

Jun 7, 2025 – 02:10 pm BST

PDB ID	:	$9\mathrm{HCC} \ / \ \mathrm{pdb} \ 00009\mathrm{hcc}$
EMDB ID	:	EMD-52044
Title	:	Mouse mitoribosome large subunit assembly intermediate (without uL16m)
		bound to MRM3-dimer, DDX28 and the MALSU-L0R8F8-mt-ACP complex,
		State A1 (SAMC knock-out)
Authors	:	Singh, V.; Rorbach, J.; Freyer, C.; Amunts, A.; Wredenberg, A.
Deposited on	:	2024-11-08
Resolution	:	5.67 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4-5-2 with Phenix2.0rc1
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.67 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain							
1	А	1584	41%		23%	7%	29%				
		1001	21%		2370	770	2370				
2	В	68	43%	, 0	3	8%	9% 10%				
				50%							
3	D	246		60%		10%	30%				
	Б	2.10	6%					_			
4	E	348		70%		6%	24%				
5	F	294	8%	63%		10%	27%	_			
			15%								
6	Н	268	27%	9%		65%					
			43%	ó							
7	I	262	50%		8%		41%				
						Continue	ed on next pag	je			

Conti	nued fron	n previous	page		
Mol	Chain	Length	Quality of a	chain	
			70%		
8	J	192	64%	10% 2	26%
9	Κ	178	6% 88%		8% •
			50%		
10	L	145	72%	8%	21%
11	М	295	72%	13%	16%
12	0	176	73%	12%	15%
13	Р	180	64%	14%	22%
14	Q	292	66%	9%	26%
15	R	149	83%	54	% 12%
16	\mathbf{S}	209	69%	7%	24%
17	Т	206	7%	8%	19%
18	U	146	23%	9%	14%
19	V	216	59%	139	% 8%
20	Х	294	28%	10%	18%
21	Υ	252	19% 65%	5% 30'	%
22	Ζ	160	<u>6%</u> 68%	• 28	3%
23	0	187	4 9% 9%	42%	
24	5	423	51% 85%		6% 9%
25	6	380	29% 62%	17%	22%
26	7	336	7%	7%	13%
27	8	206	23% 26% •	71%	
28	9	135	66%	5% 29	9%
29	a	142	65%	7% 27	%
30	b	159	84%		9% 7%
31	с	308	5% 81%	99	% 9%
32	d	306	55%	12% 33%	

Mol	Chain	Length	Qu	Quality of chain							
• ••		002	59%								
- 33	е	283	53%	10%	37%						
34	f	211	35% 7%	5	58%						
		100	5%								
35	g	160	70%		9% 20%						
36	h	159	61%	8%	31%						
37	i	128	62%	10%	27%						
38	j	121	6%		30%						
39	k	118	36%	12%	32%						
40	1	135	44%	9%	44%						
41	0	102	5%		• 24%						
			11%		2170						
42	р	206	53%	11%	36%						
43	q	222	3 9% 54	%	56%						
44	r	196	8%		9% 20%						
45	S	442	16%		12% 15%						
10		220	29%								
46	u	228	47%	8%	45%						
47	v	70	1170	90%	9% •						
18		156	49%		100/						
40	W	100	46%	5%	49%						
49	x	418	56%	14%	29%						
49	У	418	52%	18%	30%						
50	Z	540	36%		6% 15%						

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
52	FES	r	301	-	-	Х	-

2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 174926 atoms, of which 81656 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA (1584-MER).

Mol	Chain	Residues				AltConf	Trace			
1	А	1129	Total 36145	C 10796	Н 12126	N 4363	0 7731	Р 1129	0	0

• Molecule 2 is a RNA chain called tRNA-Phe (68-MER).

Mol	Chain	Residues			AltConf	Trace				
2	В	61	Total 1960	C 585	Н 657	N 240	0 417	Р 61	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein uL2m.

Mol	Chain	Residues			AltConf	Trace				
3	D	172	Total 2708	C 835	Н 1373	N 253	0 240	S 7	0	0

• Molecule 4 is a protein called Large ribosomal subunit protein uL3m.

Mol	Chain	Residues			AltConf	Trace				
4	Е	264	Total 4219	C 1367	Н 2097	N 361	O 388	S 6	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein uL4m.

Mol	Chain	Residues			AltConf	Trace				
5	F	214	Total 3483	C 1113	H 1755	N 305	0 304	S 6	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein bL9m.

Mol	Chain	Residues		Α	toms			AltConf	Trace
6	Н	95	Total 1593	C 492	Н 814	N 150	O 137	0	0

• Molecule 7 is a protein called Large ribosomal subunit protein uL10m.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
7	Ι	154	$\begin{array}{c} \text{Total} \\ 2575 \end{array}$	C 810	Н 1330	N 222	O 207	${f S}{f 6}$	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein uL11m.

Mol	Chain	Residues			Atom	S			AltConf	Trace
8	J	142	Total 2220	C 690	Н 1145	N 191	0 191	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL13m.

Mol	Chain	Residues			Atoms						
9	K	171	Total 2794	C 894	Н 1398	N 253	O 243	S 6	0	0	

• Molecule 10 is a protein called Large ribosomal subunit protein uL14m.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	L	115	Total 1837	C 560	Н 944	N 174	0 155	$\frac{S}{4}$	0	0

• Molecule 11 is a protein called Large ribosomal subunit protein uL15m.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
11	М	249	Total 4090	C 1285	Н 2080	N 365	O 355	${S \atop 5}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein bL17m.

Mol	Chain	Residues			Atom	S			AltConf	Trace
12	0	149	Total 2476	C 774	H 1954	N 230	$\begin{array}{c} 0\\ 213 \end{array}$	${ m S}_{5}$	0	0
			2470	114	1204	230	$\overline{210}$	5		

• Molecule 13 is a protein called Large ribosomal subunit protein uL18m.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
13	Р	141	Total 2302	C 725	Н 1148	N 221	O 203	${S \atop 5}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein bL19m.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
14	Q	217	Total 3612	C 1150	H 1822	N 309	0 322	S 9	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein bL20m.

Mol	Chain	Residues			Atom	S			AltConf	Trace
15	R	131	Total 2214	C 685	Н 1137	N 214	0 175	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called Large ribosomal subunit protein bL21m.

Mol	Chain	Residues			AltConf	Trace				
16	S	159	Total 2673	C 840	Н 1372	N 233	O 226	${S \over 2}$	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein uL22m.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
17	Т	166	Total	С	Η	Ν	0	\mathbf{S}	0	0
11	T	100	2771	871	1402	256	234	8	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein uL23m.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	U	125	Total 2072	C 664	Н 1038	N 193	0 174	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein uL24m.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
19	V	198	$\begin{array}{c} \text{Total} \\ 3250 \end{array}$	C 1026	H 1622	N 302	O 294	S 6	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein bL28m,Large ribosomal subunit protein bL32m.

Mol	Chain	Residues			Atom	s			AltConf	Trace
20	Х	242	Total 4072	C 1304	Н 2051	N 358	O 355	${S \atop 4}$	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein uL29m.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
21	Y	176	Total 3076	C 973	Н 1553	N 290	O 255	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein uL30m.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
22	Z	115	Total 1913	C 598	Н 979	N 171	O 162	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein bL32m.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
23	0	108	Total 1789	C 546	Н 908	N 174	0 155	S 6	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein mL37.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
24	5	387	$\begin{array}{c} \text{Total} \\ 6355 \end{array}$	C 2045	H 3187	N 554	O 560	S 9	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein mL38.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
25	6	297	Total 4954	C 1630	Н 2420	N 462	O 437	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein mL39.

Mol	Chain	Residues			Atom	S			AltConf	Trace
26	7	292	Total 4757	C 1517	Н 2378	N 409	0 438	S 15	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein mL40.

Mol	Chain	Residues		ŀ	Atoms	s			AltConf	Trace
27	8	59	Total 977	C 306	Н 484	N 87	O 98	${S \over 2}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein mL41.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
28	9	96	Total 1550	C 510	Н 772	N 123	0 144	S 1	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein mL42.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
29	a	103	Total 1703	C 542	Н 843	N 156	O 159	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein mL43.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
30	b	148	Total 2376	C 731	Н 1195	N 234	0 214	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein mL44.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
31	с	279	Total 4502	C 1440	Н 2256	N 389	O 409	S 8	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein mL45.

Mol	Chain	Residues			Atom	S			AltConf	Trace
32	d	204	Total 3358	C 1085	Н 1670	N 299	O 293	S 11	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein mL46.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
33	е	177	Total 2911	C 922	H 1474	N 258	O 252	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein mL48.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
34	f	89	Total 1418	C 452	Н 704	N 120	0 138	${S \atop 4}$	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein mL49.

Mol	Chain	Residues			Atom	S			AltConf	Trace
35	g	132	Total 2184	C 709	Н 1094	N 187	O 192	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein mL50.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
36	h	110	Total 1740	C 552	Н 868	N 156	0 160	${S \over 4}$	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein mL51.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
37	i	93	Total 1611	C 517	Н 816	N 153	O 123	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein mL52.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
38	j	85	Total 1376	C 426	Н 692	N 135	0 121	${S \over 2}$	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein mL53.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
39	k	80	Total 1268	C 393	H 639	N 114	0 117	$\frac{S}{5}$	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein mL54.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
40	1	76	Total 1266	C 403	Н 631	N 114	0 116	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein mL63.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
41	О	78	Total 1263	C 402	Н 623	N 118	0 116	${S \atop 4}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein mL62.

Mol	Chain	Residues		Atoms					AltConf	Trace
42	р	132	Total 2201	C 682	Н 1112	N 205	O 198	${f S}$ 4	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein mL64.

Mol	Chain	Residues	Atoms					AltConf	Trace	
43	q	97	Total 1584	C 501	Н 785	N 155	0 142	S 1	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein mL66.

Mol	Chain	Residues	Atoms					AltConf	Trace	
44	r	156	Total 2586	C 806	Н 1319	N 241	O 209	S 11	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein mL65.

Mol	Chain	Residues		Atoms					AltConf	Trace
45	s	377	Total 6102	C 1938	H 3057	N 555	O 540	S 12	0	0

• Molecule 46 is a protein called Mitochondrial assembly of ribosomal large subunit protein 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
46	u	125	Total 2041	C 659	Н 1012	N 170	0 191	S 9	0	0

• Molecule 47 is a protein called Predicted gene, 55359.

Mol	Chain	Residues		Atoms					AltConf	Trace
47	v	69	Total 1189	$\begin{array}{c} \mathrm{C} \\ 374 \end{array}$	Н 603	N 112	O 99	S 1	0	0

• Molecule 48 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
48	W	79	Total 1277	C 410	Н 640	N 95	0 127	${S \atop 5}$	0	0

• Molecule 49 is a protein called rRNA methyltransferase 3, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
40	49 x 295	Total	С	Η	Ν	0	S	0	0	
49 X	295	4661	1478	2356	399	420	8	0		
40	17	202	Total	С	Η	Ν	0	S	0	0
49 Y	293	4631	1469	2340	397	417	8		0	

• Molecule 50 is a protein called Probable ATP-dependent RNA helicase DDX28.

Mol	Chain	Residues	Atoms					AltConf	Trace	
50	Z	458	Total 7236	C 2259	Н 3681	N 643	0 644	${ m S} 9$	0	0

• Molecule 51 is ZINC ION (CCD ID: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
51	0	1	Total Zn 1 1	0

• Molecule 52 is FE2/S2 (INORGANIC) CLUSTER (CCD ID: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
52	r	1	TotalFeS422	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 41% 23% 29% 7%
- Molecule 1: 16S rRNA (1584-MER)

WORLDWIDE POTEIN DATA BANK

• Molecule 12:	Large ribosomal subunit pro	otein bL17m		
Chain O:	73%	12%	15%	
MET ARG LLEU SEER SEER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	G12 R13 C12 L18 L18 L18 C41 R41 R41 R41 B77 D67 D67 D67	K83 K83 D84 L86 F87 K88 K94 K92 K94 K94 K95 C100	L108	1144 N147 L157 HIS
HIS ASN GLN ASP ALA SER LLEU HIS SER SER SER CYS	THR VAL GLN THR PRO LYS THR THR			
• Molecule 13:	Large ribosomal subunit pro	otein uL18m		
Chain P:	64%	14%	22%	
MET ALA ALA ARG PRO ARG ARG CYS CYS LEV	SER VAL VAL ARG ARG CVS CUS CUS CUS CUS CUS CUS CVS CVS CVS CVS CVS CVS CVS CVS CVS CV	CLM ASP ASP ASP ASP CLM ASP ASP ASP A45 A45 A45 A45	R51 V61 V83 K85 T85	087 H88 H890 E91
L97 N96 099 000 1112 1112 X117 S119 1119 1119	R120 V122 V122 L122 L132 L133 A133 A133 A133 A133 C140 C140 C140 S155 S155 S155 S155 S155 S155 S155 S15	A162 A164 (169 (169 (173 (173 (173)		
• Molecule 14:	Large ribosomal subunit pro	otein bL19m		
Chain Q:	66%	9%	26%	
MET ALA ALA SER MET ALA GLU SER CYS ALA ALA	SER TVR TVR LEU LEU ARG SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	ALA CYS ARG CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	GLY PRO SER GLU PRO GLY PHE LYS PHE	PRO LYS PRO
VAL TLE VAL ASP ASG ASG ASG ASG PSO CSU SSLU	GLU RAG 877 877 877 877 878 878 878 8128 813 8123 8128 7130 8131 8131	R140 C146 C151 R152 R153 R153 C154 C155 C155 C155 C155	E161 E165 P169 R170 L183	R191
8230 ♦ N237 F238 N239 1240 F245 D245 L247	A248 1249 1250 1251 1250 1268 1271 1273 1274 1273 1274 1273 85R			
• Molecule 15:	Large ribosomal subunit pro	otein bL20m		
Chain R:	83%		5% 12%	
MET VAL PHE LEU THR THR ARG LEU TRP LEU ARG	ASN ARG LEC LAI R34 R34 R65 K82 K82 K82 K82 K82 K82 K82 K82 B85 K82 K82 K82 K82 K82 K82 K82 K82 K82 K82	L97 D104 D134 C135 K136 E137 V145 V145 CLN T78	SIH	
• Molecule 16:	Large ribosomal subunit pro	otein bL21m		
Chain S:	69%	7%	24%	

