

Nov 14, 2022 – 02:19 PM JST

PDB ID	:	6J2Q
EMDB ID	:	EMD-9771
Title	:	Yeast proteasome in Ub-accepted state (C1-b)
Authors	:	Cong, Y.
Deposited on	:	2019-01-02
Resolution	:	3.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.80 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ran	ks Value							
Ramachandran outliers		0.1%							
Sidechain outliers		0							
Worse		Better							
Percent	Percentile relative to all structures								
Dercent	ile relative to all EM structures								
Metric	Whole archive	EM structures							
	$(\# { m Entries})$	(#Entries)							

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain	
1	1	215	95%	5%
1	b	215	7% 95%	5%
2	2	261	85%	15%
2	i	261	85%	15%
3	3	205	100%	
3	h	205	9 9%	
4	4	198	100%	
4	g	198	100%	
5	5	287	74%	26%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol <u>.</u> 5f 287 74% 26% 5% 66 24192% 8% 7% 6 241е 92% 8% 7726688% 12% 7266 \mathbf{a} 88% 12% ÷ 8 А 25296% • 5% 8 252 \mathbf{c} 96% • <u>.</u> 9 В 250100% 7% 2509 j 100% 9% С 10 2585% 95% 5% 10 \mathbf{d} 2585% 95% • D 25411 95% 5% 11 2545% n 95% 5% 12Е 26093% 7% 7% 12260 \mathbf{m} 7% 93% 5% F 13234100% 1 23413100% \mathbf{G} 2881484% 16% ÷ k 288 1485% 15% 13% Η 1546776% 24% 19% Ι 1643783% 17% 21% 17J 40592% 8% 13% 18 Κ 428• 11% 88% 16% 19 \mathbf{L} 43715% 85% 15% 20М 43415% 84%

Mol	Chain	Length	Quality of chain	
21	Ν	945	23%	10%
			44%	10.0
22	0	393	98%	•
23	Р	445	97%	·
24	Q	434	18%	
25	R	429	93%	7%
26	S	523	91%	9%
27	Т	274	25%	
28	U	338	75%	25%
29	V	306	84%	• 16%
30	W	268	46%	26%
31	Х	156	81%	19%
32	Y	89	11% 29% • 70%	
33	Z	993	54% 82%	18%

2 Entry composition (i)

There are 33 unique types of molecules in this entry. The entry contains 106311 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
1	1	205	Total	С	Ν	0	S	0	0
	1 1	200	1576	996	261	312	7	0	
1	1 b	205	Total	С	Ν	0	\mathbf{S}	0	0
1		200	1576	996	261	312	7		

• Molecule 2 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues		At		AltConf	Trace		
2	2	222	Total 1684	C 1061	N 293	O 323	S 7	0	0
2	i	222	Total 1684	C 1061	N 293	O 323	${f S}7$	0	0

• Molecule 3 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	9	204	Total	С	Ν	0	S	0	0
0 0	204	1581	1010	258	305	8	0	0	
9	h	204	Total	С	Ν	0	S	0	0
9	11	204	1581	1010	258	305	8	0	0

• Molecule 4 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
4	4	198	Total 1585	C 1005	N 269	O 305	S 6	0	0
4	g	198	Total 1585	C 1005	N 269	O 305	S 6	0	0

• Molecule 5 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues		At		AltConf	Trace		
5	5	212	Total 1644	C 1045	N 280	0 312	${f S}7$	0	0
5	f	212	Total 1644	C 1045	N 280	O 312	${f S}{7}$	0	0

• Molecule 6 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues		At		AltConf	Trace		
6	6	າາາ	Total	С	Ν	0	S	0	0
0 0		1757	1115	303	335	4	0	0	
6	0	າາາ	Total	С	Ν	0	S	0	0
0	е	222	1757	1115	303	335	4	0	U

• Molecule 7 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues		At		AltConf	Trace		
7	7	233	Total 1824	C 1154	N 312	0 351	${f S}{7}$	0	0
7	a	233	Total 1824	C 1154	N 312	0 351	${ m S} 7$	0	0

• Molecule 8 is a protein called Proteasome subunit alpha type-1.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	А	243	Total 1921	C 1221	N 322	0 370	S 8	0	0
8	С	243	Total 1921	C 1221	N 322	O 370	S 8	0	0

