depositor
Minimum map value	-0.192	Depositor
Average map value	0.008	Depositor
Map value standard deviation	0.054	Depositor
Recommended contour level	0.25	Depositor
Map size (Å)	466.39996, 466.39996, 466.39996	wwPDB
Map dimensions	440, 440, 440	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN, ADP, AGS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bo	ond angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	2	0.29	0/5360	0.56	0/7241
2	3	0.29	0/5032	0.54	1/6827~(0.0%)
3	4	0.25	0/5459	0.53	0/7363
4	5	0.28	1/5402~(0.0%)	0.55	1/7300~(0.0%)
5	6	0.29	0/5036	0.60	0/6799
6	7	0.30	0/5019	0.53	1/6789~(0.0%)
7	А	0.37	0/1653	0.55	0/2224
8	В	0.27	0/1650	0.48	0/2231
9	С	0.28	0/1420	0.45	0/1918
10	D	0.28	0/2040	0.48	0/2755
11	Е	0.27	0/4685	0.48	0/6343
12	F	0.29	0/3489	0.50	0/4724
12	G	0.28	0/3465	0.51	0/4696
12	Н	0.28	0/3496	0.49	0/4735
13	Ι	0.45	0/339	1.12	0/520
14	J	0.46	0/177	0.78	0/269
15	М	0.30	0/6586	0.50	1/8926~(0.0%)
16	Ν	0.27	0/4290	0.51	0/5811
All	All	0.29	1/64598~(0.0%)	0.53	$4/87471 \ (0.0\%)$

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	5	525	PRO	N-CD	-5.68	1.40	1.47

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	5	668	LEU	CA-CB-CG	5.73	128.49	115.30
15	М	2189	LEU	CA-CB-CG	5.54	128.05	115.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	3	103	LEU	CA-CB-CG	5.18	127.22	115.30
6	7	127	LEU	CA-CB-CG	5.18	127.21	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2	5270	0	5304	448	0
2	3	4948	0	4991	425	0
3	4	5390	0	5467	420	0
4	5	5325	0	5351	431	0
5	6	4955	0	4959	508	0
6	7	4945	0	4987	409	0
7	А	1633	0	1631	157	0
8	В	1617	0	1674	129	0
9	С	1387	0	1405	101	0
10	D	2004	0	2001	146	0
11	Е	4599	0	4584	333	0
12	F	3404	0	3352	224	0
12	G	3380	0	3310	224	0
12	Н	3411	0	3355	236	0
13	Ι	307	0	178	12	0
14	J	159	0	90	2	0
15	М	6447	0	6368	397	0
16	Ν	4199	0	4163	253	0
17	2	1	0	0	0	0
17	4	1	0	0	0	0
17	5	1	0	0	0	0
17	6	1	0	0	0	0
17	7	1	0	0	0	0
17	М	2	0	0	0	0
18	2	27	0	12	19	0
18	3	27	0	12	16	0
19	2	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes								
19	5	2	0	0	0	0								
19	7	1	0	0	0	0								
20	5	31	0	12	12	0								
20	7	31	0	12	9	0								
All	All	63507	0	63218	4549	0								

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 36.

The worst 5 of 4549 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:4:802:ILE:HG13	5:6:736:MET:SD	1.57	1.44
5:6:735:HIS:O	5:6:736:MET:HG2	1.28	1.32
3:4:802:ILE:CG1	5:6:736:MET:SD	2.21	1.28
3:4:802:ILE:CD1	5:6:736:MET:SD	2.27	1.22
2:3:499:LYS:HA	6:7:490:GLY:HA2	1.19	1.16

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	2	664/868~(76%)	621 (94%)	42~(6%)	1 (0%)	47	81
2	3	629/971~(65%)	580~(92%)	49 (8%)	0	100	100
3	4	658/933~(70%)	616~(94%)	40 (6%)	2~(0%)	41	76
4	5	662/775~(85%)	609~(92%)	50 (8%)	3~(0%)	29	68
5	6	619/1017~(61%)	547~(88%)	67 (11%)	5(1%)	19	60
6	7	622/845~(74%)	570 (92%)	47 (8%)	5 (1%)	19	60

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
7	А	196/208~(94%)	183~(93%)	12~(6%)	1 (0%)	29	68
8	В	189/213~(89%)	184 (97%)	5(3%)	0	100	100
9	С	166/194~(86%)	164 (99%)	2(1%)	0	100	100
10	D	237/294~(81%)	230~(97%)	7 (3%)	0	100	100
11	Ε	560/650~(86%)	548~(98%)	12 (2%)	0	100	100
12	F	418/927~(45%)	404 (97%)	14 (3%)	0	100	100
12	G	416/927~(45%)	408 (98%)	8 (2%)	0	100	100
12	Н	419/927~(45%)	410 (98%)	9(2%)	0	100	100
15	М	800/2222~(36%)	725~(91%)	72 (9%)	3~(0%)	34	72
16	N	517/689~(75%)	490 (95%)	27(5%)	0	100	100
All	All	7772/12660~(61%)	7289 (94%)	463 (6%)	20 (0%)	44	76