MET ALA THA THA TRP ALA CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	THE THE LEU LEU LEU LEU ALA ALA ALA ALA ACO CYS	ALA ARG ARG ARG ARG ARG CLN ARG CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	149 850 M555 K60 K60	HB43 HB44 A65 CLN CLN CLN CLN CLN CLN T172 F71 F71
S78 179 179 179 1883 1883 1883 1883 1883 1883 1883 188	ASN LYS N96 897 897 897 897 8102 A120	1127 N128 K129 E132 E138 E138 M146	D156	PAL PRO LVS GLU PRO PRO PRO LVS CLU R172 A173 R174 R174 R177 R177
M184 M184 M184 R185 E186 R185 R185 R189 R190 R190 R191 L180 R191 K191 L180 ASN	SER ALA LLA LFS LFS THR SER ARG ARG ARG MET THR MET	ASP		
• Molecule 43: Larg	ge ribosomal su	bunit protein mL64	L	
Chain q:	39%	5%	56%	
MET ALA ALA ALA ALA ALA ALA GLY CLEU LEU LEU LEU CLEU	V JEAN V AL ALA LEU LEU PRO PRO SER SER SER	P28 R32 P35 P35 P35 P35 P35 P35 P35 P35 P35 P35	P48 P48 P60 P61 P61 P61	S68 S102 S102 ALA ALA CYS MET ALA LVS
MET PRO GLN MET ILE GLN ARG CLV ARG CLV CVS CLV	ARA GLU LYS LYS GLN ALA ASP GLU GLU ARG	ARG ALA ALA CLEU GLU GLU GLU CLU CLU CLV CLY	ALS VAL ASP PRO ARG SER ALA ARG PHE CLN	GLU LEU ASP GLN ASP LEU ASP LEU ASP CLN ABC GLN ARG
LYS ARG LEU LYS GLU GLU GLU CYS CLN ARG GLU ALA	TILE ALA ALA ALA ALA SER ALA ALA GLU GLU	ASP SER ALA VALA SER GLU PRO SER SER		
• Molecule 44: Larg	ge ribosomal su	bunit protein mL66	5	
8%				
Chain r:	71%		9%	20%
	71% אוד אוד אוד אוד אוד אוד אוד אוד אוד	TRP TRP LEU LEU PLO ALA ALA ALA CL35 CL35 CL35 CV30 V30	111 111 111 111 111 111 111 111 111 11	851 651 153 153 153 154 154 154 153 153 153 153 153 153 153 153 153 153
Chain r:	C138 C138 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	H167 H167 K171 LEU V176 V176 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	111 011 011 011 011 117 118 1149 1149	550 651 153 153 154 154 154 154 153 153 153 153 153 153 153 153 153 153
Chain r:	71%	AS REALES	9%	
Chain r:	71%	AS AL	9%	20%
Chain r:	71%		9% 11 11 11 11 11 11 11 11 11 1	
Chain r:	71%	A 14 4 14 1 133 4 14 1 133 4 14 1 133 4 14 4 14 1 133 4 14 4	Alto M152 R153 M154 R154 M154 R155 M144 R155 M24 R155 M24 R155 M24 R155 M24 R157 R157 R157 R156 R155 R144 R155 R144 R156 R156 R157 R144 R157 R144 R157 R156 R156 R156 R157 R144 R157 R156 R157 R157 R157 R157	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	6223	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.503	Depositor
Minimum map value	-0.186	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.031	Depositor
Recommended contour level	0.16	Depositor
Map size (Å)	457.2936, 457.2936, 457.2936	wwPDB
Map dimensions	540, 540, 540	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.84684, 0.84684, 0.84684	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, FES

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	Bond lengths		Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.07	0/26881	0.18	0/41775	
2	В	0.07	0/1459	0.17	0/2266	
3	D	0.08	0/1357	0.23	0/1831	
4	Е	0.07	0/2186	0.20	0/2972	
5	F	0.07	0/1772	0.20	0/2415	
6	Н	0.08	0/793	0.23	0/1066	
7	Ι	0.09	0/1273	0.24	0/1722	
8	J	0.09	0/1093	0.25	0/1472	
9	Κ	0.06	0/1436	0.19	0/1948	
10	L	0.07	0/908	0.21	0/1224	
11	М	0.08	0/2054	0.24	0/2776	
12	0	0.06	0/1246	0.19	0/1679	
13	Р	0.07	0/1181	0.21	0/1600	
14	Q	0.08	0/1832	0.21	0/2471	
15	R	0.06	0/1096	0.17	0/1469	
16	S	0.08	0/1328	0.22	0/1798	
17	Т	0.07	0/1402	0.19	0/1885	
18	U	0.07	0/1062	0.21	0/1441	
19	V	0.07	0/1669	0.20	0/2259	
20	Х	0.07	0/2075	0.20	0/2806	
21	Y	0.06	0/1561	0.17	0/2093	
22	Ζ	0.07	0/959	0.21	0/1298	
23	0	0.07	0/896	0.20	0/1200	
24	5	0.07	0/3256	0.21	0/4432	
25	6	0.09	0/2622	0.23	0/3560	
26	7	0.07	0/2436	0.21	0/3300	
27	8	0.06	0/499	0.17	0/666	
28	9	0.09	0/800	0.22	0/1082	
29	a	0.07	0/884	0.20	0/1197	
30	b	0.07	0/1203	0.21	0/1625	
31	С	0.07	0/2297	0.20	0/3106	
32	d	0.07	0/1736	0.20	0/2353	

Mol Chain		Bond lengths		Bond angles	
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	е	0.07	0/1465	0.22	0/1971
34	f	0.09	0/726	0.22	0/983
35	g	0.08	0/1126	0.22	0/1533
36	h	0.09	0/894	0.24	0/1216
37	i	0.07	0/818	0.21	0/1099
38	j	0.06	0/698	0.18	0/937
39	k	0.07	0/636	0.20	0/857
40	1	0.07	0/651	0.19	0/882
41	0	0.06	0/655	0.17	0/880
42	р	0.07	0/1104	0.22	0/1476
43	q	0.07	0/825	0.19	0/1126
44	r	0.08	0/1301	0.21	0/1756
45	s	0.07	0/3118	0.20	0/4232
46	u	0.07	0/1053	0.20	0/1425
47	V	0.08	0/596	0.23	0/795
48	W	0.11	0/646	0.27	0/869
49	х	0.08	0/2357	0.24	0/3198
49	у	0.09	0/2342	0.25	0/3174
50	Z	0.07	0/3623	0.20	0/4918
All	All	0.07	0/97886	0.20	0/138114

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	24019	12126	12156	204	0
2	В	1303	657	658	14	0
3	D	1335	1373	1373	14	0
4	Е	2122	2097	2097	14	0
5	F	1728	1755	1754	20	0
6	Н	779	814	814	20	0

Conti		i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	Ι	1245	1330	1330	17	0
8	J	1075	1145	1145	15	0
9	K	1396	1398	1398	9	0
10	L	893	944	944	10	0
11	М	2010	2080	2080	29	0
12	0	1222	1254	1254	14	0
13	Р	1154	1148	1148	21	0
14	Q	1790	1822	1822	18	0
15	R	1077	1137	1137	6	0
16	S	1301	1372	1372	11	0
17	Т	1369	1402	1402	12	0
18	U	1034	1038	1038	9	0
19	V	1628	1622	1622	23	0
20	Х	2021	2051	2051	20	0
21	Y	1523	1553	1553	13	0
22	Ζ	934	979	979	5	0
23	0	881	908	908	13	0
24	5	3168	3187	3187	18	0
25	6	2534	2420	2418	45	0
26	7	2379	2378	2378	15	0
27	8	493	484	484	7	0
28	9	778	772	772	6	0
29	a	860	843	843	9	0
30	b	1181	1195	1195	13	0
31	с	2246	2256	2256	20	0
32	d	1688	1670	1670	24	0
33	е	1437	1474	1474	21	0
34	f	714	704	704	11	0
35	g	1090	1094	1094	12	0
36	h	872	868	867	10	0
37	i	795	816	816	11	0
38	j	684	692	692	5	0
39	k	629	639	639	8	0
40	1	635	631	631	10	0
41	0	640	623	623	4	0
42	р	1089	1112	1112	16	0
43	q	799	785	785	9	0
44	r	1267	1319	1319	15	0
45	s	3045	3057	3057	34	0
46	u	1029	1012	1012	12	0
47	v	586	603	603	5	0
48	W	637	640	640	7	0

• • • • • •	J. J. C. F. C. C. F. C. C. F. G. C. F. G. C. F. G. C. C. F. G. C. C. F. G. C. C. F. G. C. C. F.						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
49	Х	2305	2356	2356	50	0	
49	У	2291	2340	2340	59	0	
50	Z	3555	3681	3681	22	0	
51	0	1	0	0	0	0	
52	r	4	0	0	2	0	
All	All	93270	81656	81683	823	0	

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (823) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:2168:U:O2'	50:z:99:HIS:O	1.83	0.95
1:A:1093:A:O2'	1:A:1094:A:OP1	1.92	0.87
34:f:99:MET:SD	34:f:154:ARG:NH2	2.48	0.86
5:F:209:TYR:O	36:h:57:ARG:NH1	2.08	0.86
1:A:1477:A:OP1	35:g:105:ARG:NH2	2.09	0.86
1:A:1597:C:N4	1:A:1644:C:OP1	2.10	0.85
1:A:2466:U:O2'	1:A:2467:A:OP1	1.94	0.84
1:A:1307:A:N6	1:A:1318:A:O4'	2.11	0.83
1:A:2168:U:OP2	50:z:73:ARG:NH1	2.12	0.83
1:A:2181:A:O2'	1:A:2241:A:N6	2.13	0.82
1:A:2268:A:N6	1:A:2276:U:O4	2.12	0.82
6:H:51:VAL:HG13	20:X:86:ILE:HD12	1.62	0.82
1:A:2562:C:OP2	1:A:2563:A:O2'	1.97	0.81
1:A:1758:A:O2'	45:s:210:ARG:NH2	2.13	0.80
1:A:2092:G:N2	1:A:2096:C:O2'	2.14	0.80
18:U:59:GLN:NE2	28:9:58:PHE:O	2.14	0.80
31:c:80:GLN:O	31:c:210:ARG:NH2	2.14	0.80
1:A:1806:A:O2'	1:A:1809:C:N4	2.15	0.80
1:A:2507:U:O2'	1:A:2508:C:OP1	2.00	0.80
2:B:14:A:N1	2:B:21:A:O2'	2.14	0.79
1:A:1310:A:OP2	5:F:279:ARG:NE	2.16	0.79
45:s:240:GLN:NE2	45:s:348:PRO:O	2.16	0.79
45:s:89:LYS:O	45:s:269:ARG:NH2	2.16	0.79
1:A:1187:U:O4	43:q:60:GLN:NE2	2.16	0.78
49:x:228:ARG:NH1	49:x:257:MET:SD	2.56	0.78
4:E:107:MET:HE3	4:E:121:LEU:HD11	1.65	0.78
49:x:398:PHE:CE2	49:y:391:MET:HE3	2.18	0.78
24:5:280:GLN:OE1	45:s:152:ARG:NE	2.17	0.78

