

Feb 27, 2025 – 06:10 pm GMT

PDB ID	:	9GM5
EMDB ID	:	EMD-51441
Title	:	OCCM maturation intermediate stalled with an Arginine Finger mutation in
		Mcm5: Conformer 1
Authors	:	Butryn, A.; Costa, A.
Deposited on	:	2024-08-28
Resolution	:	3.70 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*

A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain						
1	2	868	65%	8%	27%)			
2	3	1006	53%	5%	42%				
3	4	933	59%	9%	33%				
4	5	775	73%		9%	18%			
5	6	1017	56%	11%	33%				
6	7	845	64%	•	32%				
7	8	604	77%		7%	16%			
8	А	949	41% •	56	%				
9	В	560	36% •	60%					

Conti	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
10	С	616	83%	8% 10%
11	D	529	74%	9% 18%
12	Ε	479	78%	9% 12%
13	F	435	8% • 91%	
14	Х	42	57%	43%
14	Y	42	67%	33%

2 Entry composition (i)

There are 17 unique types of molecules in this entry. The entry contains 52641 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA replication licensing factor MCM2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	2	637	Total 5059	C 3180	N 909	0 951	S 19	0	0

• Molecule 2 is a protein called DNA replication licensing factor MCM3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	3	585	Total 4583	C 2889	N 814	O 868	S 12	0	0

There are 35 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
3	-34	MET	-	initiating methionine	UNP P24279
3	-33	LYS	-	expression tag	UNP P24279
3	-32	ARG	-	expression tag	UNP P24279
3	-31	ARG	-	expression tag	UNP P24279
3	-30	TRP	-	expression tag	UNP P24279
3	-29	LYS	-	expression tag	UNP P24279
3	-28	LYS	-	expression tag	UNP P24279
3	-27	ASN	-	expression tag	UNP P24279
3	-26	PHE	-	expression tag	UNP P24279
3	-25	ILE	-	expression tag	UNP P24279
3	-24	ALA	-	expression tag	UNP P24279
3	-23	VAL	-	expression tag	UNP P24279
3	-22	SER	-	expression tag	UNP P24279
3	-21	ALA	-	expression tag	UNP P24279
3	-20	ALA	-	expression tag	UNP P24279
3	-19	ASN	-	expression tag	UNP P24279
3	-18	ARG	-	expression tag	UNP P24279
3	-17	PHE	-	expression tag	UNP P24279
3	-16	LYS	-	expression tag	UNP P24279
3	-15	LYS	-	expression tag	UNP P24279
3	-14	ILE	-	expression tag	UNP P24279

Chain	Residue	Modelled	Actual	Comment	Reference
3	-13	SER	-	expression tag	UNP P24279
3	-12	SER	-	expression tag	UNP P24279
3	-11	SER	-	expression tag	UNP P24279
3	-10	GLY	-	expression tag	UNP P24279
3	-9	ALA	-	expression tag	UNP P24279
3	-8	LEU	-	expression tag	UNP P24279
3	-7	GLU	-	expression tag	UNP P24279
3	-6	ASN	-	expression tag	UNP P24279
3	-5	LEU	-	expression tag	UNP P24279
3	-4	TYR	-	expression tag	UNP P24279
3	-3	PHE	-	expression tag	UNP P24279
3	-2	GLN	-	expression tag	UNP P24279
3	-1	GLY	-	expression tag	UNP P24279
3	0	GLU	-	expression tag	UNP P24279

• Molecule 3 is a protein called DNA replication licensing factor MCM4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	4	626	Total 4964	C 3117	N 848	O 968	S 31	0	0

• Molecule 4 is a protein called Minichromosome maintenance protein 5.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	5	638	Total 5059	C 3188	N 881	O 967	S 23	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
5	549	ALA	ARG	engineered mutation	UNP P29496

• Molecule 5 is a protein called DNA replication licensing factor MCM6.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
5	6	677	Total 5408	C 3428	N 936	O 1015	S 29	0	0

• Molecule 6 is a protein called DNA replication licensing factor MCM7.

Mol	Chain	Residues		At	AltConf	Trace			
6	7	577	Total 4541	C 2864	N 788	O 863	S 26	0	0

• Molecule 7 is a protein called Cell division cycle protein CDT1.

Mol	Chain	Residues		At	AltConf	Trace			
7	8	505	Total 4047	C 2583	N 688	O 757	S 19	0	0

• Molecule 8 is a protein called Origin recognition complex subunit 1.

Mol	Chain	Residues		At	AltConf	Trace			
8	А	415	Total 3310	C 2112	N 565	O 615	S 18	0	0

There are 35 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-34	MET	-	initiating methionine	UNP P54784
А	-33	LYS	-	expression tag	UNP P54784
А	-32	ARG	-	expression tag	UNP P54784
А	-31	ARG	-	expression tag	UNP P54784
А	-30	TRP	-	expression tag	UNP P54784
А	-29	LYS	-	expression tag	UNP P54784
А	-28	LYS	-	expression tag	UNP P54784
А	-27	ASN	-	expression tag	UNP P54784
А	-26	PHE	-	expression tag	UNP P54784
А	-25	ILE	-	expression tag	UNP P54784
А	-24	ALA	-	expression tag	UNP P54784
А	-23	VAL	-	expression tag	UNP P54784
А	-22	SER	-	expression tag	UNP P54784
А	-21	ALA	-	expression tag	UNP P54784
А	-20	ALA	-	expression tag	UNP P54784
А	-19	ASN	-	expression tag	UNP P54784
А	-18	ARG	-	expression tag	UNP P54784
А	-17	PHE	-	expression tag	UNP P54784
А	-16	LYS	-	expression tag	UNP P54784
A	-15	LYS	-	expression tag	UNP P54784
A	-14	ILE	-	expression tag	UNP P54784
А	-13	SER	-	expression tag	UNP P54784
А	-12	SER	-	expression tag	UNP P54784
А	-11	SER	-	expression tag	UNP P54784
А	-10	GLY	-	expression tag	UNP P54784

Chain	Residue	Modelled	Actual	Comment	Reference
А	-9	ALA	-	expression tag	UNP P54784
А	-8	LEU	-	expression tag	UNP P54784
А	-7	GLU	-	expression tag	UNP P54784
А	-6	ASN	-	expression tag	UNP P54784
А	-5	LEU	-	expression tag	UNP P54784
А	-4	TYR	-	expression tag	UNP P54784
А	-3	PHE	-	expression tag	UNP P54784
А	-2	GLN	-	expression tag	UNP P54784
A	-1	GLY	-	expression tag	UNP P54784
А	0	GLU	-	expression tag	UNP P54784

• Molecule 9 is a protein called Origin recognition complex subunit 2.

Mol	Chain	Residues		At	AltConf	Trace			
9	В	222	Total 1845	C 1204	N 299	0 332	S 10	0	0

• Molecule 10 is a protein called Origin recognition complex subunit 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	С	557	Total 4618	C 2985	N 760	0 857	S 16	0	0

• Molecule 11 is a protein called Origin recognition complex subunit 4.

Mol	Chain	Residues		At	AltConf	Trace			
11	D	434	Total 3542	С 2274	N 601	0 654	S 13	0	0

• Molecule 12 is a protein called Origin recognition complex subunit 5.

