

Full wwPDB X-ray Structure Validation Report (i)

Jun 4, 2025 – 07:56 pm BST

:	$9I30 / pdb_{00009i30}$
:	Alpha-Methylacyl-CoA racemase from Mycobacterium tuberculosis in complex
	with ketoprofenoyl-CoA
:	Mojanaga, O.O.; Acharya, K.R.; Lloyd, M.D.
:	2025-01-22
:	2.08 Å(reported)
	::

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4-5-2 with Phenix2.0rc1
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	2.0rc1
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.08 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	164625	7574 (2.10-2.06)
Clashscore	180529	8325 (2.10-2.06)
Ramachandran outliers	177936	8271 (2.10-2.06)
Sidechain outliers	177891	8272 (2.10-2.06)
RSRZ outliers	164620	7574 (2.10-2.06)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			13%		
1	А	364	82%	13%	• •
			8%		
1	В	364	82%	15%	•
			14%		
1	С	364	83%	13%	• • •
			12%		
1	D	364	82%	15%	
			11%		
1	Ε	364	82%	15%	·

Mol	Chain	Length	Quality of chain	
1	F	364	78%	18% ••
1	G	364	25%	18% ••
1	Н	364	21%	16% •••
1	Ι	364	<mark>6%</mark> 86%	11% ••
1	J	364	5% 87%	9% ••
1	Κ	364	9% 86%	9% • •
1	L	364	84%	12% •••

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 66985 atoms, of which 32336 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	s			ZeroOcc	AltConf	Trace	
1	Δ	354	Total	С	Η	Ν	0	S	58	9	0	
1	Л	554	5321	1683	2638	481	503	16	58	Δ	0	
1	B	354	Total	С	Η	Ν	Ο	\mathbf{S}	57	1	0	
	D	004	5317	1683	2635	481	502	16	01	T	0	
1	С	357	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	58	58	2	0
-	0		5359	1695	2656	484	508	16	00		0	
1	Д	357	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	58	1	0	
		551	5363	1697	2660	484	506	16		1	0	
1	E	355	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	57	2	0	
		3000	5341	1690	2648	482	505	16		-		
1	F	356	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	58	1	0	
-	-		5344	1691	2649	483	505	16		-		
1	G	355	Total	С	Н	Ν	Ο	S	58	2	0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5340	1689	2649	482	504	16		_		
1	Н	356	Total	С	Н	Ν	0	S	57	1	0	
			5343	1691	2649	483	504	16		-		
1	T	359	Total	С	Н	Ν	Ο	S	58	2	0	
	-		5387	1704	2669	486	512	16		_		
1	J	357	Total	С	Н	Ν	0	S	58	1	0	
-			5354	1694	2654	484	506	16		-		
1	K	354	Total	$\mathbf{C}$	Η	Ν	Ο	$\mathbf{S}$	58	2	0	
-			5321	1683	2638	481	503	16		_		
1	L	358	Total	$\mathbf{C}$	Η	Ν	Ο	$\mathbf{S}$	58	1	0	
	999	5370	1699	2663	485	507	16		*			

• Molecule 1 is a protein called Alpha-methylacyl-CoA racemase.

There are 48 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	361	GLY	-	expression tag	UNP 006543
А	362	SER	-	expression tag	UNP 006543
А	363	GLY	-	expression tag	UNP 006543
А	364	CYS	-	expression tag	UNP 006543
В	361	GLY	-	expression tag	UNP 006543



Continu	eu from pre	orous puye			
Chain	Residue	Modelled	Actual	Comment	Reference
В	362	SER	-	expression tag	UNP 006543
В	363	GLY	-	expression tag	UNP 006543
В	364	CYS	-	expression tag	UNP 006543
С	361	GLY	-	expression tag	UNP 006543
С	362	SER	-	expression tag	UNP 006543
С	363	GLY	-	expression tag	UNP 006543
С	364	CYS	-	expression tag	UNP 006543
D	361	GLY	-	expression tag	UNP 006543
D	362	SER	-	expression tag	UNP 006543
D	363	GLY	-	expression tag	UNP 006543
D	364	CYS	-	expression tag	UNP 006543
Е	361	GLY	-	expression tag	UNP 006543
Е	362	SER	-	expression tag	UNP 006543
Е	363	GLY	-	expression tag	UNP 006543
Е	364	CYS	-	expression tag	UNP 006543
F	361	GLY	-	expression tag	UNP 006543
F	362	SER	-	expression tag	UNP 006543
F	363	GLY	-	expression tag	UNP 006543
F	364	CYS	-	expression tag	UNP 006543
G	361	GLY	-	expression tag	UNP 006543
G	362	SER	-	expression tag	UNP 006543
G	363	GLY	-	expression tag	UNP 006543
G	364	CYS	-	expression tag	UNP 006543
Н	361	GLY	-	expression tag	UNP 006543
Н	362	SER	-	expression tag	UNP 006543
Н	363	GLY	-	expression tag	UNP 006543
Н	364	CYS	-	expression tag	UNP 006543
Ι	361	GLY	-	expression tag	UNP 006543
Ι	362	SER	-	expression tag	UNP 006543
Ι	363	GLY	-	expression tag	UNP 006543
Ι	364	CYS	-	expression tag	UNP 006543
J	361	GLY	-	expression tag	UNP 006543
J	362	SER	-	expression tag	UNP 006543
J	363	GLY	-	expression tag	UNP 006543
J	364	CYS	-	expression tag	UNP 006543
K	361	GLY	-	expression tag	UNP 006543
K	362	SER	-	expression tag	UNP 006543
K	363	GLY	-	expression tag	UNP 006543
K	364	CYS	-	expression tag	UNP 006543
L	361	GLY	-	expression tag	UNP 006543
L	362	SER	-	expression tag	UNP 006543
L	363	GLY	-	expression tag	UNP 006543
L	1	1	1	- 0	1



Chain	Residue	Modelled	Actual	Comment	Reference
L	364	CYS	-	expression tag	UNP 006543

• Molecule 2 is (S)-ketoprofenoyl-CoA (CCD ID: A1IZD) (formula: C₃₇H₄₈N₇O₁₈P₃S) (labeled as "Ligand of Interest" by depositor).



Mol	Chain	Residues			Ato	ms				ZeroOcc	AltConf		
9	Δ	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
	Л	L	110	37	44	7	18	3	1	2	0		
2	2 B	R 1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	9	0		
2	D	T	110	37	44	7	18	3	1	2	0		
2	C	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
2	U	T	110	37	44	7	18	3	1		0		
2	а	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
	D	T	110	37	44	7	18	3	1		0		
2	E	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
		1	110	37	44	7	18	3	1		0		
2	F	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
	-	1	110	37	44	7	18	3	1	2	0		
2	G	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
	<u> </u>	1	110	37	44	7	18	3	1		0		
2	Н	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
	11	1	110	37	44	7	18	3	1		0		
2	Т	1	Total	С	Η	Ν	Ο	Р	$\mathbf{S}$	2	0		
		110	37	44	7	18	3	1		0			
2	J	J	I	1	Total	$\mathbf{C}$	Η	Ν	Ο	Р	S	2	0
		Ť	110	37	44	7	18	3	1		U		



Continued from previous page...

Mol	Chain	Residues		Atoms						ZeroOcc	AltConf
0	V	1	Total	С	Η	Ν	Ο	Р	S	0	0
	n		110	37	44	7	18	3	1	<u>ک</u>	0
0	т	1	Total	С	Η	Ν	Ο	Р	S	2	0
	L			37	44	7	18	3	1	2	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	122	Total O 122 122	0	0
3	В	115	Total O 115 115	0	0
3	С	131	Total O 131 131	0	0
3	D	135	Total O 135 135	0	0
3	Е	114	Total O 114 114	0	0
3	F	122	Total O 122 122	0	0
3	G	117	Total O 117 117	0	0
3	Н	109	Total O 109 109	0	0
3	Ι	135	Total O 135 135	0	0
3	J	139	Total O 139 139	0	0
3	K	136	Total O 136 136	0	0
3	L	130	Total O 130 130	0	0



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Alpha-methylacyl-CoA racemase



• Molecule 1: Alpha-methylacyl-CoA racemase



• Molecule 1: Alpha-methylacyl-CoA racemase







W358 D359 GLY GLY SER GLY CYS







• Molecule 1: Alpha-methylacyl-CoA racemase



• Molecule 1: Alpha-methylacyl-CoA racemase



DATA BANK

EIN

9I30

• Molecule 1: Alpha-methylacyl-CoA racemase



• Molecule 1: Alpha-methylacyl-CoA racemase







## 4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 4 2 2	Depositor
Cell constants	276.69Å 276.69Å 390.43Å	Deperitor
a, b, c, $\alpha$ , $\beta$ , $\gamma$	$90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$	Depositor
$\mathbf{B}_{\mathrm{ascolution}}\left(\overset{\mathrm{A}}{\mathbf{\lambda}}\right)$	225.75 - 2.08	Depositor
Resolution (A)	$225.75 \ - \ 2.08$	EDS
% Data completeness	$100.0\ (225.75-2.08)$	Depositor
(in resolution range)	99.9 (225.75 - 2.08)	EDS
R _{merge}	0.30	Depositor
$R_{sym}$	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.26 (at 2.08 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0430 (refmacat 0.4.88)	Depositor
D D .	0.216 , $0.251$	Depositor
$n, n_{free}$	0.218 , $0.254$	DCC
$R_{free}$ test set	22415 reflections $(5.04%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	39.1	Xtriage
Anisotropy	0.051	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.43 , $41.3$	EDS
L-test for twinning ²	$< L >=0.52, < L^2>=0.36$	Xtriage
	0.000  for  -1/2 *h+1/2 *k-1/2 *l, 1/2 *h-1/2 *k-1/2 *k-1/2 *h-1/2 *k-1/2 *h-1/2 *k-1/2 *h-1/2 *	
Estimated twinning fraction	1/2*l,-h-k	Xtriage
	0.000 for $-1/2^{h-1}/2^{k+1}/2^{1}, -1/2^{h-1}/2^{k-1}$	110110000
	1/2*1,h-k	EDC
$\mathbf{F}_{o}, \mathbf{F}_{c}$ correlation	0.95	EDS
'Iotal number of atoms	66985	wwPDB-VP
Average B, all atoms $(Å^2)$	47.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.26% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



¹Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: A1IZD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
1VIOI	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
1	А	0.64	0/2755	1.12	5/3746~(0.1%)	
1	В	0.64	0/2748	1.13	5/3737~(0.1%)	
1	С	0.63	0/2775	1.19	14/3773~(0.4%)	
1	D	0.65	0/2769	1.21	13/3766~(0.3%)	
1	Ε	0.64	0/2765	1.13	8/3760~(0.2%)	
1	F	0.63	0/2761	1.14	8/3755~(0.2%)	
1	G	0.62	0/2763	1.18	10/3757~(0.3%)	
1	Н	0.63	0/2760	1.16	9/3753~(0.2%)	
1	Ι	0.63	0/2791	1.13	7/3797~(0.2%)	
1	J	0.64	0/2766	1.19	12/3761~(0.3%)	
1	Κ	0.64	0/2755	1.14	7/3746~(0.2%)	
1	L	0.66	0/2774	1.17	11/3774~(0.3%)	
All	All	0.64	0/33182	1.16	109/45125~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	5
1	В	0	3
1	С	0	2
1	D	0	4
1	Е	0	2
1	F	0	5
1	G	0	1
1	Н	0	4
1	J	0	1
1	Κ	0	1
1	L	0	6



Mol	Chain	#Chirality outliers	#Planarity outliers
All	All	0	34

There are no bond length outliers.

