

wwPDB X-ray Structure Validation Summary Report (i)

Jun 3, 2024 – 02:53 PM JST

PDB ID	:	8KAI
Title	:	Crystal structure of SpyCas9-crRNA-tracrRNA complex bound to 17nt target
		DNA
Authors	:	Chen, Y.; Chen, J.; Liu, L.
Deposited on	:	2023-08-03
Resolution	:	3.49 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity		4.02b-467
	·	4.020-401
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.49 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	1659 (3.60-3.40)
Clashscore	141614	1036 (3.58-3.42)
Ramachandran outliers	138981	1005 (3.58-3.42)
Sidechain outliers	138945	1006 (3.58-3.42)
RSRZ outliers	127900	1559 (3.60-3.40)
RNA backbone	3102	1002 (4.00-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Qualit	y of chain	
1	А	34	6% 9%	38%	32%	21%
1	Е	34	9%	26%	38%	• 9%
2	В	1368	9%	45%	48%	•••
2	F	1368	11%	44%	48%	5% •

Continued on next page...

Continued from previous page...

Mol	Chain	Length		Qualit	y of chain							
3	С	25	20%	20% 60% 20%								
3	G	25	20%	20% 44% 36%								
4	D	11		64%		36%						
4	Н	11	27%		55%	18%						
5	Ι	65	8%	35%	38%	15% •						
5	J	65	17%	32%	38%	9% •						

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 27007 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (34-MER).

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1 A	34	Total	С	Ν	0	Р	0	0	0	
		725	325	127	239	34				
1	1 F	21	Total	С	Ν	0	Р	0	0	0
	51	663	297	118	217	31	0	U	0	

• Molecule 2 is a protein called CRISPR-associated endonuclease Cas9/Csn1.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
2	В	1326	Total 10769	C 6854	N 1869	O 2024	S 22	0	0	0
2	F	1327	Total 10698	C 6816	N 1845	O 2014	S 23	0	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	10	ALA	ASP	engineered mutation	UNP Q99ZW2
В	840	ALA	HIS	engineered mutation	UNP Q99ZW2
F	10	ALA	ASP	engineered mutation	UNP Q99ZW2
F	840	ALA	HIS	engineered mutation	UNP Q99ZW2

• Molecule 3 is a DNA chain called DNA (25-MER).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3 C	25	Total	С	Ν	0	Р	0	0	0	
		501	244	83	150	24				
2	2 C	25	Total	С	Ν	0	Р	0	0	0
9 G	20	501	244	83	150	24	0	0	0	

• Molecule 4 is a DNA chain called DNA (5'-D(*TP*TP*AP*GP*GP*TP*AP*TP*TP*G)-3').

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
4		11	Total	С	Ν	Ο	Р	0	0	0
4 D	11	225	110	37	68	10	0	0	0	
4	и	11	Total	С	Ν	Ο	Р	0	0	0
4 П	11	225	110	37	68	10	0	0	0	

• Molecule 5 is a RNA chain called RNA (65-MER).

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
5 I	63	Total	С	Ν	0	Р	0	0	0	
	05	1348	603	245	437	63				
5 J	63	Total	С	Ν	0	Р	0	0	0	
		1348	603	245	437	63			U	

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	Total O 1 1	0	0
6	F	3	Total O 3 3	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (34-MER)

 \bullet Molecule 2: CRISPR-associated endonuclease Cas9/Csn1

Chain F:

11%

W I D E DB 5%

8KAI

MET ASP LYS Y5 G8	K30 K31 F32	L35 C36 N37 D39 B39 R40	141 142 143 143 143 143 143 143 143	N46 L47 148 E57 TE57	R63 R63 R66 R66	R69 R71 R71 T73 R72 R74 R75	K78 R78 I79 C80 V81 L82 L82 E89	M90 A91 K92 V93 D94 F97 L101
E103 E103 L106 V107 E108	K111 K112 H113 E114 R115	H116 P117 T118 F119 G120 M121	1122 1122 1123 1124 1126 V126	A127 Y128 H129 Y132	P133 1134 1135 1135 1135 1138	K141 K141 L142 V143 D144 S145	1148 1149 1150 1151 1151 1152 1153 1154 1156	A157 A158 A158 A158 A160 M161 1162 F164 F164 F164
G166 H167 F169 L169 1170 E171 G172	D173 L174 D177 N178	8179 D180 K183 L184 F185	1186 0187 1188 1188 V189	L195 1201 N202 A203 S204	S204 GLY VAL D207 A208 K209	LEU 1211 1211 8213 ALA ALA ALA LEU ELEU SER	LTS SER R220 R221 L222 E223 N224 L226	A227 Q228 L229 P230 C331 K233 K233 K233 K233 N235
G236 L237 F238 G239 N240 L241 L241 T242	A243 L244 S245 L246 C247	L248 T249 P250 K263 S254	N255 F256 D257 L258 A259	E260 D261 A262 LYS LEU	GELN GELV 8267 N268 D269 T270	D272 D273 D274 D276 D276 N277 L278	L2(9 1280 1282 1282 1283 1284 1284 1285 1285 1285 1285	D288 L289 F220 L291 L291 N295 L295
I300 L301 1305 L306 R307 V308	N309 1312 1313 1314	A315 S318 A319 T322	K 322 K 323 R 324 Y 326 E 327	H328 L332 K336	A337 L338 V339 Q342 Q342	Y347 1350 F351 F352 F352 F359	A360 A361 Y362 1363 1363 0369 E370	Y373 K374 F375 F375 1376 X377 P378 P378 L380 L380
M383 D384 L390 V391 K392 L393	N394 R395 E396 D397 L398	L399 R400 R401 Q402 R403 R403	F405 D406 N407	P411 H412 Q413 T414 H415	L416 G417 E418 L419 1419	R424 R426 Q426 E427 F429 F429	L432 L433 K442 L444 L444 F445 F446 R446	1448 P449 Y450 Y451 V452 C453 C453 P454 L455 A456
R457 W464 M465 T466 R467 K468	8469 E470 E471 T472 I473	T474 P475 W476 N477 F478 €479	E480 V481 V482 D483 K484	G485 A486 S487 A488 Q489	8490 F491 R494 M495 T496	D499 K500 N501 E505 L508	F510 F514 Y515 F516 F518 F518 T518	V520 V521 N522 E523 E523 L524 U526 K526 K526 K528
Y629 V630 T531 6532 6533 M534 R535	K536 P537 Q544 K545	K546 A547 1548 V549 D550 1.551	L552 F553 K554 T555	V559 T560 V561 K562 Q563	K565 E566 D567 Y568 F569 K570	E573 E575 E575 D576 S577 S577	1581 1581 1581 1582 1583 1583 1583 1583 1583	A589 6592 7593 1593 1595 1596 1596 1597
K599 1600 K602 D603 K604 D605	F606 L607 N612	L616 E617 D618 1619 V620	T622 L623 T624 L625 F626	E627 D628 R629 E630 M631	1632 E633 E634 R635 L636 K637	Y639 A640 F643 F643 D644 D645 K646	044/ 044/ 0650 0650 1651 1652 1653 1653 1653 1653	G658 W659 G660 R661 L662 L662 S663 R664 K665
L666 1667 1670 1670 1672 1672 1672 1672	Q674 S675 G676 K677 T678	1679 L680 D681 F682 L683 K684	Rest D686 D686 F688 A689	N690 R691 N692 F693 M694	4695 1697 1697 1699 1699 2700 2700	L702 L702 F704 K705 S714 G1Y	GLN GT17 GT17 S719 L720 H721 H723 H723 H723 H723	730 731 731 733 1733 1733 8735 8735 1737
L738 Q739 1740 V741 K742 E746	M751 G752 R753 H754	K755 V760 1761 E762 M763	R764 R765 GLU ASN GLN	THR THR GLN LYS GLY	GLN LYS N776 R777 E779 E779 E779	M781 K782 R783 1784 1788	C 191 C 192 C 193 C 194 C 1795 C 1795	V801 E802 E802 N803 Q804 Q807 N808 E809
K810 L811 V812 L813 L813 Y815 L816	Q817 N818 G819 R820 D821	M822 Y823 Q826 E827 1 828	D829 1830 1831 1832 1833	8834 D835 Y836 D837 V838	8845 8840 1841 1841 1841 1843 8843 8843 8844 8844	F846 [1847 [1848] [1852 [1852 [1852 [1852 [1852]	N855 L857 L857 R859 S860 S860 N863	8867 0868 0868 0869 0870 0872 0872 0872 0873 0873 0873 0873 0873
K878 M879 K880 N881 Y882 W883 W883	(1885 L886 A889 K899	L891 1892 1893 0894 R895 K896	1900 1900 1900	K902 A903 C907 L908	L911 D912 G915 F916	K918 R918 C920 C921 E923 E923	1928 1928 1934 1934 1935 1935 1935 1935 1935	R938 M939 N940 K941 K943 P944 E945 N946
L949 1950 R951 8953 V953	1956 1957 1958 1958 1958	L962 V963 D965 F966 B967	K968 F970 F971 F972	Y973 K974 I978 N979	N980 Y981 H982 H983 H985 H985	A987 N990 L997 L998 L998	Y1000 Y1001 P1002 K1003 L1004 E1005 B1006 E1007 F1008	V1009 Y1010 01011 D1012 V1018 R1019 K1020 M1021