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1151:A:N6	1:A:2245:U:OP1	2.17	0.77
1:A:2247:C:O3'	1:A:2364:G:OP2	2.02	0.77
11:M:202:ARG:O	11:M:262:ARG:NH2	2.17	0.77
3:D:195:ASN:OD1	3:D:244:THR:OG1	2.01	0.77
17:T:133:ASN:ND2	17:T:174:GLU:OE2	2.18	0.76
10:L:119:ILE:O	10:L:142:GLN:NE2	2.19	0.76
6:H:96:THR:N	6:H:125:LEU:O	2.19	0.76
46:u:88:ILE:HD11	46:u:105:VAL:HG11	1.67	0.76
1:A:1315:U:O2'	1:A:1320:C:OP1	2.03	0.75
44:r:94:ARG:NH1	44:r:99:MET:O	2.19	0.75
2:B:29:C:OP2	34:f:111:ARG:NH1	2.18	0.75
50:z:73:ARG:NH2	50:z:93:ALA:O	2.18	0.75
25:6:220:ASN:OD1	25:6:234:HIS:NE2	2.20	0.75
2:B:12:U:O2'	2:B:14:A:OP1	2.05	0.75
11:M:207:GLU:OE2	43:q:106:GLN:NE2	2.20	0.75
1:A:1507:G:OP2	41:0:66:ARG:NH2	2.18	0.74
1:A:1641:G:OP1	8:J:42:ARG:NH2	2.20	0.74
4:E:112:LYS:NZ	4:E:337:VAL:O	2.19	0.74
1:A:2275:A:O2'	1:A:2276:U:OP1	2.03	0.74
1:A:1191:A:O2'	1:A:1192:G:OP1	2.06	0.74
25:6:161:LEU:HD22	25:6:219:ILE:HD13	1.69	0.74
1:A:1822:A:OP1	24:5:112:ARG:NH1	2.20	0.74
18:U:2:ALA:O	18:U:7:TYR:OH	2.05	0.74
3:D:156:GLU:N	3:D:247:ARG:O	2.21	0.73
11:M:232:ARG:NH2	42:p:60:LYS:O	2.21	0.73
1:A:1246:A:OP2	23:0:94:ARG:NH1	2.20	0.73
1:A:1262:A:OP1	30:b:4:ARG:NH2	2.22	0.73
1:A:1713:U:OP2	37:i:46:ARG:NH1	2.21	0.73
1:A:2659:C:O2'	1:A:2660:U:OP1	2.07	0.73
8:J:23:ILE:HD11	8:J:86:THR:CG2	2.19	0.73
1:A:1234:A:O2'	1:A:1235:U:OP1	2.05	0.73
1:A:2437:G:O3'	49:y:148:ARG:NH2	2.22	0.73
11:M:108:ARG:NH2	11:M:123:GLY:O	2.20	0.73
47:v:14:ARG:NH2	48:w:124:ASP:OD1	2.21	0.72
1:A:1305:C:OP2	35:g:111:ARG:NH2	2.22	0.72
1:A:2469:U:O4	49:x:102:ARG:NH2	2.22	0.72
13:P:112:ILE:HD13	13:P:131:VAL:HG21	1.71	0.72
1:A:1869:C:N4	17:T:153:HIS:O	2.22	0.72
49:x:155:LEU:HD11	49:x:185:ILE:HD11	1.71	0.72
1:A:1560:C:OP2	22:Z:77:ARG:NH1	2.22	0.72
11:M:250:GLU:O	11:M:253:ARG:NH1	2.22	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1259:U:OP2	30:b:116:ARG:NH1	2.23	0.72
1:A:1580:C:OP2	44:r:190:ARG:NH1	2.22	0.72
1:A:2598:A:OP1	14:Q:271:ARG:NH2	2.22	0.71
10:L:142:GLN:O	46:u:191:ARG:NH2	2.23	0.71
25:6:198:ALA:O	25:6:254:TYR:OH	2.08	0.71
20:X:35:GLU:N	20:X:35:GLU:OE1	2.24	0.70
49:x:283:ARG:NH1	49:x:285:TYR:OH	2.24	0.70
1:A:2487:A:O2'	49:x:218:ARG:O	2.07	0.70
20:X:156:LYS:NZ	20:X:205:GLY:O	2.25	0.70
14:Q:126:ALA:HB1	14:Q:129:LYS:HD3	1.74	0.70
49:x:135:LEU:HD11	49:x:144:PHE:CZ	2.27	0.70
1:A:2436:U:O2'	49:y:147:SER:O	2.08	0.70
49:y:203:PRO:O	49:y:207:THR:N	2.25	0.70
49:x:135:LEU:HD12	49:x:156:PRO:HG2	1.73	0.69
49:x:381:VAL:N	49:y:262:GLN:OE1	2.25	0.69
46:u:89:ASP:OD1	46:u:90:MET:N	2.25	0.69
1:A:2302:U:O2'	1:A:2303:A:OP1	2.11	0.69
1:A:2436:U:O4'	49:y:96:LYS:NZ	2.25	0.69
1:A:1894:C:O2'	12:O:17:ARG:NH2	2.25	0.69
4:E:57:ASN:OD1	12:O:147:ASN:ND2	2.25	0.69
13:P:51:ARG:O	25:6:159:ARG:NH2	2.25	0.69
1:A:1907:G:H4'	10:L:36:THR:HG22	1.72	0.69
13:P:173:ARG:O	42:p:177:ARG:NH2	2.25	0.69
1:A:1137:A:O2'	1:A:1138:U:OP1	2.10	0.69
1:A:1204:C:O2	1:A:1206:A:O2'	2.09	0.68
1:A:2648:A:OP1	9:K:98:LYS:NZ	2.27	0.68
1:A:1101:C:O2'	1:A:1102:U:OP2	2.10	0.68
1:A:1124:U:O2'	1:A:1133:U:O4	2.11	0.68
19:V:45:VAL:CG2	21:Y:235:ILE:HG22	2.23	0.68
1:A:1108:U:OP1	37:i:94:LYS:NZ	2.26	0.68
11:M:152:ASN:ND2	11:M:255:LEU:O	2.27	0.68
26:7:228:GLN:OE1	26:7:228:GLN:N	2.26	0.68
49:y:335:LEU:HD12	49:y:369:GLU:HB2	1.76	0.67
49:y:399:GLU:OE2	49:y:402:ARG:NH1	2.28	0.67
1:A:1095:C:OP1	17:T:45:TRP:N	2.27	0.67
49:y:148:ARG:NH1	49:y:151:TYR:OH	2.28	0.67
49:y:128:ARG:NH1	49:y:154:GLU:OE1	2.27	0.67
1:A:1103:A:O2'	19:V:40:ARG:NH2	2.28	0.67
1:A:1953:A:O2'	1:A:1954:C:OP1	2.13	0.67
49:x:135:LEU:HD12	49:x:156:PRO:CG	2.25	0.67
1:A:1847:U:OP1	24:5:223:ARG:NH1	2.28	0.66

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
23:0:127:GLU:OE2	23:0:131:GLN:NE2	2.28	0.66
1:A:1756:C:OP1	23:0:138:GLN:NE2	2.27	0.66
1:A:1762:C:OP2	45:s:55:SER:OG	2.13	0.66
8:J:84:GLN:N	8:J:127:ASP:OD2	2.29	0.66
23:0:116:LYS:NZ	23:0:120:VAL:O	2.28	0.66
49:y:247:ALA:O	49:y:260:HIS:NE2	2.28	0.66
16:S:168:THR:O	16:S:194:GLN:N	2.28	0.65
45:s:66:TRP:O	45:s:69:THR:OG1	2.10	0.65
49:x:405:ARG:NH2	49:y:339:SER:OG	2.29	0.65
1:A:1829:C:OP1	24:5:173:ARG:NH2	2.29	0.65
40:1:107:LEU:HD11	40:l:117:LEU:HD12	1.78	0.65
1:A:1446:U:OP1	11:M:42:ARG:NH1	2.28	0.65
1:A:2448:U:O4'	1:A:2471:A:N6	2.30	0.65
30:b:40:SER:OG	30:b:44:ARG:NH1	2.29	0.65
33:e:154:ASN:C	33:e:155:LEU:HD12	2.22	0.65
42:p:51:GLU:OE1	42:p:51:GLU:N	2.30	0.65
1:A:2466:U:HO2'	1:A:2467:A:P	2.20	0.65
17:T:46:GLU:OE1	17:T:46:GLU:N	2.29	0.65
1:A:1292:A:O2'	1:A:1328:C:O2	2.12	0.65
4:E:344:SER:OG	14:Q:169:PRO:O	2.08	0.65
13:P:88:HIS:O	13:P:119:THR:OG1	2.05	0.65
6:H:64:GLU:O	20:X:61:ARG:NH1	2.29	0.64
19:V:132:GLU:OE1	19:V:148:THR:OG1	2.09	0.64
49:x:338:GLN:O	49:x:377:LEU:N	2.29	0.64
49:y:213:ILE:N	49:y:351:VAL:O	2.30	0.64
19:V:101:THR:OG1	19:V:103:ASP:OD1	2.14	0.64
33:e:263:GLN:N	33:e:263:GLN:OE1	2.30	0.64
23:0:107:ASP:N	23:0:116:LYS:O	2.29	0.64
25:6:304:TYR:O	25:6:308:GLN:N	2.31	0.64
14:Q:161:GLU:OE1	14:Q:191:ARG:NH2	2.30	0.64
20:X:81:GLY:N	20:X:131:THR:OG1	2.30	0.64
11:M:283:LYS:NZ	35:g:41:SER:OG	2.20	0.64
45:s:90:LYS:NZ	45:s:272:TYR:O	2.31	0.64
32:d:157:HIS:O	32:d:161:HIS:ND1	2.30	0.64
23:0:131:GLN:OE1	32:d:290:TRP:NE1	2.31	0.64
11:M:91:GLN:O	11:M:93:GLN:NE2	2.29	0.64
3:D:157:ASN:ND2	3:D:179:GLU:OE1	2.31	0.64
1:A:1889:A:O2'	1:A:1891:A:OP1	2.14	0.63
1:A:1198:A:N1	19:V:40:ARG:NH1	2.45	0.63
50:z:227:GLY:O	50:z:231:GLY:N	2.30	0.63
31:c:167:CYS:SG	31:c:171:ARG:NH1	2.71	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:7:G:N2	2:B:60:C:N3	2.46	0.63
1:A:2119:A:OP1	15:R:34:ARG:NH2	2.32	0.63
33:e:150:LYS:HB2	33:e:155:LEU:HD11	1.80	0.63
5:F:60:ARG:NH1	36:h:122:CYS:SG	2.71	0.63
49:y:253:LEU:O	49:y:257:MET:N	2.32	0.63
1:A:1600:U:O2	7:I:107:GLU:N	2.32	0.63
49:x:145:PHE:HE1	49:x:166:ILE:HD12	1.63	0.63
8:J:23:ILE:HD11	8:J:86:THR:HG21	1.81	0.62
3:D:103:ASN:O	3:D:105:ARG:NH1	2.31	0.62
14:Q:129:LYS:NZ	46:u:114:TYR:O	2.32	0.62
49:x:279:PRO:O	49:x:282:THR:OG1	2.10	0.62
8:J:90:PHE:CE2	8:J:120:ILE:HG21	2.34	0.62
45:s:137:ARG:NH1	45:s:141:CYS:SG	2.72	0.62
7:I:61:ASN:OD1	44:r:78:LYS:NZ	2.33	0.62
1:A:1800:U:O2'	21:Y:125:ARG:NH2	2.33	0.62
1:A:2192:C:OP2	6:H:88:LYS:NZ	2.26	0.62
49:x:229:SER:O	49:y:391:MET:HE2	1.99	0.62
12:O:64:LYS:NZ	12:O:100:GLN:O	2.33	0.62
20:X:163:ARG:NH1	20:X:204:VAL:O	2.33	0.62
49:x:222:ASN:O	49:x:226:ILE:N	2.30	0.62
49:x:386:SER:O	49:y:129:ARG:NH2	2.33	0.62
50:z:97:TRP:NE1	50:z:105:ASP:OD2	2.33	0.62
7:I:116:LEU:HD12	7:I:123:ILE:HG13	1.81	0.61
5:F:94:ASP:OD1	5:F:95:ILE:N	2.33	0.61
25:6:152:ALA:HB2	25:6:316:LEU:HD13	1.81	0.61
1:A:1202:A:N6	1:A:1205:U:OP2	2.33	0.61
1:A:1728:A:OP2	11:M:40:ARG:NE	2.25	0.61
32:d:189:LEU:HD12	32:d:217:HIS:CD2	2.35	0.61
27:8:150:LEU:HD22	33:e:230:PHE:CZ	2.36	0.61
49:y:88:GLU:N	49:y:88:GLU:OE1	2.34	0.61
5:F:237:LEU:O	43:q:25:TYR:N	2.34	0.61
1:A:2667:G:N7	12:O:11:HIS:NE2	2.48	0.61
3:D:194:ILE:HD11	3:D:227:ILE:HD12	1.83	0.61
1:A:2116:U:O2'	23:0:80:PRO:O	2.18	0.60
1:A:2342:U:O2'	1:A:2343:A:OP1	2.18	0.60
32:d:126:ARG:O	32:d:130:ALA:N	2.33	0.60
11:M:131:LEU:O	11:M:133:ARG:NH1	2.34	0.60
33:e:194:SER:O	33:e:246:LYS:NZ	2.31	0.60
1:A:1725:U:O2'	11:M:38:ARG:NH2	2.34	0.60
36:h:136:GLN:N	36:h:136:GLN:OE1	2.34	0.60
1:A:2593:C:O4'	10:L:95:ARG:NH1	2.34	0.60

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1606:G:N2	8:J:103:HIS:O	2.34	0.60
34:f:187:GLU:OE1	34:f:187:GLU:N	2.35	0.60
49:x:388:ASN:O	49:y:228:ARG:NH1	2.35	0.60
4:E:68:GLU:OE1	4:E:154:ARG:NH2	2.34	0.59
8:J:120:ILE:HG22	40:l:71:GLY:O	2.01	0.59
11:M:141:GLU:N	11:M:141:GLU:OE1	2.35	0.59
16:S:168:THR:HG22	16:S:169:GLU:H	1.66	0.59
4:E:126:ASP:O	4:E:173:LYS:NZ	2.33	0.59
25:6:204:VAL:HG11	25:6:216:LEU:HD11	1.83	0.59
46:u:104:CYS:SG	46:u:179:ARG:NH2	2.74	0.59
49:x:145:PHE:CE1	49:x:166:ILE:HD12	2.36	0.59
49:x:225:THR:O	49:x:229:SER:N	2.29	0.59
7:I:167:GLU:N	7:I:167:GLU:OE1	2.34	0.59
13:P:169:GLY:O	42:p:184:ASN:ND2	2.35	0.59
33:e:264:PRO:O	33:e:268:ALA:N	2.33	0.59
49:x:288:ASP:OD2	49:x:375:ARG:NH1	2.35	0.59
7:I:195:LEU:O	7:I:199:ALA:N	2.33	0.59
14:Q:251:GLU:OE1	14:Q:251:GLU:N	2.33	0.59
25:6:60:ARG:NH2	25:6:64:GLU:OE1	2.36	0.59
49:y:222:ASN:O	49:y:226:ILE:N	2.31	0.59
5:F:214:SER:N	5:F:257:GLN:OE1	2.36	0.59
13:P:122:VAL:HG22	13:P:157:SER:HB3	1.85	0.59
17:T:49:ASN:ND2	17:T:68:TYR:O	2.34	0.59
20:X:117:GLU:N	20:X:142:ASP:OD2	2.36	0.58
42:p:97:SER:O	42:p:146:ASN:ND2	2.36	0.58
5:F:277:ASP:O	5:F:278:SER:OG	2.14	0.58
6:H:79:LEU:HD11	6:H:82:ASP:HB2	1.85	0.58
1:A:1744:G:N2	1:A:2113:A:OP2	2.37	0.58
1:A:1626:A:O2'	1:A:1627:A:O5'	2.19	0.58
49:x:155:LEU:HD11	49:x:185:ILE:CD1	2.34	0.58
49:y:150:GLU:OE1	49:y:150:GLU:N	2.34	0.58
1:A:2122:U:O4'	1:A:2134:G:N2	2.37	0.58
8:J:60:ILE:HG21	8:J:66:LEU:HD11	1.86	0.58
31:c:78:ARG:O	31:c:80:GLN:NE2	2.36	0.58
1:A:1603:U:HO2'	1:A:1605:G:P	2.27	0.58
31:c:315:ASP:OD1	31:c:317:SER:N	2.37	0.58
26:7:162:SER:OG	26:7:181:THR:OG1	2.22	0.58
49:y:117:ARG:O	49:y:121:GLY:N	2.36	0.58
27:8:139:MET:HE1	33:e:275:LEU:HD23	1.86	0.57
49:x:95:ASP:O	49:x:167:LYS:N	2.35	0.57
25:6:227:GLU:OE1	25:6:230:ALA:N	2.36	0.57

