

Full wwPDB X-ray Structure Validation Report (i)

Dec 8, 2023 – 04:02 am GMT

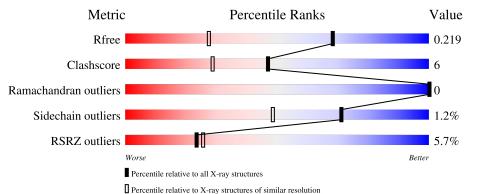
PDB ID	:	1GUT
Title	:	MopII from Clostridium pasteurianum (apo2)
Authors	:	Schuettelkopf, A.W.; Harrison, J.A.; Hunter, W.N.
Deposited on		
Resolution	:	1.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2936 (1.50-1.50)
Clashscore	141614	3144 (1.50-1.50)
Ramachandran outliers	138981	3066 (1.50-1.50)
Sidechain outliers	138945	3064 (1.50-1.50)
RSRZ outliers	127900	2884 (1.50-1.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			7%		
1	А	68	90%	7%	••
	-		6%		
1	В	68	90%	9%	•
	~		6%		_
1	С	68	90%	9%	•
	-		6%		_
1	D	68	85%	13%	•
_	_		6%		_
1	Е	68	87%	10%	••

Continued from previous page...

Mol	Chain	Length	Quality of chain				
			3%				
1	F	68	84%	15%	•		

$1 \mathrm{GUT}$

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3333 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	67	Total	С	Ν	0	S	0	2	0
	Π	01	487	307	80	98	2	0	2	0
1	В	67	Total	С	Ν	Ο	S	0	3	0
	D	01	491	311	80	98	2	0	5	0
1	С	67	Total	С	Ν	Ο	\mathbf{S}	0	3	0
	U	07	491	309	80	100	2	0	5	0
1	D	67	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	D	01	485	307	80	97	1	0	1	0
1	Е	67	Total	С	Ν	Ο	\mathbf{S}	0	2	0
	Ľ	07	487	308	80	97	2		2	0
1	F	67	Total	С	Ν	0	\mathbf{S}	0	1	0
	T,	01	485	307	80	97	1	0		0

• Molecule 1 is a protein called MOLYBDATE BINDING PROTEIN II.

• Molecule 2 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Cl 2 2	0	0
2	В	2	Total Cl 2 2	0	0
2	С	2	Total Cl 2 2	0	0
2	D	1	Total Cl 1 1	0	0
2	Ε	1	Total Cl 1 1	0	0
2	F	1	Total Cl 1 1	0	0

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mg 1 1	0	0
3	D	1	Total Mg 1 1	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	62	TotalO6262	0	0
4	В	64	Total O 64 64	0	0
4	С	67	$\begin{array}{cc} \text{Total} & \text{O} \\ 67 & 67 \end{array}$	0	0
4	D	69	Total O 69 69	0	0
4	Ε	62	$\begin{array}{cc} \text{Total} & \text{O} \\ 62 & 62 \end{array}$	0	0
4	F	72	TotalO7272	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: MOLYBDATE BINDING PROTEIN II Chain A: 90% 7% •• • Molecule 1: MOLYBDATE BINDING PROTEIN II Chain B: 90% 9% • Molecule 1: MOLYBDATE BINDING PROTEIN II Chain C: 90% 9% • Molecule 1: MOLYBDATE BINDING PROTEIN II Chain D: 85% 13% • Molecule 1: MOLYBDATE BINDING PROTEIN II Chain E: 87% 10% ...
- Molecule 1: MOLYBDATE BINDING PROTEIN II

Chain F:	3%	84%	15% •
MET S2 13 V20			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	78.96Å 82.33Å 57.03Å	Deneriter
a, b, c, α , β , γ	90.00° 93.44° 90.00°	Depositor
Resolution (Å)	25.00 - 1.50	Depositor
Resolution (A)	28.47 - 1.50	EDS
% Data completeness	100.0 (25.00-1.50)	Depositor
(in resolution range)	95.2 (28.47-1.50)	EDS
R _{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$4.09 (at 1.50 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.0	Depositor
D D.	0.178 , 0.222	Depositor
R, R_{free}	0.179 , 0.219	DCC
R_{free} test set	2775 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	16.0	Xtriage
Anisotropy	0.203	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36 , 40.8	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.34$	Xtriage
	0.457 for -1/2 *h+1/2 *k-l, 1/2 *h-1/2 *k-l, -1/2	
Estimated twinning fraction	*h-1/2*k	Xtriage
0	0.477 for $-1/2$ *h $-1/2$ *k $-l,-1/2$ *h $-1/2$ *k $+l,-1/2$	
E.E. correlation	$\frac{2^{*}h+1/2^{*}k}{0.07}$	EDS
$\frac{\mathbf{F}_{o}, \mathbf{F}_{c} \text{ correlation}}{\text{Total number of atoms}}$	0.97	
	3333	wwPDB-VP
Average B, all atoms $(Å^2)$	19.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 45.10 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.3870e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.52	0/494	0.77	0/662	
1	В	0.54	0/502	0.81	0/673	
1	С	0.52	0/503	0.76	0/674	
1	D	0.50	0/488	0.81	1/655~(0.2%)	
1	Ε	0.50	0/496	0.78	0/665	
1	F	0.50	0/488	0.81	1/655~(0.2%)	
All	All	0.51	0/2971	0.79	2/3984~(0.1%)	