Control Contro

• Molecule 5: RNA (65-MER)

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	144.30Å 130.19Å 146.41Å	Deperitor
a, b, c, α , β , γ	90.00° 104.02° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	48.57 - 3.49	Depositor
Resolution (A)	48.57 - 3.45	EDS
% Data completeness	79.0 (48.57-3.49)	Depositor
(in resolution range)	76.2(48.57-3.45)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.43 (at 3.48 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.17.1_3660	Depositor
D D.	0.225 , 0.294	Depositor
Π, Π_{free}	0.225 , 0.294	DCC
R_{free} test set	2620 reflections (4.94%)	wwPDB-VP
Wilson B-factor $(Å^2)$	62.1	Xtriage
Anisotropy	0.306	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.30 , 40.2	EDS
L-test for $twinning^2$	$< L > = 0.40, < L^2 > = 0.22$	Xtriage
Estimated twinning fraction	0.087 for l,-k,h	Xtriage
F_o, F_c correlation	0.83	EDS
Total number of atoms	27007	wwPDB-VP
Average B, all atoms $(Å^2)$	76.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.60% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.18	2/811~(0.2%)	2.15	52/1261~(4.1%)
1	Ε	1.03	1/742~(0.1%)	1.89	24/1154~(2.1%)
2	В	0.68	5/10954~(0.0%)	0.89	26/14725~(0.2%)
2	F	0.69	7/10882~(0.1%)	0.90	23/14639~(0.2%)
3	С	1.69	8/559~(1.4%)	1.64	14/859~(1.6%)
3	G	1.60	8/559~(1.4%)	1.53	12/859~(1.4%)
4	D	1.81	4/251~(1.6%)	1.44	2/387~(0.5%)
4	Н	1.56	1/251~(0.4%)	1.57	4/387~(1.0%)
5	Ι	1.19	3/1509~(0.2%)	2.11	93/2350~(4.0%)
5	J	1.09	2/1509 (0.1%)	1.98	66/2350 $(2.8%)$
All	All	0.85	41/28027~(0.1%)	1.23	316/38971~(0.8%)

The worst 5 of 41 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	С	16	DA	C3'-O3'	-9.28	1.31	1.44
5	Ι	47	А	C6-N1	-8.44	1.29	1.35
4	D	3	DT	C3'-O3'	-8.17	1.33	1.44
3	G	1	DC	C3'-O3'	8.03	1.54	1.44
2	F	425	ARG	CG-CD	-7.73	1.32	1.51

The worst 5 of 316 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Ι	59	U	O5'-P-OP2	-14.53	92.62	105.70
5	J	91	C	C5-C4-N4	-13.11	111.02	120.20
5	Ι	48	А	C8-N9-C4	12.70	110.88	105.80
5	Ι	62	G	C5-C6-O6	12.51	136.11	128.60
5	J	91	С	C5-C6-N1	10.97	126.48	121.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	725	0	362	29	0
1	Е	663	0	331	30	0
2	В	10769	0	10863	701	2
2	F	10698	0	10745	807	0
3	С	501	0	287	13	0
3	G	501	0	287	19	0
4	D	225	0	129	7	0
4	Н	225	0	129	11	0
5	Ι	1348	0	678	70	0
5	J	1348	0	678	68	0
6	В	1	0	0	0	0
6	F	3	0	0	0	0
All	All	27007	0	24489	1634	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 32.