• Molecule 9 is a protein called Proteasome subunit alpha type-2.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
0	В	250	Total	С	Ν	0	\mathbf{S}	0	0
9	D	230	1915	1219	315	377	4	0	0
0	;	250	Total	С	Ν	0	S	0	0
9	J	230	1915	1219	315	377	4	0	0

• Molecule 10 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues		At	AltConf	Trace			
10	С	244	Total 1904	C 1201	N 321	0 379	${ m S} { m 3}$	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
10	d	244	Total 1904	C 1201	N 321	O 379	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	D	241	Total	С	Ν	0	S	0	0
	_		1890	1181	331	374	4	Ĵ	Ŭ
11	n	941	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
	11	241	1890	1181	331	374	4	0	0

• Molecule 12 is a protein called Proteasome subunit alpha type-5.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
19	F	242	Total	С	Ν	0	S	0	0
	Ľ	242	1861	1162	314	378	7	0	0
10		242	Total	С	Ν	0	S	0	0
	111		1861	1162	314	378	7		U

• Molecule 13 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
13	F	233	Total 1795	C 1129	N 312	O 350	$\frac{S}{4}$	0	0
13	1	233	Total 1795	C 1129	N 312	O 350	${S \atop 4}$	0	0

• Molecule 14 is a protein called Probable proteasome subunit alpha type-7.

Mol	Chain	Residues		Atoms					Trace
14	G	243	Total 1888	C 1201	N 328	O 355	$\frac{S}{4}$	0	0
14	k	244	Total 1896	C 1205	N 330	O 357	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 26S protease regulatory subunit 7 homolog.

Mol	Chain	Residues		At	AltConf	Trace			
15	Н	355	Total 2787	C 1755	N 500	0 515	S 17	0	0

• Molecule 16 is a protein called 26S protease regulatory subunit 4 homolog.

Mol	Chain	Residues		At	AltConf	Trace			
16	Ι	363	Total 2831	C 1779	N 472	O 565	S 15	0	0

• Molecule 17 is a protein called 26S protease regulatory subunit 8 homolog.

Mol	Chain	Residues		At	AltConf	Trace			
17	J	373	Total 2928	C 1837	N 527	0 547	${ m S}$ 17	0	0

• Molecule 18 is a protein called 26S protease regulatory subunit 6B homolog.

Mol	Chain	Residues		At	AltConf	Trace			
18	K	381	Total 3019	C 1898	N 530	O 581	S 10	0	0

• Molecule 19 is a protein called 26S protease subunit RPT4.

Mol	Chain	Residues		At	AltConf	Trace			
19	L	371	Total 2937	C 1852	N 519	0 554	S 12	0	0

• Molecule 20 is a protein called 26S protease regulatory subunit 6A.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	М	367	Total 2866	C 1799	N 503	O 553	S 11	0	0

• Molecule 21 is a protein called 26S proteasome regulatory subunit RPN2.

Mol	Chain	Residues		Α	AltConf	Trace			
21	Ν	849	Total 6562	C 4174	N 1099	O 1261	S 28	0	0

• Molecule 22 is a protein called 26S proteasome regulatory subunit RPN9.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	О	387	Total 3182	C 2047	N 520	O 606	S 9	0	0

• Molecule 23 is a protein called 26S proteasome regulatory subunit RPN5.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Р	432	Total 3545	C 2260	N 592	O 684	S 9	0	0

• Molecule 24 is a protein called 26S proteasome regulatory subunit RPN6.

Mol	Chain	Residues		At	AltConf	Trace			
24	Q	431	Total 3471	C 2205	N 574	O 676	S 16	0	0

• Molecule 25 is a protein called 26S proteasome regulatory subunit RPN7.

Mol	Chain	Residues		At	AltConf	Trace			
25	R	400	Total 3218	C 2051	N 527	O 630	S 10	0	0

• Molecule 26 is a protein called 26S proteasome regulatory subunit RPN3.

