

Full wwPDB X-ray Structure Validation Report (i)

Jun 22, 2024 – 03:33 PM EDT

PDB ID	:	6K95
Title	:	Crystal structural of human glutathione-specific gamma-glutamylcyclotransfe
		rase 2 ($ChaC2$)
Authors	:	Nguyen, T.K.Y.; Han, B.W.
Deposited on	:	2019-06-14
Resolution	:	2.29 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.20.1
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.29 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	Similar resolution (#Entries, resolution range(Å))	
Rfree	130704	5042 (2.30-2.30)	
Clashscore	141614	5643 (2.30-2.30)	
Ramachandran outliers	138981	5575 (2.30-2.30)	
Sidechain outliers	138945	5575 (2.30-2.30)	
RSRZ outliers	127900	4938 (2.30-2.30)	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality	of chain	
			30%		
1	А	184	53%	42%	·
			23%		
1	В	184	54%	39%	7%
			28%		
1	С	184	53%	42%	5%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 4187 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Λ	176	Total	С	Ν	0	S	0	0	0
1	A	170	1402	910	230	260	2	0	0	0
1	В	179	Total	С	Ν	0	S	0	0	0
1	I D	172	1380	897	225	256	2	0	0	U
1	C	174	Total	С	Ν	0	S	0	0	0
1	I C	174	1394	905	227	260	2	0	0	0

• Molecule 1 is a protein called Glutathione-specific gamma-glutamylcyclotransferase 2.

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	82	GLY	ARG	engineered mutation	UNP Q8WUX2
В	82	GLY	ARG	engineered mutation	UNP Q8WUX2
С	82	GLY	ARG	engineered mutation	UNP Q8WUX2

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	4	Total O 4 4	0	0
2	В	5	Total O 5 5	0	0
2	С	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glutathione-specific gamma-glutamylcyclotransferase 2

• Molecule 1: Glutathione-specific gamma-glutamylcyclotransferase 2

 \bullet Molecule 1: Glutathione-specific gamma-glutamylcyclotransferase 2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	108.84Å 62.16 Å 103.62 Å	Deneriten
a, b, c, α , β , γ	90.00° 90.01° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\mathbf{\hat{A}})$	37.41 - 2.29	Depositor
Resolution (A)	37.38 - 2.29	EDS
% Data completeness	99.0 (37.41-2.29)	Depositor
(in resolution range)	96.5(37.38-2.29)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.06	Depositor
$< I/\sigma(I) > 1$	3.19 (at 2.29 Å)	Xtriage
Refinement program	REFMAC 5.8.0258	Depositor
D D	0.239 , 0.268	Depositor
κ, κ_{free}	0.285 , 0.286	DCC
R_{free} test set	1554 reflections (4.98%)	wwPDB-VP
Wilson B-factor $(Å^2)$	47.2	Xtriage
Anisotropy	1.010	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.34 , 49.6	EDS
L-test for $twinning^2$	$< L > = 0.51, < L^2 > = 0.34$	Xtriage
	0.023 for $-1/2$ *h $-3/2$ *k, $-1/2$ *h $+1/2$ *k, $-1/2$ *k,	
	0.024 for $-1/2$ *h $+3/2$ *k, $1/2$ *h $+1/2$ *k,-l	
Estimated twinning fraction	0.380 for 1/2 *h-3/2 *k,-1/2 *h-1/2 *k,-l	Xtriage
	0.378 for $1/2$ *h $+3/2$ *k, $1/2$ *h $-1/2$ *k, -1	
	0.027 for -h,-k,l	
F_o, F_c correlation	0.92	EDS
Total number of atoms	4187	wwPDB-VP
Average B, all atoms $(Å^2)$	79.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.60% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.99	0/1443	0.79	0/1964
1	В	0.98	0/1421	0.75	0/1936
1	С	0.99	0/1435	0.78	0/1955
All	All	0.99	0/4299	0.77	0/5855

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1402	0	1357	172	4
1	В	1380	0	1336	198	6
1	С	1394	0	1347	187	6
2	А	4	0	0	0	0
2	В	5	0	0	1	0
2	С	2	0	0	0	0
All	All	4187	0	4040	551	10

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 67.

All (551) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:8:SER:HB3	1:B:11:TRP:CZ2	1.23	1.66
1:B:76:LYS:CE	1:B:78:TYR:CE2	1.78	1.64
1:B:15:PHE:CD1	1:B:16:PRO:HD2	1.16	1.62
1:A:124:LEU:CD1	1:A:167:LEU:CD2	1.75	1.61
1:B:76:LYS:HE2	1:B:78:TYR:CD2	1.34	1.58
1:A:124:LEU:HD11	1:A:167:LEU:CD2	1.21	1.58
1:C:20:LYS:HD3	1:C:65:TYR:CE1	1.35	1.57
1:B:8:SER:CB	1:B:11:TRP:CZ2	1.77	1.56
1:C:20:LYS:CD	1:C:65:TYR:CE1	1.86	1.55
1:C:31:ARG:CZ	1:C:53:VAL:HG21	1.25	1.54
1:A:128:ALA:CB	1:A:174:ARG:HH12	1.21	1.53
1:A:2:TRP:CZ2	1:A:66:ARG:HD3	1.47	1.49
1:B:76:LYS:CG	1:B:78:TYR:CE2	1.96	1.49
1:B:8:SER:CA	1:B:11:TRP:CZ2	1.96	1.46
1:B:31:ARG:HD3	1:B:33:TRP:CZ2	1.52	1.44
1:A:124:LEU:CD1	1:A:167:LEU:HD23	1.31	1.43
1:B:128:ALA:HB3	1:B:174:ARG:NH1	1.33	1.43
1:C:18:GLN:CD	1:C:66:ARG:HH21	1.22	1.42
1:C:31:ARG:NH2	1:C:53:VAL:HG21	1.13	1.41
1:A:128:ALA:HB1	1:A:174:ARG:NH1	1.29	1.40
1:C:124:LEU:HD11	1:C:167:LEU:CD2	1.52	1.39
1:A:2:TRP:CZ2	1:A:66:ARG:CD	2.06	1.38
1:B:8:SER:CA	1:B:11:TRP:CH2	2.04	1.38
1:A:2:TRP:CE2	1:A:66:ARG:HG2	1.59	1.38
1:B:76:LYS:HE3	1:B:78:TYR:CE2	1.47	1.37
1:A:171:VAL:HG22	1:A:174:ARG:NH2	1.36	1.35
1:B:8:SER:HA	1:B:11:TRP:CZ2	1.59	1.35
1:A:128:ALA:CB	1:A:174:ARG:NH1	1.83	1.33
1:B:128:ALA:HB1	1:B:174:ARG:NH2	1.42	1.33
1:B:15:PHE:CD1	1:B:16:PRO:CD	2.09	1.33
1:B:8:SER:HA	1:B:11:TRP:CH2	1.63	1.33
1:A:2:TRP:CZ2	1:A:66:ARG:CG	2.11	1.32
1:C:150:ASN:OD1	1:C:153:ARG:NH2	1.59	1.32
1:C:31:ARG:NH2	1:C:53:VAL:CG2	1.94	1.31
1:A:79:LEU:HD21	1:A:81:PHE:CZ	1.66	1.30
1:C:9:LEU:HD11	1:C:17:TYR:OH	1.27	1.30
1:B:8:SER:HA	1:B:11:TRP:CE2	1.66	1.29
1:C:18:GLN:NE2	1:C:66:ARG:HH21	1.30	1.27
1:B:76:LYS:HG2	1:B:78:TYR:CD2	1.71	1.25
1:C:31:ARG:CZ	1:C:53:VAL:CG2	2.11	1.25
1:C:31:ARG:NH1	1:C:53:VAL:HG21	1.51	1.25
1:A:79:LEU:CD2	1:A:81:PHE:CZ	2.20	1.24

