

Full wwPDB X-ray Structure Validation Report (i)

Jul 31, 2023 – 04:36 PM JST

PDB ID : 8HDJ

Title : Periplasmic domain of RsgI2 of Clostridium thermocellum

Authors: Chen, C.; Dong, S.; Feng, Y.G.

Deposited on : 2022-11-04

Resolution : 1.85 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467 Xtriage (Phenix): 1.13

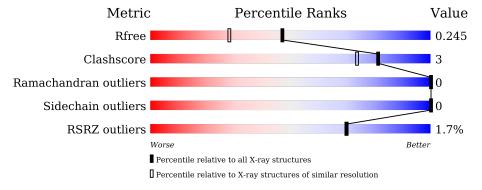
EDS: 2.34

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove)

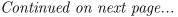
Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.34

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.85 Å.


Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
IVICUIC	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	2469 (1.86-1.86)
Clashscore	141614	2625 (1.86-1.86)
Ramachandran outliers	138981	2592 (1.86-1.86)
Sidechain outliers	138945	2592 (1.86-1.86)
RSRZ outliers	127900	2436 (1.86-1.86)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	A	13	54% 23%		23%			
1	С	13	62% 15	%	23%			
1	Е	13	85%		15%			
1	G	13	69%	15%	15%			
2	В	162	88%		6% 7%			
2	D	162	87%		7% 6%			

 $Continued\ from\ previous\ page...$

Mol	Chain	Length	Quality of chain		
2	F	162	89%	6%	6%
2	Н	162	92%	•	5%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 10536 atoms, of which 5062 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Periplasmic domain of RsgI2.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	10	Total	С	Н	N	О	0	0	0
1	A	10	159	55	73	11	20	0	U	U
1	С	10	Total	С	Н	N	О	0	0	0
1		10	159	55	73	11	20	0	0	0
1	Е	11	Total	С	Н	N	О	0	0	0
1	<u> 1</u> 2	11	166	58	75	12	21	0	0	0
1	G	11	Total	С	Н	N	О	0	0	0
1	G	11	176	60	81	13	22	U	U	U

• Molecule 2 is a protein called Anti-sigma-I factor RsgI2.

Mol	Chain	Residues			Atom	.S			ZeroOcc	AltConf	Trace
2	В	151	Total	С	Н	N	О	S	0	1	0
	Б	191	2332	729	1183	189	229	2	U	1	U
2	D	152	Total	С	Н	N	О	S	0	1	0
	ע	102	2348	733	1192	191	229	3	U	1	U
2	F	153	Total	С	Н	N	О	S	0	0	0
	Г	155	2349	734	1190	192	231	2	U		U
2	Н	154	Total	С	Н	N	О	S	0	0	0
	11	194	2366	739	1195	193	237	2	U	U	U

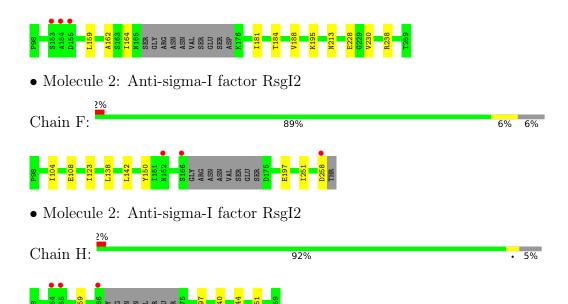
• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	10	Total O 10 10	0	0
3	В	113	Total O 113 113	0	0
3	С	7	Total O 7 7	0	0
3	D	130	Total O 130 130	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	E	4	Total O 4 4	0	0
3	F	115	Total O 115 115	0	0
3	G	7	Total O 7 7	0	0
3	Н	95	Total O 95 95	0	0



3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Periplasmic domain of RsgI2