 $Continued \ from \ previous \ page...$

5 of 20 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
5	6	178	LEU
5	6	714	VAL
15	М	1945	LEU
4	5	669	SER
5	6	744	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	Percentiles		
1	2	578/770~(75%)	570~(99%)	8 (1%)	67	81		
2	3	541/835~(65%)	535~(99%)	6 (1%)	73	85		
3	4	614/848~(72%)	607~(99%)	7 (1%)	73	85		
4	5	602/688~(88%)	598~(99%)	4 (1%)	84	90		
5	6	543/886~(61%)	529~(97%)	14 (3%)	46	67		
6	7	544/753~(72%)	530~(97%)	14 (3%)	46	67		

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
7	А	184/193~(95%)	167~(91%)	17 (9%)	9	31
8	В	183/198~(92%)	183 (100%)	0	100	100
9	С	155/173~(90%)	153~(99%)	2(1%)	69	82
10	D	234/279~(84%)	234~(100%)	0	100	100
11	Ε	510/586~(87%)	509~(100%)	1 (0%)	93	96
12	F	375/825~(46%)	373~(100%)	2 (0%)	88	93
12	G	372/825~(45%)	365~(98%)	7 (2%)	57	75
12	Н	375/825~(46%)	372~(99%)	3~(1%)	81	89
15	М	713/2014~(35%)	696~(98%)	17~(2%)	49	69
16	N	467/629 (74%)	459 (98%)	8 (2%)	60	78
All	All	6990/11327~(62%)	6880~(98%)	110 (2%)	64	79

Continued from previous page...

5 of 110 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
7	А	56	GLU
9	С	188	LYS
16	Ν	681	LYS
15	М	1946	SER
7	А	60	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 42 such sidechains are listed below:

Mol	Chain	Res	Type
11	Е	52	GLN
12	Н	629	HIS
11	Е	402	GLN
12	G	629	HIS
15	М	1435	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 15 ligands modelled in this entry, 11 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	vpe Chain Bes Link		Tink	Bo	ond leng	ths	Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
20	AGS	5	803	19	26,33,33	0.80	1 (3%)	$26,\!52,\!52$	0.79	1 (3%)
18	ADP	3	1001	19	24,29,29	0.73	0	29,45,45	0.78	1 (3%)
18	ADP	2	902	19	24,29,29	0.66	0	29,45,45	0.88	1 (3%)
20	AGS	7	903	-	26,33,33	0.81	1 (3%)	$26,\!52,\!52$	0.86	1 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	AGS	5	803	19	-	6/17/38/38	0/3/3/3
18	ADP	3	1001	19	-	5/12/32/32	0/3/3/3
18	ADP	2	902	19	-	6/12/32/32	0/3/3/3
20	AGS	7	903	-	-	7/17/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
20	7	903	AGS	PG-S1G	2.13	1.95	1.90

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
20	5	803	AGS	PG-S1G	2.07	1.95	1.90

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
20	7	903	AGS	C5-C6-N6	2.29	123.83	120.35
18	2	902	ADP	C5-C6-N6	2.27	123.81	120.35
18	3	1001	ADP	C5-C6-N6	2.27	123.80	120.35
20	5	803	AGS	C5-C6-N6	2.26	123.79	120.35

There are no chirality outliers.

5 of 24 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
18	2	902	ADP	PA-O3A-PB-O3B
18	3	1001	ADP	PA-O3A-PB-O2B
18	3	1001	ADP	C5'-O5'-PA-O1A
20	5	803	AGS	C5'-O5'-PA-O3A
20	5	803	AGS	O4'-C4'-C5'-O5'

There are no ring outliers.

4 monomers are involved in 56 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	5	803	AGS	12	0
18	3	1001	ADP	16	0
18	2	902	ADP	19	0
20	7	903	AGS	9	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-37215. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 220

Y Index: 220

Z Index: 220

6.2.2 Raw map

X Index: 220

Y Index: 220

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 207

Z Index: 181

6.3.2 Raw map

X Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.25. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{37215}msk_{1.map}$ (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1385 nm^3 ; this corresponds to an approximate mass of 1251 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.221 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.221 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estim	ation o	criterion (FSC cut-off)
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.52	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	8.62	16.92	9.03

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 8.62 differs from the reported value 4.52 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-37215 and PDB model 8KG9. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.25 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.25).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.25) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9580	0.1900
2	0.9700	0.1940
3	0.9880	0.2150
4	0.9710	0.1590
5	0.9620	0.1950
6	0.9880	0.1660
7	0.9900	0.1930
А	0.9760	0.2100
В	0.9740	0.2370
С	0.9800	0.2200
D	0.9800	0.2310
Ε	0.9740	0.2230
\mathbf{F}	0.9820	0.2270
G	0.9940	0.1930
Н	0.9910	0.2000
Ι	0.9380	0.1820
J	0.8110	0.1360
М	0.8210	0.1410
N	0.9070	0.1640