Mol	Chain	Residues		At	AltConf	Trace			
12	Е	420	Total 3444	C 2247	N 546	O 637	S 14	0	0

• Molecule 13 is a protein called Origin recognition complex subunit 6.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
13	F	38	Total 324	С 207	N 55	O 60	${S \over 2}$	0	0

• Molecule 14 is a DNA chain called DNA.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
14	v	49	Total	С	Ν	0	Р	0	0
14	14 A	42	861	409	158	252	42	0	0
14	V	49	Total	С	Ν	0	Р	0	0
14	1	42	861	409	158	252	42		0

• Molecule 15 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms				AltConf				
15	9	1	Total	С	Ν	Ο	Р	0			
10		L	27	10	5	10	2	0			
15	15 4	1	Total	С	Ν	Ο	Р	0			
10		1	27	10	5	10	2	0			
15	F	и	E	к к	1	Total	С	Ν	Ο	Р	0
10	5	L	27	10	5	10	2	0			
15	15 6 1	1	Total	С	Ν	Ο	Р	0			
		0 1		27	10	5	10	2	0		

• Molecule 16 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
16	2	1	Total Zn 1 1	0
16	4	1	Total Zn 1 1	0
16	5	1	Total Zn 1 1	0

Mol	Chain	Residues	Atoms	AltConf
16	6	1	Total Zn 1 1	0
16	7	1	Total Zn 1 1	0

• Molecule 17 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
17	Л	1	Total	С	Ν	Ο	Р	0
	1	31	10	5	13	3	0	
17	Б	1	Total	С	Ν	Ο	Р	0
	Ľ		31	10	5	13	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA replication licensing factor MCM2

Chain 7:

32%

64%

PRO PRO LYS LYS LYS ARG CLY ARG PRO LYS PRO	PRU PRO LYS PRO ARC ARC ARC ALN MET LEU LEU LEU SER SER SER SER CYS	ARG ALA ASN ASN ASN ASN PRO PRO ILE ARG LYS PHF	THR LYS LYS LYS ASN ASN ALA ALA ALA ALA ALA LYS LYS LYS	THR PRO PRO PRE PRE PRE LYS PRE LYS SER TLE ALLA ALLA ALLA
PRO ASP LEU THR SER LEU PRO GLU CLU CLU CLU CLU	ASM SER SER SER CLU CLU MET MET ALA SER ALU ASN ASN ASN	LEU LYS THR THR GLN LYS H416 429 C429 LEU ASU	SER SER TYR TYR VAL LYS GLU GLU CLU CLU LLE LLE LLE SER	ALLA PHE GLN ASP ACN ASP ASP F150 C515 C515 C515 C515 C515 C515
K558 L568 A570 N590 A570 A570 A597	NeoU TF01 F647 IG60 ASP ALA ALA ALA ASN ASN ASN ASN ASN	THR VAL LYS CLN CLN THR LEU PRO CLN CLN ASP ASP ASP	K679 Y727 GLY TYR ASP GLY CLY CLY CLY THR THR THR	ASP ASN ASN CLU CLU CLU CLU CLU CLU ASP ASP ASP CLU ASP CLU
ASP LEU LLE GLU SER ASN ASN ASP ASP ASP	ASP ASP ASP ASP ASP ASP ASP CT69 CT69 TT75 TT75	I791 T795 R796 N810 K813 E821 L822	1825 1825 1856 1856 1856 1888 1888	V822 M905 M905 M906 M906 ASP ASP ASN ASN ASN ASN
• Molecule 9: C	Drigin recognition	complex subu	nit 2	
Chain B:	36%	•	60%	
SER PRO ASP PRO ALA LLEU LYS LYS THR PRO	SEK LYS ALA PRO ARG CLYS CLYS GLY ARG PRO PRO ARG TLS	GLN GLU GLU CLEU ASP ASP LYS LYS ASP	GLU LYS ASP THR THR ILYS SER LYS LYS LYS	LEU ASP ASP ASP GLY ASN VAL ASN GLU GLU SER
LYS THR SER ASN ASN LYS GLN VAL MET GLU GLU	IHH GLY LYS GLU CLYS GLU GLU GLU GLU GLU GLN	VAL ALA THR TTHR TTHR GLU GLU ASP VAL THR	PRO GLN ASP ASP ASP PHE ASN VAL SER SER	GLU GLU PRO GLU GLU GLU ALA PRO PRO PRO LYS SER LYS SER LLYS
乳乳がらた医乳乳のいるが	N E E E N D N D R N L R	えんロンジロルロルはメ	正れつれつしつのとろの	2 我 2 我 2 2 4 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4
HT HT HT HT HT HT HT HT HT HT HT HT HT H		TH S C C C C C C C C C C C C C C C C C C	HHT HHT VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR	
ASP T242 Q249 ARC LYS LYS TLE VAL ARC ASN	ALA ALA SER SER F294 W205 W205 W205	Y317 Y317 R323 L326 E327 E327 L343 ALA TYR	ASN GLU GLU GLN GLN GLN ASN FYS YAL ASN ASN	A386 GLU LEU LEU LEU TRR ARG GLU TRR CLU TRR GLU TRR ASN ASN
H425 H425 F437 F437 S445 S445	A461 P462 L463 L463 N467 D479 D479 C17 C12 C12 C12	SER ASP THR SER SER GLY GLV GLV GLV CLY	TYR VAL VAL LEU GLN SER VAL ASN SER LYS	MET TYR TYR TYR LVS LLEU LLEU LLEU LLEU CLU CLU CLN ACN ASN MET MET
GLY ASN LEU SER ALA ASN THR ASN GLY PRO CLY SARC	GLY THR GLN GLN THR CLY GLU CLU CLU LYS LEU PHE ASN	HIS LEU CYS CYS ALA ALA ASP PHE TLE ALA SER ASN	GLU ILE ALA ALA ALA CLEU ARG SER MET ARG GLU PHE	GLU GLU HIS MET MET ALA ASN THR THR THR THR THR SSN SER SER GLY
MET GLU GLU ILE TRP VAL PRO TYR TYR ALA	GLU CLER GLU CLYS CLYS CLYS CLRU CLRU ASN THR ASN THR LEU			
• Molecule 10:	Origin recognition	n complex subu	unit 3	
Chain C:		83%		8% 10%
MET SER ASP LEU ASN GLN SER LYS MET ASN	VAL SER GLU GLU ASR SER SER SER GLN SER ASN	LYS ASN B36 B36 R57 R99 S112 S112 R140	E158 HIS PRO THR ILE LYS TYR GLU GLU ASP CLU	ASP ASP GLU ASP GLU GLU GLU ASN ASN ASN ASN VAL
SER 1183 1190 1193 1193 1209 1209	1241 1244 1248 1257 1257 1250 1261 1261 1261	D296 R297 F298 N309 N313 L314 Q315 L314 L316 L316 L316	K319 F329 M361 F362 F363 F363 F363 F363 F363	R386 E389 H406 F455 D468 D469
K484 D489 S493 EER LEU ASP	175 GLU ASN TYR ASP ASP ASP CLEU SER GLY D612 D612 V528	4531 1535 1537 1537 1537 1537 1573 1574 1574	L607 V608 C611 I616	

