

Full wwPDB NMR Structure Validation Report (i)

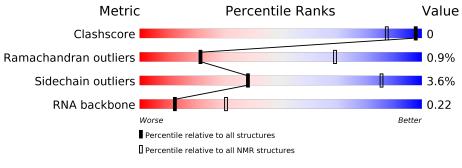
May 29, 2020 - 07:14 am BST

PDB ID	:	5J2W
Title	:	Intermediate state lying on the pathway of release of Tat from HIV-1 TAR.
Authors	:	Borkar, A.N.; Bardaro Jr., M.F.; Varani, G.; Vendruscolo, M.
Deposited on	:	2016-03-30

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	$v_1n_11_5_13_A$ (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment is 67%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} { m archive} \ (\#{ m Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428
RNA backbone	4643	676

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain			
1	А	14	439	6	43%	14%
2	В	29	10%	66%		24%

2 Ensemble composition and analysis (i)

This entry contains 10 models. Model 8 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *target function*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model			
1	A:1-A:12 (12)	0.26	8			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 1 clusters and 7 single-model clusters were found.

Cluster number	Models
1	3, 6, 10
Single-model clusters	1; 2; 4; 5; 7; 8; 9

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1198 atoms, of which 460 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Cyclic peptide mimetic of HIV-1 Tat.

Mol	Chain	Residues		Atoms				Trace
1	Δ	14	Total	С	Η	Ν	0	0
	А	14	269	75	146	33	15	0

• Molecule 2 is a RNA chain called Apical region (29mer) of the HIV-1 TAR RNA element.

Mol	Chain	Residues			Ator	ns			Trace
9	D	29	Total	С	Н	Ν	Ο	Р	0
	D	29	929	275	314	109	203	28	0

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	43%	43%	14%
R1 V2 R3 R4 R9 R9 R11 R11 R11 R11 R12 R12 R13 R13 R13 R13 R13 R13 R13 R13 R13 R13	P14		
• Molecule 2: A	pical region (29mer) o	f the HIV-1 TAR RNA	A element
Chain B: 10%	66 ⁴	6	24%
617 618 618 619 621 820 621 023 023 626 626 626 626 628	C29 C30 C30 C32 C33 C33 C33 C33 C33 C33 C33 C33 C34 C41 C41 C41 C41 C41 C41 C42 C41 C42 C41 C42 C42 C42 C42 C32 C33 C33 C33 C33 C32 C32 C32 C32 C3	6 <mark>79</mark>	

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	50%	36%	14%
R1 R5 R8 R8 R8 R11 110 P13 P13 P13 P13 P13 P13 P13 P13 P13 P13			
• Molecule 2:	Apical region (29mer) of	the HIV-1 TAR RNA elem	nent
Chain B: 10%	31%	59%	

4.2.2 Score per residue for model 2

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	43%	36%	7%	14%
R1 V2 R8 R8 R9 110 P13 P13 P13				

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Chain B:	48%	31%	21%
617 618 619 019 621 621 023 024 025 026	427 428 628 629 630 633 633 633 633 633 633 633 633 633		

4.2.3 Score per residue for model 3

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	57%	21%	7%	14%
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Cł	ıa	ir	1	В	:	-			17	7%															48	3%)				34%	
G17 G18	C19	A20	G21	A22	U23	C24	U25	G26	A27	G28	C29	C30	U31	632	G33	G34	A35	G 36	C37	U38	<mark>039</mark>	U40	C41	U42	643	C44	C45	2 C				

4.2.4 Score per residue for model 4

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	36%	43%	7%	14%
R1 V2 R3 R5 R8 R8 R9 R9				
• Molecule	2: Apical region (29me	r) of the HIV-1 TAR RNA	eleme	nt
Chain B:	41%	38%	21	1%

4.2.5 Score per residue for model 5

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	36%	50%	14%
R1 V2 R3 R5 K6 K6 K9			