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1.C.124.LEU.CD1	1.C.167.LEU.CD2	2.16	1.23
1:B:8:SEB:N	1:B:11:TRP:CH2	2.06	1.22
1.C.18.GLN·NE2	1:C:66:ABG:NH2	1.85	1.22
1:B:15:PHE:CG	1:B:16:PBO:HD2	1.73	1.22
1:B:76:LYS:CE	1:B:78:TYR:CD2	2.07	1.22
1:C:31:ARG:NH1	1:C:53:VAL:CG2	2.04	1.20
1:C:31:ARG:NE	1:C:33:TRP:CZ3	2.09	1.20
1:B:115:ASN:OD1	1:B:116:PRO:CD	1.90	1.19
1:B:15:PHE:CE1	1:B:16:PRO:HD2	1.76	1.19
1:C:20:LYS:HD3	1:C:65:TYR:CD1	1.78	1.19
1:A:34:GLN:OE1	1:A:51:THR:HG22	1.42	1.18
1:B:8:SER:HA	1:B:11:TRP:CZ3	1.78	1.18
1:B:76:LYS:CD	1:B:78:TYR:CE2	2.26	1.18
1:C:20:LYS:CD	1:C:65:TYR:HE1	1.33	1.17
1:B:31:ARG:CD	1:B:33:TRP:CH2	2.27	1.17
1:A:26:THR:HG22	1:A:27:ASN:ND2	1.60	1.16
1:A:34:GLN:HB2	1:A:51:THR:HG23	1.29	1.14
1:B:11:TRP:CD1	1:B:12:LYS:HG3	1.80	1.14
1:A:2:TRP:CE2	1:A:66:ARG:CG	2.27	1.14
1:B:76:LYS:HG3	1:B:78:TYR:CE2	1.69	1.14
1:C:9:LEU:CD1	1:C:17:TYR:OH	1.96	1.13
1:C:25:ILE:CD1	1:C:94:PHE:HA	1.78	1.13
1:C:124:LEU:CD1	1:C:167:LEU:HD21	1.79	1.12
1:B:115:ASN:OD1	1:B:116:PRO:HD2	1.43	1.12
1:B:145:LEU:CD1	1:B:164:LEU:HD11	1.79	1.12
1:A:128:ALA:HB1	1:A:174:ARG:CZ	1.77	1.12
1:B:131:ILE:HA	1:B:141:ASN:ND2	1.65	1.12
1:B:8:SER:HA	1:B:11:TRP:CD2	1.83	1.12
1:B:31:ARG:HD3	1:B:33:TRP:CE2	1.84	1.12
1:B:128:ALA:CB	1:B:174:ARG:CZ	2.26	1.12
1:C:90:THR:HG22	1:C:91:THR:H	1.10	1.12
1:B:22:VAL:HG11	1:B:155:LEU:HD22	1.29	1.12
1:C:31:ARG:NE	1:C:33:TRP:CH2	2.18	1.11
1:B:131:ILE:HA	1:B:141:ASN:HD22	0.94	1.11
1:B:76:LYS:CD	1:B:78:TYR:HE2	1.62	1.10
1:B:128:ALA:HB3	1:B:174:ARG:CZ	1.79	1.10
1:A:115:ASN:OD1	1:A:116:PRO:HD2	1.51	1.10
1:C:20:LYS:CD	1:C:65:TYR:CD1	2.30	1.10
1:A:2:TRP:CH2	1:A:66:ARG:HG3	1.85	1.10
1:B:128:ALA:CB	1:B:174:ARG:NH2	2.14	1.09
1:B:8:SER:HA	1:B:11:TRP:CE3	1.88	1.09

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:B:76:LYS:CG	1:B:78:TYR:HE2	1.43	1.09
1:B:131:ILE:CA	1:B:141:ASN:HD22	1.66	1.09
1:A:124:LEU:CD1	1:A:167:LEU:HD21	1.63	1.08
1:C:20:LYS:HD2	1:C:65:TYR:CE1	1.66	1.08
1:A:34:GLN:OE1	1:A:51:THR:CG2	2.01	1.08
1:B:31:ARG:HD3	1:B:33:TRP:CH2	1.86	1.08
1:B:76:LYS:CG	1:B:78:TYR:CD2	2.34	1.07
1:A:128:ALA:HB3	1:A:174:ARG:NH1	1.70	1.06
1:A:124:LEU:HD13	1:A:167:LEU:HD21	1.32	1.06
1:B:67:LEU:HD12	1:B:68:PRO:HD2	1.37	1.05
1:C:18:GLN:CD	1:C:66:ARG:NH2	2.04	1.05
1:B:25:ILE:HD13	1:B:94:PHE:HA	1.37	1.05
1:B:25:ILE:CD1	1:B:94:PHE:HA	1.86	1.05
1:B:31:ARG:CD	1:B:33:TRP:CZ2	2.39	1.05
1:C:90:THR:HG22	1:C:91:THR:N	1.64	1.05
1:A:67:LEU:HD12	1:A:68:PRO:CD	1.87	1.03
1:B:7:GLY:C	1:B:11:TRP:CZ3	2.32	1.03
1:C:17:TYR:CD1	1:C:65:TYR:HB3	1.94	1.03
1:C:124:LEU:HD11	1:C:167:LEU:HD23	1.07	1.03
1:B:128:ALA:CB	1:B:174:ARG:NH1	2.22	1.02
1:C:31:ARG:HD2	1:C:33:TRP:CZ2	1.94	1.02
1:B:145:LEU:HD12	1:B:164:LEU:HD11	1.38	1.02
1:C:90:THR:CG2	1:C:91:THR:H	1.72	1.02
1:A:34:GLN:HB2	1:A:51:THR:CG2	1.89	1.02
1:A:87:TYR:CZ	1:A:115:ASN:ND2	2.28	1.01
1:C:25:ILE:HD13	1:C:94:PHE:HA	1.37	1.01
1:B:8:SER:CB	1:B:11:TRP:CE2	2.43	1.01
1:A:67:LEU:CD1	1:A:68:PRO:HD2	1.89	1.01
1:A:124:LEU:HD13	1:A:167:LEU:CD2	1.84	1.01
1:A:26:THR:HG21	1:B:137:PRO:HA	1.41	1.00
1:A:128:ALA:O	1:A:174:ARG:NH2	1.94	1.00
1:C:18:GLN:CG	1:C:66:ARG:HH21	1.74	0.99
1:C:124:LEU:HD12	1:C:167:LEU:HD21	1.41	0.99
1:C:9:LEU:HG	1:C:65:TYR:CE2	1.98	0.98
1:C:31:ARG:HH22	1:C:53:VAL:CG2	1.66	0.96
1:A:147:GLU:O	1:A:151:SER:OG	1.81	0.96
1:B:8:SER:CA	1:B:11:TRP:CE2	2.32	0.96
1:B:15:PHE:CG	1:B:16:PRO:CD	2.42	0.96
1:B:31:ARG:HD2	1:B:33:TRP:CZ3	1.99	0.96
1:A:67:LEU:HD12	1:A:68:PRO:HD2	0.96	0.96
1:C:87:TYR:CZ	1:C:115:ASN:ND2	2.34	0.95

