

wwPDB EM Validation Summary Report (i)

Jul 12, 2023 – 03:25 PM JST

PDB ID	:	8I9X
EMDB ID	:	EMD-35287
Title	:	Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit
		- Ytm1-1
Authors	:	Lau, B.; Huang, Z.; Beckmann, R.; Hurt, E.; Cheng, J.
Deposited on	:	2023-02-07
Resolution	:	2.80 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev50
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.34

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	C1	3341	63%	17%	20%
2	C2	319	• 64%	17%	20%
3	CA	316	78%	•	21%
4	CB	391	65% •	349	%
5	CC	801	81%	·	18%
6	CD	495	93%		7%
7	CE	598	77%	•	23%
8	CF	270	91%		9%

Mol	Chain		Quality of chain	
	0	201801		
9	CG	184	96%	• •
10	CH	661	81%	18%
11	CI	414	1 35% 65%	
12	CJ	679	• 72% • 27%	6
13	CK	261	90%	• 9%
14	CL	558	50% 70% • 29%	
15	CM	249	89%	10%
15	m LF	249	98%	
16	CN	246	100%	
17	СО	120	52% 48%	
18	CP	751	47% • 53%	
19	CQ	225	79% 2	:0%
20	CR	237	70% 30%	
21	CS	834	i 31% 69%	
22	CT	688	71% 29%	
23	CU	451	39% 61%	
24	CV	147	95%	5%
25	\mathbf{CX}	203	43% 57%	
26	CY	788	• 51% • 48%	
27	Cb	924	6 9% 31%	
28	Cz	123	9% 57% 43%	
29	LB	392	90%	•• 9%
30	LC	365	99%	•
31	LE	200	90%	10%
32	LG	262	77% • 2	2%

Mol	Chain	Length	Quality of chain	
33	LH	192	98%	
34	LK	165	85%	• 12%
35	LL	213	5 4% • 45%	
36	LM	142	96%	
37	LN	203	900/	1.0%
38	LO	200	1000/	• 10%
00		107	100%	
- 39	LP	187	90%	10%
40	LQ	213	60% 39%	
41	LR	2898	• 96%	
42	LS	174	99%	•
43	LT	160	78%	21%
44	LU	127	83%	17%
45	LV	139	● 96%	
46	LX	156	87%	. 12%
47		100	•	• 1270
47	LY	138	97%	•
48	LZ	135	100%	
49	Lc	108	91%	9%
50	Ld	120	91%	9%
51	Le	131	97%	·
52	Lf	109	99%	
53	Lg	119	5%	•••
54	Lh	935	13% 87%	
	T :	110		
	L1	110	78%	20%
56	Lj	95	76% .	22%
57	Lk	81	91%	• 7%

Mol	Chain	Length	Quality of chain	Quality of chain						
58	Ll	51	75%	25%						
59	Lq	217	93%	• 5%						

2 Entry composition (i)

There are 61 unique types of molecules in this entry. The entry contains 162633 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (3341-MER).

Mol	Chain	Residues			AltConf	Trace			
1	C1	2658	Total 56864	C 25379	N 10296	O 18531	Р 2658	0	0

• Molecule 2 is a RNA chain called RNA (319-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	C2	256	Total 5456	C 2435	N 974	O 1791	Р 256	0	0

• Molecule 3 is a protein called Brix domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	CA	251	Total 2069	C 1324	N 381	0 357	${f S}7$	0	0

• Molecule 4 is a protein called Ribosome biogenesis protein C8F11.04.

Mol	Chain	Residues		At	AltConf	Trace			
4	СВ	260	Total 2063	C 1322	N 367	0 371	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called Ribosome biogenesis protein ERB1.

Mol	Chain	Residues		A	AltConf	Trace				
5	CC	658	Total 5297	C 3368	N 931	O 983	Р 2	S 13	0	0

• Molecule 6 is a protein called Ribosome biogenesis protein YTM1.

Mol	Chain	Residues		Ate	AltConf	Trace			
6	CD	460	Total 3468	C 2173	N 610	O 679	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
CD	88	ASP	GLU	conflict	UNP G0SFB5

• Molecule 7 is a protein called RNA helicase.

Mol	Chain	Residues		At	AltConf	Trace			
7	CE	462	Total 3669	C 2350	N 642	O 666	S 11	0	0

There are 42 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
CE	543	LYS	-	insertion	UNP G0RYU9
CE	544	SER	-	insertion	UNP GORYU9
CE	545	PHE	-	insertion	UNP GORYU9
CE	546	GLY	-	insertion	UNP GORYU9
CE	547	PHE	-	insertion	UNP GORYU9
CE	548	SER	-	insertion	UNP G0RYU9
CE	549	THR	-	insertion	UNP GORYU9
CE	550	PRO	-	insertion	UNP GORYU9
CE	551	PRO	-	insertion	UNP GORYU9
CE	552	ARG	-	insertion	UNP GORYU9
CE	553	VAL	-	insertion	UNP GORYU9
CE	554	ASP	-	insertion	UNP GORYU9
CE	555	ILE	-	insertion	UNP GORYU9
CE	556	THR	-	insertion	UNP GORYU9
CE	557	LEU	-	insertion	UNP GORYU9
CE	558	SER	-	insertion	UNP GORYU9
CE	559	ALA	-	insertion	UNP GORYU9
CE	560	SER	-	insertion	UNP GORYU9
CE	561	LEU	-	insertion	UNP GORYU9
CE	562	SER	-	insertion	UNP GORYU9
CE	563	ARG	-	insertion	UNP GORYU9
CE	564	ASP	-	insertion	UNP GORYU9
CE	565	LYS	-	insertion	UNP GORYU9
CE	566	LYS	-	insertion	UNP GORYU9
CE	567	PRO	-	insertion	UNP GORYU9
CE	568	GLN	-	insertion	UNP GORYU9
CE	569	GLY	-	insertion	UNP GORYU9
CE	570	ARG	-	insertion	UNP GORYU9
CE	571	ARG	-	insertion	UNP GORYU9
CE	572	ALA	-	insertion	UNP G0RYU9

Chain	Residue	Modelled	Actual	Comment	Reference
CE	573	TYR	-	insertion	UNP GORYU9
CE	574	GLY	-	insertion	UNP G0RYU9
CE	575	SER	-	insertion	UNP G0RYU9
CE	576	GLN	-	insertion	UNP G0RYU9
CE	577	PRO	-	insertion	UNP G0RYU9
CE	578	ARG	-	insertion	UNP G0RYU9
CE	579	GLN	-	insertion	UNP G0RYU9
CE	580	GLY	-	insertion	UNP G0RYU9
CE	581	GLY	-	insertion	UNP G0RYU9
CE	582	ARG	-	insertion	UNP G0RYU9
CE	583	TYR	-	insertion	UNP GORYU9
CE	584	LYS	-	insertion	UNP GORYU9

• Molecule 8 is a protein called Ribosome assembly factor mrt4.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	CF	245	Total 1945	C 1222	N 352	O 362	S 9	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
CF	13	ILE	THR	conflict	UNP G0S616
CF	139	THR	PRO	conflict	UNP G0S616
CF	228	ASN	SER	conflict	UNP G0S616
CF	259	ILE	MET	conflict	UNP G0S616

• Molecule 9 is a protein called 60S ribosome subunit biogenesis protein NIP7.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
9	CG	177	Total 1396	C 884	N 247	O 253	S 12	0	0

• Molecule 10 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues		At	AltConf	Trace			
10	CH	542	Total 4388	C 2784	N 770	0 818	S 16	0	0

• Molecule 11 is a protein called Putative RNA-binding protein.