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Chain B:	34%	45%	21%
617 618 719 720 723 722 724 722 725 726 726 726 726 726 726 730	U31 032 033 033 034 034 034 034 035 035 035 037 037 037 037 037 037 037 037 037 037 038 033 039 037 039 033 041 040 043 043 045 043		

4.2.6 Score per residue for model 6

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	57%	21%	7%	14%
R1 72 83 83 85 13 13 13 13 13 14 14				

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Cha	nin	В	8:						31	%					1							52%	17%
G17 G18 C19	A20 621	A22	U23	C24 1106	070 (126	A27	628	029 020	U31	G 32	G33 G34	A35	G36	C37 1120	000 039	U40	C41	U42	G43	C44	C45		

4.2.7 Score per residue for model 7

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	43%	43%	14%
R1 V2 T4 C7 R9 C7 R9 R9 R9 R9 R11 F14 F13 F14			

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Chain B:	38%	28%	34%
617 618 619 619 619 621 621 622 628 628 628 628 628 628 628 628 629 628 629 629 629 629 629 629 629 629 629 629	633 633 633 634 635 635 636 636 636 641 642 643 644 643 644 645 644 645 644 645 644		

4.2.8 Score per residue for model 8 (medoid)

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	36%	29%	14%	7%	14%
R1 V2 N2 R3 R3 R3 R3 R11 R11 112 R11 112 P14					

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Chain B:	21%	48%	31%
617 618 019 019 621 621 621 028 028 026 626 626	628 628 030 030 633 633 633 633 633 633 038 038 038 038 038 038 038 049 049 049 049 048 048 048 048 048 048 048 048 048 048		

4.2.9 Score per residue for model 9

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	29	% 57%	14%
R1 V2 R3 R5 K6 G7	R8 R9 110 112 112 113 113		

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

Chain B:	17%	59%	24%
617 618 619 720 821 822 123	C24 U25 G26 G28 C29 C30 C30	643 624 826 845 845 845 739 744 744 744 744 744 744 744 744	

4.2.10 Score per residue for model 10

• Molecule 1: Cyclic peptide mimetic of HIV-1 Tat

Chain A:	57%	29%	14%
R5 R5 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3			

• Molecule 2: Apical region (29mer) of the HIV-1 TAR RNA element

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *molecular dynamics*.

Of the 3871 calculated structures, 10 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
Gromacs and Plumed	structure calculation	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 6 of this report.

Chemical shift file(s)	$input_cs.cif$
Number of chemical shift lists	1
Total number of shifts	550
Number of shifts mapped to atoms	550
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	67%

No validations of the models with respect to experimental NMR restraints is performed at this time.

COVALENT-GEOMETRY INFOmissingINFO

5.1 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	109	132	132	0 ± 0
2	В	615	314	315	0 ± 1
All	All	7240	4460	4470	5

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:12:ILE:HG22	2:B:35:A:H1'	0.67	1.66	8	1
2:B:28:G:C5	2:B:29:C:C5	0.43	3.07	3	1
2:B:19:C:H2'	2:B:20:A:O4'	0.43	2.13	9	1
1:A:3:ARG:HH21	2:B:24:C:P	0.40	2.39	3	1
1:A:10:ILE:HG22	2:B:33:G:H1'	0.40	1.92	6	1

5.2 Torsion angles (i)

5.2.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	11/14~(79%)	$10\pm1 (91\pm6\%)$	$1\pm1 (8\pm5\%)$	0±0 (1±3%)	21 69
All	All	110/140~(79%)	100~(91%)	9~(8%)	1 (1%)	21 69

All 1 unique Ramachandran outliers are listed below.

Mol	Chain	Res	Type	Models (Total)
1	А	6	LYS	1

5.2.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	11/12~(92%)	$11 \pm 1 (96 \pm 6\%)$	$0\pm1~(4\pm6\%)$	38 86
All	All	110/120~(92%)	106~(96%)	4 (4%)	38 86

All 4 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

1 A 2 VAL 1	Mol	Chain	\mathbf{Res}	Type	Models (Total)
	1	А	2	VAL	1

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Models (Total)
1	А	8	ARG	1
1	А	4	THR	1
1	А	12	ILE	1

5.2.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers	Suiteness
2	В	28/29~(97%)	$11\pm3~(40\pm11\%)$	$2\pm1~(6\pm5\%)$	$0.22 {\pm} 0.06$
All	All	281/290~(97%)	113 (40%)	16~(6%)	0.23

The overall RNA backbone suiteness is 0.22.