• Molecule 11: Origin recognition complex subunit 4

Chain D:		74%	9%	18%	
MET THR ILE SER GLU ALA ARG LEU	SER PRO GLN VAL ASN LEU LEU PRO TLEU LYS	HAKS SER SER SER SER CLU CLU CLU CLU CLU LLU LLU LLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ARG THR ILE ASP GLU CYS CYS CYS SER SER	P47 947 160 160 160 160 105 1128	
d159 SER GLU GLU LYS LLS ASP ASP	THR SER CLEU CLU CLU CLU THR TLE SER SER SER SER	V180 V180 L184 L184 L188 ARG ARG ARG ARG ARG ARC ARC ARC ARC ARC ACU	GLU VAL VAL ASP ASP ASP GLU SER TLE THR THR T210 2210 1210	214 F216 E217 E217 1221 1221 1231 L233 L234	
V243 L320 1324 R332	K338 N339 E387 E387 R396 R396 R396 R396	V 39 / 14 / 14 / 14 / 14 / 14 / 14 / 14 / 1	VAL GLY THR GLY GLY GLN SER SER SER SER SER SER SER SER	THR 1448 1448 1445 1445 1455 1455 1455 1456 1476 1456 1456 1456 1508 1509	L510
q511 E512 K519 Y524 q528	L529				
• Molecule	12: Origin re	cognition complex sub	ounit 5		
Chain E:		78%		9% 12%	
M1 118 135 036 036 036	L74 482 196 1108 133	D136 A143 E172 E173 T173 T173 T173 F173 F189 F189 F189	R206 E208 L215 R218 E221	F239 F2250 N253 N253 N253 N253 D263 F264	K265
W266 P267 S271 R272 R272 E280	A283 L299 GLU GLV GLY GLY GLY GLU	SEK NILA TILE TIRE TIRE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	1333 CC338 K353 THR THR THR THR THR CC338 CC38 CC338 C	ARA ARA ALA ALA ALA ALA ARC CLY LYS CLU VXL VXL VXL ASN	P373
1389 1389 11E GLN GLY LYS	ALA GLU SER GLY SER SER LEU LEU ALA ARG	GLU GLU GLU GLU GLU GLU GLU GLU HA16 F474 SER ASP HIS GLU GLU GLU			
• Molecule	13: Origin re	cognition complex sul	ounit 6		
Chain F:	8% •	919	6		
MET SER MET GLN GLN VAL CLN HIS	CYS VAL ALA GLU VAL LEU LEU ARG LEU ARP PRO	GLN LYS LYS ASP ASP ASP SER SER SER CLY LYS LYS LYS LYS LYS ASN	ALA THR SER ILE ILEU TYR ASN THR SER LEU ASN	VAL MET LEU LYS CLN CLN GLU GLU CLU ALA ARG CYS HIS	ILE
CYS ALA TYR ILE ALA SER GLN LYS	MET ASN GLU CYS HIS MET MET ASP ASP LEU CYS	TYR TYR ASP ASP ASP ILE TLE PRO GLU CYS LVS LVS LVS LVS LVS LVS LVS LVS LVS LV	MET ASN LEU PHE ARG GLN SER LEU SER ASN SER	PRC	ASN
LYS ARG SER PRO VAL LYS ASN GLY	GLY ARG PHE THR SER SER ASP ASP PRO LYS GLU	LEU ARG GLN CLEU CLEU PHE PHE PHC PHC PRO PHC PRO LYS SER SER SER CLN	ASN ASP ASP ASP SER PHE VAL TLE PRO GLU CLU	ALU GLN GLN ASN ASN GLU SER PRO SER THE THR ARG ARG ARG	LEU
ALA PHE GLU GLU ASP GLU GLU GLU	ASP GLU GLU GLU GLU PRO GLY ASP ASP GLY LEU	LEU LEU LYU SER HIS SER ASN LYS SER ASN CLY CLYS SER CLY THR CLY ASN ASN	ASP SER ASP GLU TYR GLU ASN ASP SER ASP	TRA SER SER SER GLU GLU PRO CLU CLU CLU SER SER ARG	SER
GLY ARG THR LYS GLN ASN LYS ASN ASN	VAL GLY LYS PRO GLN SER GLU LEU LYS THR	ALA ALA ALA ARG ARG GLY ARG CLY ARG PILE LEU VAL	LYS LYS TYR CYS CYS CYS LYS THR THR GLU GLU	ALLE LEU CYS ASN ASP PHE GLU CLU CLU CLU ALA ALA ALA	TYR
YS LE AL SP LU SN LSN LE	LLA BER LLA ER EU EU AL XYS RPO RPD	AL YYS LY AL AL AL AL SN AL AL AL AL	RRG RRG YS RCD RRD RRD RRD RRG RRG RRG RTLE RRG RRG RTLE RRG RRG RRG RRG RRG RRG RRG RRG RRG RR	AL AL ER ET SYS SYS EET ET AL AL AL	ISP
	A A M A H A M A H A		A A A A A A A A A A A A A A A A A A A	, AND SOMPERADE	A
ASP VAL ILE GLU CYS VAL LYS LEU	VAL LYS GLU GLU LEU LLE GLU CYS TRP	PHE AFRE ASP LEU CLEU CLEU CLEU ASP ASP PHE ASP PHE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	D395 Y418 K422 K422 LEU LEU CLU PRO	000	

WORLDWIDE PROTEIN DATA BANK • Molecule 14: DNA

Chain X:	57%	43%				
C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	620 621 727 728 734 633 633 738 633 738 633 738 738 738 738 738 738 738 738 738 7					
• Molecule	• Molecule 14: DNA					
Chain Y:	67%	33%				
C20 G21 A22 T23 C24 G25 A26	G33 A34 G37 A38 A38 A54 A54 A54 A54 A54 A54 A54 A54 A54 A54					

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	49788	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30.34	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2700	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, ATP, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	2	0.25	0/5145	0.51	0/6945
2	3	0.24	0/4661	0.49	0/6323
3	4	0.24	0/5024	0.48	0/6775
4	5	0.24	0/5131	0.48	0/6921
5	6	0.25	0/5495	0.49	0/7406
6	7	0.24	0/4609	0.48	0/6222
7	8	0.24	0/4123	0.47	0/5588
8	А	0.24	0/3358	0.45	0/4519
9	В	0.25	0/1892	0.44	0/2556
10	С	0.25	0/4717	0.44	0/6364
11	D	0.25	0/3606	0.45	0/4873
12	Е	0.25	0/3526	0.44	0/4791
13	F	0.22	0/328	0.47	0/440
14	Х	0.52	0/965	0.96	0/1487
14	Y	0.53	0/965	0.98	0/1487
All	All	0.26	0/53545	0.50	0/72697

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2	5059	0	5120	49	0
2	3	4583	0	4643	30	0
3	4	4964	0	5031	45	0
4	5	5059	0	5144	45	0
5	6	5408	0	5458	72	0
6	7	4541	0	4583	21	0
7	8	4047	0	4117	24	0
8	А	3310	0	3406	19	0
9	В	1845	0	1815	10	0
10	С	4618	0	4589	29	0
11	D	3542	0	3610	33	0
12	Ε	3444	0	3463	31	0
13	F	324	0	330	3	0
14	Х	861	0	473	13	0
14	Y	861	0	473	10	0
15	2	27	0	12	2	0
15	4	27	0	12	1	0
15	5	27	0	12	2	0
15	6	27	0	12	1	0
16	2	1	0	0	0	0
16	4	1	0	0	0	0
16	5	1	0	0	0	0
16	6	1	0	0	0	0
16	7	1	0	0	0	0
17	D	31	0	12	1	0
17	Е	31	0	12	0	0
All	All	52641	0	52327	391	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (391) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:112:SER:HB2	10:C:206:LYS:HE2	1.66	0.77
11:D:339:ASN:ND2	12:E:183:CYS:O	2.19	0.76
2:3:553:ILE:HG13	4:5:630:ARG:HE	1.48	0.76
7:8:269:PRO:HA	7:8:277:THR:HA	1.69	0.74
1:2:774:ILE:HG22	1:2:776:PRO:HD3	1.70	0.72
10:C:257:ARG:NH2	11:D:458:ASN:OD1	2.24	0.70
5:6:592:ALA:HB3	5:6:595:SER:HB2	1.73	0.70
6:7:584:ILE:HG23	6:7:586:LEU:H	1.58	0.69