All (109) bond angle outliers are listed below:

Mol	Chain	$\mathbf{Res}$	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	L	123	GLN	CB-CA-C	11.03	127.82	109.84
1	Ι	255	ASP	CB-CA-C	9.50	125.58	110.19
1	С	203	ARG	N-CA-CB	9.39	124.83	110.28
1	L	123	GLN	N-CA-CB	-9.32	95.50	109.95
1	С	91	ARG	CB-CA-C	-9.26	95.99	110.81
1	В	203	ARG	N-CA-CB	9.09	124.37	110.28
1	В	203	ARG	CB-CA-C	-8.90	93.58	110.67
1	K	258	GLU	CB-CA-C	-8.55	96.12	110.56
1	J	123	GLN	CB-CA-C	8.31	123.39	109.84
1	J	65	GLN	CB-CA-C	7.92	125.59	109.67
1	С	58	THR	CA-CB-OG1	-7.91	97.73	109.60
1	Е	123	GLN	CB-CA-C	-7.78	96.35	109.65
1	F	190	ASP	CA-CB-CG	7.66	120.26	112.60
1	Е	123	GLN	N-CA-CB	7.63	121.19	109.97
1	Е	28	ASP	CA-CB-CG	7.58	120.17	112.60
1	L	190	ASP	CA-CB-CG	7.46	120.06	112.60
1	D	323	ASN	CB-CA-C	7.32	124.98	110.42
1	G	258	GLU	CB-CA-C	-7.32	97.87	110.09
1	Ι	38	ARG	CB-CA-C	-7.29	98.17	109.11
1	K	265	ARG	CD-NE-CZ	7.29	134.60	124.40
1	G	207	MET	CG-SD-CE	7.23	116.80	100.90
1	J	190	ASP	CA-CB-CG	7.21	119.81	112.60
1	G	190	ASP	CA-CB-CG	7.07	119.67	112.60
1	J	28	ASP	CA-CB-CG	7.05	119.65	112.60
1	С	91	ARG	N-CA-CB	7.01	120.39	109.94
1	G	283	ASP	CA-CB-CG	6.88	119.48	112.60
1	С	203	ARG	CB-CA-C	-6.87	97.49	110.67
1	L	38	ARG	CB-CA-C	6.83	118.49	108.87
1	В	190	ASP	CA-CB-CG	6.79	119.39	112.60
1	F	291	PHE	CB-CA-C	6.66	123.68	110.42
1	J	123	GLN	N-CA-CB	-6.62	99.69	109.95
1	K	203	ARG	CB-CA-C	-6.56	99.53	110.68
1	Ι	190	ASP	CA-CB-CG	6.53	119.13	112.60
1	C	38	ARG	CB-CA-C	-6.51	99.20	109.42
1	С	265	ARG	CD-NE-CZ	6.50	133.51	124.40
1	F	28	ASP	CA-CB-CG	6.48	119.08	112.60



Mol	Chain	Res	Type	Atoms Z		Observed(°)	$Ideal(^{o})$
1	D	265	ARG	CD-NE-CZ	6.43	133.40	124.40
1	L	248	MET	CG-SD-CE	6.43	115.04	100.90
1	G	350	ASP	CB-CA-C	6.39	120.22	109.48
1	Κ	28	ASP	CA-CB-CG	6.36	118.96	112.60
1	Н	255	ASP	CB-CA-C	6.32	120.18	109.75
1	А	190	ASP	CA-CB-CG	6.27	118.87	112.60
1	Е	190	ASP	CA-CB-CG	6.21	118.81	112.60
1	Н	190	ASP	CA-CB-CG	6.17	118.78	112.60
1	Н	309	ASN	CB-CA-C	-6.15	100.79	110.94
1	G	255	ASP	CB-CA-C	6.14	120.48	110.22
1	Н	265	ARG	CD-NE-CZ	6.12	132.97	124.40
1	L	28	ASP	CA-CB-CG	6.11	118.71	112.60
1	D	283	ASP	CB-CA-C	6.07	121.98	110.51
1	С	28	ASP	CA-CB-CG	6.05	118.65	112.60
1	L	198	MET	CG-SD-CE	-6.04	87.61	100.90
1	D	190	ASP	CA-CB-CG	6.02	118.62	112.60
1	Ι	211	THR	CA-CB-OG1	-6.02	100.57	109.60
1	J	54	ARG	CB-CA-C	-6.02	96.20	109.56
1	А	243	GLN	N-CA-CB	6.00	119.04	110.16
1	Н	99	CYS	CB-CA-C	5.96	121.60	110.70
1	Κ	202	MET	CG-SD-CE	5.95	113.98	100.90
1	F	54	ARG	CB-CA-C	-5.92	96.42	109.56
1	А	28	ASP	CA-CB-CG	5.89	118.49	112.60
1	J	216	MET	CG-SD-CE	-5.89	87.95	100.90
1	Е	264	ASP	CA-CB-CG	5.88	118.48	112.60
1	D	68	GLU	CB-CA-C	5.87	120.65	110.79
1	С	190	ASP	CA-CB-CG	5.85	118.45	112.60
1	J	65	GLN	N-CA-CB	-5.83	101.58	110.33
1	С	306	GLU	CB-CA-C	-5.79	99.58	109.65
1	D	148	VAL	CB-CA-C	5.71	115.67	110.13
1	С	258	GLU	CB-CA-C	-5.71	100.56	110.09
1	С	123	GLN	CB-CA-C	-5.69	101.73	110.26
1	С	105	ARG	CB-CA-C	5.66	119.15	109.24
1	L	265	ARG	CD-NE-CZ	5.64	132.30	124.40
1	D	64	ASP	CB-CA-C	-5.64	98.88	110.38
1	F	207	MET	CG-SD-CE	5.60	113.22	100.90
1	J	146	ARG	NE-CZ-NH1	-5.58	115.92	121.50
1	J	185	ASP	CA-CB-CG	5.53	118.13	112.60
1	С	54	ARG	CB-CA-C	-5.51	97.32	109.56
1	Е	248	MET	CG-SD-CE	5.49	112.97	100.90
1	L	258	GLU	CB-CA-C	-5.46	100.19	110.01
1	D	144	ASP	CA-CB-CG	5.45	118.05	112.60



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	J	285	ASP	CB-CA-C	5.43	121.10	110.67
1	А	283	ASP	CB-CA-C	5.43	120.77	110.51
1	D	65	GLN	CB-CA-C	5.41	119.78	110.86
1	G	76	LYS	CB-CA-C	-5.38	104.46	111.40
1	Κ	117	THR	CA-CB-OG1	-5.38	101.53	109.60
1	G	306	GLU	CB-CA-C	-5.37	100.52	109.55
1	D	265	ARG	NE-CZ-NH2	5.37	124.03	119.20
1	J	146	ARG	CB-CA-C	5.37	117.16	109.11
1	Е	146	ARG	CB-CA-C	5.35	117.14	109.11
1	Ι	258	GLU	CB-CA-C	-5.35	99.44	109.72
1	В	255	ASP	CB-CA-C	5.35	119.15	110.22
1	Ι	321	GLU	CB-CA-C	-5.34	101.04	109.80
1	К	123	GLN	CB-CA-C	-5.28	101.44	109.89
1	L	283	ASP	CB-CA-C	5.19	121.14	110.40
1	Н	357	ASP	CA-CB-CG	5.18	117.78	112.60
1	Н	283	ASP	CB-CA-C	5.17	121.09	110.40
1	Е	255	ASP	CA-CB-CG	5.16	117.76	112.60
1	D	350	ASP	CB-CA-C	5.16	118.26	109.80
1	Н	148	VAL	CA-C-O	5.16	122.89	119.38
1	Ι	248	MET	CG-SD-CE	5.15	112.23	100.90
1	D	306	GLU	CB-CA-C	-5.14	100.70	109.65
1	G	99	CYS	CB-CA-C	5.14	119.83	110.11
1	А	306	GLU	CB-CA-C	-5.13	100.72	109.65
1	В	146	ARG	CB-CA-C	5.13	116.81	109.11
1	G	28	ASP	CA-CB-CG	5.11	117.71	112.60
1	F	218	ASP	CA-CB-CG	5.11	117.71	112.60
1	L	55	ARG	CB-CA-C	5.11	118.55	109.72
1	Н	28	ASP	CA-CB-CG	5.09	117.69	112.60
1	F	255	ASP	CB-CA-C	5.08	118.63	110.29
1	D	54	ARG	CB-CA-C	-5.05	98.35	109.56
1	F	350	ASP	CB-CA-C	-5.00	101.89	109.89

There are no chirality outliers.

All (34) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	233	ARG	Sidechain
1	А	265	ARG	Sidechain
1	А	47	ARG	Sidechain
1	А	54	ARG	Peptide
1	А	91	ARG	Sidechain
1	В	265	ARG	Sidechain



Mol	Chain	Res	Type	Group
1	В	322	ALA	Peptide
1	В	35	ARG	Sidechain
1	С	233	ARG	Sidechain
1	С	265	ARG	Sidechain
1	D	212	ARG	Sidechain
1	D	233	ARG	Sidechain
1	D	265	ARG	Sidechain
1	D	85	ARG	Sidechain
1	Е	350	ASP	Peptide
1	Е	54	ARG	Peptide
1	F	212	ARG	Sidechain
1	F	233	ARG	Sidechain
1	F	322	ALA	Peptide
1	F	85	ARG	Sidechain
1	F	91	ARG	Sidechain
1	G	91	ARG	Sidechain
1	Н	212	ARG	Sidechain
1	Н	233	ARG	Sidechain
1	Н	265	ARG	Sidechain
1	Н	323	ASN	Peptide
1	J	322	ALA	Peptide
1	Κ	265	ARG	Sidechain
1	L	203	ARG	Sidechain
1	L	265	ARG	Sidechain
1	L	322	ALA	Peptide
1	L	38	ARG	Sidechain
1	L	54	ARG	Peptide
1	L	91	ARG	Sidechain

Continued from previous page...

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2683	2638	2626	34	0
1	В	2682	2635	2627	33	0
1	С	2703	2656	2644	39	0
1	D	2703	2660	2652	29	0
1	Е	2693	2648	2636	25	0



Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	F	2695	2649	2641	43	0
1	G	2691	2649	2637	48	0
1	Н	2694	2649	2641	40	0
1	Ι	2718	2669	2658	25	0
1	J	2700	2654	2646	23	0
1	Κ	2683	2638	2626	27	0
1	L	2707	2663	2656	22	0
2	А	66	44	0	2	0
2	В	66	44	0	3	0
2	С	66	44	0	2	0
2	D	66	44	0	3	0
2	Е	66	44	0	4	0
2	F	66	44	0	4	0
2	G	66	44	0	1	0
2	Н	66	44	0	3	0
2	Ι	66	44	0	1	0
2	J	66	44	0	2	0
2	Κ	66	44	0	2	0
2	L	66	44	0	3	0
3	А	122	0	0	1	0
3	В	115	0	0	2	0
3	С	131	0	0	3	0
3	D	135	0	0	0	0
3	Е	114	0	0	1	0
3	F	122	0	0	2	0
3	G	117	0	0	3	0
3	Н	109	0	0	0	0
3	Ι	135	0	0	4	0
3	J	139	0	0	2	0
3	Κ	136	0	0	2	0
3	L	130	0	0	1	0
All	All	34649	32336	31690	358	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (358) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:F:85:ARG:HD3	2:F:401:A1IZD:O10	1.83	0.78
1:G:259:LEU:HD22	1:G:274:LEU:HD13	1.66	0.77



		Interatomic Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:G:80:LEU:HD23	1:G:108:TYR:CE1	2.21	0.75	
1:G:80:LEU:CD2	1:G:108:TYR:CE1	2.71	0.73	
1:C:91:ARG:NH1	1:C:91:ARG:HG3	2.04	0.73	
1:G:11:VAL:HG12	1:G:80:LEU:HD12	1.72	0.72	
1:C:91:ARG:HG3	1:C:91:ARG:HH11	1.56	0.70	
1:K:50:MET:HE1	1:L:198:MET:HB2	1.74	0.70	
1:A:199:MET:HE3	1:A:202:MET:HE3	1.74	0.70	
1:D:85:ARG:HD3	2:D:401:A1IZD:O10	1.94	0.67	
1:L:88:VAL:O	1:L:92:LEU:HD12	1.95	0.67	
1:C:60:ASP:O	1:C:66:GLY:HA3	1.96	0.66	
1:F:42:VAL:HG21	1:F:58:THR:HG22	1.78	0.66	
1:I:118:GLY:O	1:I:121:SER:OG	2.12	0.66	
1:A:259:LEU:HD22	1:A:274:LEU:HD13	1.77	0.66	
1:H:79:VAL:HG22	1:H:107:ILE:HB	1.76	0.65	
1:E:78:ASP:OD1	1:E:175:ARG:NH2	2.16	0.65	
1:E:80:LEU:HD23	1:E:108:TYR:CE2	2.32	0.65	
1:C:91:ARG:HH11	1:C:91:ARG:CG	2.09	0.65	
1:A:39:PRO:O	1:A:41:SER:N	2.29	0.64	
1:E:336:ARG:NH2	1:F:180:LYS:HB2	2.13	0.64	
1:C:55:ARG:HD2	1:C:349:ILE:HD12	1.80	0.64	
1:E:105:ARG:HG2	1:E:179:GLY:O	1.98	0.63	
1:G:80:LEU:HD23	1:G:108:TYR:CD1	2.32	0.63	
1:I:47:ARG:HH11	1:I:47:ARG:HB3	1.62	0.63	
1:I:259:LEU:HD22	1:I:274:LEU:HD13	1.79	0.63	
1:B:225:ASP:OD2	1:B:272:ARG:NH1	2.32	0.63	
1:J:265:ARG:NH2	3:J:501:HOH:O	2.31	0.62	
1:J:225:ASP:OD2	1:J:272:ARG:NH1	2.32	0.62	
1:F:198:MET:HE2	1:F:202:MET:SD	2.39	0.62	
1:F:80:LEU:HD22	1:F:108:TYR:CE1	2.35	0.62	
1:B:85:ARG:HD2	2:B:401:A1IZD:O10	2.00	0.62	
1:H:199:MET:HE3	1:H:202:MET:CE	2.30	0.61	
1:B:199:MET:HE3	1:B:202:MET:CE	2.30	0.61	
1:G:79:VAL:HG22	1:G:107:ILE:HB	1.81	0.61	
1:H:105:ARG:HG2	1:H:179:GLY:O	2.00	0.61	
1:J:80:LEU:HD23	1:J:108:TYR:CE2	2.35	0.61	
1:G:102:VAL:O	1:G:103:ASN:HB2	2.00	0.60	
1:L:80:LEU:HD23	1:L:108:TYR:CE2	2.37	0.60	
1:G:265:ARG:NH2	3:G:504:HOH:O	2.34	0.59	
1:K:138:HIS:HD2	3:K:581:HOH:O	1.85	0.59	
1:F:108:TYR:HB3	1:F:183:VAL:HG22	1.85	0.59	
1:H:80:LEU:HD23	1:H:108:TYR:CE2	2.37	0.59	