All unique RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Models (Total)
2	В	34	G	10
2	В	38	U	9
2	В	24	С	9
2	В	31	U	8
2	В	32	G	7
2	В	23	U	7
2	В	26	G	7
2	В	36	G	6
2	В	28	G	6
2	В	35	A	6
2	В	25	U	6
2	В	21	G	5
2	В	33	G	4
2	В	37	С	3
2	В	39	С	3
2	В	43	G	3
2	В	18	G	2
2	В	20	A	2
2	В	44	С	2
2	В	30	С	2
2	В	40	U	2
2	В	27	А	2
2	В	41	С	1
2	В	22	A	1

All unique RNA pucker outliers are listed below:

Mol	Chain	Res	Type	Models (Total)
2	В	31	U	5
2	В	33	G	2
2	В	25	U	2
2	В	19	С	1
2	В	18	G	1
2	В	42	U	1
2	В	35	А	1
2	В	39	С	1
2	В	17	G	1
2	В	22	А	1

5.3 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

5.4 Carbohydrates (i)

There are no carbohydrates in this entry.

5.5 Ligand geometry (i)

There are no ligands in this entry.

5.6 Other polymers (i)

There are no such molecules in this entry.

5.7 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 67% for the well-defined parts and 67% for the entire structure.

6.1 Chemical shift list 1

File name: input_cs.cif

Chemical shift list name: TARpRAM_CS.txt

6.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	550
Number of shifts mapped to atoms	550
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	92

6.1.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

6.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 67%, i.e. 509 atoms were assigned a chemical shift out of a possible 758. 0 out of 1 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	24/60~(40%)	24/24~(100%)	0/24~(0%)	0/12~(0%)
Sidechain	82/149~(55%)	82/89~(92%)	0/41~(0%)	0/19~(0%)
Aromatic	$0/0 \ (-\%)$	0/0 (-%)	0/0~(-%)	0/0 (-%)
Overall	509/758~(67%)	353/430~(82%)	156/258~(60%)	0/70~(0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 67%, i.e. 516 atoms were assigned a chemical shift out of a possible 770. 0 out of 1 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	25/63~(40%)	25/25~(100%)	0/26~(0%)	0/12~(0%)
Sidechain	88/158~(56%)	88/95~(93%)	0/44~(0%)	0/19~(0%)
Aromatic	$0/0 \ (-\%)$	0/0~(-%)	0/0~(-%)	$0/0 \ (-\%)$
Overall	516/770~(67%)	360/437~(82%)	156/263~(59%)	0/70~(0%)