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:4:399:LEU:HD12	3:4:417:LEU:HD11	1.74	0.69
11:D:59:GLN:HG2	11:D:64:LEU:HD11	1.75	0.69
5:6:568:ASP:OD2	5:6:659:GLN:NE2	2.26	0.67
7:8:337:PRO:HB3	7:8:384:ASN:HB2	1.76	0.67
3:4:711:LYS:NZ	3:4:849:LEU:O	2.29	0.66
6:7:331:LEU:HD21	6:7:376:LEU:HB2	1.78	0.66
4:5:87:ILE:HG23	4:5:88:PRO:HD3	1.79	0.65
8:A:558:LYS:NZ	8:A:590:ASN:O	2.27	0.65
3:4:859:ARG:NH2	8:A:905:MET:O	2.29	0.65
12:E:74:LEU:HD22	12:E:108:LEU:HD22	1.78	0.64
5:6:311:CYS:SG	5:6:340:ASN:ND2	2.66	0.64
5:6:559:THR:HG22	5:6:561:GLU:H	1.62	0.64
6:7:236:GLY:N	6:7:355:PHE:O	2.27	0.64
4:5:722:LEU:O	4:5:772:ARG:NH1	2.28	0.63
10:C:190:ASN:OD1	10:C:193:ARG:NH2	2.31	0.63
10:C:293:ASN:HB2	10:C:467:THR:HG22	1.80	0.63
5:6:589:VAL:HG11	5:6:597:TYR:HB2	1.80	0.63
2:3:307:ASN:ND2	2:3:308:GLN:OE1	2.27	0.62
5:6:313:MET:H	5:6:340:ASN:ND2	1.97	0.62
15:4:1001:ADP:O1B	6:7:593:ARG:NH1	2.32	0.61
12:E:143:ALA:O	12:E:179:TYR:OH	2.18	0.61
2:3:307:ASN:O	2:3:310:ASN:ND2	2.29	0.61
3:4:245:ALA:HB3	3:4:307:ASN:H	1.66	0.60
2:3:40:ASP:OD1	2:3:41:SER:N	2.33	0.60
2:3:426:ALA:HB3	2:3:429:ALA:HB2	1.84	0.60
5:6:303:GLU:N	5:6:354:LEU:O	2.27	0.60
5:6:347:ASN:OD1	5:6:350:ARG:N	2.33	0.60
3:4:527:ALA:HB3	3:4:537:LYS:HE3	1.83	0.59
5:6:312:ASP:O	5:6:315:ARG:NH1	2.34	0.59
5:6:639:ASP:OD1	5:6:640:GLU:N	2.35	0.59
11:D:387:GLU:HG2	11:D:459:VAL:HG13	1.85	0.58
3:4:874:LYS:NZ	3:4:879:ASP:OD1	2.36	0.58
8:A:796:ARG:O	11:D:332:ARG:NH2	2.32	0.58
1:2:382:TYR:HB2	4:5:153:SER:HB2	1.85	0.58
5:6:557:LYS:HB2	5:6:565:LEU:HD12	1.85	0.58
1:2:613:ASN:ND2	1:2:616:ASP:OD2	2.34	0.58
14:X:35:DT:H2"	14:X:36:DC:C5	2.39	0.58
7:8:364:LEU:HD11	7:8:373:VAL:HG11	1.86	0.58
8:A:822:LEU:HD21	8:A:866:TRP:HH2	1.67	0.58
12:E:35:LEU:HD23	12:E:189:PHE:HZ	1.68	0.58
4:5:258:LEU:O	4:5:274:LEU:N	2.36	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:5:361:SER:HA	4:5:366:LEU:HD22	1.85	0.58
10:C:57:ARG:NH1	10:C:329:PHE:O	2.36	0.58
3:4:683:ASN:OD1	3:4:685:ASN:ND2	2.32	0.57
12:E:205:ARG:NE	12:E:259:ASN:OD1	2.37	0.57
12:E:239:PHE:HE2	12:E:262:ILE:HG23	1.69	0.57
9:B:467:ASN:OD1	12:E:422:GLN:NE2	2.26	0.57
1:2:333:GLN:O	1:2:383:ARG:N	2.37	0.57
3:4:240:ASN:OD1	3:4:241:LEU:N	2.37	0.57
3:4:195:ARG:NH2	3:4:199:MET:SD	2.78	0.57
4:5:630:ARG:NH1	4:5:648:ILE:O	2.38	0.56
5:6:516:LEU:HD21	5:6:757:TYR:HB2	1.86	0.56
10:C:248:GLU:O	11:D:457:LYS:NZ	2.38	0.56
1:2:416:ASP:OD2	4:5:272:ARG:NH2	2.39	0.56
4:5:455:ARG:HA	4:5:462:PHE:HA	1.87	0.56
5:6:512:GLU:OE2	7:8:547:ASN:ND2	2.29	0.56
4:5:393:MET:HG3	4:5:666:LEU:HB2	1.87	0.55
1:2:536:ASP:HB3	1:2:645:SER:HB3	1.89	0.55
3:4:261:LEU:HD11	3:4:265:PRO:HA	1.89	0.55
5:6:144:LYS:HD3	5:6:193:ALA:HB1	1.88	0.55
6:7:30:GLN:HA	6:7:62:LYS:HB2	1.89	0.54
2:3:712:HIS:ND1	2:3:725:ASP:OD1	2.31	0.54
1:2:260:LEU:HD12	1:2:264:PRO:HA	1.89	0.54
1:2:808:ARG:NH1	15:5:901:ADP:O3A	2.38	0.54
1:2:759:PRO:HB2	1:2:762:LEU:HD13	1.89	0.54
4:5:159:ILE:HG12	4:5:297:ILE:HG12	1.90	0.54
11:D:105:GLN:NE2	12:E:182:HIS:O	2.32	0.54
6:7:29:LYS:HA	6:7:61:PRO:HA	1.90	0.53
4:5:630:ARG:HH22	4:5:633:LEU:HD23	1.71	0.53
14:X:43:DT:H2"	14:X:44:DC:C6	2.43	0.53
10:C:209:ASP:OD2	10:C:241:ASN:ND2	2.32	0.53
4:5:626:PHE:HB2	4:5:653:LEU:HD13	1.89	0.53
3:4:802:ILE:HD11	5:6:732:VAL:HG22	1.90	0.53
14:X:21:DG:H2"	14:X:22:DA:C8	2.44	0.53
1:2:526:ASN:ND2	1:2:531:HIS:O	2.40	0.53
4:5:622:LEU:HB3	4:5:653:LEU:HD11	1.90	0.53
7:8:390:ASN:OD1	7:8:391:LEU:N	2.42	0.53
12:E:36:GLN:NE2	12:E:172:GLU:O	2.38	0.53
3:4:574:LYS:NZ	3:4:676:ASN:OD1	2.31	0.52
8:A:600:ASN:OD1	8:A:601:THR:N	2.43	0.52
2:3:449:ASP:HA	2:3:455:ARG:HA	1.91	0.52
3:4:310:SER:HA	3:4:327:ASN:HB3	1.90	0.52