Mol	Chain	Residues		At	Atoms					
11	CI	146	Total 1196	C 763	N 224	O 204	${ m S}{ m 5}$	0	0	

• Molecule 12 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	AltConf	Trace			
12	CJ	494	Total 4040	$\begin{array}{c} \mathrm{C} \\ 2575 \end{array}$	N 719	0 734	S 12	0	0

• Molecule 13 is a protein called Ribosome biogenesis protein NSA2 homolog.

Mol	Chain	Residues		Ate	AltConf	Trace			
13	CK	238	Total 1908	C 1199	N 375	O 330	${S \atop 4}$	0	0

• Molecule 14 is a protein called Putative GTP binding protein.

Mol	Chain	Residues		Ator	AltConf	Trace		
14	CL	397	Total 2239	C 1350	N 459	O 430	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
CL	69	ARG	ILE	conflict	UNP G0SEW3

• Molecule 15 is a protein called 60S ribosomal protein l7-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	CM	223	Total 1820	C 1169	N 340	O 308	${ m S} { m 3}$	0	0
15	LF	247	Total 2017	C 1294	N 376	0 344	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues		At	AltConf	Trace			
16	CN	246	Total 1856	C 1158	N 322	O 369	${ m S} 7$	0	0

• Molecule 17 is a protein called DUF2423 domain-containing protein.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
17	СО	62	Total 468	C 290	N 94	O 82	${ m S}$ 2	0	0

• Molecule 18 is a protein called RNA methyltransferase nop2-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
18	CP	356	Total 2798	C 1777	N 495	O 510	S 16	0	0

• Molecule 19 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
19	CQ	179	Total 1485	C 926	N 304	0 245	S 10	0	0

• Molecule 20 is a protein called Nucleolar protein 16.

Mol	Chain	Residues		At	AltConf	Trace			
20	CR	167	Total 1354	C 827	N 278	0 247	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called AdoMet-dependent rRNA methyltransferase SPB1.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	CS	262	Total 2105	C 1322	N 399	0 377	S 7	0	0

• Molecule 22 is a protein called Nucleolar complex-associated protein 3.

Mol	Chain	Residues		At	AltConf	Trace			
22	CT	488	Total 3911	C 2486	N 690	0 719	S 16	0	0

• Molecule 23 is a protein called rRNA-processing protein EBP2.

Mol	Chain	Residues		At	AltConf	Trace			
23	CU	178	Total 1415	C 876	N 265	0 271	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	CV	139	Total 1073	C 672	N 213	O 188	0	0

• Molecule 25 is a protein called 60S ribosomal subunit-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	CX	88	Total 701	C 435	N 128	0 135	${f S}\ 3$	0	0

• Molecule 26 is a protein called Putative NOC2 family protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	CY	410	Total 3313	C 2127	N 597	0 577	S 12	0	0

• Molecule 27 is a protein called ATP-dependent RNA helicase DBP10.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	Cb	642	Total 5058	C 3216	N 918	0 911	S 13	0	0

• Molecule 28 is a protein called rRNA-processing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	Cz	70	Total 592	C 368	N 120	0 101	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L3-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	LB	356	Total 2829	C 1798	N 518	O 501	S 12	0	0

• Molecule 30 is a protein called 60S ribosomal protein L4-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	LC	362	Total 2752	C 1738	N 526	0 479	S 9	0	0

• Molecule 31 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	LE	179	Total 1403	C 898	N 255	0 247	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	LG	204	Total 1644	C 1060	N 297	0 282	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein l9-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	LH	190	Total 1496	C 950	N 268	0 272	S 6	0	0

There are 37	discrepancies	between	the	modelled	and	reference	sequences:
	1						

Chain	Residue	Modelled	Actual	Comment	Reference
LH	?	-	GLY	deletion	UNP G0S0E5
LH	?	-	THR	deletion	UNP G0S0E5
LH	?	-	PHE	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	LYS	deletion	UNP G0S0E5
LH	?	-	PHE	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	ASN	deletion	UNP G0S0E5
LH	?	-	ASP	deletion	UNP G0S0E5
LH	?	-	TYR	deletion	UNP G0S0E5
LH	?	-	THR	deletion	UNP G0S0E5
LH	?	-	PHE	deletion	UNP G0S0E5
LH	?	-	GLY	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	THR	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	GLY	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	GLU	deletion	UNP G0S0E5
LH	?	-	LYS	deletion	UNP G0S0E5
LH	?	-	LYS	deletion	UNP G0S0E5
LH	?	-	ARG	deletion	UNP G0S0E5
LH	?	-	GLY	deletion	UNP G0S0E5
LH	?	-	THR	deletion	UNP G0S0E5

Chain	Residue	Modelled	Actual	Comment	Reference
LH	?	-	THR	deletion	UNP G0S0E5
LH	?	-	SER	deletion	UNP G0S0E5
LH	?	-	SER	deletion	UNP G0S0E5
LH	?	-	LYS	deletion	UNP G0S0E5
LH	?	-	ILE	deletion	UNP G0S0E5
LH	?	-	GLY	deletion	UNP G0S0E5
LH	?	-	GLU	deletion	UNP G0S0E5
LH	?	-	LEU	deletion	UNP G0S0E5
LH	?	-	ASP	deletion	UNP G0S0E5
LH	?	-	ILE	deletion	UNP G0S0E5
LH	?	-	ASN	deletion	UNP G0S0E5
LH	?	-	GLY	deletion	UNP G0S0E5

• Molecule 34 is a protein called 60S ribosomal protein L12-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	LK	145	Total 1103	C 695	N 201	O 205	${ m S} { m 2}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	LL	117	Total 964	C 608	N 206	0 148	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L14-like protein.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
36	LM	137	Total 1101	C 699	N 211	0 190	S 1	0	0

• Molecule 37 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	LN	183	Total 1563	C 974	N 332	O 253	${S \atop 4}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L16-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	LO	204	Total 1618	C 1039	N 306	O 267	S 6	0	0

• Molecule 39 is a protein called 60S ribosomal protein l17-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	LP	169	Total 1345	C 835	N 273	0 234	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called Ribosomal protein L18-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	LQ	129	Total 1021	C 646	N 200	0 173	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 41 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	LR	118	Total 964	C 607	N 195	0 158	$\frac{S}{4}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	LS	174	Total 1433	C 922	N 267	O 239	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein l21-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	LT	126	Total 1014	C 643	N 196	0 173	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L22-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	LU	105	Total 850	C 551	N 147	0 151	S 1	0	0

• Molecule 45 is a protein called 60S ribosomal protein l23-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
45	LV	135	Total 995	C 633	N 185	0 170	${ m S} 7$	0	0

• Molecule 46 is a protein called 60S ribosomal protein L25-like protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
46	LX	137	Total 1062	C 678	N 194	O 190	0	0

• Molecule 47 is a protein called 60S ribosomal protein L26-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	LY	134	Total 1065	C 664	N 215	0 184	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
48	LZ	135	Total 1112	C 713	N 207	0 188	${S \atop 4}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein l30-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	Lc	98	Total 731	C 463	N 126	0 137	${ m S}{ m 5}$	0	0

• Molecule 50 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	Ld	109	Total 890	C 563	N 171	0 155	S 1	0	0

• Molecule 51 is a protein called 60S ribosomal protein L32-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Le	127	Total 1025	C 645	N 209	0 164	S 7	0	0