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:76:LYS:HG3	1:B:78:TYR:HE2	1.11	0.95
1:C:22:VAL:HG11	1:C:155:LEU:HD22	1.48	0.95
1:C:129:GLU:N	1:C:174:ARG:NH1	2.14	0.95
1:B:25:ILE:HD11	1:B:94:PHE:HB2	1.49	0.95
1:C:115:ASN:OD1	1:C:116:PRO:HD2	1.66	0.94
1:A:115:ASN:OD1	1:A:116:PRO:CD	2.14	0.94
1:B:145:LEU:CD1	1:B:164:LEU:CD1	2.45	0.94
1:C:31:ARG:HH12	1:C:53:VAL:CG2	1.78	0.94
1:A:79:LEU:HD23	1:A:81:PHE:CZ	2.02	0.94
1:B:128:ALA:HB3	1:B:174:ARG:HH12	1.23	0.94
1:B:76:LYS:HG2	1:B:78:TYR:CE2	1.86	0.94
1:C:20:LYS:HG2	1:C:65:TYR:CD1	2.03	0.93
1:A:2:TRP:CZ3	1:A:66:ARG:HG3	2.04	0.93
1:A:22:VAL:HG11	1:A:155:LEU:HD22	1.49	0.92
1:A:26:THR:CG2	1:B:137:PRO:HA	1.99	0.92
1:B:115:ASN:OD1	1:B:116:PRO:HD3	1.68	0.92
1:A:2:TRP:CH2	1:A:66:ARG:CG	2.46	0.91
1:C:125:GLU:O	1:C:174:ARG:NH2	2.03	0.91
1:A:128:ALA:HB1	1:A:174:ARG:HH12	0.78	0.91
1:C:31:ARG:NH2	1:C:53:VAL:CB	2.34	0.91
1:B:8:SER:N	1:B:11:TRP:CZ3	2.38	0.91
1:B:31:ARG:CD	1:B:33:TRP:CZ3	2.54	0.90
1:C:124:LEU:CD1	1:C:167:LEU:HD23	1.90	0.90
1:B:168:GLU:CG	1:B:172:LYS:HE3	2.01	0.90
1:C:153:ARG:CG	1:C:165:PHE:CE1	2.54	0.90
1:B:131:ILE:HG23	1:B:141:ASN:ND2	1.86	0.90
1:A:171:VAL:HG22	1:A:174:ARG:HH22	1.09	0.89
1:B:174:ARG:O	1:B:175:LEU:O	1.89	0.89
1:B:8:SER:CA	1:B:11:TRP:CZ3	2.47	0.89
1:C:20:LYS:CG	1:C:65:TYR:CD1	2.55	0.89
1:A:26:THR:HG22	1:A:27:ASN:HD22	1.36	0.89
1:C:31:ARG:HH22	1:C:53:VAL:HG21	1.10	0.89
1:A:128:ALA:HB1	1:A:174:ARG:NH2	1.89	0.88
1:B:67:LEU:HD12	1:B:68:PRO:CD	2.04	0.88
1:C:48:ARG:H	1:C:141:ASN:HD21	1.21	0.87
1:C:9:LEU:HD11	1:C:17:TYR:CZ	2.09	0.87
1:B:26:THR:HG22	1:B:27:ASN:ND2	1.89	0.86
1:A:2:TRP:CH2	1:A:66:ARG:CD	2.58	0.86
1:A:87:TYR:CE1	1:A:115:ASN:ND2	2.43	0.86
1:B:128:ALA:HB1	1:B:174:ARG:HH22	1.40	0.85
1:B:76:LYS:HE3	1:B:78:TYR:CZ	2.11	0.85

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:153:ARG:CG	1:C:165:PHE:HE1	1.89	0.85
1:B:76:LYS:CD	1:B:78:TYR:CD2	2.55	0.85
1:C:31:ARG:NH2	1:C:53:VAL:HG11	1.92	0.85
1:B:20:LYS:HG2	1:B:65:TYR:CD1	2.11	0.85
1:A:79:LEU:HD21	1:A:81:PHE:HZ	1.33	0.85
1:B:153:ARG:NH2	1:B:168:GLU:OE1	2.10	0.84
1:C:31:ARG:CZ	1:C:33:TRP:CZ3	2.60	0.84
1:A:34:GLN:CB	1:A:51:THR:HG23	2.08	0.84
1:B:87:TYR:CZ	1:B:115:ASN:ND2	2.45	0.84
1:C:128:ALA:HB2	1:C:170:LEU:HD23	1.60	0.84
1:B:20:LYS:CG	1:B:65:TYR:CD1	2.58	0.84
1:C:153:ARG:HG3	1:C:165:PHE:HE1	1.41	0.83
1:A:124:LEU:HD12	1:A:167:LEU:CD2	2.07	0.83
1:A:124:LEU:HG	1:A:170:LEU:CD1	2.08	0.82
1:A:48:ARG:H	1:A:141:ASN:HD21	1.27	0.82
1:B:7:GLY:O	1:B:11:TRP:CZ3	2.32	0.82
1:C:125:GLU:C	1:C:174:ARG:HH22	1.83	0.81
1:A:132:PHE:HE1	1:A:175:LEU:HD23	1.46	0.81
1:A:79:LEU:HD21	1:A:81:PHE:CE1	2.16	0.81
1:C:31:ARG:CD	1:C:33:TRP:CZ2	2.64	0.81
1:B:32:PHE:CE1	1:B:164:LEU:HD13	2.16	0.81
1:A:171:VAL:CG2	1:A:174:ARG:HH22	1.91	0.81
1:C:129:GLU:N	1:C:174:ARG:HH12	1.78	0.80
1:C:17:TYR:CE1	1:C:65:TYR:HB3	2.16	0.80
1:C:18:GLN:CG	1:C:66:ARG:NH2	2.43	0.80
1:C:25:ILE:HD12	1:C:93:ILE:O	1.81	0.80
1:C:87:TYR:CE2	1:C:115:ASN:OD1	2.34	0.80
1:B:25:ILE:CD1	1:B:94:PHE:CA	2.60	0.79
1:C:25:ILE:CD1	1:C:94:PHE:CA	2.59	0.79
1:B:128:ALA:CB	1:B:174:ARG:HH22	1.94	0.79
1:A:128:ALA:CB	1:A:174:ARG:CZ	2.49	0.79
1:B:25:ILE:HD11	1:B:94:PHE:CB	2.13	0.79
1:B:128:ALA:HB1	1:B:174:ARG:CZ	1.95	0.79
1:B:32:PHE:HE1	1:B:164:LEU:HD13	1.45	0.79
1:C:153:ARG:HG3	1:C:165:PHE:CE1	2.16	0.79
1:C:10:ILE:HD13	1:C:152:ILE:HD11	1.63	0.78
1:A:171:VAL:CG2	1:A:174:ARG:NH2	2.33	0.78
1:C:168:GLU:CG	1:C:172:LYS:HE3	2.14	0.78
1:B:10:ILE:CG2	1:B:151:SER:OG	2.31	0.78
1:A:156:VAL:HG13	1:A:157:PRO:HD2	1.65	0.78
1:A:153:ARG:HG3	1:A:165:PHE:CE1	2.19	0.77

