

wwPDB EM Validation Summary Report (i)

Oct 1, 2024 – 01:03 AM JST

PDB ID : 5IMR EMDB ID : EMD-6585 Title : Structure of ribosome bound to cofactor at 5.7 angstrom resolution Authors Kumar, V.; Ero, R.; Jian, G.K.; Ahmed, T.; Zhan, Y.; Bhushan, S.; Gao, Y.G. : Deposited on 2016-03-06 : 5.70 Å(reported) Resolution : Based on initial models 4W2E, 5AA0 :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures		
Metric	$(\# { m Entries})$	$(\# { m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	1522	11% 55%	44% •
2	F	256	84%	7% 9%
3	G	239	54%	6% 14%
4	Н	209	49% 91%	9%
5	Ι	162	36%	• 7%
6	J	101	51% 97%	·
7	K	156	62%	
8	L	138	42%	9%

Conti	nued fron	n previous p	page	
Mol	Chain	Length	Quality of chain	
			57%	
9	М	128	88%	12% •
10	2.7	105	58%	
10	N	105	82%	11% 7%
11		190	33%	
	0	129	35%	5% 8%
12	Р	132	960/	80/ 60/
12	1	102	44%	6 70 0 70
13	Q	126	78%	$10\% \cdot 10\%$
			64%	
14	R	61	89%	10% •
			43%	
15	S	89	91%	8% •
1.0	m	0.0	35%	
16	T	88	88%	7% 6%
17	I	105	54%	70/
11	0	105	92%	/% •
18	V	88	76%	7% 17%
10	•	00	41%	////
19	W	93	77%	6% • 14%
			49%	
20	Х	106	89%	5% 7%
01	37		48%	
21	Y	27	78%	11% 11%
22	C	610	42%	70/ 70/
	U	010	<u> </u>	/% /%
23	D	2893	45% 51%	•
		_000	20%	
24	E	123	58%	42%
			85%	
25	Z	229	88%	10% •
0.0		270	21%	
26	a	276	84%	14% •
97	Ь	206	45%	150/
	U	200	48%	15%
28	с	210	90%	9%
			54%	
29	d	182	86%	13% •
			44%	
30	e	180	82%	13% ••
	0	1.10	52%	
31	t	140	88%	11% •
20	~	100	54%	
32	g	122	43%	11%
33	h	150	83%	1/1%
	11	100	٥/ دن	

Mol	Chain	Length	Quality of chain	
34	i	141	40%	10%
01	1		49%	10% ••
35	j	118	92%	8% •
36	k	112	89%	9% •
37	1	146	70% 10%	• 20%
20		110	52%	
38	m	118	91%	8% •
39	n	101	81%	18% •
40	0	113	90%	6% · ·
41	р	96	42%	7% •
42	0	110	54%	22%
-12	Ч	110	58%	2270
43	r	206	79%	8% 13%
44	s	85	87%	6% 7%
45	\mathbf{t}	67	49% 93%	7%
46	11	60	48%	7%
10	u		37%	, 70
47	V	71	76%	18% 6%
48	W	60	82%	13% 5%
49	х	54	69%	22% 9%
50	y	49	43%	14%
51	7	65	54%	1494
50	1	27	43%	14 /0
52	1	37	95%	5%
53	2	173	68% 7%	25%
54	3	147	63% 24%	» <u>5%</u> 9%
55	4	77	64%	38% •
56	5	76	24% 49% 50%	

Continued from previous page...