	Jus page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:4:224:LEU:HD13	3:4:227:ILE:HG13	1.90	0.52	
4:5:719:LYS:NZ	4:5:775:VAL:OXT	2.35	0.52	
1:2:183:LEU:HB3	1:2:186:LEU:HD12	1.92	0.52	
5:6:816:VAL:HG12	5:6:818:GLU:H	1.74	0.52	
1:2:778:LEU:HD22	4:5:576:HIS:HB3	1.92	0.52	
4:5:753:TYR:CE2	4:5:757:LYS:HE3	2.45	0.51	
14:X:33:DG:H2"	14:X:34:DA:C8	2.44	0.51	
1:2:211:LEU:HD13	1:2:271:PHE:HD1	1.75	0.51	
5:6:144:LYS:HA	5:6:196:LEU:HD21	1.93	0.51	
7:8:294:ALA:O	7:8:298:TYR:N	2.37	0.51	
3:4:581:VAL:HA	3:4:584:ILE:HG22	1.93	0.51	
4:5:166:ILE:O	4:5:289:GLY:N	2.30	0.51	
3:4:246:ARG:NH2	3:4:307:ASN:OD1	2.42	0.51	
3:4:621:LEU:HD21	3:4:648:VAL:HG21	1.93	0.51	
14:X:38:DA:H2'	14:X:39:DT:H71	1.93	0.51	
5:6:502:GLU:O	5:6:506:ASN:ND2	2.40	0.50	
10:C:572:THR:HG22	10:C:574:ASP:H	1.75	0.50	
5:6:272:THR:HB	7:8:519:ILE:HG23	1.94	0.50	
8:A:570:ALA:O	11:D:227:ARG:NH1	2.45	0.50	
9:B:445:SER:HB3	9:B:452:ILE:HD12	1.92	0.50	
14:Y:53:DG:H2"	14:Y:54:DA:H8	1.77	0.50	
2:3:716:ARG:NH2	2:3:722:ASN:OD1	2.38	0.50	
2:3:235:ASP:HB2	2:3:241:LEU:HD21	1.94	0.50	
1:2:434:TYR:HB2	1:2:448:ALA:H	1.77	0.49	
8:A:568:LEU:HD22	8:A:597:ALA:HB1	1.93	0.49	
10:C:261:ARG:NH2	12:E:260:ASP:OD1	2.44	0.49	
11:D:230:LEU:O	11:D:234:LEU:HG	2.12	0.49	
5:6:580:SER:HB3	15:6:1101:ADP:C8	2.47	0.49	
5:6:763:PRO:HA	5:6:817:ASP:HB3	1.93	0.49	
8:A:553:VAL:HB	8:A:558:LYS:HE3	1.94	0.49	
10:C:489:ASP:O	10:C:493:SER:N	2.42	0.49	
3:4:725:THR:HA	3:4:728:TYR:CE2	2.48	0.49	
11:D:188:LEU:HD13	11:D:243:VAL:HG11	1.93	0.49	
12:E:82:GLN:NE2	12:E:96:ASP:OD1	2.45	0.49	
11:D:230:LEU:HD12	11:D:231:LEU:N	2.27	0.49	
14:X:19:DT:H2"	14:X:20:DC:C5	2.47	0.49	
3:4:437:GLY:HA2	3:4:464:VAL:HG23	1.94	0.49	
4:5:349:PHE:HE1	4:5:601:ARG:HG3	1.77	0.49	
4:5:753:TYR:CZ	4:5:757:LYS:HE3	2.48	0.49	
11:D:320:LEU:O	11:D:324:ILE:HG13	2.12	0.49	
6:7:456:VAL:HG22	6:7:596:ILE:HB	1.93	0.48	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:4:712:VAL:HA	6:7:668:ARG:HH21	1.78	0.48
4:5:551:ASP:OD1	4:5:658:ARG:NH1	2.45	0.48
4:5:594:ILE:HG23	4:5:598:LYS:HE3	1.95	0.48
5:6:569:ILE:HG23	5:6:710:ASP:HB2	1.94	0.48
5:6:653:HIS:HB3	5:6:708:ARG:NH1	2.28	0.48
1:2:221:GLU:HG3	1:2:222:THR:H	1.77	0.48
1:2:231:ILE:HG23	1:2:279:THR:HG22	1.95	0.48
3:4:526:ILE:HD11	3:4:541:LEU:HD22	1.95	0.48
5:6:364:ASN:ND2	5:6:367:GLU:OE2	2.44	0.48
11:D:230:LEU:HD12	11:D:231:LEU:HG	1.95	0.48
4:5:407:ARG:HD3	4:5:409:ASP:HB2	1.94	0.48
3:4:304:ARG:NH2	3:4:422:GLU:OE2	2.39	0.48
5:6:301:ARG:O	5:6:356:TRP:N	2.47	0.48
1:2:271:PHE:HE2	1:2:295:VAL:HG11	1.79	0.47
3:4:251:TYR:CE2	3:4:253:GLN:HB2	2.49	0.47
7:8:73:PHE:CD1	7:8:81:LEU:HB2	2.49	0.47
8:A:647:PHE:CD1	8:A:679:LYS:HE3	2.49	0.47
1:2:277:GLU:O	1:2:281:LEU:HG	2.13	0.47
3:4:234:ARG:NH2	3:4:235:GLU:OE2	2.38	0.47
4:5:425:LEU:O	4:5:429:VAL:HG23	2.14	0.47
4:5:568:ILE:O	4:5:572:VAL:HG23	2.14	0.47
12:E:35:LEU:HB3	12:E:189:PHE:CE2	2.50	0.47
3:4:365:ILE:HB	5:6:419:SER:HA	1.95	0.47
2:3:393:LEU:HD12	2:3:397:SER:HB2	1.96	0.47
5:6:918:ARG:HD2	11:D:429:VAL:HG22	1.95	0.47
8:A:855:ASP:OD1	8:A:856:ASN:N	2.47	0.47
12:E:262:ILE:O	12:E:266:TRP:HB2	2.14	0.47
3:4:715:LYS:O	3:4:719:GLU:HG2	2.14	0.47
4:5:87:ILE:CG2	4:5:88:PRO:HD3	2.44	0.47
7:8:338:PRO:HG2	7:8:343:LEU:HD11	1.96	0.47
14:X:33:DG:H2"	14:X:34:DA:H8	1.78	0.47
1:2:696:ALA:HB3	5:6:774:VAL:HG23	1.96	0.47
1:2:519:LEU:O	1:2:771:ARG:NH1	2.45	0.47
14:Y:37:DG:H2"	14:Y:38:DA:C8	2.50	0.47
4:5:416:GLY:HA3	4:5:556:VAL:HG22	1.95	0.47
9:B:323:ARG:NE	9:B:327:GLU:OE2	2.40	0.47
1:2:294:HIS:CD2	1:2:412:ALA:HB1	2.50	0.47
2:3:195:LYS:N	2:3:251:ILE:O	2.48	0.47
4:5:459:THR:HG1	4:5:463:TYR:HH	1.59	0.47
6:7:66:MET:O	6:7:70:VAL:HG23	2.14	0.47
9:B:461:ALA:N	9:B:462:PRO:HD2	2.30	0.46