	hi a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:K:401:A1IZD:S1	2:K:401:A1IZD:C26	2.90	0.59	
1:C:80:LEU:CD2	1:C:108:TYR:CE1	2.86	0.59	
1:I:176:GLN:HG3	1:J:176:GLN:HE21	1.68	0.59	
1:H:349:ILE:HD11	1:H:354:VAL:HG22	1.85	0.58	
1:C:138:HIS:HD2	3:C:533:HOH:O	1.86	0.58	
1:D:80:LEU:CD2	1:D:108:TYR:CE2	2.87	0.58	
1:G:50:MET:HE1	1:H:198:MET:HB2	1.85	0.58	
1:K:1:MET:O	1:K:6:SER:OG	2.20	0.58	
1:H:336:ARG:HG2	1:H:336:ARG:HH11	1.69	0.58	
1:A:198:MET:HB2	1:B:50:MET:HE1	1.86	0.58	
1:I:50:MET:CE	1:J:198:MET:HB2	2.33	0.58	
1:F:85:ARG:CD	2:F:401:A1IZD:O10	2.49	0.58	
1:A:198:MET:HG2	1:A:202:MET:HE2	1.86	0.57	
1:D:107:ILE:HD12	1:D:171:ALA:HB1	1.84	0.57	
1:F:69:LEU:HD13	1:F:351:ILE:HG23	1.87	0.57	
1:D:80:LEU:HD23	1:D:108:TYR:CE2	2.40	0.57	
1:E:225:ASP:OD2	1:E:272:ARG:NH1	2.37	0.57	
1:B:358:TRP:O	1:B:359:ASP:HB2	2.05	0.57	
1:A:180:LYS:O	1:B:336:ARG:NH2	2.39	0.56	
1:I:47:ARG:HH11	1:I:47:ARG:CB	2.19	0.56	
1:I:80:LEU:HD23	1:I:108:TYR:CE2	2.40	0.56	
1:B:345:PRO:HB3	3:B:593:HOH:O	2.05	0.56	
1:A:198:MET:HE3	1:B:157:PHE:HZ	1.69	0.55	
1:H:58:THR:O	1:H:59:ALA:HB2	2.07	0.55	
1:I:258:GLU:HG3	3:I:602:HOH:O	2.06	0.55	
1:H:60:ASP:O	1:H:66:GLY:HA3	2.07	0.55	
1:C:225:ASP:OD2	1:C:272:ARG:NH1	2.38	0.55	
1:I:272:ARG:NH1	3:I:502:HOH:O	2.36	0.55	
1:F:181:GLY:O	1:F:182:GLN:HB3	2.07	0.55	
1:K:60:ASP:O	1:K:66:GLY:HA3	2.07	0.54	
1:F:54:ARG:O	1:F:346:ALA:HB3	2.07	0.54	
1:I:80:LEU:CD2	1:I:108:TYR:CE2	2.91	0.54	
1:F:233:ARG:CD	3:F:522:HOH:O	2.56	0.54	
1:H:55:ARG:HD2	1:H:349:ILE:HD13	1.90	0.54	
2:D:401:A1IZD:S1	2:D:401:A1IZD:C26	2.96	0.54	
1:B:105:ARG:NH1	3:B:502:HOH:O	2.41	0.54	
1:A:60:ASP:O	1:A:66:GLY:HA3	2.08	0.54	
1:I:117:THR:O	1:J:316:ARG:HD2	2.08	0.54	
2:I:401:A1IZD:S1	2:I:401:A1IZD:C26	2.96	0.54	
1:A:50:MET:HE1	1:B:198:MET:HB2	1.90	0.53	
1:G:117:THR:O	1:H:316:ARG:HD2	2.08	0.53	



		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:198:MET:HG2	1:H:202:MET:HE2	1.89	0.53	
1:A:1:MET:HE2	1:A:343:ARG:NH2	2.24	0.53	
1:C:61:LEU:O	3:C:501:HOH:O	2.18	0.53	
1:A:80:LEU:HD23	1:A:108:TYR:CE2	2.44	0.53	
1:F:51:LEU:HA	1:F:54:ARG:NH1	2.24	0.53	
1:H:358:TRP:O	1:H:359:ASP:C	2.51	0.53	
3:I:582:HOH:O	1:J:50:MET:HE1	2.08	0.53	
2:B:401:A1IZD:S1	2:B:401:A1IZD:C26	2.96	0.53	
1:H:199:MET:HE3	1:H:202:MET:HE1	1.89	0.53	
1:A:80:LEU:CD2	1:A:108:TYR:CE2	2.91	0.53	
1:H:80:LEU:CD2	1:H:108:TYR:CE2	2.91	0.52	
1:E:138:HIS:HD2	3:E:561:HOH:O	1.93	0.52	
1:F:329:MET:HE3	1:F:330:PRO:HD2	1.92	0.52	
1:G:100:ALA:O	1:G:101:LYS:HG3	2.10	0.52	
1:G:69:LEU:HB3	1:G:351:ILE:HD13	1.91	0.52	
1:L:85:ARG:NH1	1:L:122:GLN:O	2.40	0.52	
1:K:9:ARG:NH2	1:K:358:TRP:HA	2.25	0.51	
1:D:268:TRP:N	1:D:269:PRO:CD	2.73	0.51	
1:F:10:VAL:HG22	1:F:79:VAL:HB	1.91	0.51	
1:H:225:ASP:OD2	1:H:272:ARG:NH1	2.43	0.51	
1:E:244:PHE:HB3	1:E:295:ASP:O	2.10	0.51	
1:K:176:GLN:HA	1:K:176:GLN:HE21	1.76	0.51	
1:A:38:ARG:NH2	2:A:401:A1IZD:O12	2.44	0.50	
1:K:196:ILE:HG13	1:L:153:LEU:HD21	1.93	0.50	
1:I:294:SER:O	1:J:123:GLN:HG3	2.10	0.50	
1:A:198:MET:HG2	1:A:202:MET:CE	2.40	0.50	
1:L:61:LEU:HD13	1:L:94:LEU:CD1	2.42	0.50	
1:G:329:MET:HE3	1:G:330:PRO:HD2	1.94	0.50	
2:A:401:A1IZD:S1	2:A:401:A1IZD:C26	3.00	0.50	
1:C:259:LEU:HD22	1:C:274:LEU:HD13	1.93	0.50	
1:G:60:ASP:OD1	1:G:62:LYS:HB2	2.11	0.50	
1:H:322:ALA:O	1:H:323:ASN:C	2.54	0.50	
1:C:291:PHE:O	1:C:294:SER:HB3	2.12	0.49	
2:C:401:A1IZD:C26	2:C:401:A1IZD:S1	2.99	0.49	
1:L:80:LEU:CD2	1:L:108:TYR:CE2	2.95	0.49	
1:B:199:MET:HE3	1:B:202:MET:HE2	1.94	0.49	
1:I:87:GLY:O	1:I:91:ARG:HG3	2.12	0.49	
1:A:58:THR:O	1:A:59:ALA:HB2	2.12	0.49	
1:A:138:HIS:HD2	3:A:540:HOH:O	1.94	0.49	
1:F:142:ARG:O	1:F:212:ARG:HD2	2.13	0.49	
1:D:78:ASP:OD1	1:D:175:ARG:NH2	2.25	0.49	



		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:28:ASP:CG	1:H:52:ARG:HH21	2.20	0.49	
1:I:358:TRP:O	1:I:359:ASP:HB2	2.12	0.49	
1:L:196:ILE:HG12	1:L:199:MET:HB2	1.95	0.49	
1:C:55:ARG:CD	1:C:349:ILE:HD12	2.43	0.49	
1:G:163:PHE:O	1:H:332:PRO:HG3	2.13	0.49	
1:K:145:GLU:OE1	1:L:145:GLU:OE1	2.31	0.49	
1:I:198:MET:HB2	1:J:50:MET:HE1	1.94	0.48	
1:C:135:GLY:HA2	1:D:302:LEU:O	2.13	0.48	
1:D:320:TYR:CE2	1:D:322:ALA:HB2	2.48	0.48	
1:G:216:MET:HE1	2:H:401:A1IZD:C32	2.44	0.48	
1:J:60:ASP:O	1:J:66:GLY:HA3	2.13	0.48	
1:F:80:LEU:CD2	1:F:108:TYR:CE1	2.96	0.48	
1:G:336:ARG:HG2	1:G:336:ARG:HH11	1.78	0.48	
1:H:13:LEU:O	1:H:14:ALA:C	2.56	0.48	
1:K:220:GLY:O	1:K:272:ARG:NH2	2.47	0.48	
1:E:316:ARG:HD2	1:F:117:THR:O	2.14	0.48	
1:K:37:ASP:O	1:K:58:THR:HA	2.14	0.48	
1:F:336:ARG:HH11	1:F:336:ARG:HG2	1.78	0.48	
1:G:48:ASP:OD1	1:G:50:MET:HB3	2.13	0.48	
1:B:244:PHE:HB3	1:B:295:ASP:O	2.14	0.48	
1:H:105:ARG:CG	1:H:179:GLY:O	2.62	0.48	
1:F:46:SER:OG	1:F:51:LEU:HD12	2.14	0.47	
1:K:198:MET:HG2	1:K:202:MET:HE3	1.96	0.47	
1:B:199:MET:HE3	1:B:202:MET:HE1	1.95	0.47	
1:E:80:LEU:CD2	1:E:108:TYR:CE2	2.98	0.47	
1:G:100:ALA:C	1:G:101:LYS:HG3	2.39	0.47	
1:A:196:ILE:HG12	1:A:199:MET:HB2	1.95	0.47	
1:I:38:ARG:HH21	1:I:38:ARG:HG3	1.80	0.47	
1:I:302:LEU:O	1:J:135:GLY:HA2	2.14	0.47	
1:K:346:ALA:O	1:K:347:ALA:O	2.32	0.47	
1:A:175:ARG:HG2	1:A:175:ARG:O	2.13	0.47	
1:K:55:ARG:HD2	1:K:349:ILE:HD12	1.95	0.47	
1:K:198:MET:HE3	1:L:50:MET:HE1	1.97	0.47	
1:B:349:ILE:HD11	1:B:354:VAL:HG22	1.96	0.47	
1:F:114:TRP:CZ3	1:F:133:LEU:HD22	2.49	0.47	
1:G:183:VAL:H	1:H:335:SER:HG	1.62	0.47	
1:E:353:ALA:O	1:E:356:THR:HB	2.14	0.47	
1:G:356:THR:O	1:G:357:ASP:C	2.57	0.47	
1:C:80:LEU:HD23	1:C:108:TYR:CE1	2.49	0.47	
1:G:114:TRP:CZ3	1:G:133:LEU:HD22	2.49	0.47	
1:G:118:GLY:O	1:G:121:SER:OG	2.28	0.47	



		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:176:GLN:HA	1:C:176:GLN:HE21	1.79	0.46	
1:D:85:ARG:CD	2:D:401:A1IZD:O10	2.63	0.46	
2:J:401:A1IZD:C26	2:J:401:A1IZD:S1	3.03	0.46	
1:B:114:TRP:CZ3	1:B:133:LEU:HD22	2.51	0.46	
1:E:135:GLY:HA2	1:F:302:LEU:O	2.15	0.46	
1:K:346:ALA:O	1:K:347:ALA:C	2.58	0.46	
1:C:316:ARG:HD2	1:D:117:THR:O	2.15	0.46	
1:H:102:VAL:O	1:H:103:ASN:HB2	2.15	0.46	
1:A:104:ASP:OD2	1:A:180:LYS:HD2	2.16	0.46	
1:D:10:VAL:HG22	1:D:79:VAL:HB	1.97	0.46	
1:E:259:LEU:HD22	1:E:274:LEU:HD13	1.98	0.46	
1:C:196:ILE:HG12	1:C:199:MET:HB2	1.97	0.46	
1:G:61:LEU:HD13	1:G:94:LEU:CD1	2.46	0.46	
1:G:196:ILE:HG12	1:G:199:MET:HB2	1.98	0.46	
1:A:153:LEU:HD21	1:B:196:ILE:HG13	1.98	0.46	
1:F:196:ILE:HG12	1:F:199:MET:HB2	1.98	0.46	
2:L:401:A1IZD:C26	2:L:401:A1IZD:S1	3.04	0.46	
1:B:316:ARG:HB3	1:B:316:ARG:NH1	2.30	0.45	
1:C:329:MET:HE3	1:C:330:PRO:HD2	1.97	0.45	
1:G:225:ASP:OD2	1:G:272:ARG:NH1	2.49	0.45	
1:D:357:ASP:C	1:D:359:ASP:H	2.24	0.45	
1:F:48:ASP:OD2	1:F:50:MET:HB3	2.16	0.45	
1:F:102:VAL:O	1:F:103:ASN:HB2	2.16	0.45	
1:G:4:PRO:O	1:H:174:GLU:HB2	2.16	0.45	
1:C:336:ARG:NH2	1:D:180:LYS:HB2	2.31	0.45	
1:D:329:MET:HE3	1:D:330:PRO:HD2	1.98	0.45	
1:E:302:LEU:O	1:F:135:GLY:HA2	2.15	0.45	
1:F:37:ASP:O	1:F:58:THR:HA	2.17	0.45	
1:I:268:TRP:N	1:I:269:PRO:CD	2.79	0.45	
1:J:122:GLN:HG2	3:J:571:HOH:O	2.15	0.45	
1:B:336:ARG:HG2	1:B:336:ARG:HH11	1.80	0.45	
1:D:126:HIS:O	1:D:127:ASP:C	2.60	0.45	
2:E:401:A1IZD:C26	2:E:401:A1IZD:S1	3.04	0.45	
1:G:302:LEU:O	1:H:135:GLY:HA2	2.17	0.45	
1:I:28:ASP:HA	1:I:53:ASN:ND2	2.31	0.45	
1:A:176:GLN:CD	1:B:176:GLN:HG2	2.40	0.45	
1:C:329:MET:HE3	1:C:329:MET:HB3	1.90	0.45	
1:J:102:VAL:O	1:J:103:ASN:HB2	2.17	0.45	
1:K:198:MET:CG	1:K:202:MET:HE3	2.46	0.45	
1:C:346:ALA:O	1:C:347:ALA:C	2.60	0.45	
1:D:294:SER:HB2	1:L:293:ASN:O	2.17	0.45	