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	F	42	ASP	CB-CG-OD2	5.82	123.53	118.30
1	D	42	ASP	CB-CG-OD2	5.70	123.43	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	487	0	533	11	0
1	В	491	0	540	6	0
1	С	491	0	535	5	0

Mol	Chain	Non-H		H(added)	Clashes	Symm-Clashes
1	D	485	0	534	8	0
1	Е	487	0	535	11	0
1	F	485	0	534	13	0
2	А	2	0	0	1	0
2	В	2	0	0	0	0
2	С	2	0	0	1	0
2	D	1	0	0	0	0
2	Ε	1	0	0	0	0
2	F	1	0	0	0	0
3	А	1	0	0	0	0
3	D	1	0	0	0	0
4	А	62	0	0	1	0
4	В	64	0	0	1	0
4	С	67	0	0	0	0
4	D	69	0	0	1	0
4	Е	62	0	0	0	0
4	F	72	0	0	4	0
All	All	3333	0	3211	38	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (38) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1.E.GE[D].MET.HE9	1:F:3:ILE:CD1	()	- ()
1:E:65[B]:MET:HE2		1.98	0.93
1:D:2:SER:HB3	4:D:2013:HOH:O	1.72	0.88
1:A:6:ARG:HG2	1:A:6:ARG:HH11	1.39	0.87
1:E:65[B]:MET:HE2	1:F:3:ILE:HD11	1.53	0.87
1:F:2:SER:HB2	4:F:2012:HOH:O	1.78	0.83
1:F:20:VAL:HG22	4:F:2034:HOH:O	1.99	0.62
1:A:6:ARG:HG2	1:A:6:ARG:NH1	2.15	0.61
1:F:45:GLU:HG2	4:F:2053:HOH:O	2.01	0.61
1:A:6:ARG:NH2	1:E:42:ASP:HB3	2.16	0.61
1:A:46:GLU:CD	1:E:6:ARG:HH12	2.05	0.59
1:A:6:ARG:HH11	1:A:6:ARG:CG	2.13	0.59
1:E:65[B]:MET:CE	1:F:3:ILE:CD1	2.80	0.57
1:E:18:LYS:HE2	1:E:44:VAL:HG11	1.87	0.56
1:B:33:ASN:HA	4:B:2033:HOH:O	2.06	0.55
1:B:46:GLU:CD	1:D:6:ARG:HH12	2.10	0.55
1:D:37:SER:OG	1:D:39:ILE:HG23	2.08	0.53

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:66:ILE:HD12	1:E:27:LEU:HD11	1.89	0.53
1:A:6:ARG:HH22	1:E:42:ASP:HB3	1.75	0.52
1:A:42:ASP:O	1:A:46:GLU:HG3	2.10	0.52
1:D:41:LEU:O	1:D:45:GLU:HG3	2.10	0.51
1:F:37:SER:OG	1:F:39:ILE:HG23	2.12	0.49
1:C:42:ASP:O	1:C:46:GLU:HG3	2.11	0.49
1:A:33:ASN:HB2	4:A:2029:HOH:O	2.11	0.48
1:F:20:VAL:CG2	4:F:2034:HOH:O	2.58	0.48
1:B:42:ASP:O	1:B:46:GLU:HG3	2.14	0.48
1:A:6:ARG:NH1	1:A:6:ARG:CG	2.73	0.47
1:A:61[A]:SER:OG	2:A:1069:CL:CL	2.68	0.46
1:C:65[A]:MET:SD	1:D:65:MET:CE	3.05	0.45
1:B:4:SER:HB2	1:D:46:GLU:OE2	2.18	0.44
1:E:37:SER:OG	1:E:39:ILE:HG23	2.17	0.44
1:F:41:LEU:O	1:F:45:GLU:HG3	2.18	0.44
1:C:65[A]:MET:SD	1:D:65:MET:HE3	2.58	0.43
1:E:65[B]:MET:HE2	1:F:3:ILE:HD13	1.93	0.43
1:B:9:LEU:HD11	1:F:35[B]:ILE:HD11	2.01	0.41
1:B:46:GLU:OE1	1:D:6:ARG:NH1	2.41	0.41
1:A:65[A]:MET:SD	1:F:65:MET:CE	3.09	0.41
1:C:61[A]:SER:OG	2:C:1069:CL:CL	2.72	0.41
1:E:65[B]:MET:CE	1:F:3:ILE:HG12	2.52	0.40