Mol	Chain	Residues		At	AltConf	Trace			
26	S	475	Total 3894	C 2488	N 653	0 738	S 15	0	0

• Molecule 27 is a protein called 26S proteasome regulatory subunit RPN12.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Т	272	Total 2235	C 1432	N 355	0 441	${ m S} 7$	0	0

• Molecule 28 is a protein called 26S proteasome regulatory subunit RPN8.

Mol	Chain	Residues		At		AltConf	Trace		
28	U	255	Total 2061	C 1312	N 352	O 391	S 6	0	0

• Molecule 29 is a protein called Ubiquitin carboxyl-terminal hydrolase RPN11.

Mol	Chain	Residues		At	AltConf	Trace			
29	V	258	Total 2025	C 1273	N 344	O 395	S 13	0	0

• Molecule 30 is a protein called 26S proteasome regulatory subunit RPN10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	W	197	Total 1534	C 962	N 269	O 300	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 26S proteasome regulatory subunit RPN13.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	Х	127	Total 1032	C 664	N 169	O 195	$\frac{S}{4}$	0	0

• Molecule 32 is a protein called 26S proteasome complex subunit SEM1.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
32	Y	27	Total 236	C 143	N 39	0 54	0	0

• Molecule 33 is a protein called 26S proteasome regulatory subunit RPN1.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	Z	813	Total 6290	C 3995	N 1029	O 1237	S 29	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Proteasome subunit beta type-1

• Molecule 3: Proteasome subunit beta type-3

Chain h:	99%	-
MET 22 565 E665 F100 6101 V105 N157 N157 D205		
• Molecule 4: Proteasome subunit be	eta type-4	
Chain 4: 6%	100%	_
M1 R36 R36 R94 R95 R95 R95 R95 R95 R95 R95 R95 R95 R95		
• Molecule 4: Proteasome subunit be	eta type-4	
Chain g:	100%	-
M1 D2 D3 D3 M9 K9 K9 K9 K109 K109 K109 K109 K109 K109		
• Molecule 5: Proteasome subunit be	eta type-5	
Chain 5: 74%	26%	_
MET MET ALN ALA ALA ASP PHE SER PHE SER PHE SER PHE CLU VAL ASN ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER ASP PHE CLY CLY CLY CLY CLY CLY CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	GLN PHE LEU ARG ALA HIS THR
ASP ASP ARG ARG ARG ARG ASN PRO ARS ARD ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	D222	
• Molecule 5: Proteasome subunit be	eta type-5	
Chain f: 74%	26%	-
MET ALA ALA ALA ALA ASP PHE SER ASP VAL PRO PRO ASP CLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	SER PHE PHE CLIT CLIT CLIT CLIT CLIT CLIT CLIT CLEU CLIT CLEU CLIT CLEU CLIT CLEU CLIT CLEU CLIT CLIT CLIT CLIT CLIT CLIT CLIT CLIT	GLN PHE LEU ARG ALA HIS THR
ASP ASP SER ARG ASP ARG ASP ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	M223	
• Molecule 6: Proteasome subunit be	eta type-6	
Chain 6:	92% 85	%
MET THR THE THE ALLA SER SER SER SER ASN ALA ASN ALA ASN ALA ASN ALA ALA ALA ASN ALA ALA ASN ALA ALA ASN ALA ASN ASN ALA SER SER SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	F121 H127 E135 D219 D229 C230 C230 D241	