• Molecule 52 is a protein called 60S ribosomal protein l33-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	Lf	108	Total 862	$\begin{array}{c} \mathrm{C} \\ 546 \end{array}$	N 171	0 144	S 1	0	0

• Molecule 53 is a protein called Ribosomal protein l34-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	Lg	117	Total 930	C 578	N 189	O 159	$\frac{S}{4}$	0	0

• Molecule 54 is a protein called dolichyl-diphosphooligosaccharide--protein glycotransferase.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
54	Lh	121	Total 995	C 633	N 196	O 166	0	0

• Molecule 55 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	Li	88	Total 731	C 449	N 162	0 119	S 1	0	0

• Molecule 56 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
56	Lj	74	Total 595	C 365	N 132	O 93	${ m S}{ m 5}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L38-like protein.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
57	Lk	75	Total 620	C 394	N 117	O 107	${ m S} { m 2}$	0	0

There are 13 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Lk	?	-	SER	deletion	UNP G0SG89
Lk	?	-	LYS	deletion	UNP G0SG89
Lk	?	-	ILE	deletion	UNP G0SG89
Lk	?	-	LEU	deletion	UNP G0SG89
Lk	?	-	THR	deletion	UNP G0SG89
Lk	?	-	ILE	deletion	UNP G0SG89

Chain	Residue	Modelled	Actual	Comment	Reference
Lk	?	-	ALA	deletion	UNP G0SG89
Lk	?	-	PHE	deletion	UNP G0SG89
Lk	?	-	PRO	deletion	UNP G0SG89
Lk	?	-	PRO	deletion	UNP G0SG89
Lk	?	-	PRO	deletion	UNP G0SG89
Lk	?	-	LEU	deletion	UNP G0SG89
Lk	?	_	THR	deletion	UNP G0SG89

• Molecule 58 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
58	Ll	38	Total 322	C 204	N 68	O 50	0	0

• Molecule 59 is a protein called Ribosomal protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	Lq	207	Total 1600	C 1016	N 285	0 291	S 8	0	0

• Molecule 60 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
60	CH	1	Total 32	C 10	N 5	0 14	Р 3	0

 $\bullet\,$ Molecule 61 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
61	CQ	1	Total Zn 1 1	0
61	Lj	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (3341-MER)

• Molecule 2: RNA (319-MER)

• Molecule 5: Ribosome biogenesis protein ERB1

• Molecule 10: Nucleolar GTP-binding protein 1

Chain	CH:		81%		·	18%
MET T2 Q53	R78 P299 E313	H352 8353 N356 N356 K388 K388 L477	ASF ASF ASP ASP ASP E483 F509 T518	1544 6545 A648 Arg Arg GLN THR ALA	GLN SER SER ARG GLY ARG SER LEU VAL	ARC SER ARC GLY THR THR ALA ASP ASP ASP ALA
MET ASP ILE ASP ASP	GLY GLY ALA ALA SER ALA ALA	GLU ARG ARG ARG SER ARG SER ARG ARG ARG	SER VAL ALA ALA ALA ASN ASN CLEU GLN	GLY VAL GLN GLY THR THR THR LEU SER	LTS ALA GLU GLN GLN LYS LLYS LLU ALA	ALC LYS MET ASN ARG ARG ALA ARG GLN GLN
GLY GLU ALA ASP	HIS HIS HIS ALA SER MET	PRO LYS HIS PHE PHE SER GLY CLYS ARG THR THR	GLY LYS THR ASP ARG ARG			
• Mole	ecule 11:	Putative RNA	-binding prot	ein		
Chain	CI:	35%		65%		
MET ALA ALA GLU IFII	ARG LYS LYS LYS SER SER	SER SER ALA ALA ALA ALA ALA ALA ALA ALA SER SER	LYS LYS GLU GLU LYS ALA THR LYS VAL TYR	ALA THR PRO LYS ALA GLU CYS CLU CYS LYS	ALA PRO GLU GLU GLU ALA SER PRO VAL ALL	LYS LYS CLN GLN GLN ALA ASP LYS ASP ASP ASP
VAL VAL LYS LYS	ALA ALA VAL ALA ALA GLU	LYS ILE ALA ALA GLU CYS PRO VAL LYS SER VAL LEU	LYS LYS GLU GLU SER ALA ALA LYS LYS	ALA ALA ALA ALA ILYS LYS CLYS GLN GLN	VAL VAL GLU GLU GLU GLU ALA ALA	GLU ASN ALA ALA ALA ALA PHE GLY SER
ASP GLU SER SIT	LEU ASP GLU GLU THR	ALA ALA ASP ASP LEU ASP ASP GLY GLU	SER ASP GLU ASP GLU SER LYS GLU VAL	THR PHE LYS GLY GLY GLN ASP VAL CLY	LTS TLE PRO PRO LYS LYS ALA PRO PRO	LYS GLN ASN GLY ASP SER LYS PRO
ALA GLY ASP S184	w302 ♦ K319 E372 ♦	A329 PRO LEU LEU LYS VAL PRO LYS LYS	VAL VAL LEU GLU GLU GLU CZU VS	LYS ALA DILE GLU THR ALA ALA ALA ALA	VALA GLU GLU GLU SER LYS GLU VAL	ALA LYS LYS GLN GLN GLU GLU VAL GLU GLU
GLU LYS ALA PRO	PRO LYS LYS LYS LYS VAT	C C C C C C C C C C C C C C C C C C C	ILE SER ALA ALA PRO LYS CLYS CLYS LYS CLYS	LYS LYS SER		
• Mole	ecule 12:	Pescadillo hom	nolog			
Chain	CJ:		72%		• 27%	
MET G2 R93	N277 LEU ALA SER GLN	ASN CLY CLN CLN CLN CLN LYS ALA ALA ALA ALA ALA ALA CLU CLU	HILS HILS PRO PRO LYS VAL VAL ALA	VAL VAL ASP LYS LEU LEU LEU LYS LEU ARG	GLU GLU GLU GLN ASN ASP	LYS THR ASP OLU CLYS CLY CLY CLY CLU CLU ASN ASN
GLY ASP ASP LYS DRO	FRO SER ALA ALA ALA ASP	PHE PHC GLU PRO ALA PRO GLY GLY VAL ASP VAL	PRO GLN PRO SER SER SER SER	P423 VAL TLE ALA ALA ALA VAL SER CLU	ASF GLY ASP GLU GLU ASP ASN CLN THR TTR	GLAN GLN LEU LEU ALA PRO ASN G448 G448 G448
GLU GLU GLU GLU	ASP GLU GLU SER GLY SER	GLU VAL ASP ASP MET SER VAL ASP SER ASP	GLU GLU GLU GLU GLU ASP ASP PHE	GLU GLU GLU GLU GLU GLU	ASP ASP GLU GLU GLU GLU ASP ASP	GLU GLU ASP ASP ASP ASP GLU GLU GLU GLU GLU
A583 T584 L585	E594 LEU ALA GLY LYS ALA	VAL VAL LYS SER LYS G1Y LYS PRO L606 C614 K644	E673 MET ALA ALA ALA LYS LYS ALA			