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
46:u:207:GLU:N	46:u:207:GLU:OE1	2.37	0.57
19:V:65:LEU:N	19:V:119:GLN:O	2.36	0.57
20:X:81:GLY:O	20:X:130:ARG:NE	2.35	0.57
25:6:157:LEU:HD11	25:6:318:PHE:CD1	2.40	0.57
36:h:89:ASP:O	36:h:123:ARG:NH1	2.37	0.57
1:A:1123:A:OP2	21:Y:199:ARG:NH1	2.37	0.57
19:V:54:TRP:NE1	19:V:56:LEU:O	2.32	0.57
31:c:155:SER:HG	31:c:232:TRP:CD1	2.23	0.57
31:c:155:SER:HG	31:c:232:TRP:CG	2.23	0.57
43:q:60:GLN:O	43:q:68:SER:OG	2.22	0.57
1:A:1206:A:N7	1:A:1221:A:N6	2.53	0.57
11:M:263:GLN:NE2	11:M:265:PHE:O	2.37	0.57
48:w:81:ASP:OD1	48:w:82:ARG:N	2.38	0.57
4:E:69:ASN:OD1	4:E:154:ARG:NH1	2.36	0.57
8:J:87:VAL:HG11	8:J:144:ILE:HG22	1.87	0.57
6:H:121:LEU:HD23	6:H:126:ALA:O	2.05	0.56
1:A:1224:U:O4	19:V:34:LYS:NZ	2.37	0.56
1:A:1246:A:O2'	23:0:91:CYS:SG	2.63	0.56
1:A:1629:G:HO2'	40:1:124:TRP:CD1	2.23	0.56
1:A:1730:C:O2'	15:R:40:ARG:NE	2.38	0.56
26:7:183:ASP:OD1	26:7:184:LYS:N	2.36	0.56
45:s:172:ASP:OD2	45:s:197:LYS:NZ	2.38	0.56
1:A:1191:A:HO2'	1:A:1192:G:P	2.28	0.56
3:D:111:ARG:O	3:D:150:ARG:NH2	2.38	0.56
19:V:20:ARG:N	19:V:35:ASN:OD1	2.38	0.56
34:f:114:ASN:OD1	34:f:115:ARG:N	2.38	0.56
49:x:332:LEU:HD23	49:x:332:LEU:H	1.69	0.56
1:A:1230:A:OP2	19:V:94:HIS:NE2	2.38	0.56
1:A:1571:A:OP2	15:R:65:ARG:NH1	2.38	0.56
19:V:199:MET:O	19:V:203:GLY:N	2.38	0.56
6:H:51:VAL:HG21	20:X:105:TRP:CG	2.41	0.56
6:H:117:ARG:O	6:H:117:ARG:NH1	2.37	0.56
44:r:176:VAL:N	44:r:194:MET:O	2.35	0.56
18:U:139:GLY:O	32:d:179:LYS:NZ	2.39	0.56
30:b:66:ASN:OD1	36:h:156:SER:OG	2.19	0.56
40:1:59:CYS:HB2	40:1:70:MET:HE2	1.86	0.56
32:d:106:THR:OG1	32:d:107:GLN:N	2.38	0.56
48:w:120:MET:HE2	48:w:120:MET:N	2.21	0.55
49:x:135:LEU:HD11	49:x:144:PHE:CE2	2.41	0.55
50:z:239:GLY:N	50:z:262:THR:OG1	2.38	0.55
1:A:2485:C:O2'	1:A:2486:A:OP2	2.13	0.55

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
25:6:302:ASP:OD1	25:6:303:PHE:N	2.39	0.55
32:d:244:GLU:N	32:d:244:GLU:OE1	2.39	0.55
49:x:215:ASP:OD2	49:x:361:SER:N	2.38	0.55
4:E:90:TRP:CD1	4:E:311:CYS:HG	2.25	0.55
19:V:177:THR:O	28:9:73:ASN:ND2	2.40	0.55
25:6:75:ARG:O	25:6:79:VAL:N	2.39	0.55
1:A:1293:G:N1	11:M:46:ARG:O	2.39	0.55
49:x:399:GLU:OE2	49:x:403:GLN:NE2	2.40	0.55
1:A:2617:A:O2'	1:A:2618:A:OP2	2.18	0.55
21:Y:67:GLU:OE1	21:Y:67:GLU:N	2.38	0.55
26:7:244:ASN:ND2	26:7:248:ILE:O	2.39	0.55
12:O:67:ASP:OD2	45:s:44:TYR:OH	2.18	0.55
2:B:25:A:OP2	13:P:87:GLN:NE2	2.37	0.55
29:a:76:GLN:N	29:a:76:GLN:OE1	2.40	0.55
49:x:402:ARG:NH2	49:y:395:ILE:O	2.39	0.55
24:5:139:LEU:O	24:5:145:ASN:ND2	2.39	0.54
25:6:187:VAL:HG13	25:6:319:PHE:HB3	1.90	0.54
30:b:89:VAL:HG12	30:b:89:VAL:O	2.07	0.54
32:d:111:ARG:NH2	32:d:195:VAL:HG22	2.22	0.54
1:A:1790:A:N6	17:T:152:TYR:O	2.36	0.54
1:A:2395:U:O4	1:A:2396:A:N6	2.39	0.54
36:h:71:LEU:HD22	36:h:128:LEU:HD13	1.89	0.54
1:A:2481:U:O4	49:x:386:SER:OG	2.24	0.54
5:F:119:GLU:OE2	5:F:156:ARG:NH2	2.40	0.54
19:V:215:TRP:O	24:5:64:LYS:NZ	2.40	0.54
13:P:42:GLU:OE2	25:6:338:ARG:NH1	2.41	0.54
24:5:207:CYS:HB2	24:5:229:ILE:HD12	1.90	0.54
49:y:340:TYR:CE1	49:y:395:ILE:HD11	2.41	0.54
1:A:1137:A:HO2'	1:A:1138:U:P	2.30	0.54
42:p:82:CYS:O	42:p:98:LYS:N	2.40	0.54
1:A:1311:G:N7	5:F:170:ARG:NH2	2.55	0.54
1:A:2625:A:O2'	44:r:99:MET:O	2.25	0.54
38:j:87:ILE:HD11	41:0:53:TYR:HE2	1.73	0.54
27:8:150:LEU:HD23	27:8:158:TYR:CZ	2.43	0.54
31:c:60:ARG:NH1	31:c:64:PRO:O	2.41	0.54
1:A:1609:U:N3	1:A:1612:A:OP2	2.39	0.54
1:A:2194:A:OP2	6:H:118:ASN:ND2	2.41	0.54
49:y:235:CYS:SG	49:y:397:LEU:HD22	2.48	0.54
45:s:147:GLU:OE1	45:s:153:ARG:NH2	2.39	0.53
49:y:351:VAL:CG1	49:y:396:LEU:HD13	2.38	0.53
50:z:505:HIS:HB2	50:z:506:PRO:CD	2.38	0.53

	h a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
24:5:56:GLU:OE1	24:5:56:GLU:N	2.41	0.53
39:k:17:ARG:NH1	39:k:63:CYS:O	2.42	0.53
1:A:2302:U:HO2'	1:A:2303:A:P	2.31	0.53
1:A:2568:G:N2	1:A:2571:A:OP2	2.42	0.53
1:A:1324:A:O2'	11:M:34:LYS:N	2.39	0.53
19:V:45:VAL:HG23	21:Y:235:ILE:HG22	1.89	0.53
45:s:108:SER:O	45:s:206:ARG:NE	2.42	0.53
49:y:95:ASP:N	49:y:165:LEU:O	2.33	0.53
16:S:136:LYS:NZ	38:j:45:LEU:O	2.35	0.53
16:S:168:THR:HG22	16:S:169:GLU:N	2.24	0.53
45:s:132:ASP:O	45:s:135:ALA:N	2.41	0.53
37:i:61:GLY:O	37:i:66:PHE:N	2.41	0.53
49:y:128:ARG:NH2	49:y:183:GLN:OE1	2.42	0.53
11:M:145:ASP:O	11:M:148:GLN:NE2	2.42	0.53
14:Q:153:ASN:OD1	14:Q:154:THR:N	2.41	0.53
16:S:66:GLN:OE1	16:S:66:GLN:N	2.41	0.53
4:E:90:TRP:NE1	4:E:311:CYS:SG	2.81	0.53
35:g:99:GLU:O	35:g:107:MET:N	2.42	0.53
50:z:93:ALA:O	50:z:97:TRP:NE1	2.42	0.53
1:A:1675:U:O2	44:r:187:TYR:N	2.42	0.52
33:e:233:LYS:NZ	33:e:273:PHE:O	2.42	0.52
49:x:150:GLU:N	49:x:150:GLU:OE1	2.41	0.52
11:M:275:ASN:N	11:M:280:LYS:O	2.38	0.52
1:A:1604:A:O2'	1:A:1605:G:OP1	2.26	0.52
3:D:195:ASN:O	3:D:244:THR:OG1	2.27	0.52
1:A:2625:A:O2'	44:r:94:ARG:NH1	2.42	0.52
30:b:28:ARG:NH2	31:c:71:GLU:OE2	2.43	0.52
37:i:79:TRP:O	37:i:93:ARG:NE	2.39	0.52
25:6:191:ASN:O	25:6:320:GLN:N	2.34	0.52
32:d:137:PHE:CD2	32:d:212:VAL:HG11	2.45	0.52
43:q:61:PHE:O	43:q:65:GLY:N	2.37	0.52
14:Q:131:SER:OG	46:u:113:ARG:NH1	2.43	0.52
22:Z:71:ARG:NH2	22:Z:92:GLN:O	2.42	0.52
1:A:1296:A:O4'	1:A:1326:A:N6	2.43	0.51
1:A:1593:U:O2'	1:A:1594:U:O5'	2.28	0.51
1:A:1789:G:O2'	1:A:1791:U:OP2	2.28	0.51
38:j:59:MET:SD	38:j:59:MET:N	2.83	0.51
5:F:114:THR:O	5:F:156:ARG:NH1	2.38	0.51
25:6:152:ALA:CB	25:6:316:LEU:HD13	2.40	0.51
45:s:233:ASN:O	45:s:293:PHE:N	2.36	0.51
2:B:42:U:O4	13:P:120:ARG:NH1	2.43	0.51

	h a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
11:M:282:LEU:HD22	35:g:38:PHE:HD2	1.75	0.51
42:p:120:ALA:HA	42:p:127:ILE:HD11	1.92	0.51
49:y:327:THR:HG22	49:y:327:THR:O	2.10	0.51
8:J:23:ILE:HD11	8:J:86:THR:HG22	1.92	0.51
1:A:1650:A:O2'	1:A:1651:A:O4'	2.24	0.51
25:6:49:GLU:OE1	25:6:49:GLU:N	2.44	0.51
26:7:259:ASP:OD1	26:7:260:VAL:N	2.43	0.51
1:A:1453:A:O2'	1:A:1699:A:N6	2.44	0.51
1:A:1620:A:H61	1:A:1630:A:C2'	2.24	0.51
1:A:1953:A:HO2'	1:A:1954:C:P	2.33	0.51
3:D:133:ASP:OD2	3:D:136:ARG:NH1	2.44	0.51
13:P:138:GLU:OE1	25:6:136:ARG:NH2	2.44	0.51
28:9:108:ASP:OD1	28:9:111:ASN:ND2	2.43	0.51
45:s:195:ASP:OD1	45:s:198:ARG:NH2	2.44	0.51
50:z:78:GLN:NE2	50:z:82:LEU:O	2.44	0.51
36:h:125:ARG:NH1	36:h:126:ASP:OD2	2.44	0.51
47:v:10:LEU:HD23	48:w:120:MET:HE3	1.93	0.51
49:y:237:LYS:NZ	49:y:239:LEU:HD21	2.25	0.51
49:x:289:ASN:ND2	49:x:385:ASP:O	2.44	0.50
1:A:2186:A:N6	1:A:2236:G:O6	2.44	0.50
26:7:77:VAL:HG23	26:7:77:VAL:O	2.12	0.50
33:e:158:LEU:N	33:e:251:VAL:O	2.43	0.50
26:7:147:LEU:HD22	26:7:178:TYR:HB3	1.93	0.50
26:7:293:ARG:O	26:7:295:GLN:NE2	2.42	0.50
45:s:240:GLN:OE1	45:s:347:ARG:NH1	2.45	0.50
1:A:1953:A:O2'	1:A:1954:C:P	2.69	0.50
21:Y:222:GLU:OE2	21:Y:226:ARG:NE	2.44	0.50
26:7:173:ALA:O	26:7:316:ARG:NH1	2.45	0.50
1:A:1626:A:O3'	40:l:112:ARG:NH2	2.44	0.50
19:V:93:THR:HG21	19:V:110:ALA:HB1	1.92	0.50
25:6:242:SER:OG	25:6:243:ASN:N	2.45	0.50
1:A:1777:U:O2	1:A:1803:G:N2	2.35	0.50
33:e:137:GLU:N	33:e:137:GLU:OE1	2.44	0.50
40:1:107:LEU:HD13	40:1:114:TYR:HA	1.94	0.50
6:H:76:VAL:HG12	20:X:100:ARG:HD2	1.94	0.50
25:6:179:VAL:HG21	25:6:185:ILE:HD12	1.92	0.50
1:A:1563:U:OP1	1:A:1685:U:O2'	2.28	0.50
49:x:152:VAL:HA	49:x:155:LEU:HD12	1.94	0.50
20:X:118:ILE:O	20:X:168:ARG:NH1	2.44	0.49
25:6:240:ILE:HD12	25:6:245:VAL:HA	1.94	0.49
1:A:2437:G:O2'	49:y:148:ARG:NE	2.45	0.49