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 152879 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	А	1515	Total 32554	C 14490	N 6022	O 10527	Р 1515	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	F	234	Total 1900	C 1213	N 341	0 341	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	G	206	Total 1612	C 1016	N 314	0 281	${ m S}$ 1	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Н	208	Total 1703	C 1066	N 339	0 291	${ m S} 7$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	Ι	150	Total 1146	С 724	N 217	O 201	${S \atop 4}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
6	J	101	Total 843	C 531	N 155	0 154	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	K	155	Total 1257	C 781	N 252	0 218	S 6	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
8	L	138	Total 1116	C 705	N 215	0 193	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
9	М	127	Total 1010	C 639	N 197	0 174	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	Ν	98	Total 794	C 499	N 156	0 138	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	О	119	Total 885	C 549	N 168	0 165	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	Р	124	Total 970	C 611	N 195	0 163	S 1	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms		AltConf	Trace	
13	Q	114	Total 914	C 565	N 189	0 158	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
14	R	60	Total 492	C 312	N 104	0 72	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	S	88	Total 734	C 459	N 147	O 126	${S \over 2}$	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	Т	83	Total 700	C 443	N 139	0 117	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	U	104	Total 857	С 547	N 161	0 147	${S \over 2}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
18	V	73	Total 597	C 380	N 118	O 99	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	W	80	Total 647	C 414	N 119	0 112	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Х	99	Total 763	C 470	N 162	0 129	$\frac{S}{2}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein Thx.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
21	Y	24	Total 208	C 128	N 50	O 30	0	0

• Molecule 22 is a protein called Elongation factor 4.

Mol	Chain	Residues		Ate		AltConf	Trace		
22	С	570	Total 4461	C 2858	N 768	O 826	S 9	0	0

• Molecule 23 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
23	D	2889	Total 62218	C 27691	N 11629	O 20009	Р 2889	0	0

• Molecule 24 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A		AltConf	Trace		
24	Е	123	Total 2641	C 1175	N 488	O 855	Р 123	0	0

• Molecule 25 is a protein called 50S ribosomal protein L1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
25	Z	228	Total 1742	C 1102	N 318	O 319	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
26	a	272	Total 2124	C 1339	N 424	O 358	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	b	206	Total 1578	C 997	N 302	0 273	S 6	0	0

• Molecule 28 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	с	208	Total 1625	C 1034	N 303	O 286	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	d	182	Total 1482	C 947	N 269	0 261	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	е	174	Total 1328	C 844	N 248	0 235	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
31	f	139	Total 1113	C 717	N 207	0 186	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	g	122	Total 932	C 587	N 171	O 170	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	h	145	Total 1106	C 688	N 226	O 190	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	i	136	Total 1080	C 688	N 204	0 183	${S \atop 5}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
35	j	117	Total 960	C 599	N 202	O 159	0	0

• Molecule 36 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
36	k	110	Total 877	$\begin{array}{c} \mathrm{C} \\ 553 \end{array}$	N 175	O 149	0	0

• Molecule 37 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	1	117	Total 976	C 614	N 197	0 164	S 1	0	0

• Molecule 38 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	m	117	Total 964	C 610	N 202	0 151	S 1	0	0

• Molecule 39 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	n	101	Total 779	C 501	N 142	0 135	S 1	0	0

• Molecule 40 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	О	110	Total 876	C 552	N 171	0 151	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	р	94	Total 742	C 483	N 133	O 126	0	0

• Molecule 42 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	q	110	Total 844	$\begin{array}{c} \mathrm{C} \\ 539 \end{array}$	N 158	0 141	S 6	0	0

• Molecule 43 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	r	180	Total 1435	C 916	N 256	O 260	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	s	79	Total 625	C 387	N 131	0 106	S 1	0	0

• Molecule 45 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
45	t	67	Total 567	C 350	N 116	O 99	${S \over 2}$	0	0

• Molecule 46 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
46	u	59	Total 469	C 298	N 90	O 81	0	0

• Molecule 47 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	v	71	Total 581	C 364	N 108	0 104	${ m S}{ m 5}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
48	W	57	Total 445	C 279	N 87	0 74	${f S}{5}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
49	x	49	Total 426	C 265	N 87	O 70	${f S}$ 4	0	0

• Molecule 50 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
50	У	49	Total 430	C 263	N 108	O 57	${ m S} { m 2}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Z	64	Total 515	C 331	N 102	O 79	${f S}\ 3$	0	0

• Molecule 52 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
52	1	37	Total	С	Ν	Ο	\mathbf{S}	0	0
02	1	01	307	188	68	47	4	0	0

• Molecule 53 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
53	2	130	Total 641	C 381	N 130	O 130	0	0

• Molecule 54 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	3	134	Total 993	C 632	N 175	0 181	${f S}{5}$	0	0