Chain A: 54% 23% 23% • Molecule 1: Periplasmic domain of RsgI2 Chain C: 15% 23% • Molecule 1: Periplasmic domain of RsgI2 Chain E: 85% 15% • Molecule 1: Periplasmic domain of RsgI2 Chain G: 15% 15% • Molecule 2: Anti-sigma-I factor RsgI2 Chain B: 88% 6% 7% • Molecule 2: Anti-sigma-I factor RsgI2 Chain D:

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	75.09Å 101.53Å 86.36Å	Donositon
a, b, c, α , β , γ	90.00° 92.93° 90.00°	Depositor
Resolution (Å)	24.35 - 1.85	Depositor
resolution (A)	24.35 - 1.85	EDS
% Data completeness	99.4 (24.35-1.85)	Depositor
(in resolution range)	99.4 (24.35-1.85)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.07 (at 1.85Å)	Xtriage
Refinement program	PHENIX 1.13_2998	Depositor
R, R_{free}	0.219 , 0.238	Depositor
, and the second	0.229 , 0.245	DCC
R_{free} test set	2005 reflections (3.66%)	wwPDB-VP
Wilson B-factor (Å ²)	20.7	Xtriage
Anisotropy	0.228	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.43, 37.8	EDS
L-test for twinning ²	$< L > = 0.45, < L^2> = 0.28$	Xtriage
Estimated twinning fraction	0.089 for -h,-k,l	Xtriage
Reported twinning fraction	0.100 for -h,-k,l	Depositor
Outliers	0 of 54748 reflections	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	10536	wwPDB-VP
Average B, all atoms (Å ²)	27.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.75% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.26	0/87	0.46	0/117
1	С	0.57	0/87	0.53	0/117
1	Е	0.25	0/92	0.44	0/124
1	G	0.29	0/96	0.45	0/129
2	В	0.45	0/1163	0.56	0/1569
2	D	0.30	0/1167	0.46	0/1574
2	F	0.31	0/1170	0.47	0/1577
2	Н	0.26	0/1182	0.44	0/1592
All	All	0.34	0/5044	0.49	0/6799

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	86	73	73	3	0
1	С	86	73	73	3	0
1	Е	91	75	75	0	0
1	G	95	81	81	2	0
2	В	1149	1183	1183	9	0
2	D	1156	1192	1191	8	0
2	F	1159	1190	1189	5	0
2	Н	1171	1195	1195	3	0

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	A	10	0	0	0	0
3	В	113	0	0	0	1
3	С	7	0	0	0	0
3	D	130	0	0	0	1
3	Е	4	0	0	0	0
3	F	115	0	0	0	2
3	G	7	0	0	1	1
3	Н	95	0	0	0	1
All	All	5474	5062	5060	26	3