MET PRO PRO LYS PHE ASP ASN ASN CS CS CS CS CS CS CS CS CS CS CS CS CS	CLU VAL CLY CLY CLY SER SER ALA ALA ALA ALA ALA TEU VS LYS I32	L35 C36 C36 L37 R92 E159	D164 GLU		
• Molecule 35:	60S ribosomal p	orotein L13			
Chain LL:	54%		·	45%	-
MET ALA ALA ILE LYS HIS ASN GLN CLN TLE ASN	ASN H13 R59 C60 P61 P61 SER ASN LYS	LYS LYS ALA ASP THR PRO LYS ASP GLN	GLN THR ALA GLU THR THR THR SER SER SER	THR SER PHE GLV GLV GLU FRO FRO PRO PRO PRO	THR GLU ILE SER LYS
SER GLU TLE PRO ALA GLY GLV GLV ALA	TYR ARG ALA ALA LEU ARG ARG SER ARG ARG ARG	LEU VAL GLY VAL ARG GLU LYS ARG ALA	LYS GLU ALA GLU GLU GLU ALA ALA ASN LYS	LYS	
• Molecule 36:	60S ribosomal p	orotein L14-li	ke protein		
Chain LM:		96%	6		·
MET A2 L138 LYS ALA ALA ALA					
• Molecule 37:	Ribosomal prot	ein L15			
Chain LN:		89%		• 10%)
MET G2 161 161 171 LYS ARG PRO VAL	PRO LYS GLY GLY THR THR TYR CLY PRO FRO GLN	GLY VAL ASN <mark>Q91</mark> R203			
• Molecule 38:	60S ribosomal p	orotein L16-li	ke protein		
Chain LO:		10	0%		-
M1 E102 Y204					
• Molecule 39:	60S ribosomal p	orotein 117-lik	æ protein		
Chain LP:		90%		10%	-
MET VAL R3 R131 A132 H133 E154 E154 GLU	THR VAL GLN CLN SER SER GLU ALA VAL ARG ASP VAL	GLU S169 T185 ALA ALA ALA			
• Molecule 40:	Ribosomal prot	ein L18-like p	orotein		
Chain LQ:	60	%		39%	-
MET ASP ASP VAL CYS CYS AAA PHE FHE TLE CUY FNO	PHE ALA ALA PRO GLY GLY ARG LEU GLU GLU	ILE ALA ALA GLU SER SER SER SER SER ILE	ASP LEU ARG ARG TTRP HTS VAL VAL SER SER	HIS R44 R19 N172 A1A A1A A1A A1A A1A A1A A1A A1A A1A A1	PHE GLY PHE GLY PRO

 \bullet Molecule 41: Ribosomal protein L19

Chain LR: •	96%
MET SER GLU ALA ASN ALA ASN ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALLE ALLA CILN ALLA ALLA ALLA ALLA ALLA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
TRP THR THR THR THR THR THR THR ARC ARC ARC ARC ARC ARC ARC ARC ARC AR	PRO PRO LEU VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA
SER LEU LEU LEU LEU ASN ASN ASP CYS SER CYS SER CYS SER CYS ALA ALA ALA ALA ALA ALA ALA CYS SER CYS SER CYS SER CYS SER CYS SER CYS SER CYS CYS SER CYS CYS CYS SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	JLEU PRO THR ATA ATA ATA ATA SER ATA ATA ATA ATA ATA ATA ATA ATA ATA AT
ALA ALA ALA VAL SER THR THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ARG THR THR ALLEU ALEU ALLEU ALLA ALLA ALLA ALLA AL	ALA ILLE CLU CLYS CLYS CLYS CLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU
LEU SER LYS LYS LEU LEU ALA ARG PRO LEU LEU LEU LEU LEU LEU LEU LEU CRE SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHE ARG GLU THR ALA THR VAL CVAL ASP ASP ASP ASP ALA ALA ALA ALA ALA ALU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
LEU ALA SER ALA SER ALA ALA ALA ALA ALA CUU CUU CUU CUU CLU CLU CLU CLU SER CLY SER ALA ALA ALA ALA ALA CLY SER ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PHLO VAL THR SER CLV SER GLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
THR PRO GLU VAL PRO GLU CAL ASP ALA ALA ALA ALA ALA ALA ALA CLY GLY GLY GLY GLY GLY GLY SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	ALY AGLY ALZU CLEU GLN GLN GLN GLN GLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
THR THR PHE PHE VAL VAL VAL ALA ALA ALA ALA ALA ALA CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CLV CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	LEU GLAN GLAN GLU GLU GLU AIA AIA ALA ALA ALA ALA ALA ALA ALA ALA
SER VHL VHL LEU SER GLIN GLIU ARG PRO GLIU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	SER SER SER ALA ALA ALA ALA THR THR THR THR THR THR THR THR THR THR
ARG ARG ALN ALA ALA ALA ALA ALA ALA ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	THIS THE THE THE THE THE THE GLU GLU GLU GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
LYS LYS ALA ALA ALA CYS SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LEU LAL ALA ALA GLN GLN GLN ILE PRO ALA ARG ARG ARG ARG ARG ARG ARG CLV CVS CLV CVS CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV
ASP HIS GLU GLU ASP GLU ILE ASP GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	ALA CLU CLEU VAL VAL VAL SER PRO ASN ASN ASN ALA ALA ALA ALA ASP ASP ALA ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
THR VAL GLAV GLAV GLAV GLV GLV GLV GLV GLV GLV GLV GLV GLV GL	ASN VAL VAL VAL ASP ASP ASP ASP LEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU
THR ALA GLU GLU GLU GLU GLU CLYS SER ALA ALA GLU CLYS GLU CLYS GLU GLU GLU GLU GLU ALA ALA ALA ALA ALA ALA CLYS GLU CLYS CLU CLYS CLYS CLYS CLYS CLYS CLAS CLU CLYS CLU CLU CLYS CLU CLU CLU CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PHE CLY VAL VAL VAL LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ALA ALA ALA ALA ALA ALA ALA ALA ALA ALG GLY GLY GLY GLY GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	PHE ILE ARG PRO PRO PRO MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LEU LEU THR ARG VAR VAR ARG ARG ARG GLN ARG GLN GLN CAL CU CU CU CU CU CU CU CU CU CU CU CU CU	TYR VAL VAL CUAL CLEU GLU GLV ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
HIS ASP VAL ASP PHLA ALA ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LILE LYS CYS CYS CYS SER SER ASP ASP ASN ASN ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL

TIF	VAL	PRO	THR	SER	VAL ARG	THR	ALA VAL	LEU	GLN	ALA ILE	SER	ALA	ASP	ASP	MET	SER	ASP	ASN	ALA	SER	CT II	ILE	TRP	LEU	ALA	SIH	ASP	ASP ILE	ASP	GLU ASN	ALA	GLU	GLY	ARG	GLU	TRP	GLU	SER	GLU	TRP LYS	THR	GLU	GLU	LEU
CI V	SIH	LYS	TLE	PRO	TYR	GLU	SER LYS	ASP	VAL	TEU	ARG	ARG	ALA AT A	ALA	LYS	SER	LEU AT A	GLU	VAL	ALA	GLY	SIH	PRO	ASP	VAL	ALA	PRO TI E	TEU	GLU	LYS	ARG	GLU	TYR	VAL	CTEO C	ALA	LYS	ARG	VAL	GLN	LEU	ASP GLU	PHE	GLY
MFT	PRO	LYS	MET	ASP	LEU SER	ASP	TRP	GLU	ALA	HIS	GLY	ILE	ALA	ALA	PHE	LYS	GLY	ALA	PRO	SIH	UTII CI II	LYS	ARG	GLN	0.311	PRO	TYR	ASN	PHE	LEU ILE	GLU	GLN	PRO	LEU	ASP	GLN	SER AT A	GLY	VAL	ARG ALA	GLU	MET LEU	GLU	ALA
AT A	ASN	MET	ILE	GLU	ILE HIS	GLY	GLU	ILE	LEU	ASF	LEU	MET	LYS	THE	GLU	LYS	VAL	CLU	ALA	PRO	ASP	ASN	SER	GLU GLU	ALA ALA	ASP	ARG	ASN	GLU	ALA VAL	ILE	NFT	TYR	GLY	ALA LEU	ALA	ARG	LEU	LYS	PR0 GLY	ASP	LYS	ILE	PRO
VAT	VAL	ILE	ARG	LEU	LEU ALA	THR	LEU SER	THR	PRO	GLU	ALA	VAL	GLN	ALA	ILE	ALA	GLU	LEU	PRO	PRO	U AT	ARG	THR	CYS	ALA	TAS	SER	LYS	TYR	PHE ASP	GLU	MET	GLU	ILE	LEU	THR	SER 1 VC	LYS	TYR	SER	GLN	ARG GLY	ALA	ALA
TVR	GLY	LEU	GLY	LEU	VAL LEU	GLY	GLY	ILE	ASN	LEU	LYS	GLU	TYR	ILE	MET	THR	GLN	ASN	SER	ALA	LEU CI II	ASN	LYS	TAS	TLF	ARG	GLN	GLU	SER	ALA MET	ILE	ALA TVR	GLU	LEU	SER	THR	ILE	GLY	ARG	LEU PHE	GLU	PRO TYR	VAL	ILE
CI N	ILE	VAL	GLN	LEU	LEU ALA	GLY	PHE GLY	ASP	GLY	ALA	ASP	VAL	ARG	ALA	ALA	LEU	ALA	ALA	LYS	ALA	CYS	ALA	LYS	LEU	SFR	TYR	GLY	LYS	GLN	ILE LEU	PRO	THR	TEU	ASN	GL Y LEU	ASP	ASP	GLN	TRP	ARG SER	LYS	GLY	ALA	CYS
ASP	LEU	LEU	ALA	MET	ALA TYR	LEU	PRO	CLN	GLN	ALA	GLN	ASN	LEU	GLU	ILE	ILE	PR0	LEU	THR	ALA	VAL	ASN	ASP	SER	SATI	GLU	VAL	ALA	ALA	ALA ASN	ARG	SER	LYS	ARG	GLY	GLU	VAL	THR	ASN	PR0 GLU	ILE	LYS SER	TEU	ILE
4SD	ILE	LEU	LYS	ALA	LEU SER	ASP	THR	LYS	TYR	ASP	ASP	ALA	LEU	ALA	LEU	ILE	LYS	GLN	PHE	VAL	TVD	LEU	ASP	ALA	SFR	TEU	ALA	VAL	SER	ARG ILE	LEU	GLN	GLY	LEU	ASP	ARG	SER	THR	LYS	ARG LYS	ALA	GLN	VAL	ILE
CI V	SER	LEU	HIS	LEU	GLU	ARG	ASP	LEU	ILE	ALA HIS	LEU	PRO	VAL 1 ETI	VAL	ALA	GLY	LEU I VS	VAL	ALA	VAL	VAL	PRO	VAL	PRO	THR	ARG	ALA	ALA	SER	ARG	LEU	GLY SFR	LEU	VAL	CTU CTU	LEU	GLY	ASP	ALA	LEU PRO	ASP	LEU	PRO	ASN
I FII	MET	GLN	TEU	LYS	SER	THR	SER ALA	GLY	ASP	LEU	GLY	SER	ALA	ALA	LEU	SER	U.AT	LEU	ALA	CLY CL		THR	SER	ARG	CI II	GLU	THR	PRO	THR	ILE LEU	GLN	ASN VAL.	GLU	SER	LYS	PRO	ALA	ARG	GLU	GLY	MET	SER LEU	PHE	ILE
DHF	LEU	PRO VAT	CYS	PHE	GLY ASN	SER	PHE ALA	ASN	TYR	0TY	LYS	ILE	ILE	PRO	ILE	LEU	SER CI V	TEU	ALA	ASP	ASP	GLU	SER	ILE	GLIT	THR	ALA	ARG	ALA	GLY ARG	LEU	VAL.	LYS	ASN	ALA	VAL	ARG AT A	VAL	ASP	LEU	LEU	PRO GLU	TEU	GLU
ARC	GLY	LEU	ALA	ASP	ASN TYR	ARG	ARG	LEU	SER	VAL	GLU	LEU	VAL	ASP	LEU	LEU	PHE	LEU	ALA	GLY	VAL T VC	ALA	SER	ALA	NCA I VS	GLU	GLU	GLU	ALA	GLN	ASP	THR	LYS	GLU	GLY	ALA	SER	ARG	GLU	VAL LEU	GLY	GLU	LYS	ARG
ASN	LYS	ILE I ETI	SER	ALA	LEU TYR	VAL	CYS ARG	CYS	ASP	ALA	GLY	ALA	VAL	ALA	ALA	ALA	VAL	VAL	TRP	LYS	CTN CTN	VAL	HIS	SER	ARG	THR	LEU	GLU	LEU	VAL PRO	THR	LEU THR	GLN	LEU	ILE	LYS	ARG 1 ETI	GLY	SER	SER	MET	GLU	TAS	VAL
TIF	ALA	SER	ALA	LEU	GLY	LEU	TLE	LYS	ALA	ASP	GLY	VAL	LEU	THR	LEU	TEU	PRO TUD	LEU	GLU	GLU	GLY	GLN	THR	SER	ARU	VAL	ASN	ALA LYS	GLN	GLY	CYS	LEU AT.A	LEU	LYS	GLU	ILE	SER	ALA	SER	PR0 GLU	ALA	LEU GI,U	ASP	HIS
CI 11	LYS	THR	ILE	SER	VAL VAL	ARG	THR ALA	LEU	THR	SER	ASP	SER	ASP	ARG	GLU	ALA	ALA AT A	GLU	ALA	PHE	ASP	LEU	GLN	CLN GLN	TLF	GLY	LYS	ALA	ILE	GLN	VAL	LEU PRO	PHE	LEU	ASN	LEU	LEU	SER	GLU	GLU GLU	ALA	ASN	ALA	LEU
ATA	ALA	LEU	THR	LEU	LEU THR	GLU	THR	ARG	ALA	ILE	ILE	LEU	PRO A SM	LEU	ILE	PRO	THR	ILE	THR	PRO	P.KU TIE	SER	ALA	PHE	ALA	LYS	ALA	ALA	SER	LEU SER	LYS	VAL	GLY	ALA	ALA MET	ASN	ARG	LEU	PRO	ASN ILE	ILE	ASN SFR	LEU	MET
ASP	ASN	ILE	GLY	CYS	ALA ASP	GLU	THR	ARG	GLU	GLU LEU	ASP	THR	SER	ASP	THR	VAL	ILE I UI	SER	ILE	ASP	ASP TUD	ASP	GLY	LEU	VIGH	VAL	MET	VAL	LEU	LEU GLN	LEU	ILE	HIS	GLU	HIS	ARG	LYS	ALA	ALA	THR GLY	ARG	HIS	ALA	LYS
DHF	PHE	SER AT A	ALA	THR	VAL ASN	TYR	SER	TYR	ASN	ASP	ILE	ILE	ARG	LEU	LEU	ILE	SER	ASP	ASP	LYS	MET	GLU	VAL	VAL	AL A	SER	TRP	ALA	LEU	GLU	PHE	THR	ARG	LEU	LYS	GLU	GLU	GLU	GLY	LEU VAL	ILE	SER THR	ARG	GLN
THR	LEU	LEU	VAL	GLY	VAL ALA	GLY	GLU	LEU	ALA	PHE	GLU	LEU	PR0 r v c	GLY	ILE	ASN	ALA	LEU	PRO	ILE	РНЕ г еп	GLN	GLY	LEU	ASN	GLY	THR	GLU	GLN	ARG VAL	ALA	ALA	TEU	GLY	SER	ASP	ILE	ASP	ARG	THR	GLU	ALA SFR	LEU	LYS
10							-					-			-		-		-			-						-					-			-							-	