L D W I D E

wiw

-
-
-
-
-
•

• Molecule 13: Proteasome subunit alpha type-6

Chain F:	100%	I
MET F2 R3 R3 N4 D7 G8 A53	Y87 S1 50 C1 51 N1 52 D2 19 D2 26 D2 26 D2 26	
• Molecule 13: 1	Proteasome subunit alpha type-6	
Chain l:	100%	
RET F2 D9 Y24 E55	X181 D219 D219 1234	
• Molecule 14: 1	Probable proteasome subunit alpha type-7	
Chain G:	84% 16%	1
MET THR SER ILLE dS T6 E32 K72	EI 85 E1 85 E2 09 E2 09 E2 09 E2 09 E2 09 E2 04 E2 7 E2 7 E2 7 E2 04 E2 7 E2 04 E2 7 E2 7 E2 04 E2 7 E2 7 E2 04 E2	GLN GLN GLN GLY ASP HIS HIS LEU
GLU		
• Molecule 14: 1	Probable proteasome subunit alpha type-7	
Chain k:	85% 15%	I
MET THR SER ILE G5 T6 R72 N144	11227 1224 1224 1224 1224 12488 12488 1248 1248 1248 1248 1248 1248 1248 1248 124	HIS GLU GLU
• Molecule 15: 2	26S protease regulatory subunit 7 homolog	
Chain H:	76% 24%	I
MET PRO PRO LYS GLU ASP GLU CYS CLU LYS TYR LYS	PRIO PRIO CLU CLU CLU ASP ASP ASP PRIO ASP PRIO CLV ASP ASP ASP ASP ASP CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	LEU LYS ASP ILE GLU GLU
ALA ARG LYS CLYS GLU CLYS ALA ALA VAL LYS CLY SFP	ASP ASP LLEU	SER ASN SER ASN CLIN GLIN SER SER
THR ASP ASP ASP GSU GSU ASP ASP ALA ALA ALA	I152 E170 E170 S179 S179 S179 S179 S179 R157 R197 P191 P192 P192 P205 P205 P205 P205 P2041 P205 P2041 P205	D320 D321 C322 A323 G324 A323 C324 D344 P345 R345
N359	R400 R403 R403 R409 R433 R434 R433 R433 F463 F463 F463 F465 S461 Y466 Y466	

• Molecule 16: 26S protease regulatory subunit 4 homolog

Chain I:	83%	17%	
MET GLY GLY GLN VAL SER SER GLY GLY ASP LYS LYS LYS CLY	ASN ASN CYS CYS CYS CYS CYS CYS CAU PRO CAU CYS CAU CYS CAU CYS CAU CYS CAU CYS CAU CYS CAU CYS CAU CYS CAU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	LYS GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA CYS SER THR THR THR THR THR CYS CYS CYS CYS	
ARG MET GLU GLU ARC ARC ARC ARC ARC ACU CLU GLU GLU	Y76 877 877 879 884 884 884 886 K87 K88 K88 K88 K88 K88 K88 K88 K88 K88	N100	VII67 VI168 V170 M171 K172 M173 D174
K175 8176 9177 1178 6179 6179 6179 6177 6178 6179 6179 6209 6209	K217 Y222 Y222 C226 C226 C226 C226 C226 C226 C226 C228 C226 C228 C2888 C288 C288 C288 C2888 C288 C288 C2888 C288 C288 C288 C288 C28	R291 Y293 D293 D294 N295 R309 R300 R300 R300 R303 R304 R314 D317 D317 R319 C320 R316 R316 C320 R316 R311 D317 C321 C321 C321 C321 C321 C321 C321 C322 C322	E332 D335 L338 R343 R343 D345
D354 E373 E377 E378 C384 K384 D385 D386	B414 ◆ B414 ◆ Q418 ◆ Q426 ◆ M426 ◆ M428 ◆ M428 ◆ M428 ◆ M428 ◆ L432 ◆ L432 ◆ L433 ◆ L437 ◆		
• Molecule 17: 26S p	rotease regulatory subunit 8	homolog	
Chain J:	92%	8%	
MET THR ALLA ALLA ALLA ALLA ALLA VAL ASIN SER SER ASIN CLEU CLEU CLEU CLEU CLEU	SELO GLY LYS FILE FILE FILE FILE FILE FILE FILE FILE	E91 K105 K108 A109 R112 R112 N128 N128 N128 N128 L133 L133 L133 L133 L133 L133 L133 N137 N137 N137	N138 V139 E140 K141 V142 P143
D144 (K155 (K158 (D207 Q220 K221 Y222 C224 C224 C226 C226 C226 C226 C226 C	E239 D248 E249 E249 D261 S255 T253 G254 S255 T253 C254 S255 T255 C255 C250 C260 C260 C263 C260 C263 C263 C263 C263 C263 C263 C263 C263	N272 L275 L276 Q278 L279 C281 F282 E283 E283 T284
R296 1297 1298 1392 1305 1311 8313 8313	R344 D357 B367 R373 R373 B381 B381 B381 B383 C394 C394 C394 C395 C395 C395 C395 C395 C395 C395 C395	LYS LEU LYS	
• Molecule 18: 26S p	rotease regulatory subunit 6	iB homolog	
Chain K:	88%	• 11%	
MET GLU GLU GLU GLU GLU PRO PRO CLU VAL ALA ALA ALA	LUCU PRO VALA VALA LLVS LLVS LLVS RLA ALA CLU LLEU CLU LLEU CLU LLEU CLU VAL ASN VAL ASN	ASN SER ALA LLEU SER ASP VAL ASP TLE TLE TLE RS7 RTT R87 R87 R87 R87 R87 R87 R87 R87 R87 R87	H116
R121 1122 R128 R141 D155 S156 S156 S156 S156 S156 S156 S156 S	M161 M164 E165 C165 M265 M265 D272 R281 C285 C285 C285	S288 D289 R290 E291 C2291 C2291 C2291 C2293 R294 A321 A321 A321 A321 C332 R330 P331 C332 C332 C332 C332 C332 C332 C332 C	R336 K337 P341 S342 L343 R344 R344 E365
S370 ♦ 8374 ♦ 8377 ♦ 8377 ♦ R396 ♦ E408 ♦ 1417 ♦	N419 1420 V421 F422 F425 Y427 V427 W428		
• Molecule 19: 26S p	rotease subunit RPT4		
Chain L:	85%	15%	