6.1.4 Statistically unusual chemical shifts (i)

The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B B B B B B B B B B B B B B B B B B B	$ \begin{array}{r} 29\\ 19\\ 44\\ 39\\ 45\\ 37\\ 41\\ 30\\ 24\\ 20\\ \end{array} $	C C C C C C C C C C C	C6 C6 C6 C6 C6 C6 C6 C6 C6	$\begin{array}{r} 93.40 \\ 93.60 \\ 94.10 \\ 94.20 \\ 94.50 \\ 94.60 \\ 94.80 \end{array}$	$\begin{array}{r} 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \end{array}$	$\begin{array}{r} -29.9 \\ -29.8 \\ -29.5 \\ -29.4 \\ -29.2 \\ -29.2 \end{array}$
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	B B B B B B B B B B	$ \begin{array}{r} 44 \\ 39 \\ 45 \\ 37 \\ 41 \\ 30 \\ 24 \\ \end{array} $	C C C C C C C	C6 C6 C6 C6 C6	94.10 94.20 94.50 94.60	$\begin{array}{r} 148.60 - 132.80 \\ 148.60 - 132.80 \\ 148.60 - 132.80 \end{array}$	-29.5 -29.4 -29.2
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	B B B B B B B B B	39 45 37 41 30 24	C C C C C	C6 C6 C6 C6	94.20 94.50 94.60	$\frac{148.60 - 132.80}{148.60 - 132.80}$	-29.4 -29.2
$ \begin{array}{c c} 2 \\ $	B B B B B B B	45 37 41 30 24	C C C C	C6 C6 C6	94.50 94.60	148.60 - 132.80	-29.2
$ \begin{array}{c c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $ 2 2 2 2 2 2 2	B B B B B B	$ \begin{array}{r} 37 \\ 41 \\ 30 \\ 24 \end{array} $	C C C	C6 C6	94.60		
$ \begin{array}{c c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $ 2 2 2 2 2 2	B B B B B	41 30 24	C C	C6		148.60 - 132.80	-29.2
$ \begin{array}{c c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	B B B B	30 24	С		04.80		
$ \begin{array}{c c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	B B B	24		C6	94.00	148.60 - 132.80	-29.1
$\begin{array}{c c} 2 \\ \hline \end{array}$	B B		С		95.00	148.60 - 132.80	-28.9
$\begin{array}{c c} 2 \\ \hline 2 \\ \hline 2 \\ \hline \end{array}$	В	20		C6	97.20	148.60 - 132.80	-27.5
2 2			А	C2	105.30	161.87 - 144.47	-27.5
2		22	А	C8	91.80	148.09 - 130.69	-27.4
	В	20	А	C8	92.30	148.09 - 130.69	-27.1
	В	23	U	C6	92.80	150.24 - 132.24	-26.9
2	В	27	А	C2	106.40	161.87 - 144.47	-26.9
2	В	27	А	C8	92.80	148.09 - 130.69	-26.8
2	В	22	А	C2	106.90	161.87 - 144.47	-26.6
2	В	38	U	C6	94.20	150.24 - 132.24	-26.1
2	В	42	U	C6	95.00	150.24 - 132.24	-25.7
2	В	35	А	C2	108.50	161.87 - 144.47	-25.7
2	В	31	U	C6	95.20	150.24 - 132.24	-25.6
2	В	40	U	C6	95.40	150.24 - 132.24	-25.5
2	В	35	А	C8	95.30	148.09 - 130.69	-25.3
2	В	21	G	C8	88.40	146.33 - 126.73	-24.6
2	В	25	U	C6	97.40	150.24 - 132.24	-24.4
2	В	28	G	C8	89.20	146.33 - 126.73	-24.1
2	В	43	G	C8	89.50	146.33 - 126.73	-24.0
2	В	18	G	C8	89.80	146.33 - 126.73	-23.8
2	В	36	G	C8	90.50	146.33 - 126.73	-23.5
2	В	26	G	C8	90.90	146.33 - 126.73	-23.3
2	В	34	G	C8	91.60	146.33 - 126.73	-22.9
2	В	17	G	C8	92.40	146.33 - 126.73	-22.5

Continued on next page...