• Molecule 55 is a RNA chain called P site- tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
55	4	77	Total 1640	C 732	N 297	O 535	Р 76	0	0

• Molecule 56 is a RNA chain called E site- tRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
56	5	76	Total 1623	C 723	N 290	0 534	Р 76	0	0

• Molecule 57 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (three-letter code: GCP) (formula: $C_{11}H_{18}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms			AltConf			
57	С	1	Total	С	Ν	Ο	Р	0	
57	U	$C \qquad 1$	32	11	5	13	3	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S ribosomal RNA

• Molecule 7: 30S ribosomal protein S7

• Molecule 8: 30S ribosomal protein S8

WORLDWIDE PROTEIN DATA BANK

GLY LYS GLU GLU ALA LYS LYS LYS LYS

 \bullet Molecule 20: 30S ribosomal protein S20

PROTEIN DATA BANK

• Molecule 27: 50S ribosomal protein L3

• Molecule 29: 50S ribosomal protein L5

• Molecule 30: 50S ribosomal protein L6

 \bullet Molecule 35: 50S ribosomal protein L17

PB5 RB6 RB6 PB9 R90 P91 P100 P1107 P1105 P1105 P1105 P1105 P1105 P1105 P1105 P1105 P1105 P1110 P1110 P1113 P1113 P1115 P

 \bullet Molecule 36: 50S ribosomal protein L18

P91 H95 C966 X99 A100 L101 A102 F112

• Molecule 37: 50S ribosomal protein L19

• Molecule 43: 50S ribosomal protein L25

• Molecule 54: 50S ribosomal protein L11

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	Not provided	
Resolution determination method	Not provided	
CTF correction method	Not provided	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	22	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.959	Depositor
Minimum map value	-0.573	Depositor
Average map value	0.007	Depositor
Map value standard deviation	0.050	Depositor
Recommended contour level	0.161	Depositor
Map size (Å)	414.72, 414.72, 414.72	wwPDB
Map dimensions	324, 324, 324	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.28, 1.28, 1.28	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GCP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chai		B	ond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.78	1/36438~(0.0%)	1.10	50/56869~(0.1%)
2	F	0.44	0/1935	0.72	1/2609~(0.0%)
3	G	0.42	0/1636	0.66	0/2205
4	Н	0.49	0/1733	0.71	1/2318~(0.0%)
5	Ι	0.49	0/1162	0.76	0/1564
6	J	0.40	0/856	0.63	0/1154
7	Κ	0.38	0/1276	0.67	0/1709
8	L	0.48	0/1136	0.77	1/1527~(0.1%)
9	М	0.38	0/1029	0.65	0/1379
10	Ν	0.34	0/807	0.67	0/1085
11	0	0.39	0/900	0.63	0/1213
12	Р	0.54	0/986	0.79	0/1320
13	Q	0.35	0/924	0.67	1/1238~(0.1%)
14	R	0.42	0/501	0.69	0/664
15	S	0.56	0/745	0.78	0/992
16	Т	0.53	0/716	0.75	0/963
17	U	0.48	0/870	0.71	0/1159
18	V	0.41	0/603	0.72	1/799~(0.1%)
19	W	0.39	0/661	0.67	0/890
20	Х	0.50	0/765	0.79	0/1007
21	Y	0.36	0/212	0.66	0/277
22	С	0.44	0/4545	0.57	25/6155~(0.4%)
23	D	0.97	10/69685~(0.0%)	1.24	293/108786~(0.3%)
24	Ε	0.82	1/2954~(0.0%)	1.09	2/4606~(0.0%)
25	Ζ	0.33	0/1775	0.58	2/2393~(0.1%)
26	a	0.57	1/2174~(0.0%)	0.80	1/2927~(0.0%)
27	b	0.54	0/1611	0.85	2/2171~(0.1%)
28	с	0.56	0/1660	0.78	0/2247
29	d	0.39	0/1507	0.73	2/2027~(0.1%)
30	е	0.47	0/1354	0.75	1/1831~(0.1%)
31	f	0.53	0/1140	0.79	2/1537 $(0.1%)$
32	g	0.52	0/942	0.80	0/1268