	loue page	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:C:31:ARG:NH2	1:C:53:VAL:CG1	2.48	0.77
1:A:87:TYR:OH	1:A:115:ASN:ND2	2.13	0.77
1:A:153:ARG:HG3	1:A:165:PHE:HE1	1.51	0.76
1:A:112:THR:HG22	1:A:113:CYS:N	1.99	0.76
1:A:124:LEU:HG	1:A:170:LEU:HD12	1.64	0.76
1:C:18:GLN:HG2	1:C:66:ARG:NH2	2.00	0.76
1:A:79:LEU:HD23	1:A:81:PHE:CE2	2.20	0.76
1:C:50:VAL:HG22	1:C:144:TYR:OH	1.86	0.76
1:B:76:LYS:HE2	1:B:78:TYR:HD2	1.45	0.76
1:C:129:GLU:H	1:C:174:ARG:HH12	1.31	0.76
1:C:15:PHE:CD1	1:C:16:PRO:HD2	2.20	0.75
1:B:11:TRP:NE1	1:B:12:LYS:HG3	2.01	0.75
1:A:156:VAL:HG12	1:A:157:PRO:N	1.99	0.75
1:C:149:ALA:HB1	1:C:153:ARG:NH1	2.02	0.75
1:B:10:ILE:HG21	1:B:151:SER:OG	1.87	0.75
1:C:22:VAL:CG1	1:C:155:LEU:HD22	2.16	0.74
1:C:31:ARG:HH22	1:C:53:VAL:CB	1.97	0.74
1:B:168:GLU:HG2	1:B:172:LYS:HE3	1.67	0.74
1:C:31:ARG:NH2	1:C:33:TRP:CZ3	2.55	0.74
1:A:128:ALA:C	1:A:174:ARG:NH2	2.39	0.74
1:B:131:ILE:CA	1:B:141:ASN:ND2	2.38	0.74
1:C:31:ARG:HH21	1:C:53:VAL:HG11	1.50	0.74
1:A:2:TRP:CD2	1:A:66:ARG:HG2	2.19	0.74
1:A:128:ALA:C	1:A:174:ARG:CZ	2.57	0.73
1:B:22:VAL:HG11	1:B:155:LEU:CD2	2.15	0.73
1:C:124:LEU:HD11	1:C:167:LEU:CG	2.18	0.73
1:C:168:GLU:HG2	1:C:172:LYS:HE3	1.69	0.73
1:B:145:LEU:HD11	1:B:164:LEU:CD1	2.18	0.72
1:A:112:THR:HG22	1:A:113:CYS:H	1.53	0.72
1:B:8:SER:HB3	1:B:11:TRP:CH2	2.13	0.72
1:C:125:GLU:HA	1:C:170:LEU:HD21	1.70	0.72
1:B:131:ILE:HG12	1:B:141:ASN:HD21	1.54	0.72
1:C:127:ILE:O	1:C:131:ILE:HG13	1.89	0.71
1:A:4:PHE:CD2	1:A:25:ILE:HD12	2.25	0.71
1:C:31:ARG:CD	1:C:33:TRP:CH2	2.73	0.71
1:A:87:TYR:CE1	1:A:115:ASN:CG	2.64	0.71
1:A:168:GLU:CG	1:A:172:LYS:HE3	2.21	0.71
1:B:11:TRP:HD1	1:B:12:LYS:HG3	1.53	0.70
1:B:2:TRP:N	2:B:201:HOH:O	2.23	0.70
1:B:31:ARG:HD2	1:B:33:TRP:CE3	2.25	0.70
1:A:2:TRP:HZ2	1:A:66:ARG:HD3	0.94	0.70

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:8:SER:HB2	1:B:11:TRP:CZ2	2.18	0.70
1:C:15:PHE:CG	1:C:16:PRO:HD2	2.27	0.70
1:A:161:ASP:OD2	1:A:164:LEU:CB	2.40	0.69
1:C:9:LEU:HD21	1:C:65:TYR:CD2	2.28	0.69
1:C:31:ARG:HD2	1:C:33:TRP:CE2	2.27	0.69
1:A:79:LEU:CD2	1:A:81:PHE:HZ	1.90	0.69
1:C:9:LEU:HG	1:C:65:TYR:HE2	1.55	0.69
1:B:15:PHE:HB3	1:B:17:TYR:CE2	2.28	0.69
1:B:26:THR:HG22	1:B:27:ASN:HD22	1.57	0.69
1:A:25:ILE:HG22	1:A:26:THR:N	2.07	0.69
1:B:25:ILE:HD12	1:B:93:ILE:O	1.92	0.68
1:C:153:ARG:HG2	1:C:165:PHE:CE1	2.29	0.68
1:C:17:TYR:CE1	1:C:65:TYR:CB	2.76	0.68
1:C:149:ALA:HB1	1:C:153:ARG:HH12	1.58	0.68
1:C:86:GLY:O	1:C:112:THR:OG1	2.09	0.68
1:C:86:GLY:O	1:C:115:ASN:HB2	1.94	0.68
1:C:18:GLN:HE21	1:C:66:ARG:NH2	1.87	0.68
1:B:131:ILE:CG2	1:B:141:ASN:ND2	2.56	0.67
1:B:152:ILE:HD12	1:B:164:LEU:HD23	1.76	0.67
1:A:156:VAL:CG1	1:A:157:PRO:N	2.56	0.67
1:C:20:LYS:CG	1:C:65:TYR:HD1	2.08	0.67
1:A:2:TRP:CZ2	1:A:66:ARG:HG3	2.03	0.67
1:A:147:GLU:O	1:A:151:SER:CB	2.42	0.67
1:B:8:SER:HB3	1:B:11:TRP:HZ2	0.71	0.67
1:C:91:THR:CG2	1:C:105:SER:HB3	2.25	0.66
1:A:52:LEU:HD12	1:A:108:LEU:HD11	1.77	0.66
1:C:15:PHE:HD2	1:C:17:TYR:CZ	2.13	0.66
1:A:22:VAL:HG13	1:A:155:LEU:HD13	1.77	0.66
1:A:128:ALA:HB1	1:A:174:ARG:HH22	1.58	0.66
1:A:2:TRP:CD2	1:A:66:ARG:CG	2.78	0.66
1:B:15:PHE:CE1	1:B:16:PRO:CD	2.61	0.66
1:A:2:TRP:CH2	1:A:66:ARG:HD3	2.19	0.65
1:C:25:ILE:HD11	1:C:94:PHE:HB2	1.79	0.65
1:C:26:THR:O	1:C:27:ASN:HB2	1.97	0.65
1:A:132:PHE:CE1	1:A:175:LEU:HD23	2.29	0.65
1:A:161:ASP:OD2	1:A:164:LEU:HB3	1.96	0.65
1:C:52:LEU:HD12	1:C:108:LEU:HD11	1.78	0.65
1:C:20:LYS:HG2	1:C:65:TYR:HD1	1.58	0.65
1:C:27:ASN:HA	1:C:55:ASP:O	1.96	0.65
1:B:22:VAL:CG1	1:B:155:LEU:HD22	2.19	0.65
1:B:67:LEU:CD1	1:B:68:PRO:HD2	2.21	0.65