 \bullet Molecule 46: 60S ribosomal protein L25-like protein

Chain LX:	87%	• 12%
MET ALA ALA PRO LYS ASP LYS GLY GLY ALA ALA	S33 HIS LIYS LIYS VAL ARG LIYS S42 S42 VI56	
• Molecule 47: 6	60S ribosomal protein L26-like protein	
Chain LY:	97%	
M1 K134 LYS THR ALA ALA		
• Molecule 48: 6	60S ribosomal protein L27	
Chain LZ:	100%	
There are no ou	tlier residues recorded for this chain.	
• Molecule 49: 6	60S ribosomal protein l30-like protein	
Chain Lc:	91%	9%
MET ALA PRO LYS SER LYS SER SER AIO 411	D100 GLN GLN	
• Molecule 50: I	Putative 60S ribosomal protein	
Chain Ld:	91%	9%
MET SER SER THR GLN GLN GLN GLN ALA ALA ALA		
• Molecule 51: 6	60S ribosomal protein L32-like protein	
Chain Le:	97%	
M 1127 THR THR GLU VAL		
• Molecule 52: 6	60S ribosomal protein 133-like protein	
Chain Lf:	99%	

|--|

• Molecule 53: Ribosomal protein l34-like protein

Chain Lg:	97%	

• Molecule 54: dolichyl-diphosphooligosaccharide--protein glycotransferase

• Molecule 55: 60S ri	bosomal protein L36	
Chain Li:	78%	• 20%
MET SER GLU GLU ALA THR PRO LYS PRO CLU GLU THR THR	111E ANG LEU ASN ASN ASN ASN C23 D75 D75 H110	
• Molecule 56: Ribos	omal protein L37	
Chain Lj:	76%	• 22%
MET THR LYS GLY SER SER SER ASR ASR ASR ASR ASR ASR	L127 L127 C117 C117 ALA ALA ALA ALA SER SER SER	
• Molecule 57: 60S ri	bosomal protein L38-like protein	L
Chain Lk:	91%	• 7%
MET P2 K59 ARG ARG SER ALA		
• Molecule 58: 60S ri	bosomal protein L39	
Chain Ll:	75%	25%
MET P2 L73 A39 L73 ARG ARG ARG ARG ARG CLY LEU LEU LEU		
• Molecule 59: Ribos	omal protein	
Chain Lq:	93%	• 5%
MET SER LVS 14 14 117 V15 V13 V13 V13 V13 V140	R60 HT2 DT5 HT9 HT9 G81 G81 G81 G81 B83 B83 K92 N122 K92 L1123	P126
ARG LLEU TYR		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	77844	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.706	Depositor
Minimum map value	-0.294	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.013	Depositor
Recommended contour level	0.02	Depositor
Map size (Å)	438.9, 438.9, 438.9	wwPDB
Map dimensions	420, 420, 420	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SEP, GTP, ZN, TPO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	C1	0.32	0/63619	0.81	28/99165~(0.0%)
2	C2	0.28	0/6097	0.77	0/9499
3	CA	0.43	0/2115	0.72	0/2840
4	CB	0.31	0/2109	0.57	0/2866
5	CC	0.32	0/5423	0.58	0/7380
6	CD	0.26	0/3543	0.58	0/4824
7	CE	0.28	0/3739	0.53	0/5040
8	CF	0.31	0/1982	0.56	0/2671
9	CG	0.31	0/1422	0.56	0/1920
10	CH	0.32	0/4468	0.57	1/6029~(0.0%)
11	CI	0.29	0/1225	0.57	0/1645
12	CJ	0.30	0/4125	0.58	2/5548~(0.0%)
13	CK	0.28	0/1940	0.58	0/2601
14	CL	0.26	0/2247	0.51	0/3076
15	CM	0.29	0/1851	0.55	0/2481
15	LF	0.31	0/2055	0.58	1/2758~(0.0%)
16	CN	0.32	0/1881	0.58	0/2560
17	CO	0.27	0/470	0.55	0/619
18	CP	0.33	0/2859	0.60	1/3870~(0.0%)
19	CQ	0.28	0/1507	0.60	0/1996
20	CR	0.29	0/1369	0.58	0/1828
21	CS	0.27	0/2127	0.53	0/2817
22	CT	0.28	0/3974	0.54	0/5357
23	CU	0.37	0/1428	0.59	1/1910~(0.1%)
24	CV	0.36	0/1091	0.62	0/1468
25	CX	0.27	0/705	0.53	0/938
26	CY	0.33	0/3368	0.62	0/4525
27	Cb	0.27	0/5150	0.57	1/6936~(0.0%)
28	Cz	0.27	0/598	0.56	0/785
29	LB	0.35	0/2885	0.60	0/3872
30	LC	0.28	0/2809	0.53	0/3787
31	LE	0.34	0/1428	0.57	0/1921

Mal	Mol Chain		Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	LG	0.32	0/1667	0.57	0/2230	
33	LH	0.29	0/1516	0.58	0/2038	
34	LK	0.37	0/1115	0.61	0/1496	
35	LL	0.36	0/983	0.67	0/1318	
36	LM	0.28	0/1120	0.55	0/1507	
37	LN	0.33	0/1595	0.62	0/2132	
38	LO	0.35	0/1652	0.57	0/2215	
39	LP	0.25	0/1367	0.57	0/1838	
40	LQ	0.29	0/1033	0.58	0/1391	
41	LR	0.27	0/980	0.55	0/1311	
42	LS	0.30	0/1468	0.58	0/1975	
43	LT	0.24	0/1033	0.54	0/1389	
44	LU	0.29	0/863	0.52	0/1155	
45	LV	0.29	0/1013	0.52	0/1361	
46	LX	0.25	0/1078	0.49	0/1451	
47	LY	0.26	0/1079	0.55	0/1443	
48	LZ	0.27	0/1135	0.57	0/1519	
49	Lc	0.25	0/740	0.51	0/995	
50	Ld	0.27	0/904	0.55	0/1209	
51	Le	0.28	0/1043	0.54	0/1389	
52	Lf	0.37	0/883	0.64	0/1187	
53	Lg	0.33	0/943	0.58	0/1258	
54	Lh	0.25	0/1006	0.55	1/1338~(0.1%)	
55	Li	0.28	0/738	0.61	0/971	
56	Lj	0.33	0/606	0.64	0/803	
57	Lk	0.27	0/628	0.59	0/835	
58	Ll	0.24	0/329	0.57	0/440	
59	Lq	0.28	0/1621	0.62	0/2180	
All	All	0.31	0/171747	0.69	36/245906~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
29	LB	0	1
59	Lq	0	1
All	All	0	2

There are no bond length outliers.