		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:38:ARG:NH2	2:C:401:A1IZD:O12	2.50	0.45	
1:D:323:ASN:CG	1:D:324:GLY:H	2.25	0.45	
1:H:6:SER:HA	1:H:30:GLY:O	2.17	0.45	
1:L:198:MET:HE2	1:L:202:MET:SD	2.56	0.45	
1:G:11:VAL:HG12	1:G:80:LEU:CD1	2.44	0.45	
1:G:113:GLY:HA3	1:G:130:TYR:CZ	2.52	0.45	
1:K:181:GLY:O	1:K:182:GLN:HB3	2.17	0.45	
1:A:113:GLY:HA3	1:A:130:TYR:CE1	2.51	0.44	
1:E:198:MET:HB2	1:F:50:MET:HE1	1.98	0.44	
2:E:401:A1IZD:C36	2:E:401:A1IZD:C28	2.95	0.44	
1:L:225:ASP:OD2	1:L:272:ARG:NH1	2.50	0.44	
1:A:117:THR:O	1:B:316:ARG:HD2	2.17	0.44	
1:D:106:LEU:O	1:D:181:GLY:HA3	2.17	0.44	
1:J:357:ASP:C	1:J:359:ASP:H	2.25	0.44	
1:G:55:ARG:HD2	1:G:349:ILE:HD13	1.99	0.44	
1:A:28:ASP:HA	1:A:53:ASN:ND2	2.33	0.44	
1:G:138:HIS:HD2	3:G:539:HOH:O	2.00	0.44	
1:C:1:MET:O	1:C:6:SER:OG	2.31	0.44	
1:G:28:ASP:O	3:G:501:HOH:O	2.21	0.44	
1:A:103:ASN:C	1:A:103:ASN:OD1	2.59	0.44	
1:C:198:MET:HB2	1:D:50:MET:CE	2.47	0.44	
1:F:55:ARG:HD2	1:F:349:ILE:CD1	2.47	0.44	
1:H:61:LEU:HD22	1:H:94:LEU:HD11	1.99	0.44	
1:J:322:ALA:O	1:J:323:ASN:C	2.61	0.44	
1:C:19:GLY:N	1:C:20:PRO:CD	2.80	0.44	
1:F:106:LEU:O	1:F:181:GLY:HA3	2.17	0.44	
1:F:60:ASP:O	1:F:66:GLY:HA3	2.17	0.44	
1:E:117:THR:O	1:F:316:ARG:HD2	2.18	0.43	
1:G:289:ALA:O	1:G:292:ALA:HB2	2.18	0.43	
1:L:255:ASP:HB2	1:L:258:GLU:HG2	1.99	0.43	
2:B:401:A1IZD:C28	2:B:401:A1IZD:C36	2.96	0.43	
1:C:198:MET:HG2	1:C:199:MET:HE3	2.00	0.43	
1:C:295:ASP:CG	1:D:85:ARG:HH22	2.26	0.43	
1:A:198:MET:SD	1:A:202:MET:HE2	2.59	0.43	
1:C:46:SER:O	1:C:345:PRO:HG2	2.18	0.43	
2:F:401:A1IZD:C26	2:F:401:A1IZD:S1	3.07	0.43	
1:H:336:ARG:HH11	1:H:336:ARG:CG	2.28	0.43	
1:I:106:LEU:O	1:I:181:GLY:HA3	2.18	0.43	
1:C:80:LEU:HD22	1:C:108:TYR:CE1	2.53	0.43	
1:E:28:ASP:HA	1:E:53:ASN:ND2	2.33	0.43	
1:H:104:ASP:OD1	1:H:104:ASP:N	2.47	0.43	



		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:J:80:LEU:CD2	1:J:108:TYR:CE2	3.01	0.43	
1:H:340:SER:O	1:H:341:GLN:C	2.61	0.43	
1:A:4:PRO:0	1:B:174:GLU:HB2	2.18	0.43	
1:C:50:MET:CE	1:D:198:MET:HB2	2.49	0.43	
1:E:19:GLY:N	1:E:20:PRO:HD2	2.33	0.43	
2:E:401:A1IZD:C28	1:F:198:MET:HE1	2.48	0.43	
1:K:265:ARG:NH2	3:K:518:HOH:O	2.50	0.43	
1:G:69:LEU:HB3	1:G:351:ILE:CD1	2.49	0.43	
1:G:99:CYS:O	1:G:101:LYS:N	2.45	0.43	
1:K:332:PRO:HG3	1:L:163:PHE:O	2.18	0.43	
1:G:85:ARG:NH1	1:G:122:GLN:O	2.48	0.43	
1:G:80:LEU:O	1:G:109:ALA:N	2.43	0.43	
1:A:64:ASP:O	1:A:68:GLU:CD	2.62	0.43	
1:D:329:MET:HE3	1:D:329:MET:HB3	1.92	0.43	
1:E:85:ARG:NH1	1:E:122:GLN:O	2.47	0.43	
1:G:9:ARG:NH2	1:G:358:TRP:HA	2.34	0.43	
1:G:22:ALA:O	1:G:165:LEU:HD21	2.19	0.43	
1:H:114:TRP:CZ3	1:H:133:LEU:HD22	2.54	0.42	
1:K:198:MET:SD	1:K:202:MET:HE3	2.59	0.42	
1:C:28:ASP:HA	1:C:53:ASN:HD22	1.84	0.42	
1:K:50:MET:CE	1:L:198:MET:HB2	2.46	0.42	
1:A:50:MET:CE	1:B:198:MET:HB2	2.49	0.42	
1:F:42:VAL:HG21	1:F:58:THR:CG2	2.47	0.42	
1:F:291:PHE:O	1:F:293:ASN:N	2.52	0.42	
1:L:106:LEU:O	1:L:181:GLY:HA3	2.19	0.42	
1:B:9:ARG:NH2	1:B:358:TRP:HA	2.34	0.42	
1:C:302:LEU:O	1:D:135:GLY:HA2	2.18	0.42	
1:C:176:GLN:HG3	1:D:176:GLN:HE21	1.85	0.42	
1:C:346:ALA:O	1:C:347:ALA:O	2.37	0.42	
1:D:25:ILE:HG21	1:D:165:LEU:HD13	2.02	0.42	
1:F:323:ASN:CG	1:F:324:GLY:N	2.78	0.42	
1:H:346:ALA:O	1:H:347:ALA:O	2.38	0.42	
1:J:187:ALA:O	1:J:190:ASP:HB2	2.20	0.42	
1:B:48:ASP:OD2	1:B:50:MET:HB3	2.19	0.42	
1:B:113:GLY:HA3	1:B:130:TYR:CZ	2.55	0.42	
1:D:142:ARG:O	1:D:212:ARG:HD2	2.20	0.42	
1:G:207:MET:HE3	2:H:401:A1IZD:C34	2.50	0.42	
1:I:320:TYR:CE2	1:I:322:ALA:HB2	2.55	0.42	
1:K:198:MET:HE1	2:L:401:A1IZD:C27	2.49	0.42	
1:E:196:ILE:HG13	1:F:153:LEU:HD21	2.01	0.42	
1:G:202:MET:HG2	1:G:207:MET:HE2	2.02	0.42	



	A i a	Interatomic	Clash	
Atom-1	Atom-2	distance $(\text{\AA})$	overlap (Å)	
1:H:38:ARG:NH1	2:H:401:A1IZD:O12	2.51	0.42	
1:E:245:TYR:CE2	1:E:249:LEU:HD11	2.55	0.42	
1:F:113:GLY:HA3	1:F:130:TYR:CE1	2.55	0.42	
1:I:241:GLU:HB2	1:I:244:PHE:CD2	2.54	0.42	
1:K:80:LEU:HD23	1:K:108:TYR:CE2	2.55	0.42	
1:A:322:ALA:O	1:A:323:ASN:C	2.62	0.42	
1:G:18:PRO:HB3	1:G:156:ASP:O	2.19	0.42	
2:G:401:A1IZD:O3	2:G:401:A1IZD:C13	2.67	0.42	
1:A:102:VAL:O	1:A:103:ASN:HB2	2.20	0.41	
1:A:294:SER:O	1:B:123:GLN:HG2	2.19	0.41	
1:C:234:TYR:OH	3:C:502:HOH:O	2.21	0.41	
1:H:349:ILE:HD11	1:H:354:VAL:CG2	2.50	0.41	
2:L:401:A1IZD:C28	2:L:401:A1IZD:C36	2.97	0.41	
1:F:322:ALA:O	1:F:323:ASN:C	2.63	0.41	
2:K:401:A1IZD:C34	1:L:207:MET:HE1	2.50	0.41	
1:L:120:ARG:HD3	3:L:509:HOH:O	2.19	0.41	
1:E:156:ASP:HA	1:E:188:MET:SD	2.60	0.41	
2:F:401:A1IZD:C36	2:F:401:A1IZD:C28	2.97	0.41	
1:G:181:GLY:O	1:G:182:GLN:HB3	2.20	0.41	
1:F:231:ASP:OD1	1:F:231:ASP:N	2.54	0.41	
1:K:264:ASP:OD1	1:K:264:ASP:C	2.63	0.41	
1:E:38:ARG:NH2	2:E:401:A1IZD:O12	2.54	0.41	
1:I:145:GLU:OE2	1:J:145:GLU:OE1	2.38	0.41	
1:I:196:ILE:HG13	1:J:153:LEU:HD21	2.01	0.41	
1:J:37:ASP:O	1:J:58:THR:HA	2.20	0.41	
1:B:18:PRO:HB3	1:B:156:ASP:O	2.20	0.41	
1:B:291:PHE:O	1:B:294:SER:HB3	2.21	0.41	
1:C:126:HIS:O	1:C:127:ASP:C	2.64	0.41	
1:F:172:LEU:O	1:F:176:GLN:HG2	2.20	0.41	
1:L:61:LEU:HD13	1:L:94:LEU:HD11	2.01	0.41	
1:D:48:ASP:OD2	1:D:50:MET:HB3	2.20	0.41	
1:G:25:ILE:O	1:G:28:ASP:HB2	2.20	0.41	
1:G:28:ASP:HA	1:G:53:ASN:HD22	1.86	0.41	
1:G:36:ILE:HA	1:G:57:VAL:O	2.21	0.41	
1:H:120:ARG:HH11	1:H:120:ARG:HD3	1.74	0.41	
1:H:196:ILE:HG12	1:H:199:MET:HB2	2.02	0.41	
1:K:316:ARG:HD2	1:L:117:THR:O	2.20	0.41	
1:L:37:ASP:O	1:L:58:THR:HA	2.20	0.41	
1:D:157:PHE:O	1:D:158:GLY:C	2.63	0.41	
1:E:109:ALA:HB1	1:E:164:LEU:HD11	2.03	0.41	
1:E:157:PHE:O	1:E:158:GLY:C	2.63	0.41	



Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance $(\text{\AA})$	overlap (Å)
1:J:45:ILE:H	1:J:45:ILE:HG13	1.74	0.41
1:J:113:GLY:HA2	1:J:188:MET:HB2	2.02	0.41
1:A:224:TYR:HA	1:A:237:VAL:O	2.21	0.40
1:C:28:ASP:HA	1:C:53:ASN:ND2	2.35	0.40
1:F:122:GLN:HG2	3:F:504:HOH:O	2.21	0.40
1:I:54:ARG:HG2	1:I:54:ARG:HH11	1.86	0.40
1:A:225:ASP:OD2	1:A:272:ARG:NH1	2.54	0.40
1:B:46:SER:OG	1:B:51:LEU:HD12	2.21	0.40
1:B:80:LEU:CD2	1:B:108:TYR:CE2	3.04	0.40
1:D:113:GLY:HA3	1:D:130:TYR:CE1	2.56	0.40
1:H:58:THR:O	1:H:59:ALA:CB	2.68	0.40
1:H:113:GLY:HA3	1:H:130:TYR:CZ	2.57	0.40
1:J:113:GLY:HA3	1:J:130:TYR:CE1	2.56	0.40
2:J:401:A1IZD:C28	2:J:401:A1IZD:C32	2.98	0.40
1:F:24:MET:HB3	1:F:24:MET:HE2	1.89	0.40
1:H:126:HIS:O	1:H:127:ASP:C	2.63	0.40
1:B:54:ARG:O	1:B:346:ALA:HB3	2.20	0.40
1:B:55:ARG:HD2	1:B:349:ILE:CD1	2.52	0.40
1:C:61:LEU:HD22	1:C:94:LEU:HD11	2.03	0.40
1:C:113:GLY:HA3	1:C:130:TYR:CZ	2.56	0.40
1:K:18:PRO:HB3	1:K:156:ASP:O	2.20	0.40
1:B:113:GLY:HA3	1:B:130:TYR:CE1	2.56	0.40
1:E:13:LEU:O	1:E:14:ALA:C	2.65	0.40
1:F:1:MET:HE2	1:F:343:ARG:NH2	2.36	0.40
1:G:105:ARG:O	1:G:181:GLY:CA	2.70	0.40
1:H:19:GLY:N	1:H:20:PRO:HD2	2.36	0.40
1:K:196:ILE:O	1:K:196:ILE:HG23	2.21	0.40