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	67/68~(98%)	66~(98%)	1 (2%)	0	100	100
1	В	68/68~(100%)	66~(97%)	2 (3%)	0	100	100
1	С	68/68~(100%)	66 (97%)	2(3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	D	66/68~(97%)	65~(98%)	1 (2%)	0	100	100
1	Ε	67/68~(98%)	66~(98%)	1 (2%)	0	100	100
1	F	66/68~(97%)	65~(98%)	1 (2%)	0	100	100
All	All	402/408~(98%)	394 (98%)	8 (2%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	56/55~(102%)	55~(98%)	1 (2%)	59 30
1	В	57/55~(104%)	56~(98%)	1 (2%)	59 30
1	С	57/55~(104%)	56~(98%)	1 (2%)	59 30
1	D	55/55~(100%)	55~(100%)	0	100 100
1	Е	56/55~(102%)	55~(98%)	1 (2%)	59 30
1	F	55/55~(100%)	55~(100%)	0	100 100
All	All	336/330~(102%)	332~(99%)	4 (1%)	71 48

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	6	ARG
1	В	50	LYS
1	С	50	LYS
1	Е	42	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	33	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 11 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(A^2)$	Q<0.9
1	А	67/68~(98%)	0.25	5 (7%) 14 14	8, 16, 28, 34	0
1	В	67/68~(98%)	0.24	4 (5%) 21 23	9, 16, 29, 35	0
1	С	67/68~(98%)	0.35	4 (5%) 21 23	8, 16, 28, 34	0
1	D	67/68~(98%)	0.22	4 (5%) 21 23	9, 16, 28, 32	0
1	Ε	67/68~(98%)	0.15	4 (5%) 21 23	9, 17, 28, 32	0
1	F	67/68~(98%)	0.12	2 (2%) 50 55	10, 17, 28, 31	0
All	All	402/408~(98%)	0.22	23 (5%) 23 25	8, 16, 29, 35	0

All (23) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	31	GLY	4.7
1	Е	68	ALA	4.6
1	В	31	GLY	4.3
1	С	31	GLY	4.3
1	В	32	GLY	4.1
1	F	31	GLY	3.8
1	D	68	ALA	3.6
1	В	2	SER	3.4
1	С	2	SER	3.3
1	А	2	SER	3.2
1	А	33	ASN	3.2
1	А	32	GLY	3.1
1	Е	31	GLY	3.0
1	В	6	ARG	2.8
1	С	4	SER	2.8
1	D	31	GLY	2.7
1	С	32	GLY	2.6
1	Е	30	ALA	2.6
1	D	32	GLY	2.4

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	D	30	ALA	2.2
1	Е	20	VAL	2.1
1	А	68	ALA	2.1
1	F	68	ALA	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
3	MG	А	1071	1/1	0.95	0.18	21,21,21,21	0
2	CL	А	1070	1/1	0.96	0.10	23,23,23,23	0
3	MG	D	1070	1/1	0.97	0.15	21,21,21,21	0
2	CL	С	1070	1/1	0.99	0.04	23,23,23,23	0
2	CL	Е	1069	1/1	0.99	0.03	11,11,11,11	0
2	CL	F	1069	1/1	0.99	0.03	12,12,12,12	0
2	CL	В	1070	1/1	0.99	0.05	24,24,24,24	0
2	CL	С	1069	1/1	0.99	0.04	17,17,17,17	0
2	CL	А	1069	1/1	1.00	0.06	17,17,17,17	0
2	CL	D	1069	1/1	1.00	0.04	12,12,12,12	0
2	CL	В	1069	1/1	1.00	0.08	17,17,17,17	0

6.5 Other polymers (i)

There are no such residues in this entry.