The worst 5 of 36 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	C1	1050	C	N3-C2-O2	-12.22	113.34	121.90
1	C1	1050	С	N1-C2-O2	10.75	125.35	118.90
12	CJ	585	LEU	CA-CB-CG	8.98	135.96	115.30
1	C1	136	С	N3-C2-O2	-8.87	115.69	121.90
1	C1	2452	С	N3-C2-O2	-8.76	115.77	121.90

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
29	LB	17	LEU	Peptide
59	Lq	60	ARG	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	CA	247/316~(78%)	233~(94%)	14 (6%)	0	100	100
4	CB	256/391~(66%)	241 (94%)	15 (6%)	0	100	100
5	CC	648/801~(81%)	611 (94%)	35~(5%)	2 (0%)	41	72
6	CD	450/495~(91%)	426 (95%)	24 (5%)	0	100	100
7	CE	458/598~(77%)	441 (96%)	17 (4%)	0	100	100
8	CF	243/270~(90%)	232~(96%)	11 (4%)	0	100	100
9	CG	175/184~(95%)	168 (96%)	7 (4%)	0	100	100
10	СН	538/661~(81%)	514 (96%)	23 (4%)	1 (0%)	47	78
11	CI	144/414~(35%)	134 (93%)	10 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
12	CJ	484/679~(71%)	470 (97%)	14 (3%)	0	100	100
13	CK	234/261~(90%)	222 (95%)	11 (5%)	1 (0%)	34	66
14	CL	393/558~(70%)	362 (92%)	28 (7%)	3(1%)	19	49
15	CM	219/249~(88%)	209 (95%)	10 (5%)	0	100	100
15	\mathbf{LF}	245/249~(98%)	239~(98%)	6 (2%)	0	100	100
16	CN	244/246~(99%)	230 (94%)	14 (6%)	0	100	100
17	CO	56/120~(47%)	54 (96%)	2(4%)	0	100	100
18	CP	354/751~(47%)	336~(95%)	17 (5%)	1 (0%)	41	72
19	CQ	173/225~(77%)	165~(95%)	7 (4%)	1 (1%)	25	56
20	CR	159/237~(67%)	157~(99%)	2(1%)	0	100	100
21	\mathbf{CS}	246/834~(30%)	238~(97%)	8~(3%)	0	100	100
22	CT	478/688~(70%)	460 (96%)	18 (4%)	0	100	100
23	CU	174/451~(39%)	173~(99%)	1 (1%)	0	100	100
24	CV	137/147~(93%)	133~(97%)	4 (3%)	0	100	100
25	CX	86/203~(42%)	85~(99%)	1 (1%)	0	100	100
26	CY	396/788~(50%)	365~(92%)	29 (7%)	2~(0%)	29	61
27	Cb	630/924~(68%)	604 (96%)	25~(4%)	1 (0%)	47	78
28	Cz	68/123~(55%)	66~(97%)	2(3%)	0	100	100
29	LB	352/392~(90%)	332 (94%)	18 (5%)	2(1%)	25	56
30	LC	360/365~(99%)	342 (95%)	18 (5%)	0	100	100
31	LE	175/200~(88%)	165~(94%)	10 (6%)	0	100	100
32	LG	200/262~(76%)	191 (96%)	9~(4%)	0	100	100
33	LH	188/192~(98%)	183 (97%)	5(3%)	0	100	100
34	LK	141/165~(86%)	127 (90%)	13 (9%)	1 (1%)	22	53
35	LL	115/213~(54%)	107~(93%)	7~(6%)	1 (1%)	17	46
36	LM	135/142~(95%)	127 (94%)	8 (6%)	0	100	100
37	LN	179/203~(88%)	171 (96%)	8 (4%)	0	100	100
38	LO	202/204~(99%)	198 (98%)	4 (2%)	0	100	100
39	LP	165/187~(88%)	161 (98%)	4 (2%)	0	100	100
40	LQ	127/213~(60%)	121 (95%)	6(5%)	0	100	100
41	LR	114/2898~(4%)	114 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
42	LS	172/174~(99%)	167~(97%)	5(3%)	0	100	100
43	LT	124/160~(78%)	118 (95%)	5 (4%)	1 (1%)	19	49
44	LU	103/127~(81%)	101 (98%)	2 (2%)	0	100	100
45	LV	133/139~(96%)	128 (96%)	5 (4%)	0	100	100
46	LX	133/156~(85%)	129 (97%)	4 (3%)	0	100	100
47	LY	132/138~(96%)	127~(96%)	5 (4%)	0	100	100
48	LZ	133/135~(98%)	128 (96%)	5 (4%)	0	100	100
49	Lc	96/108~(89%)	96 (100%)	0	0	100	100
50	Ld	107/120~(89%)	105 (98%)	2 (2%)	0	100	100
51	Le	125/131~(95%)	120 (96%)	5 (4%)	0	100	100
52	Lf	106/109~(97%)	103 (97%)	3 (3%)	0	100	100
53	Lg	115/119~(97%)	112 (97%)	3(3%)	0	100	100
54	Lh	119/935~(13%)	114 (96%)	5 (4%)	0	100	100
55	Li	86/110 (78%)	85~(99%)	1 (1%)	0	100	100
56	Lj	72/95~(76%)	70~(97%)	2(3%)	0	100	100
57	Lk	73/81~(90%)	68~(93%)	5 (7%)	0	100	100
58	Ll	36/51~(71%)	34 (94%)	2 (6%)	0	100	100
59	Lq	205/217~(94%)	179 (87%)	26 (13%)	0	100	100
All	All	12458/20604~(60%)	11891 (95%)	550 (4%)	17 (0%)	54	81

5 of 17 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
26	CY	523	PRO
27	Cb	85	THR
26	CY	508	GLU
14	CL	224	ASP
14	CL	439	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
3	CA	223/276~(81%)	217 (97%)	6 (3%)	44	78	
4	CB	222/329~(68%)	218 (98%)	4 (2%)	59	86	
5	CC	578/708~(82%)	570 (99%)	8 (1%)	67	90	
6	CD	381/410~(93%)	380 (100%)	1 (0%)	92	98	
7	CE	398/517~(77%)	395 (99%)	3 (1%)	81	94	
8	CF	214/236~(91%)	214 (100%)	0	100	100	
9	CG	150/155~(97%)	149 (99%)	1 (1%)	84	95	
10	СН	481/575~(84%)	475 (99%)	6 (1%)	71	92	
11	CI	121/336~(36%)	120 (99%)	1 (1%)	81	94	
12	CJ	428/579~(74%)	426 (100%)	2 (0%)	88	96	
13	CK	204/225~(91%)	203 (100%)	1 (0%)	88	96	
14	CL	72/458~(16%)	69 (96%)	3 (4%)	30	63	
15	CM	191/215~(89%)	190 (100%)	1 (0%)	88	96	
15	LF	213/215~(99%)	212 (100%)	1 (0%)	88	96	
16	CN	206/206~(100%)	205 (100%)	1 (0%)	88	96	
17	СО	48/99~(48%)	48 (100%)	0	100	100	
18	CP	302/632~(48%)	299 (99%)	3 (1%)	76	93	
19	CQ	150/192~(78%)	150 (100%)	0	100	100	
20	CR	144/206~(70%)	143 (99%)	1 (1%)	84	95	
21	CS	209/716~(29%)	209 (100%)	0	100	100	
22	CT	427/600 (71%)	426 (100%)	1 (0%)	93	98	
23	CU	149/376~(40%)	148 (99%)	1 (1%)	84	95	
24	CV	109/112~(97%)	109 (100%)	0	100	100	
25	CX	76/172~(44%)	75 (99%)	1 (1%)	69	91	
26	CY	355/686~(52%)	347 (98%)	8 (2%)	50	82	
27	Cb	540/779~(69%)	536 (99%)	4 (1%)	84	95	
28	Cz	60/107~(56%)	60 (100%)	0	100	100	
29	LB	301/331 (91%)	298 (99%)	3 (1%)	76	93	
30	LC	283/285~(99%)	283 (100%)	0	100	100	
31	LE	151/166~(91%)	151 (100%)	0	100	100	
32	LG	175/222~(79%)	173 (99%)	2 (1%)	73	92	

analysed, and the total number of residues.