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:C:128:ALA:CB	1:C:170:LEU:HD23	2.27	0.65
1:B:8:SER:HB2	1:B:11:TRP:CE2	2.32	0.64
1:C:129:GLU:N	1:C:174:ARG:HH11	1.95	0.64
1:A:98:ASP:OD2	1:A:100:THR:HB	1.97	0.64
1:A:127:ILE:O	1:A:131:ILE:HG13	1.98	0.64
1:C:87:TYR:CE2	1:C:115:ASN:ND2	2.65	0.64
1:B:131:ILE:CB	1:B:141:ASN:ND2	2.62	0.63
1:C:91:THR:HG21	1:C:105:SER:HB3	1.81	0.63
1:A:76:LYS:HD3	1:A:78:TYR:CZ	2.34	0.63
1:B:31:ARG:CD	1:B:33:TRP:CE2	2.73	0.63
1:B:156:VAL:HG12	1:B:157:PRO:N	2.12	0.63
1:C:75:VAL:HG12	1:C:76:LYS:N	2.11	0.63
1:A:128:ALA:CB	1:A:174:ARG:NH2	2.60	0.63
1:B:10:ILE:HG22	1:B:151:SER:OG	1.99	0.63
1:A:124:LEU:CD2	1:A:170:LEU:HD11	2.29	0.63
1:B:87:TYR:CE1	1:B:115:ASN:ND2	2.67	0.63
1:C:9:LEU:HD13	1:C:17:TYR:OH	1.96	0.63
1:B:115:ASN:CG	1:B:116:PRO:HD2	2.18	0.62
1:B:156:VAL:HG11	1:B:160:ALA:HB2	1.81	0.62
1:B:25:ILE:HG22	1:B:26:THR:N	2.14	0.62
1:A:84:LYS:O	1:A:84:LYS:HG2	1.98	0.62
1:A:132:PHE:HE1	1:A:175:LEU:CD2	2.12	0.62
1:C:25:ILE:HD11	1:C:94:PHE:CB	2.28	0.62
1:B:8:SER:CB	1:B:11:TRP:CH2	2.51	0.62
1:B:76:LYS:HG2	1:B:78:TYR:HD2	1.53	0.62
1:A:26:THR:CG2	1:A:27:ASN:ND2	2.50	0.62
1:C:9:LEU:CG	1:C:65:TYR:CE2	2.80	0.62
1:A:124:LEU:HD23	1:A:170:LEU:HD11	1.81	0.61
1:A:128:ALA:O	1:A:174:ARG:CZ	2.48	0.61
1:C:87:TYR:CE2	1:C:115:ASN:CG	2.74	0.61
1:A:115:ASN:CG	1:A:116:PRO:HD2	2.20	0.61
1:B:3:VAL:HG12	1:B:107:LEU:HB2	1.82	0.61
1:C:10:ILE:CD1	1:C:152:ILE:HD11	2.29	0.61
1:C:31:ARG:HH12	1:C:53:VAL:HG23	1.61	0.61
1:A:76:LYS:HD3	1:A:78:TYR:OH	2.00	0.61
1:C:128:ALA:HB3	1:C:174:ARG:NH1	2.15	0.61
1:B:131:ILE:HG23	1:B:141:ASN:CG	2.21	0.60
1:B:8:SER:CA	1:B:11:TRP:CD2	2.72	0.60
1:A:161:ASP:OD2	1:A:164:LEU:HB2	2.01	0.60
1:B:115:ASN:CG	1:B:116:PRO:CD	2.70	0.60
1:C:17:TYR:CE1	1:C:65:TYR:CG	2.89	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:153:ARG:CG	1:A:165:PHE:CE1	2.84	0.60
1:B:145:LEU:HD11	1:B:164:LEU:HD12	1.81	0.60
1:C:174:ARG:C	1:C:176:GLU:H	2.05	0.60
1:B:26:THR:O	1:B:27:ASN:HB2	1.99	0.59
1:C:31:ARG:NH2	1:C:33:TRP:HZ3	1.99	0.59
1:B:25:ILE:HG22	1:B:26:THR:H	1.67	0.59
1:C:23:GLY:HA3	1:C:94:PHE:CZ	2.38	0.59
1:C:31:ARG:NH1	1:C:53:VAL:HG22	2.12	0.59
1:C:31:ARG:HH21	1:C:33:TRP:HZ3	1.49	0.59
1:A:34:GLN:OE1	1:A:51:THR:HG23	2.00	0.59
1:A:48:ARG:HD2	1:A:127:ILE:HG23	1.84	0.59
1:B:128:ALA:CB	1:B:174:ARG:HH12	2.03	0.59
1:A:128:ALA:CA	1:A:174:ARG:NH2	2.65	0.59
1:A:25:ILE:CG2	1:A:26:THR:N	2.65	0.59
1:A:34:GLN:HB2	1:A:51:THR:HG21	1.82	0.59
1:B:8:SER:CA	1:B:11:TRP:CE3	2.77	0.59
1:A:124:LEU:CD2	1:A:170:LEU:CD1	2.80	0.58
1:B:15:PHE:HB3	1:B:17:TYR:HE2	1.67	0.58
1:A:2:TRP:CE3	1:A:66:ARG:HG3	2.38	0.58
1:B:22:VAL:HG13	1:B:155:LEU:HD13	1.86	0.58
1:B:131:ILE:O	1:B:141:ASN:HB3	2.03	0.58
1:B:87:TYR:OH	1:B:115:ASN:ND2	2.32	0.57
1:B:155:LEU:C	1:B:156:VAL:HG23	2.24	0.57
1:A:34:GLN:CB	1:A:51:THR:CG2	2.74	0.57
1:C:10:ILE:HD13	1:C:152:ILE:CD1	2.35	0.57
1:A:112:THR:CG2	1:A:113:CYS:H	2.16	0.57
1:C:153:ARG:HG2	1:C:165:PHE:CZ	2.40	0.56
1:A:2:TRP:NE1	1:A:66:ARG:HG2	2.14	0.56
1:A:25:ILE:CG2	1:A:26:THR:H	2.18	0.56
1:C:155:LEU:O	1:C:156:VAL:HG13	2.05	0.56
1:C:125:GLU:O	1:C:174:ARG:CZ	2.54	0.56
1:A:124:LEU:CG	1:A:170:LEU:HD12	2.34	0.56
1:C:125:GLU:O	1:C:174:ARG:NH1	2.39	0.56
1:A:155:LEU:O	1:A:156:VAL:CG2	2.54	0.55
1:C:20:LYS:HD3	1:C:65:TYR:HE1	0.86	0.55
1:C:15:PHE:HD2	1:C:17:TYR:CE2	2.24	0.55
1:C:25:ILE:CD1	1:C:93:ILE:O	2.54	0.55
1:C:75:VAL:CG1	1:C:76:LYS:N	2.69	0.55
1:C:24:TYR:CZ	1:C:95:TYR:CB	2.90	0.55
1:A:124:LEU:CG	1:A:170:LEU:CD1	2.82	0.55
1:A:155:LEU:O	1:A:156:VAL:HG23	2.07	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:153:ARG:HG3	1:B:165:PHE:CE1	2.42	0.54
1:B:168:GLU:HG3	1:B:172:LYS:HE3	1.85	0.54
1:A:32:PHE:CZ	1:A:145:LEU:HD13	2.42	0.54
1:A:115:ASN:OD1	1:A:116:PRO:HD3	2.02	0.54
1:B:76:LYS:HE3	1:B:78:TYR:HE2	1.36	0.54
1:A:163:HIS:O	1:A:167:LEU:HG	2.07	0.54
1:B:153:ARG:HG3	1:B:165:PHE:HE1	1.71	0.54
1:A:26:THR:CG2	1:B:137:PRO:CA	2.82	0.54
1:C:15:PHE:CD2	1:C:17:TYR:CZ	2.96	0.54
1:C:149:ALA:O	1:C:153:ARG:HG3	2.08	0.54
1:B:25:ILE:HG21	1:B:92:VAL:HG21	1.90	0.54
1:A:112:THR:CG2	1:A:113:CYS:N	2.67	0.54
1:C:98:ASP:OD2	1:C:100:THR:HB	2.08	0.53
1:C:155:LEU:O	1:C:156:VAL:CG1	2.55	0.53
1:C:9:LEU:CD2	1:C:65:TYR:CD2	2.91	0.53
1:C:17:TYR:HD1	1:C:65:TYR:HB3	1.63	0.53
1:A:76:LYS:HE2	1:A:78:TYR:CE1	2.43	0.53
1:A:108:LEU:HG	1:A:110:ILE:HG12	1.90	0.53
1:A:168:GLU:HG2	1:A:172:LYS:HE3	1.91	0.53
1:A:88:ARG:N	1:A:110:ILE:O	2.33	0.52
1:A:173:GLU:O	1:A:176:GLU:HB2	2.09	0.52
1:B:20:LYS:CG	1:B:65:TYR:HD1	2.08	0.52
1:A:27:ASN:HA	1:A:55:ASP:O	2.08	0.52
1:A:129:GLU:O	1:A:132:PHE:HB3	2.08	0.52
1:B:27:ASN:HA	1:B:55:ASP:O	2.10	0.52
1:A:148:LEU:HG	1:A:164:LEU:HD21	1.91	0.52
1:A:148:LEU:O	1:A:151:SER:HB2	2.09	0.52
1:B:31:ARG:CD	1:B:33:TRP:CE3	2.90	0.52
1:A:25:ILE:HG22	1:A:26:THR:H	1.73	0.52
1:A:26:THR:HG21	1:B:137:PRO:CA	2.27	0.52
1:A:171:VAL:HG22	1:A:174:ARG:HH21	1.60	0.52
1:C:18:GLN:CD	1:C:66:ARG:CZ	2.77	0.52
1:A:23:GLY:HA3	1:A:94:PHE:CZ	2.45	0.51
1:A:156:VAL:CG1	1:A:157:PRO:CD	2.88	0.51
1:C:90:THR:HG22	1:C:91:THR:O	2.09	0.51
1:C:129:GLU:O	1:C:132:PHE:HB3	2.11	0.51
1:C:155:LEU:C	1:C:156:VAL:HG13	2.30	0.51
1:A:156:VAL:CG1	1:A:157:PRO:HD2	2.38	0.51
1:A:156:VAL:HG13	1:A:157:PRO:CD	2.37	0.51
1:C:149:ALA:CB	1:C:153:ARG:HH12	2.22	0.51
1:A:26:THR:O	1:A:27:ASN:HB2	2.10	0.51