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	352/364~(97%)	325~(92%)	23~(6%)	4 (1%)	12 7
1	В	351/364~(96%)	334 (95%)	14 (4%)	3(1%)	14 10
1	С	355/364~(98%)	338~(95%)	14 (4%)	3 (1%)	16 12
1	D	354/364~(97%)	334 (94%)	18 (5%)	2 (1%)	22 18
1	Е	353/364~(97%)	333 (94%)	17 (5%)	3 (1%)	16 12
1	F	353/364~(97%)	327 (93%)	19 (5%)	7(2%)	6 2
1	G	353/364~(97%)	325~(92%)	19 (5%)	9(2%)	4 1
1	Н	353/364~(97%)	328 (93%)	21 (6%)	4 (1%)	12 7
1	Ι	359/364~(99%)	341 (95%)	16 (4%)	2(1%)	22 18
1	J	354/364~(97%)	338 (96%)	14 (4%)	2(1%)	22 18
1	Κ	352/364~(97%)	329 (94%)	19 (5%)	4 (1%)	12 7
1	L	357/364~(98%)	336 (94%)	18 (5%)	3 (1%)	16 12
All	All	4246/4368 (97%)	3988 (94%)	212 (5%)	46 (1%)	12 7

All (46) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	40	SER
1	А	103	ASN
1	В	103	ASN
1	В	347	ALA
1	С	347	ALA
1	D	103	ASN
1	Е	347	ALA
1	F	41	SER
1	F	103	ASN
1	G	103	ASN
1	G	347	ALA
1	G	356	THR
1	Н	59	ALA
1	Н	103	ASN
1	Н	323	ASN
1	Н	347	ALA
1	Κ	347	ALA
1	А	59	ALA
1	С	66	GLY
1	С	103	ASN
1	F	347	ALA
1	G	59	ALA



Mol	Chain	Res	Type
1	G	101	LYS
1	Ι	103	ASN
1	Ι	324	GLY
1	J	103	ASN
1	J	323	ASN
1	Κ	103	ASN
1	Е	103	ASN
1	F	59	ALA
1	F	356	THR
1	G	100	ALA
1	G	292	ALA
1	G	357	ASP
1	А	356	THR
1	В	59	ALA
1	F	323	ASN
1	G	323	ASN
1	Κ	323	ASN
1	L	347	ALA
1	D	151	LEU
1	Κ	356	THR
1	L	151	LEU
1	F	292	ALA
1	L	356	THR
1	Е	39	PRO

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	273/277~(99%)	265~(97%)	8(3%)	37 40
1	В	272/277~(98%)	266~(98%)	6 (2%)	47 51
1	С	275/277~(99%)	268~(98%)	7 (2%)	42 46
1	D	275/277~(99%)	266~(97%)	9(3%)	33 34
1	Е	274/277~(99%)	268~(98%)	6 (2%)	47 51



Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	F	274/277~(99%)	269~(98%)	5(2%)	54	59
1	G	274/277~(99%)	266~(97%)	8(3%)	37	40
1	Н	273/277~(99%)	265~(97%)	8(3%)	37	40
1	Ι	277/277~(100%)	267~(96%)	10 (4%)	30	31
1	J	274/277~(99%)	267~(97%)	7 (3%)	41	44
1	Κ	273/277~(99%)	264~(97%)	9~(3%)	33	34
1	L	275/277~(99%)	263~(96%)	12 (4%)	24	23
All	All	3289/3324~(99%)	3194 (97%)	95(3%)	37	40

Continued from previous page...

All (95) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	6	SER
1	А	40	SER
1	А	56	ILE
1	А	76	LYS
1	А	97	GLU
1	А	180	LYS
1	А	243	GLN
1	А	294	SER
1	В	6	SER
1	В	76	LYS
1	В	85	ARG
1	В	177	SER
1	В	209	THR
1	В	356	THR
1	С	6	SER
1	С	58	THR
1	С	63	SER
1	С	91	ARG
1	С	176	GLN
1	С	258	GLU
1	С	265	ARG
1	D	6	SER
1	D	45	ILE
1	D	56	ILE
1	D	85	ARG
1	D	177	SER
1	D	265	ARG
1	D	294	SER



Mol	Chain	Res	Type
1	D	318	THR
1	D	323	ASN
1	Е	6	SER
1	Е	45	ILE
1	Е	58	THR
1	Е	203	ARG
1	Е	323	ASN
1	Е	351	ILE
1	F	42	VAL
1	F	85	ARG
1	F	258	GLU
1	F	294	SER
1	F	357	ASP
1	G	6	SER
1	G	11	VAL
1	G	76	LYS
1	G	177	SER
1	G	258	GLU
1	G	265	ARG
1	G	293	ASN
1	G	350	ASP
1	Н	45	ILE
1	Н	176	GLN
1	Н	265	ARG
1	Н	311	PRO
1	Н	323	ASN
1	Н	349	ILE
1	Н	350	ASP
1	Н	359	ASP
1	Ι	6	SER
1	Ι	40	SER
1	Ι	41	SER
1	Ι	42	VAL
1	Ι	47	ARG
1	Ι	58	THR
1	Ι	68	GLU
1	Ι	121	SER
1	Ι	176	GLN
1	Ι	248	MET
1	J	47	ARG
1	J	58	THR
1	J	176	GLN



Mol	Chain	Res	Type
1	J	209	THR
1	J	351	ILE
1	J	357	ASP
1	J	359	ASP
1	Κ	6	SER
1	Κ	40	SER
1	Κ	76	LYS
1	Κ	176	GLN
1	Κ	203	ARG
1	Κ	207	MET
1	Κ	258	GLU
1	Κ	323	ASN
1	Κ	349	ILE
1	L	38	ARG
1	L	40	SER
1	L	42	VAL
1	L	45	ILE
1	L	56	ILE
1	L	92	LEU
1	L	212	ARG
1	L	248	MET
1	L	258	GLU
1	L	294	SER
1	L	299	THR
1	L	350	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (44) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	138	HIS
1	А	176	GLN
1	А	286	HIS
1	А	327	GLN
1	В	116	GLN
1	В	134	ASN
1	В	176	GLN
1	В	293	ASN
1	В	308	HIS
1	В	323	ASN
1	С	116	GLN
1	С	138	HIS
1	С	176	GLN



Mol	Chain	Res	Type
1	С	263	ASN
1	С	282	HIS
1	С	286	HIS
1	С	327	GLN
1	D	176	GLN
1	D	282	HIS
1	Е	138	HIS
1	F	116	GLN
1	F	293	ASN
1	G	138	HIS
1	G	176	GLN
1	G	197	GLN
1	G	263	ASN
1	G	282	HIS
1	G	327	GLN
1	Н	286	HIS
1	Н	327	GLN
1	Ι	138	HIS
1	Ι	176	GLN
1	Ι	263	ASN
1	Ι	327	GLN
1	J	122	GLN
1	J	134	ASN
1	J	176	GLN
1	J	282	HIS
1	J	286	HIS
1	K	138	HIS
1	K	176	GLN
1	L	123	GLN
1	L	176	GLN
1	L	308	HIS

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

## 5.6 Ligand geometry (i)

#### 12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bond lengths			Bo	ond ang	es
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
2	A1IZD	Ι	401	-	62,70,70	0.93	3 (4%)	80,103,103	1.32	10 (12%)
2	A1IZD	D	401	-	62,70,70	0.98	4 (6%)	80,103,103	1.18	6 (7%)
2	A1IZD	А	401	-	62,70,70	0.89	5 (8%)	80,103,103	1.34	13 (16%)
2	A1IZD	L	401	-	62,70,70	0.88	3 (4%)	80,103,103	1.26	9 (11%)
2	A1IZD	G	401	-	62,70,70	0.87	3 (4%)	80,103,103	1.51	11 (13%)
2	A1IZD	В	401	-	62,70,70	0.98	4 (6%)	80,103,103	1.27	10 (12%)
2	A1IZD	Н	401	-	62,70,70	1.16	3 (4%)	80,103,103	1.24	9 (11%)
2	A1IZD	E	401	-	62,70,70	1.02	4 (6%)	80,103,103	1.26	8 (10%)
2	A1IZD	J	401	-	62,70,70	0.82	1 (1%)	80,103,103	1.32	7 (8%)
2	A1IZD	F	401	-	62,70,70	0.93	5 (8%)	80,103,103	1.61	12 (15%)
2	A1IZD	С	401	-	62,70,70	0.86	3 (4%)	80,103,103	1.45	10 (12%)
2	A1IZD	K	401	-	62,70,70	0.85	3 (4%)	80,103,103	1.35	10 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A1IZD	Ι	401	-	-	10/63/83/83	0/5/5/5
2	A1IZD	D	401	-	-	8/63/83/83	0/5/5/5
2	A1IZD	А	401	-	-	14/63/83/83	0/5/5/5
2	A1IZD	L	401	-	-	14/63/83/83	0/5/5/5



s	Rings	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A1IZD	G	401	-	-	20/63/83/83	0/5/5/5
2	A1IZD	В	401	-	-	9/63/83/83	0/5/5/5
2	A1IZD	Н	401	-	-	9/63/83/83	0/5/5/5
2	A1IZD	Е	401	-	-	16/63/83/83	0/5/5/5
2	A1IZD	J	401	-	-	14/63/83/83	0/5/5/5
2	A1IZD	F	401	-	-	8/63/83/83	0/5/5/5
2	A1IZD	С	401	-	-	12/63/83/83	0/5/5/5
2	A1IZD	K	401	-	-	10/63/83/83	0/5/5/5

Continued from previous page...

All (41) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
2	Н	401	A1IZD	C2-C3	5.90	1.58	1.53
2	Е	401	A1IZD	C2-C3	4.06	1.56	1.53
2	D	401	A1IZD	C2-C3	3.88	1.56	1.53
2	В	401	A1IZD	C2-C3	3.50	1.56	1.53
2	Ι	401	A1IZD	O1-C3	3.47	1.25	1.20
2	Н	401	A1IZD	O1-C3	3.47	1.25	1.20
2	L	401	A1IZD	O1-C3	3.41	1.25	1.20
2	Е	401	A1IZD	O1-C3	3.25	1.25	1.20
2	К	401	A1IZD	O1-C3	3.18	1.25	1.20
2	G	401	A1IZD	O1-C3	3.07	1.25	1.20
2	С	401	A1IZD	O1-C3	3.03	1.25	1.20
2	Ι	401	A1IZD	C2-C3	3.02	1.56	1.53
2	А	401	A1IZD	O1-C3	2.94	1.25	1.20
2	В	401	A1IZD	O1-C3	2.94	1.25	1.20
2	F	401	A1IZD	C3-S1	2.89	1.84	1.75
2	D	401	A1IZD	P3-014	2.89	1.64	1.59
2	G	401	A1IZD	P3-014	2.66	1.64	1.59
2	F	401	A1IZD	C2-C3	2.64	1.55	1.53
2	L	401	A1IZD	P3-014	2.62	1.64	1.59
2	D	401	A1IZD	O1-C3	2.62	1.24	1.20
2	В	401	A1IZD	C3-S1	2.56	1.83	1.75
2	F	401	A1IZD	O1-C3	2.54	1.24	1.20
2	J	401	A1IZD	P3-014	2.52	1.64	1.59
2	E	401	A1IZD	P3-014	2.51	1.64	1.59
2	Κ	401	A1IZD	P3-014	2.48	1.64	1.59
2	Н	401	A1IZD	C3-S1	2.47	1.83	1.75
2	A	401	A1IZD	P3-014	2.46	1.64	1.59
2	F	401	A1IZD	P3-014	2.35	1.63	1.59



Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	А	401	A1IZD	C2-C3	2.35	1.55	1.53
2	В	401	A1IZD	P3-014	2.32	1.63	1.59
2	Κ	401	A1IZD	C3-S1	2.29	1.82	1.75
2	А	401	A1IZD	O12-C17	2.21	1.44	1.41
2	F	401	A1IZD	O2-C6	2.20	1.27	1.23
2	А	401	A1IZD	C3-S1	2.20	1.82	1.75
2	С	401	A1IZD	C3-S1	2.19	1.82	1.75
2	Ι	401	A1IZD	C3-S1	2.17	1.82	1.75
2	С	401	A1IZD	P3-014	2.11	1.63	1.59
2	Ε	401	A1IZD	C3-S1	2.06	1.81	1.75
2	L	401	A1IZD	O12-C17	2.05	1.43	1.41
2	D	401	A1IZD	O12-C17	2.04	1.43	1.41
2	G	401	A1IZD	C2-C3	2.02	1.55	1.53

All (115) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	401	A1IZD	C2-C3-S1	6.45	118.81	111.81
2	F	401	A1IZD	O1-C3-C2	-5.72	114.92	124.12
2	D	401	A1IZD	C23-C24-C16	-5.27	93.88	103.22
2	С	401	A1IZD	O1-C3-S1	5.17	130.76	123.80
2	С	401	A1IZD	O1-C3-C2	-5.06	115.99	124.12
2	J	401	A1IZD	O1-C3-C2	-4.89	116.25	124.12
2	G	401	A1IZD	O6-P1-O7	4.79	135.91	112.24
2	G	401	A1IZD	C2-C3-S1	4.65	116.86	111.81
2	F	401	A1IZD	C23-C24-C16	-4.62	95.03	103.22
2	Κ	401	A1IZD	O14-P3-O15	-4.61	91.60	109.39
2	G	401	A1IZD	C12-C11-C14	4.50	115.58	108.23
2	L	401	A1IZD	C23-C24-C16	-4.44	95.35	103.22
2	J	401	A1IZD	C23-C24-C16	-4.35	95.52	103.22
2	G	401	A1IZD	C23-C24-C16	-4.32	95.57	103.22
2	Κ	401	A1IZD	C23-C24-C16	-4.25	95.69	103.22
2	Ι	401	A1IZD	C23-C24-C16	-4.08	95.99	103.22
2	А	401	A1IZD	C12-C11-C14	-4.01	101.69	108.23
2	А	401	A1IZD	O1-C3-C2	-3.99	117.70	124.12
2	С	401	A1IZD	C4-S1-C3	3.82	113.26	101.75
2	Κ	401	A1IZD	O1-C3-C2	-3.82	117.97	124.12
2	Ι	401	A1IZD	O14-P3-O15	-3.77	94.86	109.39
2	Е	401	A1IZD	C23-C24-C16	-3.76	96.56	103.22
2	В	401	A1IZD	C23-C24-C16	-3.76	96.56	103.22
2	А	401	A1IZD	C23-C24-C16	-3.72	96.63	103.22
2	А	401	A1IZD	C2-C3-S1	3.70	115.83	111.81