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:4:368:PRO:HB2	3:4:382:MET:HG3	1.98	0.46	
5:6:292:GLY:HA3	5:6:361:ILE:HD12	1.98	0.46	
1:2:700:VAL:HG11	5:6:770:ARG:HB3	1.97	0.46	
4:5:393:MET:HB2	4:5:662:SER:OG	2.15	0.46	
2:3:533:ILE:HG22	2:3:535:LEU:HG	1.98	0.46	
3:4:248:LEU:HA	3:4:254:THR:HB	1.97	0.46	
5:6:939:TRP:O	5:6:943:GLN:HG2	2.16	0.46	
8:A:885:LYS:HB3	11:D:476:GLY:HA3	1.98	0.46	
10:C:361:MET:HG2	13:F:418:TYR:CE1	2.50	0.46	
10:C:606:ASP:OD1	10:C:606:ASP:N	2.48	0.46	
4:5:409:ASP:OD2	4:5:500:GLN:NE2	2.42	0.46	
1:2:624:MET:HG2	1:2:646:ILE:HD12	1.98	0.46	
5:6:795:ILE:HG23	5:6:799:GLN:HB2	1.98	0.46	
11:D:510:LEU:HD12	11:D:510:LEU:H	1.80	0.46	
6:7:350:ASP:OD1	6:7:384:HIS:NE2	2.36	0.46	
7:8:485:ASP:OD1	7:8:488:ARG:NH1	2.44	0.46	
1:2:511:ILE:O	1:2:515:VAL:HG23	2.16	0.46	
5:6:145:ILE:HG23	7:8:336:VAL:HG21	1.96	0.46	
5:6:164:GLY:O	5:6:168:MET:HG2	2.16	0.46	
12:E:338:CYS:SG	12:E:389:ILE:HD12	2.56	0.46	
1:2:536:ASP:OD1	1:2:627:GLN:NE2	2.43	0.45	
2:3:244:GLU:OE2	6:7:14:TYR:OH	2.21	0.45	
2:3:352:LYS:HG2	2:3:356:LYS:NZ	2.31	0.45	
5:6:368:ILE:HD13	5:6:374:PRO:HB3	1.99	0.45	
6:7:684:ALA:HA	6:7:688:THR:HG21	1.98	0.45	
2:3:23:ASP:OD1	2:3:26:ARG:NH2	2.45	0.45	
12:E:215:LEU:HD22	12:E:232:PHE:CE1	2.51	0.45	
1:2:655:GLY:HA3	5:6:704:PRO:HD3	1.99	0.45	
1:2:813:ILE:HG12	1:2:841:VAL:HG21	1.98	0.45	
2:3:24:ARG:HH12	2:3:120:TYR:HB3	1.82	0.45	
4:5:624:SER:O	4:5:628:THR:HG23	2.17	0.45	
6:7:206:PRO:HB3	6:7:352:THR:HG21	1.98	0.45	
2:3:711:ALA:O	2:3:715:VAL:HG23	2.16	0.45	
4:5:31:PHE:O	4:5:35:ILE:HG12	2.17	0.45	
5:6:273:VAL:HB	7:8:541:SER:HA	1.98	0.45	
5:6:772:TYR:CZ	5:6:776:LYS:HE2	2.52	0.45	
5:6:186:ARG:HA	5:6:189:VAL:HG12	1.98	0.45	
6:7:643:ALA:O	6:7:647:THR:HG23	2.16	0.45	
7:8:48:TYR:CE2	7:8:50:ASN:HB2	2.52	0.45	
9:B:464:LEU:HD21	12:E:444:LEU:HG	1.97	0.45	
1:2:271:PHE:CE2	1:2:295:VAL:HG11	2.52	0.45	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:3:480:ASP:OD1	2:3:483:ARG:NH2	2.39	0.45
5:6:520:VAL:HG22	5:6:754:TYR:CE1	2.51	0.45
5:6:972:ARG:NH1	11:D:385:ASP:OD1	2.40	0.45
10:C:99:ARG:NH1	12:E:208:GLU:OE2	2.46	0.45
5:6:268:PHE:HB3	5:6:458:HIS:CD2	2.51	0.45
11:D:393:SER:O	11:D:397:VAL:HG23	2.16	0.45
5:6:522:ASP:HB3	5:6:525:ILE:HG23	1.98	0.44
1:2:242:LEU:HD12	1:2:275:ALA:HB1	1.99	0.44
1:2:255:ILE:HG23	7:8:393:THR:HB	1.98	0.44
3:4:611:THR:HG22	3:4:613:GLN:HG2	1.98	0.44
3:4:766:ALA:HB1	3:4:822:VAL:HG21	1.99	0.44
12:E:218:ARG:NH1	12:E:221:GLU:OE1	2.48	0.44
5:6:553:GLY:O	5:6:812:ARG:NH1	2.50	0.44
11:D:104:ARG:NH1	17:D:601:ATP:O3G	2.44	0.44
12:E:266:TRP:HB3	12:E:267:PRO:HD3	2.00	0.44
5:6:197:LEU:HD22	5:6:261:ARG:HG2	1.99	0.44
7:8:534:LEU:O	7:8:538:ILE:HG12	2.18	0.44
8:A:822:LEU:HD13	8:A:892:VAL:HG21	1.99	0.44
14:Y:25:DG:H2"	14:Y:26:DA:C8	2.53	0.44
3:4:559:ARG:HD3	3:4:652:GLN:HG2	1.99	0.44
11:D:506:MET:HG3	11:D:508:ILE:H	1.82	0.44
14:X:17:DG:H2"	14:X:18:DA:C8	2.53	0.44
14:X:32:DC:H2"	14:X:33:DG:C8	2.52	0.44
5:6:123:SER:HG	5:6:134:LYS:N	2.16	0.44
7:8:154:ARG:HG3	7:8:258:VAL:HG22	1.99	0.44
8:A:514:ASN:OD1	8:A:516:LEU:N	2.50	0.44
14:Y:41:DG:H2"	14:Y:42:DA:C8	2.53	0.43
1:2:294:HIS:CG	1:2:412:ALA:HB1	2.53	0.43
2:3:211:TYR:CE1	6:7:6:PRO:HB2	2.53	0.43
9:B:326:LEU:HB2	9:B:425:HIS:HE1	1.83	0.43
10:C:381:LEU:HD22	13:F:422:LYS:HE3	2.00	0.43
4:5:415:LEU:HD21	4:5:540:ILE:HD11	2.01	0.43
3:4:696:PRO:N	3:4:697:PRO:HD2	2.34	0.43
8:A:810:ASN:HA	8:A:813:LYS:HG2	2.00	0.43
10:C:386:ARG:HD3	10:C:389:GLU:OE2	2.19	0.43
4:5:211:CYS:HA	4:5:241:TYR:CE2	2.54	0.43
4:5:265:VAL:HG21	4:5:271:PRO:HG3	2.00	0.43
1:2:336:TYR:O	1:2:380:THR:HG23	2.18	0.43
3:4:240:ASN:HD21	3:4:304:ARG:HG3	1.83	0.43
7:8:530:THR:HA	7:8:579:LYS:HA	2.00	0.43
1:2:663:LEU:HD13	1:2:803:PHE:HE1	1.82	0.43

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:3:164:HIS:HB3	2:3:180:VAL:HA	1.99	0.43
4:5:62:THR:HA	4:5:138:ILE:HB	2.00	0.43
7:8:61:LEU:HA	7:8:65:ASP:HB2	2.01	0.43
1:2:327:ARG:NH1	1:2:418:SER:O	2.51	0.43
15:2:901:ADP:O2B	5:6:798:ARG:NH2	2.37	0.43
5:6:186:ARG:O	5:6:189:VAL:HG12	2.19	0.43
5:6:718:ASP:OD1	5:6:719:CYS:N	2.51	0.43
3:4:515:ARG:NH2	3:4:517:ASP:OD2	2.38	0.43
4:5:421:ALA:HB2	15:5:901:ADP:C8	2.54	0.43
11:D:180:VAL:O	11:D:184:ILE:HG13	2.17	0.43
11:D:519:LYS:HG2	11:D:524:TYR:CE2	2.54	0.43
12:E:18:LEU:HD21	12:E:35:LEU:HD21	2.00	0.43
14:X:27:DT:H2"	14:X:28:DC:C6	2.54	0.43
1:2:774:ILE:HG13	1:2:825:LEU:HD22	2.00	0.43
3:4:562:ILE:HG13	3:4:803:ARG:HD2	2.00	0.43
5:6:109:GLU:OE1	5:6:112:ARG:NH2	2.37	0.43
5:6:172:GLU:HG3	5:6:173:GLN:HG3	1.99	0.43
5:6:330:PRO:HD2	5:6:344:TRP:CD1	2.54	0.43
6:7:469:LEU:O	6:7:473:ILE:HG12	2.18	0.43
9:B:432:ILE:HG13	9:B:437:PHE:CE1	2.54	0.43
10:C:140:ARG:NH2	14:X:12:DC:OP2	2.52	0.43
3:4:336:THR:HG1	3:4:396:VAL:H	1.63	0.42
9:B:305:TRP:CZ3	9:B:309:THR:HG21	2.54	0.42
14:Y:42:DA:C8	14:Y:43:DT:H72	2.54	0.42
1:2:676:ARG:HG3	1:2:808:ARG:NH2	2.35	0.42
4:5:626:PHE:CZ	4:5:650:ILE:HA	2.54	0.42
6:7:233:ASP:O	6:7:237:GLN:NE2	2.52	0.42
10:C:309:ASN:O	10:C:313:ASN:ND2	2.52	0.42
8:A:821:GLU:O	8:A:825:ILE:HG13	2.19	0.42
11:D:128:ILE:HG22	11:D:212:VAL:HG13	2.01	0.42
4:5:667:GLU:OE1	4:5:676:HIS:NE2	2.43	0.42
14:Y:54:DA:H2'	14:Y:55:DT:H71	2.01	0.42
3:4:467:LYS:HE2	3:4:469:VAL:HB	2.02	0.42
4:5:168:SER:OG	4:5:463:TYR:HB3	2.18	0.42
9:B:317:TYR:CZ	9:B:479:ASP:HB2	2.55	0.42
11:D:132:LEU:HD12	11:D:216:PHE:CZ	2.54	0.42
14:Y:22:DA:C2'	14:Y:23:DT:H71	2.49	0.42
5:6:174:TYR:HB3	5:6:400:VAL:HG11	2.00	0.42
2:3:94:HIS:HB3	2:3:153:TRP:CD2	2.55	0.42
4:5:302:ASN:OD1	4:5:324:ARG:NH1	2.52	0.42
5:6:645:ASP:HB2	5:6:648:ASP:OD2	2.20	0.42