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (26) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Carrier	Atom 1	Atom 2	Interatomic	Clash
2:D:213:ASN:O 2:D:238:ARG:NH1 2.27 0.68 2:B:221[B]:ILE:HG23 2:B:249:VAL:HG21 1.73 0.68 2:H:197:GLU:OE2 2:H:251:ILE:HG23 1.94 0.67 2:B:221[B]:ILE:CG2 2:B:249:VAL:HG21 2.33 0.57 2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 <	Atom-1	Atom-2	${\rm distance}({\rm \AA})$	overlap (Å)
2:D:213:ASN:O 2:D:238:ARG:NH1 2.27 0.68 2:B:221[B]:ILE:HG23 2:B:249:VAL:HG21 1.73 0.68 2:H:197:GLU:OE2 2:H:251:ILE:HG23 1.94 0.67 2:B:221[B]:ILE:CG2 2:B:249:VAL:HG21 2.33 0.57 2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 <	2:B:221[A]:ILE:HG23	2:B:249:VAL:HG21	1.70	0.74
2:H:197:GLU:OE2 2:H:251:ILE:HG23 1.94 0.67 2:F:197:GLU:OE2 2:F:251:ILE:HG23 1.94 0.67 2:B:221[B]:ILE:CG2 2:B:249:VAL:HG21 2.33 0.57 2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:2228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01		2:D:238:ARG:NH1	2.27	0.68
2:F:197:GLU:OE2 2:F:251:ILE:HG23 1.94 0.67 2:B:221[B]:ILE:CG2 2:B:249:VAL:HG21 2.33 0.57 2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 <	2:B:221[B]:ILE:HG23	2:B:249:VAL:HG21	1.73	0.68
2:B:221[B]:ILE:CG2 2:B:249:VAL:HG21 2.33 0.57 2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 <t< td=""><td>2:H:197:GLU:OE2</td><td>2:H:251:ILE:HG23</td><td>1.94</td><td>0.67</td></t<>	2:H:197:GLU:OE2	2:H:251:ILE:HG23	1.94	0.67
2:B:164:ILE:HD11 2:B:181:ILE:HD12 1.93 0.50 2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 <	2:F:197:GLU:OE2	2:F:251:ILE:HG23	1.94	0.67
2:B:225:ALA:HB2 2:B:249:VAL:HG22 1.96 0.48 1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41 </td <td>2:B:221[B]:ILE:CG2</td> <td>2:B:249:VAL:HG21</td> <td>2.33</td> <td>0.57</td>	2:B:221[B]:ILE:CG2	2:B:249:VAL:HG21	2.33	0.57
1:C:92:ILE:HD11 2:D:181:ILE:HG21 1.96 0.47 2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:B:164:ILE:HD11	2:B:181:ILE:HD12	1.93	0.50
2:B:238:ARG:NH1 2:B:238:ARG:HB3 2.30 0.46 2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:B:225:ALA:HB2	2:B:249:VAL:HG22	1.96	0.48
2:D:184:THR:O 2:D:188:VAL:HG23 2.16 0.46 1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:C:92:ILE:HD11	2:D:181:ILE:HG21	1.96	0.47
1:G:97:ASN:ND2 3:G:103:HOH:O 2.49 0.46 2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:B:238:ARG:NH1	2:B:238:ARG:HB3	2.30	0.46
2:H:240:LEU:HD22 2:H:244:GLU:HG2 1.97 0.46 1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:D:184:THR:O	2:D:188:VAL:HG23	2.16	0.46
1:A:95:ASP:HB2 2:B:159:LEU:HB3 1.98 0.45 2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:G:97:ASN:ND2	3:G:103:HOH:O	2.49	0.46
2:D:195:LYS:HD2 2:F:258:ASP:O 2.17 0.44 1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:H:240:LEU:HD22	2:H:244:GLU:HG2	1.97	0.46
1:C:92:ILE:HD13 2:D:162:ALA:CB 2.49 0.43 2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:A:95:ASP:HB2	2:B:159:LEU:HB3	1.98	0.45
2:F:138:LEU:O 2:F:142:LEU:HD13 2.19 0.42 2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:D:195:LYS:HD2	2:F:258:ASP:O	2.17	0.44
2:D:228:GLU:HG3 2:D:230:VAL:HG23 2.01 0.42 1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:C:92:ILE:HD13	2:D:162:ALA:CB	2.49	0.43
1:A:97:ASN:O 1:A:97:ASN:CG 2.58 0.42 2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:F:138:LEU:O	2:F:142:LEU:HD13	2.19	0.42
2:F:123:ILE:HD11 2:F:150:TYR:CE2 2.55 0.41 2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:D:228:GLU:HG3	2:D:230:VAL:HG23	2.01	0.42
2:D:164:ILE:HD11 2:D:181:ILE:HD12 2.01 0.41 1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:A:97:ASN:O	1:A:97:ASN:CG	2.58	0.42
1:A:90:ALA:HB2 2:B:164:ILE:HD13 2.03 0.41 2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:F:123:ILE:HD11	2:F:150:TYR:CE2	2.55	0.41
2:B:241:SER:OG 2:B:244:GLU:HG2 2.21 0.41 1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	2:D:164:ILE:HD11	2:D:181:ILE:HD12	2.01	0.41
1:G:95:ASP:HB2 2:H:159:LEU:HB3 2.03 0.41	1:A:90:ALA:HB2	2:B:164:ILE:HD13	2.03	0.41
	2:B:241:SER:OG	2:B:244:GLU:HG2	2.21	0.41
2:F:104:ILE:HD12 2:F:108:GLU:HA 2.03 0.40	1:G:95:ASP:HB2	2:H:159:LEU:HB3	2.03	0.41
	2:F:104:ILE:HD12	2:F:108:GLU:HA	2.03	0.40