Mol	Chain	Res	Type	Atoms	$Z = Observed(^{o})$		$Ideal(^{o})$
2	В	401	A1IZD	C2-C3-S1	3.69	115.81	111.81
2	J	401	A1IZD	C4-S1-C3	3.68	112.81	101.75
2	G	401	A1IZD	C13-C11-C14	-3.63	102.31	108.23
2	D	401	A1IZD	C2-C3-S1	3.62	115.74	111.81
2	J	401	A1IZD	C2-C3-S1	3.58	115.70	111.81
2	Е	401	A1IZD	O13-C23-C24	3.58	121.34	111.17
2	Н	401	A1IZD	C2-C3-S1	3.52	115.63	111.81
2	L	401	A1IZD	O1-C3-C2	-3.47	118.54	124.12
2	С	401	A1IZD	C23-C24-C16	-3.46	97.09	103.22
2	Н	401	A1IZD	O14-P3-O15	-3.43	96.14	109.39
2	G	401	A1IZD	C13-C11-C10	3.40	114.72	108.82
2	Н	401	A1IZD	C23-C24-C16	-3.31	97.36	103.22
2	В	401	A1IZD	O14-P3-O15	-3.31	96.63	109.39
2	Ι	401	A1IZD	O6-P1-O7	3.30	128.54	112.24
2	В	401	A1IZD	O1-C3-C2	-3.28	118.84	124.12
2	Η	401	A1IZD	O1-C3-C2	-3.22	118.95	124.12
2	J	401	A1IZD	C13-C11-C10	3.19	114.35	108.82
2	J	401	A1IZD	O1-C3-S1	3.15	128.04	123.80
2	F	401	A1IZD	O6-P1-O7	3.12	127.68	112.24
2	Ε	401	A1IZD	C2-C3-S1	3.08	115.16	111.81
2	Κ	401	A1IZD	C2-C3-S1	2.99	115.06	111.81
2	С	401	A1IZD	C12-C11-C10	2.98	113.99	108.82
2	Η	401	A1IZD	C19-C20-N5	2.93	124.80	120.35
2	Κ	401	A1IZD	O17-P3-O15	2.92	122.13	110.68
2	Ι	401	A1IZD	C5-N1-C6	-2.92	117.42	122.84
2	Ι	401	A1IZD	C13-C11-C14	2.91	112.97	108.23
2	Н	401	A1IZD	C8-C7-C6	2.90	117.19	112.36
2	В	401	A1IZD	O17-P3-O16	-2.88	96.63	107.64
2	J	401	A1IZD	O6-P1-O7	2.85	126.33	112.24
2	А	401	A1IZD	O6-P1-O7	2.80	126.08	112.24
2	L	401	A1IZD	O6-P1-O7	2.79	126.06	112.24
2	F	401	A1IZD	C12-C11-C14	2.77	112.74	108.23
2	L	401	A1IZD	C2-C3-S1	2.76	114.80	111.81
2	Ι	401	A1IZD	O16-P3-O15	2.70	121.27	110.68
2	Н	401	A1IZD	O16-P3-O15	2.69	121.22	110.68
2	F	401	A1IZD	O13-C23-C24	2.69	118.81	111.17
2	F	401	A1IZD	C8-C7-C6	2.68	116.83	112.36
2	А	401	A1IZD	C19-C20-N5	2.68	124.42	120.35
2	В	401	A1IZD	O17-P3-O14	2.68	117.99	105.99
2	G	401	A1IZD	C19-C20-N5	2.68	124.42	120.35
2	Ι	401	A1IZD	C2-C3-S1	2.65	114.69	111.81
2	Ε	401	A1IZD	C19-C20-N5	2.65	124.38	120.35



Mol	Chain	Res	Type	Atoms	oms Z Observe		$Ideal(^{o})$
2	D	401	A1IZD	O6-P1-O7	2.65	125.32	112.24
2	F	401	A1IZD	C19-C20-N5	2.63	124.35	120.35
2	F	401	A1IZD	C1-C2-C25	2.61	119.16	112.92
2	А	401	A1IZD	C12-C11-C10	2.60	113.32	108.82
2	L	401	A1IZD	C13-C11-C14	2.58	112.44	108.23
2	Ι	401	A1IZD	O1-C3-C2	-2.56	120.01	124.12
2	Ι	401	A1IZD	C19-C20-N5	2.50	124.15	120.35
2	D	401	A1IZD	C5-N1-C6	-2.48	118.23	122.84
2	Κ	401	A1IZD	O6-P1-O7	2.47	124.47	112.24
2	G	401	A1IZD	O1-C3-C2	-2.47	120.15	124.12
2	Е	401	A1IZD	C37-C29-C30	2.46	125.31	119.91
2	L	401	A1IZD	O5-P1-O7	-2.45	99.48	109.07
2	Κ	401	A1IZD	C19-C20-N5	2.45	124.07	120.35
2	С	401	A1IZD	C19-C20-N5	2.42	124.04	120.35
2	G	401	A1IZD	C25-C2-C3	2.42	115.11	109.90
2	Е	401	A1IZD	C28-C29-C30	-2.41	115.28	120.57
2	В	401	A1IZD	O13-C23-C24	2.40	117.99	111.17
2	G	401	A1IZD	O14-P3-O15	-2.37	100.22	109.39
2	А	401	A1IZD	C13-C11-C14	2.37	112.11	108.23
2	С	401	A1IZD	O6-P1-O7	2.37	123.93	112.24
2	L	401	A1IZD	C19-C20-N5	2.36	123.94	120.35
2	Κ	401	A1IZD	C8-C7-C6	2.35	116.28	112.36
2	С	401	A1IZD	O6-P1-O5	-2.34	96.89	107.75
2	Κ	401	A1IZD	01-C3-S1	2.33	126.94	123.80
2	D	401	A1IZD	C19-C20-N5	2.29	123.83	120.35
2	Н	401	A1IZD	C8-N2-C9	2.26	126.62	122.59
2	F	401	A1IZD	O5-C14-C11	-2.25	106.93	110.55
2	F	401	A1IZD	C17-N3-C22	-2.25	122.69	126.64
2	В	401	A1IZD	O17-P3-O15	2.23	119.41	110.68
2	L	401	A1IZD	O14-P3-O15	-2.23	100.79	109.39
2	С	401	A1IZD	C5-N1-C6	2.21	126.95	122.84
2	С	401	A1IZD	C13-C11-C14	2.20	111.83	108.23
2	A	401	A1IZD	017-P3-015	-2.20	102.06	110.68
2	Ι	401	A1IZD	O13-C23-C17	2.16	118.85	110.85
2	А	401	A1IZD	C15-C16-C24	2.16	121.56	114.40
2	Е	401	A1IZD	O1-C3-C2	-2.15	120.66	124.12
2	В	401	A1IZD	C12-C11-C10	2.12	112.50	108.82
2	F	401	A1IZD	O14-C24-C16	2.12	117.73	110.08
2	L	401	A1IZD	O1-C3-S1	2.10	126.63	123.80
2	G	401	A1IZD	O6-P1-O5	-2.09	98.05	107.75
2	Е	401	A1IZD	017-P3-014	-2.07	96.72	105.99
2	D	401	A1IZD	C13-C11-C10	2.07	112.41	108.82



Mol	Chain	$\mathbf{Res}$	Type	Atoms	$\mathbf{Z}$	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	Κ	401	A1IZD	O17-P3-O14	2.06	115.24	105.99
2	А	401	A1IZD	C1-C2-C25	2.06	117.84	112.92
2	А	401	A1IZD	O5-P1-O7	-2.03	101.14	109.07
2	Н	401	A1IZD	P2-O8-P1	2.02	139.77	132.83
2	В	401	A1IZD	C19-C20-N5	2.02	123.42	120.35
2	А	401	A1IZD	O17-P3-O14	2.01	114.98	105.99

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	А	401	A1IZD	C9-C10-C11-C14
2	А	401	A1IZD	C9-C10-C11-C12
2	А	401	A1IZD	C9-C10-C11-C13
2	А	401	A1IZD	C6-C7-C8-N2
2	А	401	A1IZD	C14-O5-P1-O8
2	А	401	A1IZD	C15-O11-P2-O8
2	А	401	A1IZD	C15-O11-P2-O10
2	В	401	A1IZD	C6-C7-C8-N2
2	В	401	A1IZD	C15-O11-P2-O8
2	В	401	A1IZD	C15-O11-P2-O9
2	В	401	A1IZD	C15-O11-P2-O10
2	В	401	A1IZD	C24-O14-P3-O15
2	С	401	A1IZD	C5-C4-S1-C3
2	С	401	A1IZD	C4-C5-N1-C6
2	С	401	A1IZD	C2-C3-S1-C4
2	С	401	A1IZD	O1-C3-S1-C4
2	С	401	A1IZD	C15-O11-P2-O8
2	D	401	A1IZD	C15-O11-P2-O8
2	D	401	A1IZD	C15-O11-P2-O9
2	D	401	A1IZD	C15-O11-P2-O10
2	Е	401	A1IZD	C10-C11-C14-O5
2	Е	401	A1IZD	C4-C5-N1-C6
2	Е	401	A1IZD	C6-C7-C8-N2
2	Е	401	A1IZD	C15-O11-P2-O8
2	Е	401	A1IZD	C24-O14-P3-O15
2	F	401	A1IZD	C6-C7-C8-N2
2	F	401	A1IZD	C15-O11-P2-O8
2	F	401	A1IZD	C15-O11-P2-O9
2	G	401	A1IZD	C9-C10-C11-C14
2	G	401	A1IZD	O4-C10-C11-C14
2	G	401	A1IZD	C9-C10-C11-C12

All (144) torsion outliers are listed below:



Mol	Chain	Res	Type	Atoms
2	G	401	A1IZD	C9-C10-C11-C13
2	G	401	A1IZD	C14-O5-P1-O6
2	G	401	A1IZD	C15-O11-P2-O8
2	G	401	A1IZD	C15-O11-P2-O9
2	G	401	A1IZD	C15-O11-P2-O10
2	Н	401	A1IZD	C6-C7-C8-N2
2	Н	401	A1IZD	C24-O14-P3-O15
2	Ι	401	A1IZD	C6-C7-C8-N2
2	Ι	401	A1IZD	C14-O5-P1-O6
2	Ι	401	A1IZD	C15-O11-P2-O8
2	J	401	A1IZD	C2-C3-S1-C4
2	J	401	A1IZD	O1-C3-S1-C4
2	J	401	A1IZD	C15-O11-P2-O8
2	K	401	A1IZD	C6-C7-C8-N2
2	K	401	A1IZD	C15-O11-P2-O8
2	K	401	A1IZD	C15-O11-P2-O9
2	К	401	A1IZD	C15-O11-P2-O10
2	K	401	A1IZD	C24-O14-P3-O15
2	L	401	A1IZD	C14-O5-P1-O6
2	L	401	A1IZD	C15-O11-P2-O8
2	L	401	A1IZD	C24-O14-P3-O15
2	G	401	A1IZD	O18-C30-C31-C36
2	G	401	A1IZD	C29-C30-C31-C36
2	G	401	A1IZD	O18-C30-C31-C32
2	G	401	A1IZD	C29-C30-C31-C32
2	Е	401	A1IZD	C29-C30-C31-C32
2	Е	401	A1IZD	O18-C30-C31-C32
2	J	401	A1IZD	C7-C6-N1-C5
2	Е	401	A1IZD	C13-C11-C14-O5
2	J	401	A1IZD	O2-C6-N1-C5
2	Е	401	A1IZD	C29-C30-C31-C36
2	G	401	A1IZD	C6-C7-C8-N2
2	Н	401	A1IZD	O11-C15-C16-O12
2	E	401	A1IZD	C12-C11-C14-O5
2	A	401	A1IZD	O4-C10-C11-C13
2	G	401	A1IZD	O4-C10-C11-C12
2	G	401	A1IZD	O4-C10-C11-C13
2	Е	401	A1IZD	O18-C30-C31-C36
2	Е	401	A1IZD	O11-C15-C16-O12
2	D	401	A1IZD	C6-C7-C8-N2
2	L	401	A1IZD	C16-C24-O14-P3
2	Н	401	A1IZD	C15-O11-P2-O8

Continued from previous page...