	in a second	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
17:T:206:LEU:HD12	30:b:119:PHE:CE1	2.48	0.49
49:y:239:LEU:HD23	49:y:266:VAL:HB	1.94	0.49
1:A:1243:A:OP2	23:0:90:ARG:NH2	2.41	0.49
1:A:1629:G:N2	40:1:127:ASN:OD1	2.45	0.49
5:F:220:ASP:O	5:F:245:ALA:N	2.44	0.49
24:5:206:ASN:OD1	45:s:153:ARG:NH1	2.45	0.49
1:A:1503:A:O2'	1:A:1504:A:P	2.70	0.49
12:O:36:LEU:O	12:O:40:GLU:N	2.40	0.49
19:V:105:ARG:NH2	32:d:171:ASP:OD1	2.43	0.49
1:A:1185:C:OP1	11:M:195:ARG:NE	2.44	0.49
10:L:58:ILE:HG22	10:L:58:ILE:O	2.13	0.49
16:S:116:ASP:OD1	16:S:117:LEU:N	2.45	0.49
1:A:1742:G:O2'	1:A:2115:A:N6	2.44	0.49
3:D:159:LYS:N	3:D:162:ASP:OD2	2.44	0.49
13:P:121:ASN:OD1	13:P:122:VAL:N	2.46	0.49
31:c:59:ARG:NH1	31:c:181:SER:O	2.41	0.49
50:z:186:LEU:HD12	50:z:282:PHE:CE2	2.48	0.49
1:A:1606:G:H2'	1:A:1607:C:H5'	1.93	0.49
32:d:251:HIS:ND1	32:d:254:ASN:OD1	2.45	0.49
45:s:399:VAL:HG22	45:s:404:VAL:HG12	1.95	0.49
1:A:1538:G:H2'	1:A:1539:C:O4'	2.12	0.49
1:A:1742:G:OP1	23:0:84:ARG:NH2	2.46	0.49
24:5:225:THR:O	24:5:226:SER:OG	2.25	0.49
46:u:105:VAL:HG13	46:u:119:VAL:HG22	1.95	0.49
7:I:76:SER:O	7:I:80:ARG:N	2.42	0.49
25:6:161:LEU:HD13	25:6:271:LEU:HD11	1.95	0.49
11:M:287:GLU:N	11:M:287:GLU:OE1	2.43	0.48
29:a:34:THR:HG22	29:a:34:THR:O	2.13	0.48
42:p:65:ALA:O	42:p:66:LYS:C	2.55	0.48
50:z:428:GLN:OE1	50:z:430:GLN:N	2.39	0.48
4:E:316:PHE:HB3	4:E:317:PRO:HD3	1.95	0.48
5:F:113:ASN:OD1	5:F:157:GLY:N	2.46	0.48
25:6:62:GLU:OE2	25:6:66:ARG:NH2	2.46	0.48
25:6:70:TRP:O	25:6:72:ARG:NH2	2.46	0.48
1:A:1234:A:HO2'	1:A:1235:U:P	2.36	0.48
1:A:2613:A:O4'	1:A:2648:A:N6	2.47	0.48
49:y:208:LEU:HD12	49:y:404:LEU:HD12	1.95	0.48
1:A:1885:G:OP1	45:s:216:ARG:NE	2.36	0.48
9:K:21:LEU:N	9:K:58:VAL:O	2.42	0.48
36:h:124:VAL:O	36:h:127:VAL:N	2.47	0.48
49:y:191:LYS:HZ2	49:y:248:TRP:CD1	2.31	0.48

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
14:Q:268:ASP:OD1	14:Q:268:ASP:O	2.31	0.48
25:6:181:GLU:N	25:6:181:GLU:OE1	2.46	0.48
25:6:184:LEU:HD23	25:6:184:LEU:H	1.77	0.48
10:L:140:ILE:HG22	10:L:140:ILE:O	2.12	0.48
44:r:73:CYS:N	52:r:301:FES:S2	2.87	0.48
24:5:251:HIS:O	24:5:371:LYS:NZ	2.45	0.48
44:r:76:ASN:O	44:r:80:LYS:NZ	2.42	0.48
49:x:101:ASP:OD1	49:x:102:ARG:N	2.46	0.48
26:7:188:GLU:OE1	26:7:188:GLU:N	2.46	0.47
1:A:2489:G:OP2	49:x:114:ARG:NH2	2.41	0.47
5:F:62:VAL:O	5:F:82:LEU:N	2.36	0.47
34:f:89:VAL:HG23	34:f:89:VAL:O	2.13	0.47
45:s:226:GLN:NE2	45:s:228:ASN:OD1	2.41	0.47
49:y:114:ARG:NE	49:y:118:GLU:OE2	2.47	0.47
5:F:65:TRP:N	36:h:115:ASN:OD1	2.44	0.47
14:Q:77:SER:OG	14:Q:79:GLU:OE1	2.28	0.47
17:T:151:ARG:O	17:T:159:GLY:N	2.46	0.47
1:A:1137:A:O2'	1:A:1138:U:P	2.73	0.47
1:A:2628:A:O4'	44:r:103:ARG:NH2	2.40	0.47
11:M:96:SER:O	11:M:100:LEU:N	2.45	0.47
26:7:235:ASP:OD1	26:7:236:PHE:N	2.47	0.47
44:r:73:CYS:CA	52:r:301:FES:S2	3.02	0.47
49:x:328:ARG:O	49:x:332:LEU:HD21	2.14	0.47
49:y:288:ASP:OD2	49:y:375:ARG:NH1	2.47	0.47
1:A:1220:A:N6	1:A:1221:A:N1	2.62	0.47
11:M:222:LEU:O	42:p:49:TYR:OH	2.32	0.47
20:X:178:PRO:O	20:X:179:GLU:HG2	2.15	0.47
34:f:112:LEU:HD13	34:f:115:ARG:NH2	2.29	0.47
46:u:157:ASP:OD1	46:u:158:ALA:N	2.48	0.47
49:y:351:VAL:HG13	49:y:396:LEU:HD13	1.97	0.47
35:g:42:VAL:HG12	35:g:42:VAL:O	2.14	0.47
36:h:125:ARG:NH1	36:h:126:ASP:CG	2.72	0.47
49:x:213:ILE:HD11	49:x:278:LEU:HD11	1.95	0.47
49:v:378:ILE:HD13	49:v:395:ILE:HG21	1.95	0.47
1:A:1225:G:N1	1:A:1228:A:OP2	2.47	0.47
1:A:1671:U:OP1	44:r:165:LYS:NZ	2.43	0.47
50:z:481:TYR:O	50:z:485:ALA:N	2.43	0.47
1:A:1232:U:H1'	1:A:1233:A:OP2	2.15	0.47
1:A:1602:G:N2	8:J:143:SER:OG	2.44	0.47
13:P:41:ASN:OD1	25:6:293·LEU:N	2.42	0.47
31.c.209.GLU.OE1	31:c:209:GLU:N	2.43	0.47