Mal	Chain	B	ond lengths	I	Bond angles
WIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
33	h	0.48	0/1123	0.85	1/1493~(0.1%)
34	i	0.55	0/1100	0.81	1/1470~(0.1%)
35	j	0.52	0/974	0.73	0/1302
36	k	0.48	0/887	0.78	0/1180
37	l	0.52	0/990	0.81	1/1325~(0.1%)
38	m	0.60	0/982	0.79	0/1306
39	n	0.45	0/790	0.78	0/1057
40	0	0.52	0/886	0.71	0/1189
41	р	0.47	0/756	0.71	0/1015
42	q	0.43	0/857	0.78	0/1142
43	r	0.41	0/1467	0.70	0/1992
44	s	0.48	0/633	0.71	0/843
45	t	0.50	0/569	0.72	0/751
46	u	0.56	0/474	0.77	0/635
47	V	0.51	0/594	0.85	1/795~(0.1%)
48	W	0.56	0/459	0.76	0/621
49	Х	0.49	0/433	0.87	0/576
50	У	0.58	0/438	0.78	0/575
51	Z	0.57	0/523	0.83	0/690
52	1	0.46	0/310	0.72	0/407
53	2	0.23	0/640	0.45	0/889
54	3	0.43	0/1012	0.70	2/1373~(0.1%)
55	4	0.57	0/1832	0.96	1/2855~(0.0%)
56	5	1.93	7/1813~(0.4%)	1.02	3/2823~(0.1%)
All	All	0.81	20/165780~(0.0%)	1.07	$39\overline{5/247193}~(0.2\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	F	0	1
8	L	0	1
26	a	0	5
28	с	0	3
30	е	0	1
31	f	0	1
32	g	0	1
37	l	0	2
38	m	0	1
39	n	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
40	0	0	1
41	р	0	1
42	q	0	1
46	u	0	1
47	V	0	1
49	Х	0	1
51	Z	0	1
54	3	0	2
All	All	0	26

Continued from previous page...

The worst 5 of 20 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
56	5	75	С	N3-C4	39.72	1.61	1.33
56	5	75	С	N1-C6	36.95	1.59	1.37
56	5	75	C	C2-N3	36.64	1.65	1.35
56	5	75	С	C4-C5	26.84	1.64	1.43
56	5	75	С	N1-C2	25.86	1.66	1.40

The worst 5 of 395 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
23	D	2075	U	N1-C2-O2	10.51	130.16	122.80
23	D	1498	С	C2-N1-C1'	10.33	130.16	118.80
23	D	2498	С	N1-C2-O2	9.67	124.70	118.90
23	D	2498	С	N3-C2-O2	-9.54	115.22	121.90
23	D	1937	А	N1-C6-N6	-9.37	112.98	118.60

There are no chirality outliers.

5 of 26 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	F	99	GLY	Peptide
8	L	28	ALA	Peptide
26	a	46	GLN	Peptide
26	a	82	ILE	Peptide
26	a	96	HIS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	F	232/256~(91%)	181 (78%)	33 (14%)	18 (8%)	1	9
3	G	204/239~(85%)	157 (77%)	33~(16%)	14 (7%)	1	11
4	Н	206/209~(99%)	168 (82%)	21~(10%)	17~(8%)	0	9
5	Ι	148/162~(91%)	122 (82%)	19~(13%)	7 (5%)	2	16
6	J	99/101~(98%)	85 (86%)	11 (11%)	3 (3%)	3	22
7	K	153/156~(98%)	130 (85%)	16 (10%)	7 (5%)	2	16
8	L	136/138~(99%)	107 (79%)	19 (14%)	10 (7%)	1	10
9	М	125/128~(98%)	96 (77%)	14 (11%)	15 (12%)	0	4
10	N	96/105~(91%)	73 (76%)	11 (12%)	12 (12%)	0	4
11	Ο	117/129~(91%)	96 (82%)	15 (13%)	6 (5%)	1	15
12	Р	122/132~(92%)	79~(65%)	33 (27%)	10 (8%)	1	9
13	Q	112/126~(89%)	80 (71%)	19 (17%)	13 (12%)	0	5
14	R	58/61~(95%)	40 (69%)	12 (21%)	6 (10%)	0	6
15	S	86/89~(97%)	70 (81%)	9 (10%)	7 (8%)	1	9
16	Т	81/88~(92%)	65~(80%)	10 (12%)	6 (7%)	1	10
17	U	102/105~(97%)	82 (80%)	13~(13%)	7 (7%)	1	11
18	V	71/88~(81%)	57 (80%)	9~(13%)	5 (7%)	1	11
19	W	78/93~(84%)	53 (68%)	17 (22%)	8 (10%)	0	6
20	X	97/106~(92%)	85 (88%)	7 (7%)	5 (5%)	1	15
21	Y	22/27~(82%)	17 (77%)	2(9%)	3 (14%)	0	4
22	С	562/610~(92%)	244 (43%)	187 (33%)	131 (23%)	0	1
25	Z	226/229~(99%)	180 (80%)	26 (12%)	20 (9%)	0	8
26	a	270/276~(98%)	188 (70%)	51 (19%)	31 (12%)	0	5
27	b	204/206~(99%)	147 (72%)	29 (14%)	28 (14%)	0	4
28	с	206/210~(98%)	160 (78%)	29 (14%)	17 (8%)	0	9