• Molecule 22: 26S proteasome regulatory subunit RPN9

• Molecule 31: 26S proteasome regulatory subunit RPN13

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	77729	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	38	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	2.361	Depositor
Minimum map value	-1.289	Depositor
Average map value	0.007	Depositor
Map value standard deviation	0.079	Depositor
Recommended contour level	0.477	Depositor
Map size (Å)	474.47998, 474.47998, 474.47998	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.318, 1.318, 1.318	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.23	0/1605	0.41	0/2171	
1	b	0.23	0/1605	0.42	0/2171	
2	2	0.23	0/1715	0.41	0/2326	
2	i	0.23	0/1715	0.41	0/2326	
3	3	0.24	0/1611	0.40	0/2174	
3	h	0.24	0/1611	0.41	0/2174	
4	4	0.23	0/1613	0.40	0/2173	
4	g	0.23	0/1613	0.39	0/2173	
5	5	0.23	0/1681	0.40	0/2274	
5	f	0.23	0/1681	0.40	0/2274	
6	6	0.24	0/1795	0.40	0/2420	
6	е	0.24	0/1795	0.40	0/2420	
7	7	0.24	0/1855	0.41	0/2514	
7	a	0.23	0/1855	0.41	0/2514	
8	А	0.23	0/1959	0.39	0/2652	
8	с	0.24	0/1959	0.39	0/2652	
9	В	0.24	0/1952	0.40	0/2642	
9	j	0.24	0/1952	0.40	0/2642	
10	С	0.23	0/1934	0.41	0/2618	
10	d	0.23	0/1934	0.40	0/2618	
11	D	0.22	0/1919	0.39	0/2598	
11	n	0.23	0/1919	0.39	0/2598	
12	Е	0.23	0/1886	0.40	0/2541	
12	m	0.23	0/1886	0.39	0/2541	
13	F	0.24	0/1823	0.42	0/2463	
13	1	0.23	0/1823	0.41	0/2463	
14	G	0.24	$0/1\overline{928}$	0.40	$0/2\overline{603}$	
14	k	0.24	$0/1\overline{936}$	0.40	$0/2\overline{614}$	
15	Н	0.24	0/2834	0.41	0/3816	
16	Ι	0.23	0/2869	0.41	0/3867	
17	J	0.23	0/2964	0.39	0/3981	
18	K	0.31	1/3062~(0.0%)	0.40	$0/4\overline{132}$	
19	L	0.33	1/2981~(0.0%)	0.39	0/4008	
20	М	0.24	0/2903	0.42	0/3909	