Mol	Chain	Res	Type	Atoms
2	L	401	A1IZD	C14-O5-P1-O8
2	С	401	A1IZD	O2-C6-N1-C5
2	С	401	A1IZD	O11-C15-C16-O12
2	А	401	A1IZD	C14-O5-P1-O7
2	С	401	A1IZD	C15-O11-P2-O9
2	С	401	A1IZD	C15-O11-P2-O10
2	Е	401	A1IZD	C15-O11-P2-O9
2	F	401	A1IZD	C15-O11-P2-O10
2	G	401	A1IZD	C14-O5-P1-O7
2	Ι	401	A1IZD	C15-O11-P2-O9
2	Ι	401	A1IZD	C15-O11-P2-O10
2	J	401	A1IZD	C15-O11-P2-O9
2	J	401	A1IZD	C15-O11-P2-O10
2	L	401	A1IZD	C14-O5-P1-O7
2	L	401	A1IZD	C15-O11-P2-O9
2	L	401	A1IZD	C15-O11-P2-O10
2	А	401	A1IZD	O4-C10-C11-C14
2	С	401	A1IZD	C7-C6-N1-C5
2	А	401	A1IZD	C25-C2-C3-O1
2	В	401	A1IZD	C25-C2-C3-O1
2	С	401	A1IZD	C25-C2-C3-O1
2	D	401	A1IZD	C25-C2-C3-O1
2	F	401	A1IZD	C25-C2-C3-O1
2	Н	401	A1IZD	C25-C2-C3-O1
2	Ι	401	A1IZD	C25-C2-C3-O1
2	K	401	A1IZD	C25-C2-C3-O1
2	L	401	A1IZD	C25-C2-C3-O1
2	L	401	A1IZD	O11-C15-C16-O12
2	А	401	A1IZD	O11-C15-C16-O12
2	Ι	401	A1IZD	O11-C15-C16-O12
2	L	401	A1IZD	C13-C11-C14-O5
2	J	401	A1IZD	C25-C2-C3-O1
2	A	401	A1IZD	C25-C2-C3-S1
2	В	401	A1IZD	C25-C2-C3-S1
2	С	401	A1IZD	C25-C2-C3-S1
2	D	401	A1IZD	C25-C2-C3-S1
2	E	401	A1IZD	C25-C2-C3-S1
2	F	401	A1IZD	C25-C2-C3-S1
2	G	401	A1IZD	C25-C2-C3-S1
2	Н	401	A1IZD	C25-C2-C3-S1
2	I	401	A1IZD	C25-C2-C3-S1
2	J	401	A1IZD	C25-C2-C3-S1

Continued from previous page...



Mol	Chain	Res	Type	Atoms
2	K	401	A1IZD	C25-C2-C3-S1
2	L	401	A1IZD	C25-C2-C3-S1
2	В	401	A1IZD	O11-C15-C16-O12
2	J	401	A1IZD	C5-C4-S1-C3
2	F	401	A1IZD	C2-C3-S1-C4
2	G	401	A1IZD	C2-C3-S1-C4
2	Ι	401	A1IZD	P1-08-P2-09
2	J	401	A1IZD	C24-O14-P3-O15
2	L	401	A1IZD	C6-C7-C8-N2
2	Н	401	A1IZD	C4-C5-N1-C6
2	J	401	A1IZD	C7-C8-N2-C9
2	В	401	A1IZD	C24-O14-P3-O17
2	G	401	A1IZD	C14-O5-P1-O8
2	Н	401	A1IZD	C24-O14-P3-O16
2	J	401	A1IZD	C24-O14-P3-O17
2	К	401	A1IZD	C24-O14-P3-O17
2	D	401	A1IZD	O11-C15-C16-O12
2	F	401	A1IZD	O11-C15-C16-O12
2	G	401	A1IZD	O11-C15-C16-O12
2	J	401	A1IZD	O11-C15-C16-O12
2	К	401	A1IZD	O11-C15-C16-O12
2	А	401	A1IZD	P1-08-P2-09
2	Е	401	A1IZD	P1-08-P2-010
2	Ι	401	A1IZD	P1-08-P2-010
2	K	401	A1IZD	P1-08-P2-09
2	L	401	A1IZD	P1-08-P2-010
2	Е	401	A1IZD	C15-O11-P2-O10
2	Н	401	A1IZD	C15-O11-P2-O10
2	D	401	A1IZD	C37-C29-C30-C31

Continued from previous page...

There are no ring outliers.

12 monomers are in	volved in 3	0 short	contacts:
--------------------	-------------	---------	-----------

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Ι	401	A1IZD	1	0
2	D	401	A1IZD	3	0
2	А	401	A1IZD	2	0
2	L	401	A1IZD	3	0
2	G	401	A1IZD	1	0
2	В	401	A1IZD	3	0
2	Н	401	A1IZD	3	0
2	Е	401	A1IZD	4	0



The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





Symm-Clashes Chain Res Mol Type Clashes A1IZD  $\mathbf{2}$ J 401 20 2 F 401 A1IZD 0 4 $\mathbf{2}$ С A1IZD  $\mathbf{2}$ 0 401 2 Κ  $\overline{2}$ 0 401 A1IZD













**PDB** FEIN DATA BANK

PROT

































# 5.7 Other polymers (i)

There are no such residues in this entry.

#### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
1	А	354/364~(97%)	0.52	49 (13%) 8 8	23,  41,  83,  105	2 (0%)
1	В	354/364~(97%)	0.42	30 (8%) 18 19	20, 40, 80, 109	1 (0%)
1	С	357/364~(98%)	0.51	52 (14%) 7 7	20,  41,  87,  115	2 (0%)
1	D	357/364~(98%)	0.50	45 (12%) 9 10	21,  41,  82,  118	1 (0%)
1	Е	355/364~(97%)	0.51	39 (10%) 12 13	23,  42,  84,  107	2 (0%)
1	F	356/364~(97%)	0.58	51 (14%) 7 8	22, 43, 84, 135	1 (0%)
1	G	355/364~(97%)	0.92	90 (25%) 2 2	21,  44,  93,  122	2 (0%)
1	Н	356/364~(97%)	0.81	77 (21%) 3 3	21,  44,  94,  123	1 (0%)
1	Ι	359/364~(98%)	0.26	23 (6%) 27 28	21,  38,  76,  120	2 (0%)
1	J	357/364~(98%)	0.20	19 (5%) 33 35	21,  38,  75,  115	1 (0%)
1	K	354/364~(97%)	0.35	31 (8%) 17 18	19,  40,  79,  113	2 (0%)
1	L	358/364~(98%)	0.43	41 (11%) 11 12	21, 41, 78, 113	1 (0%)
All	All	4272/4368 (97%)	0.50	547 (12%) 9 9	19, 41, 84, 135	18 (0%)

All (547) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Κ	346	ALA	8.0
1	С	346	ALA	7.4
1	F	346	ALA	6.8
1	D	42	VAL	6.5
1	В	346	ALA	6.3
1	Н	346	ALA	6.3
1	D	346	ALA	6.2
1	А	346	ALA	6.0
1	G	346	ALA	6.0
1	J	45	ILE	5.9
1	Н	358	TRP	5.8



Mol	Chain	Res	Type	RSRZ
1	F	351	ILE	5.5
1	Ι	45	ILE	5.4
1	В	351	ILE	5.4
1	Н	355	LEU	5.2
1	G	56	ILE	5.0
1	L	45	ILE	5.0
1	J	346	ALA	4.9
1	С	45	ILE	4.7
1	G	102	VAL	4.7
1	Е	349	ILE	4.7
1	G	355	LEU	4.7
1	Ι	42	VAL	4.6
1	Н	45	ILE	4.5
1	D	45	ILE	4.5
1	F	42	VAL	4.5
1	Н	34	VAL	4.5
1	А	351	ILE	4.5
1	G	45	ILE	4.4
1	Н	59	ALA	4.4
1	Е	346	ALA	4.3
1	G	33	VAL	4.3
1	G	93	GLY	4.2
1	С	176	GLN	4.2
1	G	69	LEU	4.2
1	G	358	TRP	4.1
1	Н	351	ILE	4.1
1	В	46	SER	4.1
1	Н	7	GLY	4.1
1	F	46	SER	4.1
1	А	349	ILE	4.1
1	D	47	ARG	4.0
1	Н	349	ILE	4.0
1	G	324	GLY	4.0
1	Н	324	GLY	4.0
1	G	57	VAL	4.0
1	G	79	VAL	4.0
1	Ι	47	ARG	4.0
1	Е	39	PRO	4.0
1	Ε	45	ILE	3.9
1	Н	73	LEU	3.9
1	F	59	ALA	3.9
1	G	351	ILE	3.9



Mol	Chain	Res	Type	RSRZ
1	Κ	349	ILE	3.9
1	J	49	ALA	3.9
1	Ι	351	ILE	3.8
1	В	257	ALA	3.8
1	Н	57	VAL	3.8
1	J	351	ILE	3.8
1	G	61	LEU	3.8
1	Н	8	LEU	3.8
1	Ι	346	ALA	3.8
1	G	10	VAL	3.8
1	G	7	GLY	3.8
1	G	347	ALA	3.8
1	Н	105	ARG	3.7
1	G	34	VAL	3.7
1	F	349	ILE	3.7
1	G	101	LYS	3.7
1	J	324	GLY	3.7
1	G	345	PRO	3.7
1	Н	178	SER	3.7
1	С	180	LYS	3.7
1	G	180	LYS	3.7
1	G	59	ALA	3.7
1	А	345	PRO	3.7
1	В	324	GLY	3.7
1	Е	351	ILE	3.6
1	А	41	SER	3.6
1	J	41	SER	3.6
1	D	102	VAL	3.6
1	Κ	40	SER	3.6
1	D	351	ILE	3.6
1	Κ	324	GLY	3.6
1	G	41	SER	3.6
1	L	46	SER	3.6
1	Н	75	ALA	3.5
1	Н	173	TRP	3.5
1	G	1	MET	3.5
1	G	72	LYS	3.5
1	D	345	PRO	3.5
1	F	47	ARG	3.5
1	G	11	VAL	3.5
1	А	358	TRP	3.5
1	D	76	LYS	3.5



Mol	Chain	Res	Type	RSRZ
1	G	178	SER	3.5
1	L	41	SER	3.5
1	F	358	TRP	3.5
1	А	68	GLU	3.5
1	А	355	LEU	3.5
1	А	323	ASN	3.5
1	G	70	ALA	3.4
1	Κ	75	ALA	3.4
1	С	76	LYS	3.4
1	А	76	LYS	3.4
1	F	93	GLY	3.4
1	С	323	ASN	3.4
1	E	144	ASP	3.4
1	Н	30	GLY	3.4
1	Н	5	LEU	3.4
1	В	358	TRP	3.4
1	G	63	SER	3.4
1	G	62	LYS	3.4
1	J	44	GLY	3.4
1	Ε	355	LEU	3.3
1	G	107	ILE	3.3
1	А	40	SER	3.3
1	С	75	ALA	3.3
1	Ε	40	SER	3.3
1	Κ	345	PRO	3.3
1	G	76	LYS	3.3
1	Ι	180	LYS	3.3
1	L	173	TRP	3.3
1	Κ	48	ASP	3.3
1	L	42	VAL	3.3
1	C	347	ALA	3.3
1	G	2	ALA	3.3
1	Н	100	ALA	3.3
1	Ι	44	GLY	3.3
1	G	354	VAL	3.3
1	G	67	LEU	3.3
1	D	349	ILE	3.3
1	Н	345	PRO	3.3
1	L	349	ILE	3.3
1	L	351	ILE	3.3
1	F	292	ALA	3.3
1	G	77	ALA	3.3



Mol	Chain	Res	Type	RSRZ
1	Н	47	ARG	3.3
1	С	349	ILE	3.2
1	К	347	ALA	3.2
1	D	358	TRP	3.2
1	F	101	LYS	3.2
1	В	47	ARG	3.2
1	С	41	SER	3.2
1	G	353	ALA	3.2
1	L	347	ALA	3.2
1	D	324	GLY	3.2
1	Κ	47	ARG	3.2
1	G	73	LEU	3.2
1	А	324	GLY	3.2
1	С	30	GLY	3.2
1	С	351	ILE	3.2
1	Н	322	ALA	3.2
1	Н	353	ALA	3.2
1	G	348	THR	3.1
1	Н	102	VAL	3.1
1	С	358	TRP	3.1
1	G	48	ASP	3.1
1	А	47	ARG	3.1
1	J	347	ALA	3.1
1	Н	323	ASN	3.1
1	Ε	358	TRP	3.1
1	Κ	358	TRP	3.1
1	Н	66	GLY	3.1
1	D	59	ALA	3.1
1	D	347	ALA	3.1
1	L	346	ALA	3.1
1	В	40	SER	3.1
1	F	10	VAL	3.1
1	Н	72	LYS	3.1
1	H	106	LEU	3.1
1	С	324	GLY	3.1
1	G	75	ALA	3.1
1	G	292	ALA	3.1
1	Ι	349	ILE	3.1
1	H	176	GLN	3.1
1	Н	40	SER	3.1
1	A	34	VAL	3.1
1	А	102	VAL	3.1



Mol	Chain	Res	Type	RSRZ
1	D	355	LEU	3.0
1	Ι	323	ASN	3.0
1	В	75	ALA	3.0
1	Н	107	ILE	3.0
1	Ι	46	SER	3.0
1	K	41	SER	3.0
1	Е	1	MET	3.0
1	G	183	VAL	3.0
1	Н	69	LEU	3.0
1	А	56	ILE	3.0
1	Н	352	GLU	3.0
1	D	46	SER	3.0
1	G	58	THR	3.0
1	В	7	GLY	3.0
1	Е	7	GLY	3.0
1	F	11	VAL	3.0
1	Н	39	PRO	3.0
1	А	69	LEU	3.0
1	G	94	LEU	3.0
1	В	347	ALA	3.0
1	С	171	ALA	3.0
1	А	74	ILE	3.0
1	А	180	LYS	3.0
1	F	144	ASP	3.0
1	С	173	TRP	2.9
1	Н	58	THR	2.9
1	Е	72	LYS	2.9
1	Н	76	LYS	2.9
1	F	41	SER	2.9
1	Ι	58	THR	2.9
1	F	33	VAL	2.9
1	F	49	ALA	2.9
1	H	350	ASP	2.9
1	L	75	ALA	2.9
1	G	177	SER	2.9
1	F	355	LEU	2.9
1	G	106	LEU	2.9
1	D	323	ASN	2.9
1	Η	44	GLY	2.9
1	L	30	GLY	2.9
1	F	180	LYS	2.9
1	G	173	TRP	2.8