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:114:ASP:OD1	1:C:114:ASP:O	2.27	0.51
1:C:125:GLU:CA	1:C:174:ARG:HH22	2.23	0.51
1:A:26:THR:CG2	1:A:27:ASN:HD22	2.17	0.51
1:A:160:ALA:HA	1:B:43:PRO:HB2	1.93	0.51
1:B:15:PHE:CD1	1:B:16:PRO:N	2.76	0.51
1:B:131:ILE:HG12	1:B:141:ASN:ND2	2.25	0.51
1:C:24:TYR:CZ	1:C:95:TYR:HB2	2.46	0.51
1:B:129:GLU:O	1:B:132:PHE:HB3	2.11	0.51
1:B:156:VAL:HG13	1:B:157:PRO:HD2	1.92	0.51
1:A:34:GLN:CD	1:A:51:THR:CG2	2.75	0.50
1:B:31:ARG:HD3	1:B:33:TRP:CD2	2.41	0.50
1:B:48:ARG:HD2	1:B:127:ILE:HG23	1.93	0.50
1:B:125:GLU:O	1:B:174:ARG:NH1	2.43	0.50
1:A:156:VAL:HG11	1:A:160:ALA:HB2	1.94	0.50
1:B:155:LEU:C	1:B:156:VAL:CG2	2.80	0.50
1:C:128:ALA:CB	1:C:170:LEU:CD2	2.90	0.50
1:A:128:ALA:HB3	1:A:174:ARG:HH12	1.32	0.50
1:B:156:VAL:CG1	1:B:157:PRO:N	2.75	0.50
1:C:31:ARG:CZ	1:C:53:VAL:HG22	2.30	0.50
1:C:128:ALA:HB3	1:C:174:ARG:CZ	2.41	0.50
1:C:131:ILE:O	1:C:141:ASN:HB3	2.12	0.49
1:C:90:THR:CG2	1:C:91:THR:N	2.33	0.49
1:B:7:GLY:O	1:B:11:TRP:CE3	2.64	0.49
1:B:170:LEU:O	1:B:174:ARG:HG3	2.13	0.49
1:C:129:GLU:CA	1:C:174:ARG:NH1	2.75	0.49
1:B:25:ILE:CG2	1:B:26:THR:H	2.24	0.49
1:C:25:ILE:HG22	1:C:26:THR:N	2.27	0.49
1:A:128:ALA:CB	1:A:174:ARG:HH22	2.21	0.49
1:C:31:ARG:NE	1:C:33:TRP:CZ2	2.73	0.49
1:C:91:THR:HA	1:C:106:VAL:O	2.13	0.49
1:C:124:LEU:CD1	1:C:167:LEU:CG	2.86	0.49
1:B:127:ILE:O	1:B:131:ILE:HG13	2.11	0.49
1:B:25:ILE:CD1	1:B:94:PHE:HB2	2.33	0.48
1:C:91:THR:HG22	1:C:92:VAL:N	2.29	0.48
1:B:15:PHE:CG	1:B:16:PRO:HD3	2.44	0.48
1:B:22:VAL:CG1	1:B:155:LEU:HD13	2.43	0.48
1:B:25:ILE:CG2	1:B:26:THR:N	2.76	0.48
1:C:25:ILE:HD11	1:C:94:PHE:CA	2.40	0.48
1:A:155:LEU:C	1:A:156:VAL:HG23	2.34	0.47
1:C:132:PHE:HE1	1:C:175:LEU:HD13	1.78	0.47
1:C:153:ARG:CG	1:C:165:PHE:CZ	2.95	0.47