The worst 5 of 1634 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:380:LEU:O	2:B:386:THR:CG2	1.70	1.39
2:B:1222:LYS:NZ	2:B:1315:LEU:O	1.59	1.33
2:F:878:LYS:HB3	2:F:879:MET:SD	1.74	1.28
2:F:878:LYS:HD2	2:F:879:MET:CE	1.76	1.16
2:B:410:ILE:HG23	2:B:414:ILE:HD11	1.26	1.15

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:202:ASN:OD1	$2:B:541:SER:OG[2_545]$	2.07	0.13
2:B:228:GLN:NE2	2:B:543:GLU:OE2[2_545]	2.18	0.02

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	1312/1368~(96%)	1279 (98%)	29~(2%)	4 (0%)	41	75
2	F	1313/1368~(96%)	1266 (96%)	45 (3%)	2(0%)	47	81
All	All	2625/2736~(96%)	2545 (97%)	74 (3%)	6 (0%)	47	81

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	В	270	THR
2	F	1020	LYS
2	F	117	PRO
2	В	117	PRO
2	В	250	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	В	1173/1225~(96%)	1114 (95%)	59~(5%)	24 58
2	F	1156/1225~(94%)	1083 (94%)	73 (6%)	18 51
All	All	2329/2450~(95%)	2197 (94%)	132 (6%)	20 53

5 of 132 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type			
2	F	1080	PHE			

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
2	F	1202	SER
2	F	1338	SER
2	В	1202	SER
2	В	1171	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 25 such side chains are listed below:

Mol	Chain	Res	Type
2	В	1364	GLN
2	F	329	HIS
2	F	1256	GLN
2	F	187	GLN
2	F	415	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	33/34~(97%)	9~(27%)	3~(9%)
1	Е	30/34~(88%)	9~(30%)	1 (3%)
5	Ι	62/65~(95%)	20 (32%)	2(3%)
5	J	62/65~(95%)	19 (30%)	1 (1%)
All	All	187/198~(94%)	57~(30%)	7~(3%)

5 of 57 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	2	U
1	А	4	А
1	А	5	С
1	А	6	G
1	А	9	U

5 of 7 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	Е	27	G
5	Ι	42	А
5	J	42	А
5	Ι	68	А
1	А	28	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	34/34~(100%)	0.17	2 (5%) 22 20	19, 34, 129, 166	0
1	Е	31/34~(91%)	0.32	3 (9%) 7 8	40, 71, 175, 230	0
2	В	1326/1368~(96%)	0.36	125 (9%) 8 9	13, 62, 175, 215	0
2	F	1327/1368~(97%)	0.46	157 (11%) 4 5	11, 88, 145, 197	0
3	С	25/25~(100%)	-0.31	0 100 100	25, 38, 81, 88	0
3	G	25/25~(100%)	-0.11	0 100 100	45, 59, 118, 139	0
4	D	11/11~(100%)	-0.11	0 100 100	30, 38, 122, 159	0
4	Η	11/11 (100%)	-0.21	0 100 100	33, 60, 119, 189	0
5	Ι	63/65~(96%)	-0.26	0 100 100	17, 71, 122, 170	0
5	J	$63/65\ (96\%)$	-0.37	0 100 100	26, 58, 137, 191	0
All	All	2916/3006~(97%)	0.36	287 (9%) 7 8	11, 70, 162, 230	0

The worst 5 of 287 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	В	801	VAL	23.0
2	В	809	GLU	18.3
2	F	232	GLU	15.7
2	F	231	GLY	12.1
2	В	810	LYS	11.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