	las puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
49:x:202:THR:OG1	49:x:203:PRO:HD3	2.15	0.47
4:E:90:TRP:NE1	4:E:311:CYS:HG	2.13	0.47
35:g:85:PHE:N	35:g:114:GLU:O	2.40	0.47
37:i:57:TYR:OH	43:q:28:PRO:O	2.28	0.47
37:i:60:ILE:O	37:i:64:GLY:N	2.47	0.47
1:A:1146:A:O4'	37:i:123:ARG:NH1	2.47	0.47
16:S:96:TYR:O	31:c:312:ARG:NH2	2.43	0.47
24:5:385:HIS:O	24:5:404:VAL:N	2.45	0.47
44:r:93:ILE:HD11	44:r:119:VAL:HG21	1.96	0.47
50:z:207:LEU:O	50:z:284:VAL:N	2.45	0.47
18:U:80:ARG:NH1	18:U:84:ASN:O	2.48	0.46
19:V:206:GLU:OE1	19:V:207:THR:N	2.48	0.46
25:6:247:GLU:OE1	25:6:247:GLU:N	2.47	0.46
45:s:357:ASP:OD1	45:s:360:TYR:N	2.46	0.46
49:x:135:LEU:HD12	49:x:156:PRO:HG3	1.97	0.46
15:R:85:ALA:O	15:R:89:ASN:ND2	2.48	0.46
25:6:60:ARG:O	25:6:60:ARG:NH1	2.49	0.46
27:8:139:MET:HE1	33:e:275:LEU:CD2	2.45	0.46
29:a:71:THR:O	31:c:256:ARG:NH2	2.48	0.46
39:k:80:HIS:C	39:k:81:LEU:HD22	2.40	0.46
45:s:298:ASP:OD1	45:s:299:ARG:N	2.49	0.46
1:A:1769:C:OP1	45:s:215:HIS:NE2	2.46	0.46
2:B:20:A:HO2'	2:B:21:A:P	2.37	0.46
11:M:236:ALA:O	11:M:240:GLY:N	2.47	0.46
21:Y:159:GLN:OE1	28:9:118:GLU:N	2.48	0.46
1:A:1175:G:O2'	1:A:1176:A:OP2	2.31	0.46
2:B:15:A:H4'	2:B:17:A:H62	1.81	0.46
9:K:26:GLN:NE2	9:K:147:GLN:OE1	2.48	0.46
32:d:137:PHE:CE2	32:d:212:VAL:HG11	2.51	0.46
17:T:60:GLU:OE2	17:T:63:ARG:NH2	2.48	0.46
6:H:102:ILE:O	6:H:102:ILE:HG22	2.16	0.46
13:P:61:VAL:HG12	13:P:61:VAL:O	2.16	0.46
19:V:45:VAL:HG22	21:Y:235:ILE:HG22	1.96	0.46
26:7:42:ASN:ND2	26:7:256:ASP:OD1	2.48	0.46
32:d:111:ARG:O	32:d:115:ASN:N	2.48	0.46
49:y:212:LEU:HD13	49:y:397:LEU:HD21	1.97	0.46
1:A:1642:C:H2'	1:A:1643:U:O4'	2.15	0.46
16:S:103:VAL:HG11	16:S:134:LEU:HD13	1.96	0.46
29:a:69:GLU:O	30:b:141:HIS:N	2.40	0.46
49:x:398:PHE:CD1	49:y:395:ILE:HD12	2.51	0.46
1:A:1486:A:O2'	1:A:1503:A:N1	2.40	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:P:140:GLY:HA2	42:p:188:LEU:HD11	1.97	0.46
14:Q:123:ASP:HB2	14:Q:126:ALA:HB3	1.97	0.46
20:X:110:PHE:HB3	20:X:112:ARG:CZ	2.45	0.46
35:g:44:GLU:OE1	35:g:44:GLU:N	2.49	0.46
47:v:10:LEU:HD22	48:w:132:ASP:HB2	1.98	0.46
1:A:2109:A:N3	12:O:116:GLN:NE2	2.64	0.46
24:5:114:LEU:N	24:5:264:ASP:OD2	2.45	0.46
32:d:226:ASP:OD1	32:d:232:MET:HE2	2.16	0.46
37:i:34:VAL:HG12	37:i:35:ARG:N	2.31	0.46
1:A:1134:A:H1'	1:A:1135:U:H5'	1.98	0.45
1:A:1135:U:OP2	21:Y:198:ARG:NH1	2.49	0.45
4:E:54:SER:O	4:E:58:LEU:N	2.40	0.45
25:6:363:LEU:O	25:6:367:ASP:N	2.46	0.45
47:v:58:GLY:O	47:v:62:LEU:N	2.46	0.45
1:A:1185:C:OP2	43:q:55:ARG:NH2	2.50	0.45
1:A:1233:A:H2'	1:A:1234:A:O4'	2.16	0.45
1:A:1248:C:OP1	29:a:129:HIS:NE2	2.48	0.45
3:D:111:ARG:NH2	3:D:180:GLY:O	2.42	0.45
13:P:130:ARG:HG3	13:P:164:ALA:HB1	1.98	0.45
14:Q:165:GLU:O	14:Q:171:ILE:HD12	2.16	0.45
21:Y:65:GLY:N	21:Y:68:GLU:OE2	2.50	0.45
27:8:117:LEU:HD13	33:e:64:LEU:HD13	1.97	0.45
27:8:150:LEU:HD22	33:e:230:PHE:CE2	2.51	0.45
45:s:186:ASN:ND2	45:s:419:LEU:O	2.41	0.45
1:A:1659:C:O2'	1:A:1660:A:OP2	2.32	0.45
1:A:2486:A:H2'	1:A:2487:A:O4'	2.17	0.45
14:Q:245:PHE:O	14:Q:249:LEU:N	2.48	0.45
31:c:87:LEU:O	31:c:90:THR:OG1	2.25	0.45
32:d:151:CYS:O	32:d:155:SER:N	2.49	0.45
45:s:303:GLU:OE1	45:s:303:GLU:N	2.47	0.45
49:y:194:PRO:HB3	49:y:264:PRO:HA	1.98	0.45
50:z:335:GLU:N	50:z:335:GLU:OE1	2.48	0.45
1:A:1260:A:OP1	29:a:134:LYS:NZ	2.46	0.45
16:S:133:ARG:N	38:j:49:SER:O	2.41	0.45
18:U:38:ASP:OD1	18:U:39:THR:N	2.50	0.45
9:K:140:ASN:OD1	31:c:264:THR:OG1	2.23	0.45
1:A:1302:U:OP1	41:0:86:ARG:NH2	2.48	0.45
3:D:125:GLU:HB3	3:D:143:VAL:HG22	1.98	0.45
4:E:334:ASP:OD2	4:E:336:SER:OG	2.31	0.45
8:J:56:LYS:HZ1	8:J:80:LEU:HB3	1.81	0.45
10:L:38:VAL:HG22	10:L:39:ARG:N	2.32	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
25:6:188:TYB:OH	42:p:191:LYS:N	2.49	0.45
1:A:1561:U:O2'	1:A:1574:A:N3	2.41	0.45
1:A:2676:A:H4'	1:A:2676:A:OP2	2.17	0.45
6:H:104:VAL:HG22	6:H:105:ARG:N	2.32	0.45
7:I:116:LEU:O	7:I:120:LYS:N	2.50	0.45
7:I:192:ARG:NH2	39:k:53:ALA:O	2.43	0.45
1:A:1234:A:O2'	1:A:1235:U:P	2.74	0.45
1:A:1644:C:H2'	1:A:1645:A:O4'	2.17	0.45
1:A:2361:C:N3	1:A:2362:A:N6	2.64	0.45
25:6:171:VAL:HG21	25:6:214:TRP:CH2	2.52	0.45
49:y:217:LEU:N	49:y:244:CYS:SG	2.86	0.45
6:H:120:LEU:O	6:H:125:LEU:N	2.48	0.45
32:d:186:VAL:HG12	32:d:187:GLU:N	2.32	0.45
39:k:18:VAL:HG13	39:k:64:VAL:HG22	1.98	0.45
40:1:74:ILE:HG22	40:1:74:ILE:O	2.16	0.45
49:x:217:LEU:C	49:x:245:VAL:HG23	2.41	0.45
26:7:151:ILE:HD13	26:7:180:VAL:HG21	1.98	0.45
32:d:196:HIS:N	32:d:213:THR:OG1	2.50	0.45
48:w:112:SER:O	48:w:116:VAL:HG23	2.17	0.45
49:x:282:THR:O	49:x:284:VAL:HG23	2.17	0.45
1:A:1660:A:N3	1:A:1660:A:H2'	2.32	0.44
1:A:2168:U:O2	1:A:2168:U:H2'	2.17	0.44
1:A:2467:A:OP2	49:x:103:ARG:NE	2.50	0.44
1:A:2507:U:HO2'	1:A:2508:C:P	2.34	0.44
5:F:52:GLU:OE1	5:F:52:GLU:N	2.47	0.44
12:O:86:ILE:HB	12:O:87:PRO:HD3	1.99	0.44
42:p:102:ARG:NE	42:p:132:GLU:OE2	2.49	0.44
2:B:20:A:O2'	2:B:21:A:P	2.75	0.44
31:c:294:GLU:OE2	31:c:298:ARG:NE	2.50	0.44
32:d:121:ALA:O	32:d:125:ILE:HD12	2.17	0.44
1:A:1906:A:N3	10:L:33:GLN:NE2	2.59	0.44
18:U:61:TYR:O	21:Y:65:GLY:N	2.50	0.44
30:b:37:ALA:O	30:b:44:ARG:NH1	2.42	0.44
49:y:335:LEU:HD11	49:y:368:ALA:HB3	1.98	0.44
1:A:1677:A:OP1	15:R:82:LYS:NZ	2.44	0.44
2:B:20:A:O2'	2:B:21:A:OP1	2.35	0.44
16:S:165:ILE:HD11	16:S:198:ARG:HB3	2.00	0.44
25:6:157:LEU:HD11	25:6:318:PHE:CG	2.52	0.44
31:c:86:ASP:N	31:c:86:ASP:OD1	2.48	0.44
33:e:158:LEU:HD11	33:e:262:LEU:HD11	1.99	0.44
1:A:1101:C:O4'	19:V:42:ARG:NH2	2.43	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
24:5:185:ILE:O	24:5:189:LYS:N	2.45	0.44
1:A:1573:U:OP2	38:j:22:ALA:N	2.51	0.44
8:J:103:HIS:O	8:J:104:THR:OG1	2.32	0.44
24:5:174:GLU:N	24:5:298:ASN:OD1	2.44	0.44
26:7:67:VAL:O	26:7:67:VAL:HG22	2.18	0.44
49:x:352:VAL:HG11	49:x:364:SER:HB2	2.00	0.44
49:y:203:PRO:O	49:y:206:HIS:N	2.50	0.44
1:A:1311:G:N2	37:i:66:PHE:O	2.51	0.44
1:A:2487:A:H5'	49:x:220:PRO:HG3	1.99	0.44
2:B:34:A:OP1	34:f:107:GLN:NE2	2.51	0.44
3:D:113:ARG:O	3:D:148:ARG:NH2	2.49	0.44
17:T:85:ALA:O	17:T:139:SER:OG	2.35	0.44
32:d:226:ASP:N	32:d:230:ARG:O	2.40	0.44
1:A:1537:A:O2'	1:A:1538:G:O4'	2.34	0.44
5:F:226:MET:SD	5:F:242:LEU:HD21	2.57	0.44
8:J:33:PRO:N	8:J:34:PRO:HD2	2.33	0.44
9:K:171:THR:HG23	9:K:171:THR:O	2.18	0.44
11:M:38:ARG:CG	11:M:39:PRO:HD2	2.48	0.44
26:7:287:GLN:N	26:7:287:GLN:OE1	2.51	0.44
17:T:124:ARG:NH1	17:T:125:ASP:OD1	2.51	0.43
33:e:168:VAL:HG12	33:e:169:TRP:N	2.33	0.43
49:y:237:LYS:HZ3	49:y:239:LEU:HD21	1.82	0.43
1:A:1224:U:OP1	19:V:41:ARG:NE	2.42	0.43
1:A:1585:C:O2'	1:A:1586:A:O5'	2.36	0.43
1:A:2129:G:O2'	1:A:2132:G:O6	2.31	0.43
2:B:20:A:C2'	2:B:21:A:O5'	2.66	0.43
6:H:88:LYS:HG2	6:H:114:SER:H	1.83	0.43
7:I:159:VAL:HG23	7:I:159:VAL:O	2.18	0.43
19:V:122:LEU:HD21	19:V:154:ILE:HG21	1.99	0.43
22:Z:51:GLU:OE1	22:Z:51:GLU:N	2.50	0.43
31:c:314:TRP:HD1	31:c:316:TYR:CE1	2.36	0.43
32:d:245:TYR:O	32:d:265:ILE:N	2.45	0.43
45:s:273:GLU:OE1	45:s:273:GLU:N	2.47	0.43
1:A:1603:U:O2'	1:A:1605:G:O5'	2.30	0.43
7:I:83:ARG:NH2	7:I:130:VAL:O	2.46	0.43
30:b:12:THR:HG22	30:b:13:SER:N	2.32	0.43
39:k:13:VAL:O	39:k:13:VAL:HG13	2.18	0.43
1:A:2302:U:O2'	1:A:2303:A:P	2.74	0.43
5:F:51:CYS:SG	5:F:83:HIS:N	2.91	0.43
14:Q:151:LEU:H	14:Q:151:LEU:HD23	1.82	0.43
25:6:219:ILE:HG23	25:6:231:GLU:HG3	2.00	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
29:a:141:ARG:NH2	30:b:121:THR:OG1	2.43	0.43
33:e:73:GLN:NE2	34:f:98:ASP:OD1	2.50	0.43
5:F:220:ASP:OD1	5:F:221:LEU:N	2.50	0.43
7:I:132:LYS:NZ	7:I:147:PHE:O	2.50	0.43
21:Y:153:ASP:OD1	21:Y:156:ARG:NH1	2.46	0.43
25:6:175:VAL:HG22	25:6:204:VAL:HG13	2.00	0.43
49:y:201:GLU:O	49:y:204:LEU:N	2.51	0.43
19:V:103:ASP:OD1	19:V:104:HIS:N	2.51	0.43
39:k:27:VAL:HG21	39:k:79:ALA:HA	2.00	0.43
7:I:83:ARG:NH1	7:I:130:VAL:HG12	2.33	0.43
8:J:119:GLU:OE2	40:1:83:LEU:HD21	2.18	0.43
9:K:110:GLY:O	9:K:114:LYS:NZ	2.49	0.43
22:Z:136:SER:OG	22:Z:147:VAL:O	2.35	0.43
34:f:160:GLY:O	34:f:161:LEU:HD22	2.19	0.43
49:y:222:ASN:ND2	49:y:356:GLU:OE2	2.51	0.43
1:A:1894:C:H1'	1:A:1895:A:OP2	2.18	0.43
1:A:2342:U:O2'	1:A:2343:A:P	2.76	0.43
49:x:217:LEU:O	49:x:245:VAL:HG23	2.18	0.43
49:y:392:ALA:O	49:y:396:LEU:HD12	2.18	0.43
1:A:1805:U:O4	18:U:35:GLN:NE2	2.52	0.43
1:A:2187:C:N4	1:A:2188:U:O4	2.51	0.43
5:F:191:ASP:OD1	5:F:191:ASP:N	2.51	0.43
6:H:118:ASN:OD1	6:H:119:LYS:N	2.51	0.43
16:S:112:VAL:HG13	16:S:199:ILE:HG13	2.01	0.43
25:6:179:VAL:HG21	25:6:185:ILE:CD1	2.48	0.43
25:6:351:HIS:ND1	42:p:138:GLU:OE1	2.52	0.43
35:g:106:GLN:O	35:g:151:GLY:N	2.40	0.43
6:H:73:ARG:O	6:H:76:VAL:HG22	2.19	0.43
7:I:100:GLN:O	7:I:178:LEU:HD12	2.18	0.43
12:O:88:LYS:O	12:O:92:VAL:N	2.51	0.43
25:6:177:TYR:N	25:6:185:ILE:O	2.52	0.43
31:c:183:GLU:OE1	31:c:183:GLU:N	2.51	0.43
34:f:184:SER:OG	34:f:186:ARG:NE	2.52	0.43
35:g:154:ASP:OD1	35:g:154:ASP:N	2.50	0.43
49:x:391:MET:HG3	49:y:225:THR:HG22	2.01	0.43
50:z:505:HIS:O	50:z:507:TRP:N	2.52	0.43
11:M:207:GLU:OE1	43:q:102:SER:OG	2.37	0.42
29:a:50:LEU:HD23	29:a:57:ILE:HG12	2.01	0.42
49:y:202:THR:HB	49:y:203:PRO:HD3	1.99	0.42
1:A:1101:C:OP1	37:i:35:ARG:NH2	2.52	0.42
1:A:1231:C:H3'	1:A:1232:U:C5'	2.48	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:2182:U:OP2	1:A:2240:G:N1	2.51	0.42
1:A:2637:A:H3'	1:A:2638:U:H5"	2.01	0.42
30:b:47:VAL:O	30:b:51:VAL:HG12	2.18	0.42
45:s:131:LEU:HD13	45:s:136:LEU:CD1	2.49	0.42
46:u:108:VAL:N	46:u:116:ASP:O	2.51	0.42
1:A:1094:A:HO2'	1:A:1095:C:H6	1.66	0.42
1:A:1684:C:H1'	1:A:1685:U:P	2.59	0.42
24:5:207:CYS:CB	24:5:229:ILE:HD12	2.49	0.42
45:s:103:ASP:OD1	45:s:103:ASP:N	2.52	0.42
50:z:338:ASN:O	50:z:342:SER:N	2.51	0.42
1:A:2285:U:N3	1:A:2332:U:OP1	2.52	0.42
3:D:248:VAL:HG12	3:D:249:SER:N	2.34	0.42
15:R:104:ASP:CG	17:T:206:LEU:HD22	2.44	0.42
18:U:22:THR:HG22	18:U:24:PHE:H	1.83	0.42
49:y:380:VAL:HG23	49:y:380:VAL:O	2.19	0.42
1:A:1256:G:O6	30:b:4:ARG:NH1	2.53	0.42
2:B:23:G:OP2	13:P:89:HIS:ND1	2.53	0.42
13:P:117:TYR:OH	25:6:120:GLU:HG2	2.19	0.42
18:U:19:VAL:O	18:U:19:VAL:HG13	2.18	0.42
20:X:124:THR:O	20:X:124:THR:HG23	2.20	0.42
25:6:125:LEU:O	25:6:126:ARG:HG2	2.19	0.42
49:y:125:LEU:HD12	49:y:189:PHE:CE1	2.55	0.42
7:I:105:SER:OG	7:I:108:ASP:OD2	2.37	0.42
12:O:94:ALA:HB3	12:O:95:PRO:HD3	2.00	0.42
14:Q:237:ASN:OD1	14:Q:238:PHE:N	2.52	0.42
23:0:111:GLU:OE1	23:0:111:GLU:N	2.46	0.42
32:d:189:LEU:HD12	32:d:217:HIS:NE2	2.35	0.42
32:d:197:VAL:HG12	32:d:212:VAL:HG13	2.01	0.42
1:A:1558:A:H2'	1:A:1558:A:N3	2.34	0.42
7:I:132:LYS:HB2	7:I:133:PRO:HD3	2.01	0.42
10:L:55:PRO:HB2	10:L:75:LEU:HD11	2.02	0.42
14:Q:246:ASP:OD1	14:Q:247:LEU:N	2.52	0.42
32:d:169:PHE:N	32:d:170:PRO:HD2	2.35	0.42
33:e:181:THR:HG23	33:e:184:GLY:H	1.85	0.42
34:f:95:THR:O	34:f:95:THR:HG23	2.20	0.42
1:A:2450:C:O2'	1:A:2493:A:N3	2.46	0.42
12:O:84:ASP:N	12:O:84:ASP:OD1	2.53	0.42
14:Q:225:LYS:HB2	14:Q:226:PRO:CD	2.50	0.42
33:e:159:VAL:HA	33:e:250:HIS:HA	2.00	0.42
1:A:1539:C:H2'	1:A:1540:U:H5'	2.02	0.42
25:6:334:LEU:HD23	25:6:334:LEU:H	1.85	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
42:p:72:ILE:HG21	42:p:77:LEU:HD11	2.01	0.42
44:r:167:HIS:O	44:r:171:LYS:N	2.52	0.42
45:s:67:GLN:NE2	45:s:376:GLN:OE1	2.49	0.42
1:A:1888:A:N7	1:A:1889:A:N6	2.65	0.42
1:A:2485:C:O2	1:A:2485:C:O4'	2.37	0.42
11:M:38:ARG:HG2	11:M:39:PRO:HD2	2.02	0.42
13:P:133:ALA:O	13:P:137:LEU:N	2.41	0.42
45:s:131:LEU:HD11	45:s:133:LEU:HD23	2.02	0.42
1:A:2235:A:OP1	20:X:93:ASN:ND2	2.54	0.41
20:X:79:LEU:CD1	20:X:153:LEU:HD11	2.50	0.41
31:c:31:VAL:O	31:c:31:VAL:HG13	2.20	0.41
33:e:171:LEU:HG	33:e:172:PRO:HD2	2.01	0.41
42:p:82:CYS:N	42:p:98:LYS:O	2.48	0.41
46:u:194:ASP:OD1	46:u:194:ASP:N	2.52	0.41
48:w:132:ASP:HA	48:w:135:ALA:HB3	2.02	0.41
1:A:1629:G:H3'	1:A:1629:G:OP1	2.20	0.41
1:A:2436:U:H2'	1:A:2437:G:O4'	2.20	0.41
23:0:178:ILE:HG22	23:0:179:LYS:N	2.36	0.41
29:a:96:VAL:O	29:a:96:VAL:HG13	2.19	0.41
46:u:144:LYS:O	46:u:145:CYS:SG	2.74	0.41
50:z:159:ILE:N	50:z:160:PRO:HD2	2.35	0.41
1:A:1142:A:H2'	1:A:1143:A:O4'	2.19	0.41
1:A:2651:U:O2'	4:E:269:TYR:OH	2.36	0.41
13:P:98:ASN:ND2	13:P:100:GLN:OE1	2.53	0.41
37:i:80:LEU:HD12	37:i:80:LEU:O	2.20	0.41
39:k:14:LYS:O	39:k:50:SER:N	2.52	0.41
49:y:128:ARG:HE	49:y:183:GLN:HE22	1.68	0.41
1:A:2617:A:O2'	1:A:2618:A:P	2.78	0.41
12:O:77:ASP:OD1	12:O:83:LYS:NZ	2.45	0.41
45:s:195:ASP:OD2	45:s:236:ARG:NE	2.44	0.41
49:x:287:ALA:O	49:x:317:HIS:NE2	2.42	0.41
49:y:252:VAL:HG12	49:y:260:HIS:CE1	2.56	0.41
1:A:2366:U:O2'	1:A:2368:C:OP1	2.26	0.41
6:H:88:LYS:HG2	6:H:114:SER:HB2	2.03	0.41
33:e:51:LEU:HD23	33:e:252:TRP:CH2	2.55	0.41
39:k:61:GLU:N	39:k:62:PRO:CD	2.84	0.41
40:1:105:GLU:OE1	40:1:105:GLU:N	2.45	0.41
1:A:2168:U:C2'	50:z:99:HIS:O	2.67	0.41
2:B:41:U:OP2	13:P:122:VAL:HG23	2.20	0.41
6:H:91:LEU:N	6:H:111:VAL:O	2.45	0.41
12:O:144:THR:OG1	12:0:147:ASN:OD1	2.36	0.41