5J	2	W
00	_	

	nued fron				1		
Mol	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
2	В	33	G	C8	92.80	146.33 - 126.73	-22.3
2	В	32	G	C8	93.80	146.33 - 126.73	-21.8
2	В	45	С	C5'	4.08	79.13 - 47.73	-18.9
2	В	41	С	C5'	110.20	79.13 - 47.73	14.9
2	В	29	С	C5'	109.90	79.13 - 47.73	14.8
2	В	24	С	C5'	106.60	79.13 - 47.73	13.7
2	В	25	U	C5'	106.60	79.45 - 47.95	13.6
2	В	39	C	C5'	105.80	79.13 - 47.73	13.5
2	В	27	A	C5'	109.20	82.41 - 46.31	12.4
2	В	20	A	C5'	109.20	82.41 - 46.31	12.4
2	В	40	U	C2'	99.80	84.81 - 63.51	12.0
2	В	42	U	C2'	99.40	84.81 - 63.51	11.8
2	В	35	A	C5'	106.00	82.41 - 46.31	11.5
2	В	25	U	C2'	98.60	84.81 - 63.51	11.5
2	В	23	U	C2'	98.40	84.81 - 63.51	11.4
2	В	21	G	C5'	108.20	83.89 - 44.79	11.2
2	В	45	С	C3'	104.90	86.45 - 56.55	11.2
2	В	17	G	C5'	107.80	83.89 - 44.79	11.1
2	В	40	U	C3'	102.50	86.21 - 58.51	10.9
2	В	38	U	C3'	102.40	86.21 - 58.51	10.8
2	В	34	G	C5'	106.60	83.89 - 44.79	10.8
2	В	42	U	C3'	102.20	86.21 - 58.51	10.8
2	В	33	G	C5'	106.30	83.89 - 44.79	10.7
2	В	29	С	C3'	102.50	86.45 - 56.55	10.4
2	В	41	С	C3'	102.40	86.45 - 56.55	10.3
2	В	37	С	C3'	102.40	86.45 - 56.55	10.3
2	В	27	A	C2'	99.00	86.37 - 62.67	10.3
2	В	19	С	C3'	102.20	86.45 - 56.55	10.3
2	В	44	С	C3'	102.20	86.45 - 56.55	10.3
2	В	20	A	C2'	98.80	86.37 - 62.67	10.2
2	В	22	A	C2'	98.80	86.37 - 62.67	10.2
2	В	28	G	C3'	102.20	86.98 - 57.68	10.2
2	В	43	G	C3'	102.20	86.98 - 57.68	10.2
2	В	20	А	C3'	101.40	86.77 - 58.27	10.1
2	В	27	А	C3'	101.20	86.77 - 58.27	10.1
2	В	26	G	C5'	103.60	83.89 - 44.79	10.0
2	В	18	G	C3'	101.70	86.98 - 57.68	10.0
2	В	35	А	C2'	98.20	86.37 - 62.67	10.0
2	В	21	G	C3'	101.40	86.98 - 57.68	9.9
2	В	39	С	C3'	100.60	86.45 - 56.55	9.7
2	В	25	U	C3'	98.80	86.21 - 58.51	9.5
2	В	17	G	C2'	99.40	87.27 - 60.57	9.5

Continued from previous page...

Continued on next page...

Mol	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
2	В	34	G	C2'	99.20	87.27 - 60.57	9.5
2	В	39	С	C2'	99.40	87.72 - 61.32	9.4
2	В	28	G	C2'	99.00	87.27 - 60.57	9.4
2	В	32	G	C2'	99.00	87.27 - 60.57	9.4
2	В	43	G	C2'	99.00	87.27 - 60.57	9.4
2	В	37	С	C2'	99.20	87.72 - 61.32	9.3
2	В	26	G	C2'	98.80	87.27 - 60.57	9.3
2	В	18	G	C2'	98.70	87.27 - 60.57	9.3
2	В	29	С	C2'	99.00	87.72 - 61.32	9.3
2	В	41	С	C2'	99.00	87.72 - 61.32	9.3
2	В	26	G	C3'	99.20	86.98 - 57.68	9.2
2	В	24	С	C3'	98.80	86.45 - 56.55	9.1
2	В	30	С	C2'	98.60	87.72 - 61.32	9.1
2	В	24	С	C2'	98.40	87.72 - 61.32	9.0
2	В	44	С	C2'	98.30	87.72 - 61.32	9.0
2	В	35	A	C3'	98.00	86.77 - 58.27	8.9
2	В	34	G	C3'	97.80	86.98 - 57.68	8.7
2	В	45	С	C2'	97.00	87.72 - 61.32	8.5
2	В	21	G	C2'	92.20	87.27 - 60.57	6.8

Continued from previous page...

6.1.5 Random Coil Index (RCI) plots (i)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