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Analysed	vsed Rotameric Out		Percentiles	
33	LH	167/169~(99%)	165~(99%)	2(1%)	71	92
34	LK	120/136~(88%)	117~(98%)	3~(2%)	47	80
35	LL	99/176~(56%)	98~(99%)	1 (1%)	76	93
36	LM	115/117~(98%)	115 (100%)	0	100	100
37	LN	164/180~(91%)	162~(99%)	2(1%)	71	92
38	LO	163/163~(100%)	162 (99%)	1 (1%)	86	96
39	LP	137/152~(90%)	137 (100%)	0	100	100
40	LQ	110/178~(62%)	109 (99%)	1 (1%)	78	94
41	LR	104/2396~(4%)	103 (99%)	1 (1%)	76	93
42	LS	154/154~(100%)	153 (99%)	1 (1%)	86	96
43	LT	109/135~(81%)	108 (99%)	1 (1%)	78	94
44	LU	93/108~(86%)	93 (100%)	0	100	100
45	LV	99/102~(97%)	98~(99%)	1 (1%)	76	93
46	LX	114/129~(88%)	113 (99%)	1 (1%)	78	94
47	LY	117/119~(98%)	117 (100%)	0	100	100
48	LZ	121/121 (100%)	121 (100%)	0	100	100
49	Lc	79/88~(90%)	79 (100%)	0	100	100
50	Ld	95/105~(90%)	95 (100%)	0	100	100
51	Le	110/114~(96%)	110 (100%)	0	100	100
52	Lf	89/90~(99%)	89 (100%)	0	100	100
53	Lg	101/102~(99%)	99~(98%)	2 (2%)	55	84
54	Lh	108/781~(14%)	108 (100%)	0	100	100
55	Li	75/93~(81%)	73~(97%)	2(3%)	44	78
56	Lj	61/78 (78%)	59~(97%)	2 (3%)	38	72
57	Lk	71/76~(93%)	70~(99%)	1 (1%)	67	90
58	Ll	34/46~(74%)	34 (100%)	0	100	100
59	Lq	179/189~(95%)	174 (97%)	5 (3%)	43	77
All	All	$10\overline{549/17418}~(61\%)$	10459 (99%)	90 (1%)	79	94

5 of 90 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
29	LB	17	LEU
	<i>a</i>	1	

Continued from previous page...

Mol	Chain	Res	Type
38	LO	102	GLU
29	LB	213	ASP
34	LK	32	ILE
43	LT	92	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 35 such side chains are listed below:

Mol	Chain	Res	Type
39	LP	34	GLN
39	LP	118	GLN
42	LS	114	HIS
13	CK	186	HIS
10	CH	53	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	C1	2640/3341~(79%)	535 (20%)	36~(1%)
2	C2	254/319~(79%)	52 (20%)	1 (0%)
All	All	2894/3660~(79%)	587 (20%)	37~(1%)

5 of 587 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	C1	14	U
1	C1	22	G
1	C1	26	А
1	C1	41	G
1	C1	49	А

5 of 37 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	C1	3125	А
1	C1	3297	U
1	C1	3131	А
1	C1	3209	U
1	C1	1085	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Turna Ch		Chain	Chain Dec	Dea Link	Bond lengths			В	ond ang	les
INIOI	туре	Chain	Res	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
5	SEP	CC	160	5	8,9,10	0.62	0	8,12,14	0.70	0
5	TPO	CC	163	5	8,10,11	0.67	0	10,14,16	1.03	1 (10%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	SEP	CC	160	5	-	0/5/8/10	-
5	TPO	CC	163	5	-	1/9/11/13	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
5	CC	163	TPO	O-C-CA	-2.51	118.19	124.78

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	CC	163	TPO	O-C-CA-CB

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 2 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Turk		Chain	Dog	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles		
WIOI	Type	Ullaili	nes	S LINK Counts RM		RMSZ	# Z >2	Counts	RMSZ	# Z >2
60	GTP	CH	1001	-	26,34,34	0.97	2 (7%)	$32,\!54,\!54$	0.86	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
60	GTP	CH	1001	-	-	3/18/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
60	CH	1001	GTP	C5-C6	-2.63	1.42	1.47
60	CH	1001	GTP	C8-N7	-2.11	1.31	1.35

There are no bond angle outliers.

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
60	CH	1001	GTP	PG-O3B-PB-O1B
60	CH	1001	GTP	PG-O3B-PB-O2B
60	CH	1001	GTP	C5'-O5'-PA-O1A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-35287. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 210

Y Index: 210

Z Index: 210

6.2.2 Raw map

X Index: 210

Y Index: 210

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

Primary map 6.3.1

X Index: 244

Y Index: 220

Z Index: 259

Raw map 6.3.2

X Index: 243

Y Index: 220

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2160 nm^3 ; this corresponds to an approximate mass of 1951 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	2.80	-	-	
Author-provided FSC curve	2.84	3.23	2.89	
Unmasked-calculated*	3.22	4.31	3.34	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.22 differs from the reported value 2.8 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-35287 and PDB model 8I9X. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9230	0.5100
C1	0.9620	0.5330
C2	0.9560	0.5250
CA	0.9650	0.5880
CB	0.8770	0.4350
CC	0.9190	0.4980
CD	0.7160	0.2940
CE	0.9120	0.5220
CF	0.9180	0.4920
CG	0.9590	0.5500
CH	0.9210	0.5160
CI	0.8830	0.4590
CJ	0.9080	0.4920
CK	0.9420	0.5280
CL	0.3510	0.2110
CM	0.8870	0.4600
CN	0.9580	0.5610
CO	0.9630	0.5830
CP	0.9490	0.5390
CQ	0.9110	0.5060
CR	0.9460	0.5800
CS	0.8710	0.4630
CT	0.9210	0.4850
CU	0.9440	0.5460
CV	0.9680	0.6000
CX	0.9210	0.5140
CY	0.8150	0.3390
Cb	0.8500	0.3790
Cz	0.7450	0.3270
LB	0.9520	0.5710
LC	0.9640	0.6040
LE	0.9470	0.5630
LF	0.9600	0.5880
LG	0.9470	0.5890
LH	0.9480	0.5600

Chain	Atom inclusion	Q-score
LK	0.8580	0.3800
LL	0.9830	0.6150
LM	0.9690	0.5910
LN	0.9850	0.6500
LO	0.9760	0.6200
LP	0.9550	0.5550
LQ	0.9570	0.5560
LR	0.9330	0.4670
LS	0.9640	0.5760
LT	0.8440	0.3240
LU	0.9140	0.4990
LV	0.9420	0.5230
LX	0.9430	0.5510
LY	0.9470	0.5760
LZ	0.9240	0.4980
Lc	0.8540	0.4250
Ld	0.9380	0.5570
Le	0.9720	0.6150
Lf	0.9830	0.6290
Lg	0.9060	0.5300
Lh	0.9410	0.5440
Li	0.9520	0.5620
Lj	0.9820	0.6330
Lk	0.8810	0.4580
Ll	0.9480	0.4850
Lq	0.7320	0.2120