Mol	Chain	Res	Type	RSRZ
1	J	345	PRO	2.8
1	F	75	ALA	2.8
1	Н	347	ALA	2.8
1	Н	6	SER	2.8
1	L	7	GLY	2.8
1	G	99	CYS	2.8
1	D	207	MET	2.8
1	G	96	PRO	2.8
1	А	173	TRP	2.8
1	F	106	LEU	2.8
1	Н	79	VAL	2.8
1	G	49	ALA	2.8
1	С	47	ARG	2.8
1	J	46	SER	2.8
1	Н	56	ILE	2.8
1	Н	74	ILE	2.8
1	L	324	GLY	2.8
1	K	207	MET	2.8
1	F	345	PRO	2.8
1	Е	176	GLN	2.8
1	А	75	ALA	2.8
1	В	49	ALA	2.8
1	С	177	SER	2.8
1	F	293	ASN	2.8
1	G	293	ASN	2.8
1	F	255	ASP	2.8
1	Е	34	VAL	2.8
1	A	101	LYS	2.7
1	G	100	ALA	2.7
1	В	30	GLY	2.7
1	В	348	THR	2.7
1	В	65	GLN	2.7
1	C	345	PRO	2.7
1	Н	61	LEU	2.7
1	Е	180	LYS	2.7
1	Н	77	ALA	2.7
1	K	176	GLN	2.7
1	J	48	ASP	2.7
1	A	178	SER	2.7
1	L	323	ASN	2.7
1	Н	33	VAL	2.7
1	A	59	ALA	2.7



Mol	Chain	Res	Type	RSRZ
1	С	44	GLY	2.7
1	F	176	GLN	2.7
1	J	47	ARG	2.7
1	D	107	ILE	2.7
1	G	357	ASP	2.7
1	Н	144	ASP	2.7
1	F	76	LYS	2.7
1	С	353	ALA	2.7
1	А	93	GLY	2.7
1	G	83	GLY	2.7
1	Н	348	THR	2.7
1	С	350	ASP	2.7
1	K	351	ILE	2.7
1	С	39	PRO	2.6
1	А	72	LYS	2.6
1	L	101	LYS	2.6
1	L	1	MET	2.6
1	G	176	GLN	2.6
1	Н	11	VAL	2.6
1	С	93	GLY	2.6
1	G	179	GLY	2.6
1	А	58	THR	2.6
1	В	144	ASP	2.6
1	D	173	TRP	2.6
1	J	323	ASN	2.6
1	В	353	ALA	2.6
1	D	49	ALA	2.6
1	G	66	GLY	2.6
1	Н	354	VAL	2.6
1	J	257	ALA	2.6
1	G	74	ILE	2.6
1	L	358	TRP	2.6
1	A	46	SER	2.6
1	С	46	SER	2.6
1	Ι	41	SER	2.6
1	G	8	LEU	2.6
1	Е	66	GLY	2.6
1	G	30	GLY	2.6
1	L	44	GLY	2.6
1	Е	347	ALA	2.6
1	F	57	VAL	2.6
1	Н	10	VAL	2.6



Mol	Chain	Res	Type	RSRZ
1	Н	101	LYS	2.6
1	С	40	SER	2.6
1	Н	63	SER	2.6
1	Ι	40	SER	2.6
1	G	80	LEU	2.6
1	Ι	87	GLY	2.5
1	В	59	ALA	2.5
1	С	59	ALA	2.5
1	Н	338	ALA	2.5
1	J	350	ASP	2.5
1	L	34	VAL	2.5
1	G	36	ILE	2.5
1	В	73	LEU	2.5
1	С	69	LEU	2.5
1	G	26	LEU	2.5
1	Е	30	GLY	2.5
1	F	347	ALA	2.5
1	А	354	VAL	2.5
1	F	89	THR	2.5
1	Е	345	PRO	2.5
1	С	62	LYS	2.5
1	K	72	LYS	2.5
1	С	355	LEU	2.5
1	Е	93	GLY	2.5
1	L	61	LEU	2.5
1	Н	337	THR	2.5
1	L	348	THR	2.5
1	G	352	GLU	2.5
1	G	349	ILE	2.5
1	В	76	LYS	2.5
1	A	66	GLY	2.5
1	Е	179	GLY	2.5
1	D	75	ALA	2.5
1	Н	65	GLN	2.5
1	А	61	LEU	2.4
1	D	8	LEU	2.4
1	D	69	LEU	2.4
1	F	73	LEU	2.4
1	Ι	358	TRP	2.4
1	С	102	VAL	2.4
1	F	79	VAL	2.4
1	F	102	VAL	2.4



Mol	Chain	Res	Type	RSRZ
1	G	88	VAL	2.4
1	Н	96	PRO	2.4
1	С	101	LYS	2.4
1	А	63	SER	2.4
1	G	46	SER	2.4
1	Н	46	SER	2.4
1	F	107	ILE	2.4
1	Н	179	GLY	2.4
1	G	350	ASP	2.4
1	Ι	350	ASP	2.4
1	Κ	144	ASP	2.4
1	F	61	LEU	2.4
1	Н	92	LEU	2.4
1	Ι	61	LEU	2.4
1	L	68	GLU	2.4
1	L	100	ALA	2.4
1	А	62	LYS	2.4
1	D	34	VAL	2.4
1	Ι	101	LYS	2.4
1	L	79	VAL	2.4
1	А	177	SER	2.4
1	В	1	MET	2.4
1	В	355	LEU	2.4
1	А	79	VAL	2.4
1	Κ	1	MET	2.4
1	А	7	GLY	2.4
1	L	181	GLY	2.4
1	С	71	LEU	2.3
1	Е	73	LEU	2.3
1	D	101	LYS	2.3
1	А	347	ALA	2.3
1	D	171	ALA	2.3
1	Н	99	CYS	2.3
1	G	39	PRO	2.3
1	Н	50	MET	2.3
1	G	64	ASP	2.3
1	G	108	TYR	2.3
1	J	349	ILE	2.3
1	G	92	LEU	2.3
1	Κ	73	LEU	2.3
1	L	76	LYS	2.3
1	Е	75	ALA	2.3



Mol	Chain	Res	Type	RSRZ
1	G	171	ALA	2.3
1	D	63	SER	2.3
1	L	183	VAL	2.3
1	D	357	ASP	2.3
1	G	181	GLY	2.3
1	Н	27	GLY	2.3
1	Н	93	GLY	2.3
1	Ι	324	GLY	2.3
1	Н	108	TYR	2.3
1	Ι	76	LYS	2.3
1	J	355	LEU	2.3
1	G	55	ARG	2.3
1	D	348	THR	2.3
1	Е	70	ALA	2.3
1	Е	348	THR	2.3
1	F	50	MET	2.3
1	Н	1	MET	2.3
1	D	11	VAL	2.3
1	В	350	ASP	2.3
1	D	350	ASP	2.3
1	G	68	GLU	2.3
1	G	87	GLY	2.3
1	А	94	LEU	2.3
1	F	69	LEU	2.3
1	G	71	LEU	2.3
1	Ι	355	LEU	2.3
1	В	50	MET	2.3
1	А	348	THR	2.3
1	Н	70	ALA	2.3
1	K	348	THR	2.3
1	L	70	ALA	2.3
1	С	258	GLU	2.2
1	С	352	GLU	2.2
1	F	354	VAL	2.2
1	С	7	GLY	2.2
1	С	179	GLY	2.2
1	F	324	GLY	2.2
1	Н	325	GLY	2.2
1	Н	180	LYS	2.2
1	F	74	ILE	2.2
1	С	1	MET	2.2
1	Е	80	LEU	2.2



9I30

Mol	Chain	Res	Type	RSRZ
1	D	176	GLN	2.2
1	D	322	ALA	2.2
1	Е	258	GLU	2.2
1	F	322	ALA	2.2
1	Н	49	ALA	2.2
1	K	49	ALA	2.2
1	С	178	SER	2.2
1	K	46	SER	2.2
1	L	177	SER	2.2
1	K	39	PRO	2.2
1	D	48	ASP	2.2
1	F	48	ASP	2.2
1	G	144	ASP	2.2
1	F	7	GLY	2.2
1	K	34	VAL	2.2
1	K	76	LYS	2.2
1	L	102	VAL	2.2
1	E	105	ARG	2.2
1	E	56	ILE	2.2
1	Е	173	TRP	2.2
1	Н	68	GLU	2.2
1	Н	31	ALA	2.2
1	D	144	ASP	2.2
1	K	50	MET	2.2
1	L	352	GLU	2.2
1	F	94	LEU	2.2
1	G	172	LEU	2.2
1	A	356	THR	2.2
1	H	2	ALA	2.2
1	B	62	LYS	2.2
1	H	357	ASP	2.2
1	L	350	ASP	2.2
1	G	3	GLY	2.2
1	G	9	ARG	2.2
1	G	105	ARG	2.2
1	B	354	VAL	2.2
1	C	79	VAL	2.2
1	J	50	MET	2.2
1	G	65	GLN	2.2
1	K	65	GLN	2.2
1	C	67	LEU	2.1
1	A	77	ALA	2.1



Mol	Chain	Res	Type	RSRZ
1	А	322	ALA	2.1
1	В	31	ALA	2.1
1	Е	47	ARG	2.1
1	Е	77	ALA	2.1
1	L	357	ASP	2.1
1	А	39	PRO	2.1
1	F	39	PRO	2.1
1	С	207	MET	2.1
1	F	1	MET	2.1
1	F	99	CYS	2.1
1	G	207	MET	2.1
1	С	10	VAL	2.1
1	С	11	VAL	2.1
1	G	97	GLU	2.1
1	D	180	LYS	2.1
1	L	64	ASP	2.1
1	K	59	ALA	2.1
1	D	93	GLY	2.1
1	Н	342	PRO	2.1
1	D	10	VAL	2.1
1	D	354	VAL	2.1
1	А	92	LEU	2.1
1	Е	58	THR	2.1
1	L	353	ALA	2.1
1	D	7	GLY	2.1
1	G	325	GLY	2.1
1	А	176	GLN	2.1
1	A	108	TYR	2.1
1	В	173	TRP	2.1
1	F	98	GLU	2.1
1	A	33	VAL	2.1
1	С	33	VAL	2.1
1	C	34	VAL	2.1
1	J	62	LYS	2.1
1	L	72	LYS	2.1
1	С	105	ARG	2.1
1	Е	350	ASP	2.1
1	F	43	ASP	2.1
1	Ι	48	ASP	2.1
1	L	144	ASP	2.1
1	D	178	SER	2.1
1	K	178	SER	2.1



Mol	Chain	Res	Type	RSRZ
1	С	107	ILE	2.1
1	С	348	THR	2.1
1	L	356	THR	2.1
1	С	66	GLY	2.0
1	D	30	GLY	2.0
1	Е	324	GLY	2.0
1	L	77	ALA	2.0
1	С	72	LYS	2.0
1	G	91	ARG	2.0
1	K	105	ARG	2.0
1	D	57	VAL	2.0
1	А	1	MET	2.0
1	В	356	THR	2.0
1	D	65	GLN	2.0
1	Е	69	LEU	2.0
1	Е	207	MET	2.0
1	K	71	LEU	2.0
1	L	355	LEU	2.0
1	G	323	ASN	2.0
1	В	345	PRO	2.0
1	С	257	ALA	2.0
1	F	77	ALA	2.0
1	Н	170	ALA	2.0
1	Е	62	LYS	2.0
1	F	173	TRP	2.0
1	Ι	173	TRP	2.0
1	K	173	TRP	2.0
1	А	10	VAL	2.0
1	Е	79	VAL	2.0
1	F	34	VAL	2.0
1	D	1	MET	2.0
1	L	207	MET	2.0

Continued from previous page...

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

# 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.



### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	A1IZD	Е	401	66/66	0.89	0.16	51,72,91,98	2
2	A1IZD	Н	401	66/66	0.90	0.15	57,72,95,100	2
2	A1IZD	G	401	66/66	0.92	0.15	$35,\!59,\!108,\!119$	2
2	A1IZD	А	401	66/66	0.92	0.13	40,60,86,90	2
2	A1IZD	С	401	66/66	0.93	0.13	$39,\!57,\!94,\!100$	2
2	A1IZD	F	401	66/66	0.93	0.12	$31,\!53,\!81,\!97$	2
2	A1IZD	L	401	66/66	0.93	0.12	$35,\!53,\!79,\!88$	2
2	A1IZD	Ι	401	66/66	0.94	0.11	$33,\!52,\!86,\!89$	2
2	A1IZD	В	401	66/66	0.95	0.11	35,53,92,101	2
2	A1IZD	J	401	66/66	0.95	0.10	$36,\!47,\!78,\!82$	2
2	A1IZD	D	401	66/66	0.95	0.10	31,52,80,87	2
2	A1IZD	K	401	66/66	0.96	0.09	34,52,82,87	2

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.
















































## 6.5 Other polymers (i)

There are no such residues in this entry.