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:61:TRP:HZ3	1:A:97:LYS:HG3	1.80	0.47
1:C:31:ARG:HH22	1:C:53:VAL:HB	1.77	0.47
1:A:79:LEU:CD2	1:A:81:PHE:CE2	2.82	0.47
1:A:91:THR:C	1:A:92:VAL:HG13	2.35	0.47
1:C:48:ARG:H	1:C:141:ASN:ND2	2.00	0.47
1:A:59:CYS:SG	1:B:42:VAL:HB	2.54	0.47
1:C:3:VAL:HG12	1:C:107:LEU:HB2	1.96	0.47
1:B:91:THR:C	1:B:92:VAL:HG13	2.35	0.47
1:B:33:TRP:CZ2	1:B:121:PRO:HB3	2.50	0.46
1:B:17:TYR:CD1	1:B:65:TYR:HB3	2.50	0.46
1:A:2:TRP:CH2	1:A:21:LEU:HD13	2.50	0.46
1:B:31:ARG:CD	1:B:33:TRP:CD2	2.98	0.46
1:A:124:LEU:HD12	1:A:167:LEU:HD21	1.80	0.46
1:A:128:ALA:CA	1:A:174:ARG:HH22	2.28	0.46
1:A:145:LEU:HD11	1:A:164:LEU:HD12	1.97	0.46
1:B:155:LEU:O	1:B:156:VAL:CG2	2.63	0.46
1:C:31:ARG:CZ	1:C:33:TRP:CH2	2.89	0.46
1:C:148:LEU:O	1:C:152:ILE:HG12	2.15	0.45
1:A:25:ILE:HD13	1:A:92:VAL:HG21	1.97	0.45
1:B:15:PHE:CD1	1:B:16:PRO:O	2.69	0.45
1:A:148:LEU:HD23	1:A:164:LEU:HD13	1.98	0.45
1:B:34:GLN:O	1:B:49:VAL:HG22	2.17	0.45
1:A:86:GLY:O	1:A:115:ASN:HB2	2.17	0.45
1:C:17:TYR:CD1	1:C:65:TYR:CB	2.81	0.45
1:C:153:ARG:HD3	1:C:165:PHE:CE1	2.52	0.45
1:A:2:TRP:CD2	1:A:66:ARG:HG3	2.50	0.45
1:C:153:ARG:CD	1:C:165:PHE:CE1	3.00	0.45
1:C:52:LEU:HB2	1:C:110:ILE:HD12	1.98	0.44
1:C:153:ARG:CD	1:C:165:PHE:HE1	2.30	0.44
1:B:15:PHE:CE1	1:B:16:PRO:HG2	2.52	0.44
1:B:161:ASP:O	1:B:165:PHE:HD2	2.00	0.44
1:C:86:GLY:C	1:C:112:THR:OG1	2.55	0.44
1:A:25:ILE:HD13	1:A:92:VAL:CG2	2.48	0.44
1:A:161:ASP:CG	1:A:164:LEU:HB3	2.38	0.44
1:B:161:ASP:OD2	1:B:164:LEU:HB3	2.17	0.44
1:A:171:VAL:O	1:A:175:LEU:HG	2.17	0.44
1:C:18:GLN:CD	1:C:66:ARG:HE	2.21	0.44
1:C:23:GLY:HA3	1:C:94:PHE:CE1	2.53	0.44
1:C:55:ASP:HB3	1:C:58:GLY:HA3	2.00	0.44
1:A:167:LEU:O	1:A:171:VAL:HG23	2.17	0.44
1:B:76:LYS:CD	1:B:78:TYR:HD2	2.21	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:150:ASN:HA	1:C:153:ARG:NH2	2.32	0.44
1:B:88:ARG:N	1:B:110:ILE:O	2.41	0.44
1:B:168:GLU:O	1:B:172:LYS:HG3	2.18	0.44
1:A:87:TYR:CE1	1:A:115:ASN:OD1	2.69	0.43
1:B:37:THR:O	1:B:42:VAL:HA	2.18	0.43
1:C:24:TYR:CE1	1:C:95:TYR:HB2	2.53	0.43
1:C:36:SER:OG	1:C:49:VAL:HG22	2.19	0.43
1:C:17:TYR:CD1	1:C:65:TYR:CD1	3.06	0.43
1:A:76:LYS:HD3	1:A:78:TYR:CE1	2.53	0.43
1:C:161:ASP:HB3	1:C:164:LEU:HB3	2.00	0.43
1:B:25:ILE:CD1	1:B:93:ILE:O	2.63	0.43
1:C:24:TYR:O	1:C:25:ILE:HD13	2.18	0.43
1:B:15:PHE:CE1	1:B:16:PRO:CG	3.01	0.43
1:B:170:LEU:CB	1:B:174:ARG:HH22	2.32	0.43
1:C:174:ARG:C	1:C:176:GLU:N	2.71	0.43
1:A:36:SER:OG	1:A:49:VAL:HG22	2.18	0.43
1:B:174:ARG:C	1:B:175:LEU:O	2.56	0.43
1:A:110:ILE:HD12	1:A:110:ILE:HG23	1.86	0.43
1:C:15:PHE:CG	1:C:16:PRO:CD	2.99	0.43
1:B:165:PHE:O	1:B:169:LYS:HG3	2.19	0.43
1:A:39:HIS:O	1:A:138:SER:HB2	2.19	0.42
1:A:87:TYR:HA	1:A:110:ILE:O	2.19	0.42
1:B:6:TYR:CE1	1:B:50:VAL:HG23	2.53	0.42
1:B:33:TRP:CE2	1:B:121:PRO:HB3	2.54	0.42
1:C:87:TYR:HA	1:C:110:ILE:O	2.19	0.42
1:C:124:LEU:HD11	1:C:167:LEU:HG	1.98	0.42
1:A:17:TYR:OH	1:A:20:LYS:HE2	2.19	0.42
1:B:22:VAL:HG13	1:B:155:LEU:CD1	2.48	0.42
1:B:168:GLU:HG2	1:B:172:LYS:CE	2.43	0.42
1:B:147:GLU:O	1:B:151:SER:HB2	2.20	0.42
1:B:7:GLY:C	1:B:11:TRP:CH2	2.69	0.42
1:B:15:PHE:HD1	1:B:16:PRO:O	2.02	0.42
1:A:91:THR:HA	1:A:106:VAL:O	2.20	0.42
1:A:124:LEU:CD2	1:A:170:LEU:HD12	2.48	0.42
1:C:48:ARG:HD2	1:C:127:ILE:HG23	2.02	0.42
1:C:124:LEU:HD12	1:C:167:LEU:CD2	2.12	0.42
1:A:161:ASP:O	1:A:165:PHE:HD2	2.02	0.42
1:B:91:THR:O	1:B:92:VAL:CG1	2.67	0.42
1:A:76:LYS:CE	1:A:78:TYR:CE1	3.03	0.41
1:B:7:GLY:C	1:B:11:TRP:HZ3	2.13	0.41
1:B:171:VAL:HA	1:B:174:ARG:HH21	1.85	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:25:ILE:HG23	1:C:93:ILE:O	2.20	0.41
1:C:125:GLU:CA	1:C:174:ARG:NH2	2.82	0.41
1:A:128:ALA:CA	1:A:174:ARG:CZ	2.98	0.41
1:B:107:LEU:N	1:B:107:LEU:HD12	2.35	0.41
1:B:131:ILE:CG1	1:B:141:ASN:ND2	2.84	0.41
1:C:2:TRP:CE2	1:C:66:ARG:HB2	2.56	0.41
1:A:22:VAL:CG1	1:A:155:LEU:HD22	2.34	0.41
1:A:124:LEU:HD11	1:A:167:LEU:HD23	0.45	0.41
1:C:129:GLU:CA	1:C:174:ARG:HH11	2.33	0.41
1:B:87:TYR:CE1	1:B:115:ASN:CG	2.95	0.41
1:B:156:VAL:CG1	1:B:157:PRO:HD2	2.51	0.41
1:B:153:ARG:CG	1:B:165:PHE:CE1	3.03	0.40
1:C:168:GLU:O	1:C:172:LYS:HG3	2.21	0.40
1:B:147:GLU:O	1:B:151:SER:CB	2.69	0.40
1:C:98:ASP:HA	1:C:99:PRO:HD3	1.87	0.40
1:B:25:ILE:CD1	1:B:94:PHE:CB	2.84	0.40
1:B:170:LEU:HB3	1:B:174:ARG:NH2	2.37	0.40