	in a state of the	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
11:D:458:ASN:ND2	12:E:250:TYR:OH	2.52	0.42	
1:2:447:PHE:O	5:6:302:PRO:HD2	2.19	0.42	
2:3:353:LEU:HD23	2:3:356:LYS:HE2	2.00	0.42	
10:C:298:PHE:HB2	10:C:469:ASP:HA	2.00	0.42	
11:D:218:GLU:O	11:D:221:THR:OG1	2.28	0.42	
12:E:136:ASP:OD1	12:E:136:ASP:N	2.53	0.42	
1:2:540:LEU:HB2	1:2:677:PHE:CE2	2.55	0.42	
1:2:565:PHE:HA	1:2:605:LEU:HB2	2.02	0.42	
3:4:427:CYS:SG	3:4:466:VAL:HG21	2.60	0.42	
5:6:134:LYS:HE2	5:6:137:ARG:HD3	2.01	0.42	
5:6:303:GLU:HB2	5:6:356:TRP:HB2	2.01	0.42	
5:6:695:LEU:HD11	5:6:714:VAL:HG21	2.02	0.42	
6:7:20:GLU:OE1	6:7:92:LYS:NZ	2.45	0.42	
6:7:455:ASN:ND2	6:7:541:MET:SD	2.93	0.42	
7:8:339:GLU:OE2	7:8:378:ARG:NH1	2.50	0.42	
7:8:517:PHE:HE1	7:8:588:LYS:HB3	1.85	0.42	
10:C:296:ASP:OD1	10:C:297:ARG:N	2.53	0.42	
1:2:211:LEU:HD23	1:2:256:LEU:HD21	2.01	0.42	
7:8:412:GLN:HA	7:8:415:ILE:HG12	2.02	0.42	
8:A:888:ARG:HH12	11:D:512:GLU:CD	2.22	0.42	
12:E:329:LYS:O	12:E:333:ILE:HG12	2.20	0.42	
1:2:573:ALA:N	1:2:616:ASP:OD1	2.53	0.41	
5:6:585:LEU:HD12	5:6:639:ASP:HB2	2.02	0.41	
8:A:774:HIS:CE1	8:A:775:ILE:HG22	2.55	0.41	
10:C:315:GLN:O	10:C:319:LYS:HG3	2.20	0.41	
12:E:280:GLU:HG2	12:E:283:ALA:H	1.83	0.41	
14:Y:22:DA:H2"	14:Y:23:DT:H71	2.01	0.41	
14:Y:53:DG:H2"	14:Y:54:DA:C8	2.54	0.41	
1:2:748:GLN:O	1:2:752:GLU:HG3	2.21	0.41	
2:3:558:ASP:HA	2:3:561:ILE:HG22	2.01	0.41	
5:6:354:LEU:HD23	5:6:382:ARG:HD3	2.01	0.41	
12:E:36:GLN:NE2	12:E:173:THR:HA	2.34	0.41	
12:E:192:TYR:O	12:E:253:ASN:ND2	2.53	0.41	
12:E:271:SER:OG	12:E:272:ARG:NH1	2.53	0.41	
4:5:23:ASP:OD1	4:5:24:ASN:N	2.49	0.41	
5:6:937:VAL:HG11	5:6:958:ARG:HG3	2.01	0.41	
10:C:537:ILE:HD11	10:C:608:VAL:HB	2.02	0.41	
1:2:434:TYR:CD1	1:2:448:ALA:HB3	2.55	0.41	
4:5:292:VAL:HG12	4:5:335:SER:HB2	2.02	0.41	
5:6:271:PRO:HA	7:8:542:LEU:HD22	2.03	0.41	
5:6:657:GLU:HG3	5:6:658:GLN:OE1	2.20	0.41	

	as page	Interatomic	Clash
Atom-1	Atom-1 Atom-2		overlap (Å)
10:C:244:LEU:HD13	12:E:299:LEU:HG	2.01	0.41
10:C:316:LEU:HD11	10:C:480:PHE:CZ	2.55	0.41
12:E:64:PRO:HD2	12:E:133:ASP:O	2.20	0.41
14:X:17:DG:H2"	14:X:18:DA:H8	1.84	0.41
11:D:400:ARG:HH12	11:D:414:GLU:CD	2.23	0.41
13:F:393:ARG:NH2	13:F:395:ASP:OD1	2.51	0.41
3:4:417:LEU:HD22	3:4:461:VAL:HB	2.01	0.41
8:A:791:ILE:O	8:A:795:THR:HG23	2.20	0.41
14:X:32:DC:H2"	14:X:33:DG:H8	1.85	0.41
7:8:111:LEU:HD23	7:8:111:LEU:HA	1.95	0.41
10:C:363:PHE:CZ	10:C:367:LEU:HD11	2.55	0.41
14:Y:33:DG:H2"	14:Y:34:DA:C8	2.56	0.41
1:2:215:LEU:HD11	1:2:271:PHE:CE1	2.55	0.41
15:2:901:ADP:C8	5:6:797:VAL:HG11	2.56	0.41
3:4:186:SER:HB3	3:4:189:GLU:HB3	2.02	0.41
3:4:643:SER:HA	3:4:646:HIS:CE1	2.56	0.41
5:6:972:ARG:HH22	11:D:385:ASP:HB2	1.85	0.41
10:C:484:LYS:HD3	12:E:416:ALA:HB3	2.01	0.41
1:2:497:ILE:O	1:2:500:SER:OG	2.34	0.41
1:2:678:ASP:OD2	1:2:815:ARG:NH2	2.36	0.41
2:3:24:ARG:NH1	2:3:120:TYR:O	2.52	0.41
2:3:194:PRO:HA	2:3:252:ASP:HA	2.02	0.41
2:3:350:ILE:HG23	2:3:659:TYR:CD2	2.56	0.41
3:4:545:PHE:CE1	3:4:811:MET:HA	2.56	0.41
5:6:312:ASP:H	5:6:340:ASN:ND2	2.19	0.41
5:6:770:ARG:O	5:6:774:VAL:HG12	2.20	0.41
6:7:107:GLN:NE2	6:7:237:GLN:HB3	2.36	0.41
7:8:30:LEU:HB3	7:8:31:PRO:HD3	2.03	0.41
10:C:405:HIS:CD2	10:C:455:PHE:HB2	2.56	0.41
11:D:60:LEU:O	11:D:338:LYS:HD2	2.21	0.41
11:D:423:ASN:HA	11:D:426:ILE:HD12	2.03	0.41
9:B:294:PHE:O	9:B:298:LYS:HG3	2.20	0.41
10:C:528:TYR:HH	10:C:611:CYS:H	1.69	0.41
11:D:396:ARG:NH2	11:D:528:GLN:O	2.53	0.41
5:6:1002:HIS:ND1	5:6:1003:PRO:HD2	2.35	0.40
8:A:822:LEU:HD11	8:A:866:TRP:CZ2	2.56	0.40
10:C:260:LYS:HB3	12:E:264:PHE:CZ	2.56	0.40
10:C:531:ALA:HB1	10:C:535:ILE:HD11	2.03	0.40
1:2:506:TYR:HB2	1:2:698:PHE:CD1	2.55	0.40
4:5:139:LEU:HD12	4:5:331:LEU:HD13	2.04	0.40
5:6:170:ILE:HD13	5:6:181:LEU:HD21	2.02	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:2:630:SER:HB3	4:5:439:THR:HA	2.04	0.40
2:3:368:ALA:HB3	2:3:378:LYS:HE2	2.02	0.40
5:6:143:MET:HG2	5:6:148:LEU:HB2	2.03	0.40
2:3:169:ARG:NH2	2:3:266:PRO:HD2	2.37	0.40
3:4:281:VAL:O	3:4:285:VAL:HG12	2.21	0.40
3:4:306:TYR:HB3	3:4:465:HIS:CD2	2.57	0.40
5:6:525:ILE:HD12	5:6:526:TYR:N	2.36	0.40
6:7:88:TYR:CE2	6:7:92:LYS:HE3	2.56	0.40
11:D:519:LYS:HG2	11:D:524:TYR:CZ	2.57	0.40
1:2:275:ALA:O	1:2:279:THR:HG23	2.22	0.40
2:3:201:HIS:ND1	2:3:241:LEU:HD13	2.36	0.40
2:3:713:ALA:O	2:3:717:LEU:N	2.54	0.40
3:4:246:ARG:HB2	3:4:307:ASN:ND2	2.36	0.40
5:6:176:ARG:O	5:6:179:PRO:HD2	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	2	631/868~(73%)	618~(98%)	13 (2%)	0	100	100
2	3	575/1006~(57%)	563~(98%)	12 (2%)	0	100	100
3	4	606/933~(65%)	583~(96%)	23~(4%)	0	100	100
4	5	622/775~(80%)	615 (99%)	7 (1%)	0	100	100
5	6	659/1017~(65%)	645~(98%)	14 (2%)	0	100	100
6	7	561/845~(66%)	549~(98%)	12 (2%)	0	100	100
7	8	497/604~(82%)	480 (97%)	17 (3%)	0	100	100
8	А	407/949~(43%)	401 (98%)	6 (2%)	0	100	100
9	В	214/560~(38%)	210 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
10	С	549/616~(89%)	538~(98%)	11 (2%)	0	100	100
11	D	426/529~(80%)	419 (98%)	7~(2%)	0	100	100
12	Ε	412/479~(86%)	406 (98%)	6(2%)	0	100	100
13	F	36/435~(8%)	36 (100%)	0	0	100	100
All	All	6195/9616~(64%)	6063~(98%)	132 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	2	560/770~(73%)	559~(100%)	1 (0%)	92	96
2	3	509/864~(59%)	509~(100%)	0	100	100
3	4	567/848~(67%)	567~(100%)	0	100	100
4	5	571/687~(83%)	570 (100%)	1 (0%)	92	96
5	6	596/886~(67%)	596 (100%)	0	100	100
6	7	507/753~(67%)	507~(100%)	0	100	100
7	8	459/545~(84%)	458 (100%)	1 (0%)	92	96
8	А	366/842~(44%)	366 (100%)	0	100	100
9	В	208/517~(40%)	208 (100%)	0	100	100
10	С	519/576~(90%)	519 (100%)	0	100	100
11	D	400/488~(82%)	400 (100%)	0	100	100
12	Е	392/440~(89%)	391 (100%)	1 (0%)	91	94
13	F	36/406~(9%)	36 (100%)	0	100	100
All	All	5690/8622~(66%)	5686 (100%)	4 (0%)	92	96