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
29	d	180/182~(99%)	119 (66%)	39~(22%)	22~(12%)	0	4
30	е	172/180~(96%)	121 (70%)	27~(16%)	24~(14%)	0	3
31	f	137/140~(98%)	106 (77%)	18 (13%)	13 (10%)	0	8
32	g	120/122~(98%)	86 (72%)	22 (18%)	12 (10%)	0	7
33	h	143/150~(95%)	98~(68%)	25~(18%)	20 (14%)	0	3
34	i	134/141~(95%)	89 (66%)	30 (22%)	15 (11%)	0	6
35	j	115/118 (98%)	93 (81%)	13 (11%)	9 (8%)	1	9
36	k	108/112~(96%)	78 (72%)	20 (18%)	10 (9%)	0	8
37	1	115/146 (79%)	70 (61%)	32 (28%)	13 (11%)	0	5
38	m	115/118 (98%)	87 (76%)	19 (16%)	9 (8%)	1	9
39	n	99/101~(98%)	59 (60%)	21 (21%)	19 (19%)	0	2
40	О	108/113~(96%)	82 (76%)	18 (17%)	8 (7%)	1	10
41	р	92/96~(96%)	74 (80%)	12 (13%)	6 (6%)	1	12
42	q	108/110 (98%)	61 (56%)	24 (22%)	23 (21%)	0	2
43	r	178/206~(86%)	128 (72%)	33 (18%)	17 (10%)	0	7
44	S	77/85~(91%)	60 (78%)	12 (16%)	5 (6%)	1	12
45	t	65/67~(97%)	58 (89%)	2(3%)	5 (8%)	1	9
46	u	57/60~(95%)	43 (75%)	11 (19%)	3~(5%)	1	14
47	v	69/71~(97%)	39~(56%)	14 (20%)	16 (23%)	0	1
48	W	55/60~(92%)	35 (64%)	12 (22%)	8 (14%)	0	3
49	х	47/54 (87%)	21 (45%)	15 (32%)	11 (23%)	0	1
50	У	47/49~(96%)	30 (64%)	10 (21%)	7 (15%)	0	3
51	Z	62/65~(95%)	38 (61%)	14 (23%)	10 (16%)	0	3
52	1	35/37~(95%)	25 (71%)	8 (23%)	2(6%)	1	14
53	2	128/173 (74%)	95 (74%)	21 (16%)	12 (9%)	0	8
54	3	132/147~(90%)	82 (62%)	20 (15%)	30 (23%)	0	1
All	All	6511/6972 (93%)	4639 (71%)	1137 (18%)	735 (11%)	1	5

Continued from previous page...

5 of 735 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	F	191	ASP
2	F	209	ARG

Continued from previous page...