All (10) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-1 Atom-2		overlap (Å)
1:A:12:LYS:NZ	1:A:73:GLU:OE2[2_656]	0.79	1.41
1:B:12:LYS:NZ	$1:C:73:GLU:OE2[1_545]$	0.92	1.28
1:B:73:GLU:OE2	1:C:12:LYS:NZ[1_545]	1.23	0.97
1:B:117:ASP:OD2	1:C:76:LYS:NZ[1_545]	1.59	0.61
1:A:12:LYS:NZ	1:A:73:GLU:CD[2_656]	1.74	0.46
1:B:12:LYS:NZ	1:C:73:GLU:CD[1_545]	1.94	0.26
1:A:34:GLN:NE2	1:A:74:GLU:O[2_656]	2.04	0.16
1:A:12:LYS:CE	1:A:73:GLU:OE2[2_656]	2.14	0.06
1:B:73:GLU:CD	1:C:12:LYS:NZ[1_545]	2.15	0.05
1:B:117:ASP:OD2	1:C:76:LYS:CE[1 545]	2.18	0.02

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	172/184~(94%)	168 (98%)	4 (2%)	0	100	100
1	В	168/184~(91%)	164 (98%)	4 (2%)	0	100	100
1	С	170/184~(92%)	164 (96%)	6 (4%)	0	100	100
All	All	510/552~(92%)	496 (97%)	14 (3%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	147/156~(94%)	147 (100%)	0	100	100
1	В	146/156~(94%)	146 (100%)	0	100	100
1	С	147/156~(94%)	147 (100%)	0	100	100
All	All	440/468 (94%)	440 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	27	ASN
1	А	141	ASN
1	В	27	ASN
1	В	141	ASN
1	С	133	ASN
1	С	141	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	Q<0.9	
1	А	176/184~(95%)	1.63	56 (31%) 0)	0	55, 77, 109, 129	0
1	В	172/184~(93%)	1.53	43 (25%) 0)	0	54, 75, 108, 118	0
1	С	174/184~(94%)	1.66	51 (29%) 0)	0	53, 74, 105, 127	0
All	All	522/552~(94%)	1.61	150 (28%)	0	0	53, 76, 108, 129	0

All (150) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	С	15	PHE	14.3
1	В	15	PHE	10.1
1	С	17	TYR	9.2
1	С	83	GLU	8.6
1	А	162	GLU	8.3
1	С	20	LYS	7.8
1	В	11	TRP	7.3
1	В	78	TYR	7.1
1	С	13	VAL	7.0
1	В	83	GLU	6.6
1	С	18	GLN	6.4
1	А	79	LEU	6.2
1	В	174	ARG	5.9
1	А	177	GLY	5.5
1	А	176	GLU	5.4
1	В	82	GLY	5.3
1	А	25	ILE	5.2
1	С	153	ARG	5.2
1	A	13	VAL	5.1
1	В	76	LYS	4.9
1	А	125	GLU	4.9
1	С	31	ARG	4.9
1	А	14	ASP	4.8

6K95

Mol	Chain	Res	Type	RSRZ
1	В	31	ARG	4.8
1	А	82	GLY	4.6
1	А	174	ARG	4.6
1	С	170	LEU	4.6
1	В	17	TYR	4.4
1	А	15	PHE	4.4
1	В	87	TYR	4.3
1	А	129	GLU	4.3
1	С	9	LEU	4.3
1	С	174	ARG	4.2
1	С	115	ASN	4.2
1	В	79	LEU	4.1
1	С	124	LEU	4.1
1	В	175	LEU	4.1
1	С	161	ASP	4.1
1	А	155	LEU	4.1
1	В	93	ILE	4.1
1	А	149	ALA	4.0
1	В	25	ILE	3.9
1	А	124	LEU	3.9
1	В	13	VAL	3.8
1	А	153	ARG	3.8
1	А	156	VAL	3.7
1	А	164	LEU	3.7
1	В	164	LEU	3.7
1	А	109	TYR	3.7
1	С	24	TYR	3.7
1	А	67	LEU	3.6
1	С	169	LYS	3.6
1	В	115	ASN	3.6
1	А	169	LYS	3.6
1	С	72	GLU	3.5
1	В	140	ARG	3.5
1	С	79	LEU	3.5
1	A	144	TYR	3.5
1	В	72	GLU	3.4
1	А	84	LYS	3.4
1	А	145	LEU	3.4
1	С	88	ARG	3.4
1	С	111	GLY	3.4
1	А	76	LYS	3.3
1	С	171	VAL	3.2

6K95

Mol	Chain	Res	Type	RSRZ
1	С	66	ARG	3.2
1	С	25	ILE	3.2
1	А	18	GLN	3.1
1	В	162	GLU	3.1
1	В	171	VAL	3.1
1	С	125	GLU	3.0
1	В	20	LYS	3.0
1	С	131	ILE	3.0
1	А	158	GLU	2.9
1	С	21	LEU	2.9
1	А	85	GLY	2.9
1	В	153	ARG	2.9
1	В	18	GLN	2.9
1	В	80	ASP	2.9
1	С	33	TRP	2.9
1	А	1	MET	2.8
1	С	172	LYS	2.8
1	В	150	ASN	2.8
1	А	175	LEU	2.8
1	А	51	THR	2.8
1	А	161	ASP	2.8
1	А	66	ARG	2.8
1	С	61	TRP	2.8
1	В	160	ALA	2.8
1	С	113	CYS	2.8
1	А	36	SER	2.7
1	А	78	TYR	2.7
1	С	80	ASP	2.7
1	А	34	GLN	2.7
1	В	67	LEU	2.7
1	В	71	LYS	2.6
1	A	24	TYR	2.6
1	С	11	TRP	2.6
1	С	160	ALA	2.6
1	A	115	ASN	2.6
1	С	155	LEU	2.6
1	В	49	VAL	2.6
1	C	75	VAL	2.6
1	А	10	ILE	2.6
1	В	107	LEU	2.5
1	В	81	PHE	2.5
1	А	160	ALA	2.5

6K95

Mol	Chain	Res	Type	RSRZ
1	С	109	TYR	2.5
1	В	58	GLY	2.5
1	С	82	GLY	2.5
1	С	165	PHE	2.4
1	С	168	GLU	2.4
1	А	87	TYR	2.4
1	С	118	TYR	2.4
1	А	146	PHE	2.4
1	С	102	LYS	2.4
1	А	172	LYS	2.4
1	В	124	LEU	2.4
1	А	42	VAL	2.4
1	А	16	PRO	2.4
1	В	118	TYR	2.4
1	А	157	PRO	2.4
1	В	172	LYS	2.3
1	А	71	LYS	2.3
1	В	125	GLU	2.3
1	С	176	GLU	2.3
1	А	93	ILE	2.3
1	В	155	LEU	2.3
1	С	59	CYS	2.3
1	А	72	GLU	2.2
1	В	134	ALA	2.2
1	В	45	LYS	2.2
1	А	142	THR	2.2
1	В	152	ILE	2.2
1	А	167	LEU	2.2
1	А	53	VAL	2.1
1	С	152	ILE	2.1
1	A	171	VAL	2.1
1	А	152	ILE	2.1
1	В	154	ASN	2.1
1	С	71	LYS	2.1
1	A	21	LEU	2.1
1	В	129	GLU	2.1
1	С	173	GLU	2.1
1	С	151	SER	2.1
1	С	29	SER	2.0
1	С	162	GLU	2.0
1	С	144	TYR	2.0
1	С	164	LEU	2.0

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	128	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