Mal	Chain	Bo	ond lengths	Bond	l angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
21	Ν	0.25	1/6670~(0.0%)	0.38	0/9023
22	0	0.25	1/3243~(0.0%)	0.39	0/4374
23	Р	0.22	0/3599	0.37	0/4854
24	Q	0.23	0/3527	0.36	0/4748
25	R	0.23	0/3272	0.37	0/4412
26	S	0.23	0/3966	0.36	0/5355
27	Т	0.23	0/2279	0.38	0/3077
28	U	0.22	0/2087	0.37	0/2811
29	V	0.23	0/2054	0.42	0/2770
30	W	0.23	0/1557	0.40	0/2111
31	Х	0.23	0/1058	0.40	0/1432
32	Y	0.24	0/239	0.43	0/322
33	Ζ	0.23	0/6404	0.39	0/8686
All	All	0.24	4/108128 (0.0%)	0.39	0/146037

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
19	L	274	GLU	C-N	12.44	1.57	1.34
18	K	265	ALA	C-N	11.26	1.55	1.34
21	N	743	PHE	C-N	6.50	1.46	1.34
22	0	55	THR	C-N	5.11	1.44	1.34

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	203/215~(94%)	191 (94%)	12 (6%)	0	100	100
1	b	203/215~(94%)	193~(95%)	10 (5%)	0	100	100
2	2	220/261~(84%)	213~(97%)	7 (3%)	0	100	100
2	i	220/261~(84%)	214 (97%)	6 (3%)	0	100	100
3	3	202/205~(98%)	193 (96%)	9 (4%)	0	100	100
3	h	202/205~(98%)	192 (95%)	9 (4%)	1 (0%)	29	66
4	4	196/198~(99%)	190 (97%)	6 (3%)	0	100	100
4	g	196/198~(99%)	188 (96%)	8 (4%)	0	100	100
5	5	210/287~(73%)	204 (97%)	6 (3%)	0	100	100
5	f	210/287~(73%)	203 (97%)	7 (3%)	0	100	100
6	6	220/241~(91%)	212 (96%)	8 (4%)	0	100	100
6	е	220/241~(91%)	211 (96%)	9 (4%)	0	100	100
7	7	231/266~(87%)	220 (95%)	11 (5%)	0	100	100
7	a	231/266~(87%)	221 (96%)	10 (4%)	0	100	100
8	А	241/252~(96%)	234 (97%)	7 (3%)	0	100	100
8	с	241/252~(96%)	234 (97%)	7 (3%)	0	100	100
9	В	248/250~(99%)	241 (97%)	7 (3%)	0	100	100
9	j	248/250~(99%)	238 (96%)	10 (4%)	0	100	100
10	С	242/258~(94%)	232 (96%)	10 (4%)	0	100	100
10	d	242/258~(94%)	233 (96%)	9 (4%)	0	100	100
11	D	239/254~(94%)	229 (96%)	10 (4%)	0	100	100
11	n	239/254~(94%)	230 (96%)	9 (4%)	0	100	100
12	Е	240/260~(92%)	227 (95%)	13 (5%)	0	100	100
12	m	240/260~(92%)	234 (98%)	6 (2%)	0	100	100
13	F	231/234~(99%)	222 (96%)	9 (4%)	0	100	100
13	1	231/234~(99%)	222 (96%)	9 (4%)	0	100	100
14	G	241/288~(84%)	234 (97%)	7 (3%)	0	100	100
14	k	242/288~(84%)	235 (97%)	7 (3%)	0	100	100
15	Н	351/467~(75%)	319 (91%)	32 (9%)	0	100	100
16	Ι	361/437~(83%)	331 (92%)	29 (8%)	1 (0%)	41	74
17	J	371/405~(92%)	338 (91%)	32 (9%)	1 (0%)	41	74
18	K	$\overline{379/428}\ (89\%)$	340 (90%)	37 (10%)	2(0%)	29	66

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
19	L	369/437~(84%)	336~(91%)	33~(9%)	0	100	100
20	М	363/434~(84%)	326~(90%)	36 (10%)	1 (0%)	41	74
21	Ν	843/945~(89%)	814 (97%)	29 (3%)	0	100	100
22	Ο	385/393~(98%)	352~(91%)	33~(9%)	0	100	100
23	Р	430/445~(97%)	398~(93%)	32 (7%)	0	100	100
24	Q	429/434~(99%)	407~(95%)	22 (5%)	0	100	100
25	R	398/429~(93%)	360~(90%)	37 (9%)	1 (0%)	41	74
26	S	473/523~(90%)	453~(96%)	19 (4%)	1 (0%)	47	79
27	Т	270/274~(98%)	246 (91%)	24 (9%)	0	100	100
28	U	245/338~(72%)	241 (98%)	4 (2%)	0	100	100
29	V	252/306~(82%)	227~(90%)	23 (9%)	2 (1%)	19	57
30	W	195/268~(73%)	181 (93%)	14 (7%)	0	100	100
31	Х	125/156~(80%)	113 (90%)	12 (10%)	0	100	100
32	Y	25/89~(28%)	19 (76%)	5 (20%)	1 (4%)	3	28
33	Z	807/993~(81%)	757 (94%)	49 (6%)	1 (0%)	51	83
All	All	13400/15139~(88%)	12648 (94%)	740 (6%)	12 (0%)	54	83