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	2	676	ARG
4	5	630	ARG
7	8	583	TRP
12	Е	232	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
5	6	340	ASN
11	D	458	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 5 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	l Type Chain Bes	Dec	Dog	Dog	Bos	Dog	Dog	Dec	Dec	Dag	Dec	Dec	Dog	Dog	Dog	Tink	Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
MOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2												
17	ATP	Е	501	-	26,33,33	0.62	0	31,52,52	0.81	2 (6%)												
15	ADP	5	901	-	24,29,29	0.96	1 (4%)	29,45,45	1.50	4 (13%)												
15	ADP	2	901	-	24,29,29	0.95	1 (4%)	29,45,45	1.47	4 (13%)												

Mal	Mol Type Chain Be	Dec	Tink	Bond lengths			Bond angles			
IVIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
17	ATP	D	601	-	26,33,33	0.60	0	$31,\!52,\!52$	0.79	1 (3%)
15	ADP	6	1101	-	$24,\!29,\!29$	0.96	1 (4%)	$29,\!45,\!45$	1.52	4 (13%)
15	ADP	4	1001	-	24,29,29	0.96	1 (4%)	$29,\!45,\!45$	1.33	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
17	ATP	Е	501	-	-	5/18/38/38	0/3/3/3
15	ADP	5	901	-	-	1/12/32/32	0/3/3/3
15	ADP	2	901	-	-	5/12/32/32	0/3/3/3
17	ATP	D	601	-	-	5/18/38/38	0/3/3/3
15	ADP	6	1101	-	-	3/12/32/32	0/3/3/3
15	ADP	4	1001	-	-	2/12/32/32	0/3/3/3

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
15	5	901	ADP	C5-C4	2.49	1.47	1.40
15	6	1101	ADP	C5-C4	2.47	1.47	1.40
15	4	1001	ADP	C5-C4	2.47	1.47	1.40
15	2	901	ADP	C5-C4	2.44	1.47	1.40

All (19) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
15	5	901	ADP	PA-O3A-PB	-3.86	119.59	132.83
15	6	1101	ADP	C3'-C2'-C1'	3.75	106.62	100.98
15	6	1101	ADP	PA-O3A-PB	-3.62	120.41	132.83
15	2	901	ADP	C3'-C2'-C1'	3.56	106.34	100.98
15	2	901	ADP	PA-O3A-PB	-3.51	120.78	132.83
15	5	901	ADP	N3-C2-N1	-3.15	123.75	128.68
15	5	901	ADP	C3'-C2'-C1'	3.14	105.71	100.98
15	4	1001	ADP	N3-C2-N1	-3.12	123.81	128.68
15	6	1101	ADP	N3-C2-N1	-3.08	123.86	128.68
15	2	901	ADP	N3-C2-N1	-3.02	123.95	128.68
15	4	1001	ADP	C3'-C2'-C1'	2.96	105.44	100.98
15	6	1101	ADP	C4-C5-N7	-2.77	106.52	109.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
15	5	901	ADP	C4-C5-N7	-2.73	106.55	109.40
15	4	1001	ADP	C4-C5-N7	-2.66	106.63	109.40
15	4	1001	ADP	PA-O3A-PB	-2.44	124.45	132.83
17	D	601	ATP	C5-C6-N6	2.32	123.88	120.35
17	Е	501	ATP	C5-C6-N6	2.28	123.81	120.35
15	2	901	ADP	C4-C5-N7	-2.25	107.06	109.40
17	Е	501	ATP	PB-O3B-PG	2.02	139.77	132.83

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
15	2	901	ADP	C5'-O5'-PA-O3A
15	5	901	ADP	C5'-O5'-PA-O1A
15	6	1101	ADP	C5'-O5'-PA-O3A
17	D	601	ATP	PB-O3B-PG-O2G
17	D	601	ATP	C5'-O5'-PA-O2A
17	D	601	ATP	C5'-O5'-PA-O3A
17	Е	501	ATP	C5'-O5'-PA-O1A
17	Е	501	ATP	C5'-O5'-PA-O2A
17	D	601	ATP	C4'-C5'-O5'-PA
15	4	1001	ADP	C3'-C4'-C5'-O5'
15	4	1001	ADP	O4'-C4'-C5'-O5'
17	Е	501	ATP	O4'-C4'-C5'-O5'
15	2	901	ADP	C5'-O5'-PA-O1A
15	2	901	ADP	C5'-O5'-PA-O2A
15	6	1101	ADP	C5'-O5'-PA-O2A
17	Е	501	ATP	C4'-C5'-O5'-PA
15	2	901	ADP	PA-O3A-PB-O3B
17	D	601	ATP	PB-O3B-PG-O3G
17	Е	501	ATP	C5'-O5'-PA-O3A
15	2	901	ADP	O4'-C4'-C5'-O5'
15	6	1101	ADP	O4'-C4'-C5'-O5'

All (21) torsion outliers are listed below:

There are no ring outliers.

5 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
15	5	901	ADP	2	0
15	2	901	ADP	2	0
17	D	601	ATP	1	0

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
15	6	1101	ADP	1	0
15	4	1001	ADP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