Continued on next page...

Continued from previous page...

Atom-1	Atom-2	$egin{array}{c} ext{Interatomic} \ ext{distance} \ (ext{Å}) \end{array}$	$egin{aligned} ext{Clash} \ ext{overlap } (ext{Å}) \end{aligned}$
1:C:95:ASP:HB2	2:D:159:LEU:HB3	2.03	0.40

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
3:F:327:HOH:O	3:H:324:HOH:O[1_455]	1.91	0.29
3:F:334:HOH:O	3:G:103:HOH:O[2_656]	2.02	0.18
3:B:318:HOH:O	3:D:413:HOH:O[3_555]	2.14	0.06

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	8/13~(62%)	8 (100%)	0	0	100	100
1	\mathbf{C}	8/13~(62%)	8 (100%)	0	0	100	100
1	E	9/13~(69%)	9 (100%)	0	0	100	100
1	G	9/13~(69%)	9 (100%)	0	0	100	100
2	В	148/162 (91%)	147 (99%)	1 (1%)	0	100	100
2	D	$149/162\ (92\%)$	148 (99%)	1 (1%)	0	100	100
2	F	$149/162 \ (92\%)$	148 (99%)	1 (1%)	0	100	100
2	Н	150/162~(93%)	149 (99%)	1 (1%)	0	100	100
All	All	630/700~(90%)	626 (99%)	4 (1%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A	9/12 (75%)	9 (100%)	0	100	100
1	С	9/12 (75%)	9 (100%)	0	100	100
1	E	9/12 (75%)	9 (100%)	0	100	100
1	G	10/12 (83%)	10 (100%)	0	100	100
2	В	127/139 (91%)	127 (100%)	0	100	100
2	D	127/139 (91%)	127 (100%)	0	100	100
2	F	127/139 (91%)	127 (100%)	0	100	100
2	Н	129/139 (93%)	129 (100%)	0	100	100
All	All	547/604 (91%)	547 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	G	97	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\#\mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q < 0.9
1	A	10/13 (76%)	0.14	0 100 100	13, 16, 35, 50	0
1	С	10/13 (76%)	0.28	0 100 100	14, 19, 31, 43	0
1	E	11/13 (84%)	0.10	0 100 100	12, 18, 35, 42	0
1	G	11/13 (84%)	0.34	0 100 100	10, 16, 42, 44	0
2	В	151/162 (93%)	0.04	2 (1%) 77 78	10, 22, 44, 75	0
2	D	152/162~(93%)	0.09	3 (1%) 65 64	11, 23, 47, 63	0
2	F	153/162 (94%)	0.16	3 (1%) 65 64	9, 21, 47, 73	0
2	Н	154/162~(95%)	0.18	3 (1%) 66 66	10, 23, 48, 90	0
All	All	652/700~(93%)	0.12	11 (1%) 70 70	9, 22, 47, 90	0

All (11) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	F	166	SER	4.7
2	Н	155	ASP	4.4
2	В	153	SER	2.8
2	Н	154	ALA	2.8
2	Н	166	SER	2.8
2	D	154	ALA	2.8
2	F	258	ASP	2.6
2	D	153	SER	2.5
2	В	154	ALA	2.3
2	D	155	ASP	2.3
2	F	152	ASN	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