Mol	Chain	Res	Type
3	G	64	VAL
4	Н	30	LYS
4	Н	191	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
2	F	202/220~(92%)	202 (100%)	0	100	100
3	G	160/188~(85%)	160 (100%)	0	100	100
4	Н	180/181~(99%)	180 (100%)	0	100	100
5	Ι	115/123~(94%)	115 (100%)	0	100	100
6	J	90/90~(100%)	90 (100%)	0	100	100
7	Κ	126/127~(99%)	126 (100%)	0	100	100
8	L	119/119~(100%)	119 (100%)	0	100	100
9	М	98/99~(99%)	98~(100%)	0	100	100
10	Ν	88/92~(96%)	88 (100%)	0	100	100
11	Ο	90/99~(91%)	90 (100%)	0	100	100
12	Р	104/109~(95%)	103 (99%)	1 (1%)	73	81
13	Q	92/101~(91%)	87~(95%)	5 (5%)	18	39
14	R	49/50~(98%)	49 (100%)	0	100	100
15	S	79/80~(99%)	79~(100%)	0	100	100
16	Т	72/74~(97%)	72 (100%)	0	100	100
17	U	96/97~(99%)	96 (100%)	0	100	100
18	V	64/77~(83%)	64 (100%)	0	100	100
19	W	71/80~(89%)	69~(97%)	2(3%)	38	57
20	X	$7\overline{6}/82~(93\%)$	76 (100%)	0	100	100
21	Y	19/22 (86%)	19 (100%)	0	100	100
22	С	473/505~(94%)	347 (73%)	126 (27%)	0	3

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
25	Z	180/181~(99%)	174 (97%)	6(3%)	33	52
26	a	215/218~(99%)	213 (99%)	2(1%)	75	83
27	b	166/166~(100%)	165~(99%)	1 (1%)	84	88
28	с	164/166~(99%)	164 (100%)	0	100	100
29	d	156/156~(100%)	153~(98%)	3(2%)	52	69
30	е	143/148~(97%)	141 (99%)	2(1%)	62	75
31	f	118/119~(99%)	118 (100%)	0	100	100
32	g	100/100~(100%)	99~(99%)	1 (1%)	73	81
33	h	111/116~(96%)	111 (100%)	0	100	100
34	i	106/111~(96%)	106 (100%)	0	100	100
35	j	100/101~(99%)	100 (100%)	0	100	100
36	k	87/88~(99%)	87 (100%)	0	100	100
37	1	105/127~(83%)	105 (100%)	0	100	100
38	m	93/94~(99%)	93 (100%)	0	100	100
39	n	82/82~(100%)	82 (100%)	0	100	100
40	О	90/92~(98%)	90 (100%)	0	100	100
41	р	76/78~(97%)	76 (100%)	0	100	100
42	q	91/91~(100%)	91 (100%)	0	100	100
43	r	159/179~(89%)	159 (100%)	0	100	100
44	\mathbf{S}	63/67~(94%)	63~(100%)	0	100	100
45	t	62/62~(100%)	62 (100%)	0	100	100
46	u	51/52~(98%)	51 (100%)	0	100	100
47	v	63/63~(100%)	60~(95%)	3~(5%)	21	43
48	W	50/52~(96%)	50 (100%)	0	100	100
49	х	48/52~(92%)	48 (100%)	0	100	100
50	У	42/42~(100%)	42 (100%)	0	100	100
51	Z	54/55~(98%)	54 (100%)	0	100	100
52	1	$\overline{34/34}\ (100\%)$	34 (100%)	0	100	100
54	3	101/111 (91%)	86 (85%)	15 (15%)	2	12
All	All	5373/5618~(96%)	5206 (97%)	167 (3%)	37	54

5 of 167 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
22	С	489	LEU
29	d	25	TYR
22	С	507	ILE
22	С	583	ARG
47	v	31	ILE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 111 such side chains are listed below:

Mol	Chain	Res	Type
26	а	44	ASN
54	3	116	ASN
31	f	94	HIS
54	3	42	ASN
47	V	47	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	1514/1522~(99%)	640 (42%)	80~(5%)
23	D	2888/2893~(99%)	1464~(50%)	169~(5%)
24	Е	122/123~(99%)	47 (38%)	4(3%)
55	4	76/77~(98%)	30~(39%)	0
56	5	75/76~(98%)	36 (48%)	4(5%)
All	All	4675/4691 (99%)	2217 (47%)	257~(5%)

5 of 2217 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	6	G
1	А	8	А
1	А	9	G
1	А	10	А
1	А	14	U

5 of 257 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
23	D	2576	G
23	D	2664	G
23	D	270(B)	А
23	D	227	А

Continued from previous page...