	las puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:V:170:TRP:O	28:9:75:ARG:NE	2.53	0.41
24:5:33:TRP:O	24:5:39:ARG:NH2	2.54	0.41
45:s:41:VAL:HG22	45:s:41:VAL:O	2.20	0.41
45:s:90:LYS:NZ	45:s:274:ASN:OD1	2.48	0.41
50:z:457:ALA:HB1	50:z:461:LEU:HD13	2.01	0.41
12:O:41:ARG:NE	12:O:125:GLU:OE1	2.53	0.41
49:x:398:PHE:CG	49:y:395:ILE:HB	2.56	0.41
1:A:1165:A:OP2	1:A:1166:A:O2'	2.34	0.41
1:A:1306:U:O2'	1:A:1318:A:N1	2.51	0.41
6:H:51:VAL:O	20:X:42:HIS:ND1	2.52	0.41
6:H:89:ASP:O	6:H:113:LYS:N	2.52	0.41
9:K:156:ASP:OD1	9:K:157:GLU:N	2.54	0.41
35:g:129:SER:OG	35:g:130:PRO:HD3	2.21	0.41
47:v:66:LEU:HG	47:v:69:LEU:HD12	2.03	0.41
7:I:82:LEU:HB3	7:I:130:VAL:HG11	2.02	0.41
11:M:21:VAL:HG12	11:M:22:SER:N	2.36	0.41
14:Q:225:LYS:HB2	14:Q:226:PRO:HD2	2.02	0.41
20:X:111:THR:HG23	20:X:111:THR:O	2.20	0.41
23:0:109:CYS:O	23:0:113:GLY:N	2.51	0.41
25:6:237:LEU:HD13	25:6:240:ILE:HD11	2.02	0.41
43:q:44:ASN:O	43:q:47:THR:HG22	2.21	0.41
49:x:256:GLY:C	49:x:257:MET:HG3	2.46	0.41
49:y:173:ILE:HG22	49:y:182:PRO:HB3	2.03	0.41
50:z:186:LEU:C	50:z:186:LEU:HD23	2.45	0.41
1:A:1294:A:N6	1:A:1329:C:OP1	2.54	0.41
1:A:2168:U:C5	50:z:97:TRP:CG	3.08	0.41
11:M:282:LEU:HD22	35:g:38:PHE:CD2	2.56	0.41
49:y:226:ILE:HD11	49:y:389:SER:CB	2.51	0.41
22:Z:58:GLY:O	41:0:47:TYR:OH	2.38	0.40
25:6:283:GLU:OE1	25:6:283:GLU:N	2.50	0.40
33:e:171:LEU:O	33:e:172:PRO:C	2.62	0.40
49:y:141:PRO:HA	49:y:189:PHE:HA	2.03	0.40
49:y:141:PRO:HB2	49:y:163:VAL:CG1	2.50	0.40
5:F:279:ARG:O	5:F:280:TYR:C	2.64	0.40
7:I:130:VAL:O	7:I:130:VAL:HG12	2.20	0.40
21:Y:85:ALA:N	28:9:72:VAL:O	2.54	0.40
25:6:371:ASP:N	25:6:371:ASP:OD1	2.53	0.40
31:c:144:GLU:HB2	31:c:314:TRP:HZ3	1.85	0.40
45:s:129:PRO:HB2	45:s:185:LEU:HD23	2.03	0.40
49:x:128:ARG:NH1	49:x:129:ARG:HB2	2.35	0.40
1:A:1503:A:O2'	1:A:1504:A:OP2	2.39	0.40

Continued from preese	as page		
Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:A:1603:U:O2'	1:A:1605:G:P	2.79	0.40
1:A:1609:U:C6	1:A:1609:U:OP2	2.74	0.40
3:D:217:LEU:HA	3:D:227:ILE:HD13	2.04	0.40
9:K:7:ALA:HB3	9:K:8:PRO:HD3	2.02	0.40
20:X:111:THR:C	20:X:112:ARG:HD2	2.47	0.40
20:X:173:ASP:O	20:X:188:TYR:OH	2.37	0.40
24:5:167:THR:O	24:5:167:THR:HG22	2.21	0.40
25:6:290:CYS:SG	25:6:296:ARG:NE	2.91	0.40
9:K:69:GLY:N	44:r:150:TYR:O	2.42	0.40
10:L:33:GLN:H	10:L:36:THR:HG21	1.87	0.40
27:8:114:ARG:O	27:8:118:LEU:HD13	2.21	0.40
42:p:172:ASP:OD1	42:p:173:ALA:N	2.54	0.40
13:P:156:ASP:OD1	13:P:156:ASP:N	2.55	0.40
32:d:160:LEU:HD22	32:d:169:PHE:CD2	2.56	0.40
49:y:386:SER:O	49:y:387:LEU:C	2.64	0.40
50:z:61:LEU:H	50:z:61:LEU:HD23	1.87	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	D	168/246~(68%)	164~(98%)	4 (2%)	0	100	100
4	Ε	260/348~(75%)	253~(97%)	7 (3%)	0	100	100
5	F	210/294~(71%)	205~(98%)	5 (2%)	0	100	100
6	Н	93/268~(35%)	89~(96%)	4 (4%)	0	100	100
7	Ι	150/262~(57%)	142 (95%)	8 (5%)	0	100	100
8	J	140/192~(73%)	136~(97%)	4 (3%)	0	100	100
9	K	169/178~(95%)	168 (99%)	1 (1%)	0	100	100

Continued	from	previous	page
Continucu	jioni	pretious	puyc

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
10	L	113/145~(78%)	106 (94%)	7~(6%)	0	100	100
11	М	245/295~(83%)	239~(98%)	6(2%)	0	100	100
12	О	147/176~(84%)	144 (98%)	3~(2%)	0	100	100
13	Р	139/180~(77%)	138 (99%)	1 (1%)	0	100	100
14	Q	215/292~(74%)	211 (98%)	4(2%)	0	100	100
15	R	129/149~(87%)	129 (100%)	0	0	100	100
16	S	157/209~(75%)	152 (97%)	5(3%)	0	100	100
17	Т	164/206~(80%)	164 (100%)	0	0	100	100
18	U	121/146~(83%)	121 (100%)	0	0	100	100
19	V	196/216~(91%)	196 (100%)	0	0	100	100
20	Х	240/294~(82%)	238 (99%)	2 (1%)	0	100	100
21	Y	174/252~(69%)	174 (100%)	0	0	100	100
22	Ζ	113/160~(71%)	112 (99%)	1 (1%)	0	100	100
23	0	106/187~(57%)	106 (100%)	0	0	100	100
24	5	383/423~(90%)	379~(99%)	4 (1%)	0	100	100
25	6	289/380~(76%)	278 (96%)	11 (4%)	0	100	100
26	7	290/336~(86%)	286 (99%)	4 (1%)	0	100	100
27	8	57/206~(28%)	56~(98%)	1 (2%)	0	100	100
28	9	94/135~(70%)	93~(99%)	1 (1%)	0	100	100
29	a	99/142~(70%)	96~(97%)	3~(3%)	0	100	100
30	b	146/159~(92%)	141 (97%)	5(3%)	0	100	100
31	с	275/308~(89%)	275 (100%)	0	0	100	100
32	d	198/306~(65%)	195 (98%)	3~(2%)	0	100	100
33	е	171/283~(60%)	160 (94%)	11 (6%)	0	100	100
34	f	85/211~(40%)	81 (95%)	4(5%)	0	100	100
35	g	130/166~(78%)	129 (99%)	1 (1%)	0	100	100
36	h	108/159~(68%)	106 (98%)	2(2%)	0	100	100
37	i	91/128~(71%)	91 (100%)	0	0	100	100
38	j	$83/121$ ($\overline{69\%}$)	82 (99%)	1 (1%)	0	100	100
39	k	76/118~(64%)	74 (97%)	2(3%)	0	100	100
40	1	74/135~(55%)	72 (97%)	2(3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
41	О	76/102~(74%)	76 (100%)	0	0	100	100
42	р	124/206~(60%)	122 (98%)	2(2%)	0	100	100
43	q	95/222~(43%)	95~(100%)	0	0	100	100
44	r	152/196~(78%)	146 (96%)	6 (4%)	0	100	100
45	S	373/442~(84%)	365~(98%)	8 (2%)	0	100	100
46	u	123/228~(54%)	121 (98%)	2(2%)	0	100	100
47	v	67/70~(96%)	66~(98%)	1 (2%)	0	100	100
48	W	77/156~(49%)	75~(97%)	2(3%)	0	100	100
49	х	291/418~(70%)	285~(98%)	6 (2%)	0	100	100
49	У	287/418~(69%)	282~(98%)	5 (2%)	0	100	100
50	Z	452/540~(84%)	441 (98%)	11 (2%)	0	100	100
All	All	8215/11409 (72%)	8055 (98%)	160 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	D	143/197~(73%)	143 (100%)	0	100 100
4	Ε	237/298~(80%)	237~(100%)	0	100 100
5	F	190/250~(76%)	190 (100%)	0	100 100
6	Н	86/231~(37%)	86 (100%)	0	100 100
7	Ι	143/230~(62%)	143 (100%)	0	100 100
8	J	116/152~(76%)	116 (100%)	0	100 100
9	Κ	151/158~(96%)	151 (100%)	0	100 100
10	L	99/122~(81%)	99~(100%)	0	100 100
11	М	219/252~(87%)	219 (100%)	0	100 100
12	Ο	129/152~(85%)	129 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
13	Р	123/157~(78%)	123~(100%)	0	100	100
14	Q	197/258~(76%)	197~(100%)	0	100	100
15	R	110/128~(86%)	110 (100%)	0	100	100
16	S	145/180~(81%)	145 (100%)	0	100	100
17	Т	147/180~(82%)	147 (100%)	0	100	100
18	U	112/133~(84%)	112 (100%)	0	100	100
19	V	176/190~(93%)	176 (100%)	0	100	100
20	Х	219/265~(83%)	219 (100%)	0	100	100
21	Y	162/228~(71%)	162 (100%)	0	100	100
22	Z	108/146~(74%)	108 (100%)	0	100	100
23	0	97/170~(57%)	97 (100%)	0	100	100
24	5	349/372~(94%)	349 (100%)	0	100	100
25	6	264/335~(79%)	264 (100%)	0	100	100
26	7	269/301~(89%)	269 (100%)	0	100	100
27	8	51/182~(28%)	51 (100%)	0	100	100
28	9	83/114 (73%)	83 (100%)	0	100	100
29	a	97/129~(75%)	97 (100%)	0	100	100
30	b	130/138 (94%)	130 (100%)	0	100	100
31	с	243/266~(91%)	243 (100%)	0	100	100
32	d	182/272~(67%)	182 (100%)	0	100	100
33	е	152/238~(64%)	152 (100%)	0	100	100
34	f	80/185~(43%)	80 (100%)	0	100	100
35	g	122/148 (82%)	122 (100%)	0	100	100
36	h	100/143~(70%)	100 (100%)	0	100	100
37	i	84/111 (76%)	84 (100%)	0	100	100
38	j	68/99~(69%)	68 (100%)	0	100	100
39	k	72/95~(76%)	72 (100%)	0	100	100
40	1	70/112~(62%)	70 (100%)	0	100	100
41	0	65/85~(76%)	65 (100%)	0	100	100
42	р	118/177~(67%)	118 (100%)	0	100	100
43	q	84/187~(45%)	84 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
44	r	141/168~(84%)	141 (100%)	0	100	100
45	\mathbf{S}	329/378~(87%)	329 (100%)	0	100	100
46	u	115/197~(58%)	115 (100%)	0	100	100
47	v	60/61~(98%)	60 (100%)	0	100	100
48	W	73/135~(54%)	73~(100%)	0	100	100
49	х	251/358~(70%)	251 (100%)	0	100	100
49	У	249/358~(70%)	249 (100%)	0	100	100
50	Z	394/464~(85%)	394 (100%)	0	100	100
All	All	7404/9885~(75%)	7404 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (40) such sidechains are listed below:

Mol	Chain	Res	Type
4	Е	88	HIS
4	Е	138	HIS
4	Е	176	HIS
4	Е	281	ASN
4	Е	294	ASN
6	Н	74	HIS
8	J	133	GLN
13	Р	55	ASN
15	R	79	HIS
16	S	144	ASN
17	Т	153	HIS
18	U	35	GLN
22	Ζ	95	HIS
24	5	88	HIS
25	6	361	GLN
26	7	204	HIS
28	9	50	GLN
29	а	88	GLN
29	a	110	GLN
30	b	123	ASN
31	с	128	GLN
32	d	107	GLN
32	d	115	ASN
35	g	102	HIS

Mol	Chain	Res	Type
37	i	59	ASN
38	j	94	GLN
38	j	95	GLN
40	1	126	HIS
42	р	123	HIS
42	р	146	ASN
45	s	107	GLN
45	s	173	GLN
49	Х	403	GLN
49	у	120	GLN
49	у	206	HIS
49	у	317	HIS
50	Z	367	GLN
50	Z	388	GLN
50	Z	424	HIS
50	Z	430	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	1100/1584~(69%)	357~(32%)	27 (2%)
2	В	59/68~(86%)	24 (40%)	1 (1%)
All	All	1159/1652~(70%)	381 (32%)	28 (2%)

All (381) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	1094	А
1	А	1100	С
1	А	1101	С
1	А	1102	U
1	А	1103	А
1	А	1104	G
1	А	1112	С
1	А	1115	А
1	А	1124	U
1	А	1128	U
1	А	1130	U
1	А	1131	А
1	А	1134	А
1	А	1135	U

Mol	Chain	Res	Type
1	А	1136	U
1	А	1138	U
1	А	1139	А
1	А	1140	U
1	А	1148	А
1	А	1151	А
1	А	1152	U
1	А	1173	G
1	А	1175	G
1	А	1176	А
1	А	1186	G
1	А	1188	А
1	А	1192	G
1	А	1195	G
1	А	1202	А
1	А	1206	А
1	А	1219	А
1	А	1224	U
1	А	1229	G
1	А	1230	А
1	А	1231	С
1	А	1232	U
1	А	1233	А
1	А	1234	А
1	А	1235	U
1	А	1237	А
1	А	1238	А
1	А	1245	G
1	А	1249	А
1	А	1250	А
1	А	1252	С
1	А	1253	A
1	А	1254	А
1	А	1257	А
1	A	1261	А
1	А	1269	А
1	А	1274	U
1	A	1275	U
1	А	1276	G
1	А	1277	С
1	А	1279	U
1	А	1280	А

Mol	Chain	Res	Type
1	А	1281	А
1	А	1294	А
1	А	1297	А
1	А	1299	U
1	А	1307	А
1	А	1308	А
1	А	1311	G
1	А	1312	А
1	А	1315	U
1	А	1316	А
1	А	1317	С
1	А	1318	А
1	А	1328	С
1	А	1334	A
1	А	1440	G
1	А	1446	U
1	А	1447	А
1	А	1454	А
1	А	1457	U
1	А	1462	U
1	А	1463	U
1	А	1465	А
1	А	1467	U
1	А	1468	U
1	А	1470	А
1	А	1480	U
1	А	1481	U
1	А	1482	G
1	A	1487	A
1	A	1488	А
1	A	1489	A
1	A	1490	А
1	A	1491	A
1	A	1492	С
1	A	1493	A
1	A	1494	А
1	A	1499	A
1	A	1500	U
1	A	1501	C
1	A	1502	А
1	A	1503	A
1	А	1504	А

Mol	Chain	Res	Type
1	А	1505	А
1	А	1508	U
1	А	1509	А
1	А	1510	А
1	А	1518	U
1	А	1522	А
1	А	1523	G
1	А	1529	А
1	А	1531	А
1	А	1534	G
1	А	1538	G
1	А	1539	С
1	А	1540	U
1	A	1549	A
1	А	1550	С
1	A	1555	A
1	А	1556	А
1	А	1557	А
1	А	1562	U
1	А	1563	U
1	А	1565	А
1	А	1566	U
1	А	1570	G
1	А	1577	U
1	А	1580	С
1	А	1584	А
1	А	1585	С
1	А	1586	А
1	А	1594	U
1	А	1595	A
1	A	1596	А
1	А	1598	С
1	A	1600	U
1	A	1602	G
1	A	1603	U
1	A	1604	A
1	А	1605	G
1	A	1607	C
1	A	1608	С
1	А	1609	U
1	A	1610	A
1	А	1612	А

Mol	Chain	Res	Type
1	А	1613	А
1	А	1614	G
1	А	1616	А
1	А	1617	G
1	А	1619	С
1	А	1620	А
1	А	1621	С
1	А	1622	С
1	А	1623	А
1	А	1625	U
1	А	1626	А
1	А	1627	А
1	А	1628	А
1	А	1629	G
1	А	1630	А
1	А	1632	А
1	А	1633	G
1	А	1634	С
1	А	1636	U
1	А	1637	U
1	А	1638	С
1	А	1641	G
1	А	1642	С
1	А	1644	С
1	А	1646	А
1	А	1648	А
1	А	1649	U
1	А	1650	А
1	А	1651	А
1	A	1653	А
1	A	1659	C
1	А	1660	А
1	A	1661	A
1	A	$16\overline{65}$	А
1	A	1666	U
1	A	1670	А
1	А	1672	А
1	A	1674	U
1	А	1676	U
1	A	1679	А
1	A	1683	А
1	А	1684	С

Mol	Chain	Res	Type
1	A	1685	U
1	А	1691	А
1	А	1694	U
1	А	1698	А
1	А	1699	А
1	А	1718	U
1	А	1719	U
1	А	1728	А
1	А	1731	А
1	А	1734	G
1	А	1749	A
1	А	1750	A
1	А	1756	С
1	A	1757	С
1	А	1758	А
1	А	1759	A
1	А	1767	G
1	А	1768	G
1	А	1770	A
1	А	1785	С
1	А	1786	U
1	А	1794	С
1	А	1802	А
1	А	1805	U
1	А	1806	А
1	А	1807	А
1	А	1808	U
1	А	1824	А
1	А	1827	C
1	А	1832	U
1	A	1833	A
1	A	1838	U
1	A	1845	C
1	A	1847	U
1	A	1852	С
1	A	1870	A
1	А	1872	С
1	A	1879	С
1	A	1881	U
1	A	1883	A
1	A	1888	A
1	А	1889	А

Mol	Chain	Res	Type
1	А	1890	G
1	А	1895	А
1	А	1905	А
1	А	1923	G
1	А	1924	А
1	А	1925	А
1	А	1953	А
1	А	1954	С
1	А	2091	U
1	А	2093	U
1	А	2097	U
1	А	2120	С
1	А	2123	U
1	A	2128	U
1	А	2131	А
1	A	2132	G
1	А	2143	А
1	А	2146	А
1	А	2155	С
1	А	2156	G
1	А	2158	G
1	А	2159	А
1	А	2160	А
1	А	2161	G
1	А	2162	А
1	А	2168	U
1	А	2169	G
1	А	2170	G
1	А	2177	А
1	А	2180	U
1	A	2182	U
1	А	2183	А
1	А	2186	А
1	A	2187	С
1	А	2193	U
1	A	2195	U
1	A	2197	U
1	A	2236	G
1	A	2239	U
1	A	2241	А
1	А	2247	С
1	А	2275	А

Mol	Chain	Res	Type
1	А	2276	U
1	А	2277	С
1	А	2278	С
1	А	2284	А
1	А	2285	U
1	А	2286	G
1	А	2287	А
1	А	2292	А
1	А	2293	А
1	А	2295	С
1	А	2297	А
1	А	2303	А
1	А	2333	U
1	А	2334	G
1	А	2339	А
1	А	2340	G
1	А	2342	U
1	А	2343	А
1	А	2351	А
1	А	2358	G
1	А	2360	С
1	А	2361	С
1	А	2362	А
1	А	2363	А
1	А	2367	А
1	А	2369	С
1	А	2373	G
1	А	2391	U
1	А	2394	U
1	А	2396	А
1	А	2397	A
1	А	2398	G
1	A	2408	С
1	A	2410	A
1	А	2412	A
1	A	2438	G
1	A	2447	A
1	A	2458	G
1	A	2462	A
1	A	$2\overline{467}$	A
1	A	2468	U
1	А	2475	U

Mol	Chain	Res	Type
1	А	2480	U
1	А	2481	U
1	А	2482	G
1	А	2486	А
1	А	2493	А
1	А	2495	А
1	А	2496	G
1	А	2497	U
1	А	2498	С
1	А	2501	А
1	А	2502	С
1	А	2505	G
1	А	2506	А
1	А	2507	U
1	А	2508	С
1	А	2509	U
1	А	2562	С
1	А	2564	G
1	А	2565	U
1	А	2575	С
1	А	2582	А
1	А	2598	А
1	А	2600	А
1	А	2601	U
1	А	2605	С
1	А	2614	С
1	А	2615	U
1	А	2617	А
1	А	2618	А
1	А	2619	U
1	А	2621	U
1	А	2625	А
1	А	2628	А
1	А	2629	А
1	А	2631	A
1	A	2635	A
1	А	2636	А
1	A	2638	U
1	А	2640	А
1	A	2647	U
1	A	2648	A
1	А	2650	G

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	А	2655	С
1	А	2656	С
1	А	2659	C
1	А	2660	U
1	А	2665	U
1	А	2666	А
1	А	2676	А
2	В	3	U
2	В	5	А
2	В	6	U
2	В	7	G
2	В	8	U
2	В	9	А
2	В	14	А
2	В	16	U
2	В	17	А
2	В	18	С
2	В	20	А
2	В	21	А
2	В	32	U
2	В	33	G
2	В	44	G
2	В	46	U
2	В	47	G
2	В	48	G
2	В	50	U
2	В	51	А
2	В	58	С
2	В	60	С
2	В	63	А
2	В	66	С

All (28) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	1134	А
1	А	1137	А
1	А	1187	U
1	А	1191	А
1	А	1232	U
1	А	1234	А
1	А	1489	А

	ě	_ _	10
Mol	Chain	Res	Type
1	А	1502	А
1	А	1538	G
1	А	1584	А
1	А	1612	А
1	А	1628	А
1	А	1637	U
1	А	1684	С
1	А	1894	С
1	А	1953	А
1	А	2182	U
1	А	2275	А
1	А	2302	U
1	А	2342	U
1	А	2466	U
1	А	2480	U
1	А	2485	С
1	А	2507	U
1	А	2564	G
1	А	2659	С
1	А	2675	U
2	В	20	A

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turno Chain		Dec	Tink	Bond lengths			Bond angles			
	туре	Ullalli	Juliani Kes	n Res Link		Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2
52	FES	r	301	44,7	0,4,4	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
52	FES	r	301	44,7	-	-	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
52	r	301	FES	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-52044. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 270

Y Index: 270

Z Index: 270

6.2.2 Raw map

X Index: 270

Y Index: 270

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 222

Y Index: 298

Z Index: 340

6.3.2 Raw map

X Index: 229

Y Index: 299

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.16. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 982 $\rm nm^3;$ this corresponds to an approximate mass of 887 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.176 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.176 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	5.67	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	9.98	22.42	12.29

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 9.98 differs from the reported value 5.67 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-52044 and PDB model 9HCC. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.16 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.16).

9.4 Atom inclusion (i)

At the recommended contour level, 60% of all backbone atoms, 62% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.16) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6160	0.1460
0	0.7730	0.1800
5	0.3780	0.1160
6	0.5750	0.0880
7	0.7260	0.1710
8	0.1770	0.1090
9	0.5780	0.1330
А	0.7570	0.1640
В	0.6740	0.1230
D	0.2500	0.0740
Ε	0.7660	0.1590
F	0.7240	0.1510
Н	0.5590	0.1060
Ι	0.2300	0.1160
J	0.0470	0.0410
K	0.7450	0.1800
L	0.3200	0.1180
М	0.7090	0.1750
0	0.7510	0.1570
Р	0.7430	0.1090
Q	0.7490	0.1720
R	0.6850	0.1680
S	0.7250	0.1900
Т	0.7200	0.1690
U	0.5850	0.1190
V	0.3010	0.1330
Х	0.5350	0.1460
Y	0.5990	0.1130
Z	0.6840	0.1920
a	0.6210	0.1840
b	0.7340	0.1830
С	0.7270	0.1700
d	0.5810	0.1580
е	0.0440	0.0740
f	0.1020	0.0360

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
g	0.8250	0.1900
h	0.6960	0.1930
i	0.6380	0.1510
j	0.7050	0.2010
k	0.3500	0.1210
1	0.1970	0.0570
0	0.7430	0.1700
р	0.6460	0.1490
q	0.7420	0.2080
r	0.7340	0.1730
S	0.6670	0.1570
u	0.4210	0.1190
V	0.2220	0.1080
W	0.0440	0.0920
X	0.4320	0.0830
У	0.5060	0.1080
Z	0.4680	0.1380