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
16	Ι	287	ILE
18	Κ	158	ILE
18	Κ	292	VAL
25	R	241	ILE
3	h	105	VAL
17	J	134	VAL
20	М	167	VAL
29	V	165	ILE
32	Y	69	VAL
33	Ζ	442	VAL
26	S	83	PRO
29	V	78	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	1	169/178~(95%)	169 (100%)	0	100	100
1	b	169/178~(95%)	169 (100%)	0	100	100
2	2	181/214~(85%)	181 (100%)	0	100	100
2	i	181/214~(85%)	181 (100%)	0	100	100
3	3	172/173~(99%)	172 (100%)	0	100	100
3	h	172/173~(99%)	172 (100%)	0	100	100
4	4	175/175~(100%)	175 (100%)	0	100	100
4	g	175/175~(100%)	175 (100%)	0	100	100
5	5	169/235~(72%)	169 (100%)	0	100	100
5	f	169/235~(72%)	169 (100%)	0	100	100
6	6	185/201~(92%)	185 (100%)	0	100	100
6	е	185/201~(92%)	185 (100%)	0	100	100
7	7	199/224~(89%)	199 (100%)	0	100	100
7	a	199/224~(89%)	199 (100%)	0	100	100
8	А	207/210~(99%)	207 (100%)	0	100	100
8	с	207/210~(99%)	207 (100%)	0	100	100
9	В	209/209~(100%)	209 (100%)	0	100	100
9	j	209/209~(100%)	209 (100%)	0	100	100
10	С	203/216~(94%)	203 (100%)	0	100	100
10	d	203/216~(94%)	203 (100%)	0	100	100
11	D	213/226~(94%)	213 (100%)	0	100	100
11	n	213/226~(94%)	213 (100%)	0	100	100
12	Е	198/215~(92%)	198 (100%)	0	100	100
12	m	198/215~(92%)	198 (100%)	0	100	100
13	F	192/193~(100%)	192 (100%)	0	100	100
13	1	192/193~(100%)	192 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
14	G	200/239~(84%)	200 (100%)	0	100	100
14	k	201/239~(84%)	201 (100%)	0	100	100
15	Н	303/399~(76%)	303 (100%)	0	100	100
16	Ι	320/385~(83%)	320 (100%)	0	100	100
17	J	325/352~(92%)	325 (100%)	0	100	100
18	Κ	334/374~(89%)	334 (100%)	0	100	100
19	L	317/377~(84%)	317 (100%)	0	100	100
20	М	315/375~(84%)	315 (100%)	0	100	100
21	Ν	713/797~(90%)	713 (100%)	0	100	100
22	Ο	363/368~(99%)	363 (100%)	0	100	100
23	Р	405/415~(98%)	405 (100%)	0	100	100
24	Q	388/391~(99%)	388 (100%)	0	100	100
25	R	351/379~(93%)	351 (100%)	0	100	100
26	S	447/489~(91%)	447 (100%)	0	100	100
27	Т	254/256~(99%)	254 (100%)	0	100	100
28	U	234/308~(76%)	234 (100%)	0	100	100
29	V	227/268~(85%)	227 (100%)	0	100	100
30	W	171/230 (74%)	171 (100%)	0	100	100
31	Х	116/144 (81%)	116 (100%)	0	100	100
32	Y	26/81 (32%)	26 (100%)	0	100	100
33	Z	692/850~(81%)	692 (100%)	0	100	100
All	All	11646/13054 (89%)	11646 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (87) such sidechains are listed below:

Mol	Chain	Res	Type
2	2	95	HIS
3	3	169	GLN
4	4	191	GLN
5	5	164	GLN
5	5	263	HIS
6	6	55	ASN

Mol	Chain	Res	Type
6	6	214	HIS
7	7	59	ASN
2	i	122	HIS
2	i	173	GLN
4	g	191	GLN
5	f	283	ASN
6	е	55	ASN
6	е	111	ASN
7	a	145	ASN
7	a	153	GLN
8	А	84	ASN
8	А	126	GLN
8	А	181	ASN
10	С	177	GLN
11	D	16	HIS
12	Е	23	GLN
12	Е	73	HIS
12	Е	91	HIS
13	F	4	ASN
13	F	41	ASN
13	F	60	GLN
14	G	33	ASN
8	с	37	GLN
10	d	94	HIS
10	d	120	GLN
12	m	180	GLN
13	1	43	HIS
13	1	210	ASN
14	k	121	GLN
15	Н	98	GLN
15	Н	265	ASN
15	Н	359	ASN
16	Ι	254	GLN
17	J	52	ASN
17	J	205	HIS
17	J	376	HIS
17	J	379	GLN
18	K	98	GLN
18	K	182	GLN
19	L	364	HIS
20	М	125	GLN
20	М	149	ASN

Mol	Chain	Res	Type
21	N	34	GLN
21	Ν	231	ASN
21	Ν	719	ASN
22	0	169	ASN
22	0	282	GLN
22	0	354	GLN
23	Р	78	GLN
23	Р	88	GLN
23	Р	195	GLN
23	Р	288	ASN
23	Р	348	HIS
23	Р	349	ASN
24	Q	54	GLN
24	Q	226	HIS
24	Q	247	HIS
24	Q	379	GLN
25	R	73	ASN
25	R	76	GLN
25	R	217	HIS
26	S	177	ASN
26	S	207	ASN
26	S	227	ASN
26	S	244	ASN
26	S	311	GLN
26	S	321	GLN
26	S	488	GLN
27	Т	123	HIS
27	Т	132	HIS
27	Т	251	HIS
28	U	26	GLN
28	U	71	ASN
28	U	84	ASN
28	U	127	GLN
28	U	302	GLN
29	V	190	HIS
30	W	12	ASN
30	W	95	GLN
33	Z	435	GLN
33	Ζ	622	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-9771. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

Primary map 6.1.1

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 204

Y Index: 177

Z Index: 170

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.477. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 755 $\rm nm^3;$ this corresponds to an approximate mass of 682 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.263 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-9771 and PDB model 6J2Q. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.477 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.477).

9.4 Atom inclusion (i)

At the recommended contour level, 80% of all backbone atoms, 60% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.477) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.5988	0.2640
1	0.6822	0.3770
2	0.7028	0.3890
3	0.6915	0.3750
4	0.6540	0.3380
5	0.7172	0.3640
6	0.6951	0.3630
7	0.7051	0.3920
А	0.6838	0.3760
В	0.6875	0.3720
С	0.6736	0.3520
D	0.7002	0.3510
E	0.6727	0.3450
F	0.6868	0.3640
G	0.6781	0.3670
Н	0.5957	0.2570
I	0.5632	0.2350
J	0.5605	0.2260
K	0.5943	0.2550
L	0.5763	0.2710
M	0.5990	0.2710
N	0.5697	0.1740
0	0.4349	0.1190
Р	0.5839	0.1860
Q	0.6102	0.2300
R	0.5743	0.1730
S	0.5347	0.1460
Т	0.5699	0.1630
U	0.6076	0.2170
V	0.5643	0.1920
W	0.3274	0.0820
Х	0.0000	0.0000
Y	0.5087	0.1080
Z	0.2955	0.0850
a	0.6978	0.3830

Chain	Atom inclusion	Q-score
b	0.6751	0.3670
С	0.6923	0.3330
d	0.6726	0.3040
е	0.6789	0.3620
f	0.7035	0.3770
g	0.6778	0.3430
h	0.6947	0.3750
i	0.6938	0.3730
j	0.6764	0.3430
k	0.7170	0.3360
1	0.7067	0.3380
m	0.6650	0.3260
n	0.6932	0.3070