Mol	Chain	Res	Type
23	D	2725	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Ty	Type	Chain	n Res	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
	туре				Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
57	GCP	С	701	-	27,34,34	<mark>3.19</mark>	8 (29%)	34,54,54	2.76	9 (26%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
57	GCP	С	701	-	-	9/15/38/38	0/3/3/3

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	С	701	GCP	C3'-C4'	-9.42	1.28	1.53
57	С	701	GCP	O4'-C4'	7.70	1.62	1.45
57	С	701	GCP	O4'-C1'	-6.76	1.31	1.41

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	С	701	GCP	C2-N2	6.08	1.46	1.33
57	С	701	GCP	O2'-C2'	-3.10	1.35	1.43

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
57	С	701	GCP	N2-C2-N3	8.57	131.76	117.79
57	С	701	GCP	N2-C2-N1	-6.11	107.75	117.25
57	С	701	GCP	C1'-N9-C4	-6.03	116.05	126.64
57	С	701	GCP	N3-C2-N1	-5.05	120.48	127.22
57	С	701	GCP	PB-O3A-PA	-4.93	116.91	132.56

There are no chirality outliers.

5 of 9 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
57	С	701	GCP	PG-C3B-PB-O1B
57	С	701	GCP	PG-C3B-PB-O2B
57	С	701	GCP	PG-C3B-PB-O3A
57	С	701	GCP	C5'-O5'-PA-O3A
57	С	701	GCP	C5'-O5'-PA-O1A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6585. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 162

Y Index: 162

Z Index: 162

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 167

Y Index: 170

Z Index: 170

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.161. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1597 $\rm nm^3;$ this corresponds to an approximate mass of 1443 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.175 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6585 and PDB model 5IMR. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.161 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.161).

9.4 Atom inclusion (i)

At the recommended contour level, 57% of all backbone atoms, 61% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.161) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6110	0.1000
1	0.5100	0.0940
2	0.0370	0.0020
3	0.3710	0.0270
4	0.3630	0.1310
5	0.5870	0.1030
А	0.7040	0.1120
С	0.4590	0.0940
D	0.7180	0.1300
Е	0.6380	0.0400
F	0.3260	0.0200
G	0.3200	0.0180
Н	0.4550	0.0590
Ι	0.4890	0.0960
J	0.4270	0.0670
Κ	0.3150	0.0270
L	0.4960	0.0610
Μ	0.3700	0.0290
Ν	0.3080	0.0180
О	0.5250	0.1180
Р	0.5060	0.1290
Q	0.4460	0.0260
R	0.3230	0.0250
S	0.4630	0.0880
Т	0.5340	0.0280
U	0.5290	0.0990
V	0.4290	0.0820
W	0.4520	-0.0270
Х	0.4670	0.0570
Y	0.3510	-0.0210
Z	0.1620	0.0120
a	0.5880	0.1510
b	0.4920	0.0860
c	0.4520	0.0640
d	0.3990	0.0230

Continued from previous page...

Chain	Atom inclusion	Q-score
е	0.4790	0.0370
f	0.4250	0.0370
g	0.5090	0.1400
h	0.4840	0.0750
i	0.4460	0.0850
j	0.4480	0.0250
k	0.4960	0.0110
1	0.5070	0.1240
m	0.4160	0.0340
n	0.4080	0.0160
0	0.4270	0.0540
р	0.4680	0.0670
q	0.4280	0.0270
r	0.3180	0.0200
S	0.4340	0.0550
t	0.4460	0.0290
u	0.4250	0.0400
V	0.4860	0.1120
W	0.3880	0.0100
X	0.5160	0.0970
У	0.4650	0.1110
Z	0.3740	0.0400

