

Jun 10, 2025 - 02:45 pm BST

PDB ID	:	$9G33 \ / \ pdb_00009g33$
EMDB ID	:	EMD-50991
Title	:	Stalled 90S - Utp23-Krr1-deltaC3
Authors	:	Thoms, M.; Berninghausen, O.; Beckmann, R.
Deposited on	:	2024-07-11
Resolution	:	3.05 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4-5-2 with Phenix2.0rc1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.05 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	D3	1808	- 30%	16% ·		51%			
2	D2	700	53	8%	18%	• 269	%		
3	D4	333	40%	10%	•	47%			
4	CJ	290		88%			10% •		
5	CK	593	28%	5%	66%				
6	CL	1183		60%	9%	31%			
7	DY	135	• 5	56%	15%	29%			

Continued on next page...

Mol	Chain	Length	Quality of chain	
8	UX	189	84%	8% 8%
9	JF	252	77%	10% 14%
9	JG	252	78%	14% 8%
10	CA	327	61% 12%	26%
10	CB	327	55% 15%	31%
11	UB	810	55% 6%	39%
12	UC	610	• 18% • 79%	
13	UE	643	66% 8%	26%
14	UH	713	26%	6% 19%
15	UK	250	88%	8% •
16	UL	943	• 79%	11% 10%
17	UM	817	17% • 80%	
18	UO	513	79%	17% •
19	UP	214	24% • 72%	
20	US	552	87%	11% •
21	CF	126	91%	6% •
21	CG	126	80%	16% •
22	CI	183	86%	14% •
23	JE	357	• <u>35%</u> • 62%	
24	JH	483	53%	47%
25	JJ	274	27% 34% • 65%	
26	JK	534	7% • 92%	
27	JM	217	53% 10%	38%
28	JQ	206	18%	• 24%
29	DF	225	81%	12% 7%

Continued from previous page...

Continued on next page...

Conti	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
30	DI	200	71%	16% 12%
31	DJ	197	82%	8% 10%
32	DS	146	7% 69%	29%
33	JC	707	44% 6%	50%
34	DE	261	74%	16% 10%
35	DX	145	61% 10%	29%
36	DW	130	88%	10% •
37	DG	236	75%	13% 11%
38	DL	156	77%	11% · 12%
39	СН	573	69%	10% 21%
40	Dc	67	84%	10% 6%
41	DQ	143	72%	15% 13%
42	CE	511	75%	10% 15%
43	CD	504	• 70%	5% 25%
44	UN	899	• 19% • 79%	
45	UF	440	5% 78%	8% 14%
46	UG	554	82%	10% 7%
47	JN	346	48% 5%	46%
48	JO	316	• 54% 6%	40%
49	CM	367	82%	17% ·
50	UZ	274	83%	10% 7%
51	JP	489	81%	13% 6%
52	UR	594	73%	8% 19%
53	UU	939	• 79%	11% 10%
54	UD	776	77%	11% 12%

Continued on next page...

Mol	Chain	Length	Quality of chain								
55	UQ	896	83%		10%	7%					
56	UA	923	81%		10%	10%					
57	UI	575	22% • 77%								
58	UJ	1769	92%			• •					
59	DH	190	• 79%		11%	11%					
60	UT	2493	90%			• 6%					
61	JA	1056	7%	14%	-	16%					
61	JB	1056	67%	14%	19	9%					

2 Entry composition (i)

There are 63 unique types of molecules in this entry. The entry contains 203584 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	D3	886	Total 18883	C 8442	N 3361	0 6194	Р 886	0	0

• Molecule 2 is a RNA chain called 5' ETS.

Mol	Chain	Residues		A	AltConf	Trace			
2	D2	519	Total 11078	C 4950	N 1970	O 3639	Р 519	0	0

• Molecule 3 is a RNA chain called U3 snoRNA.

Mol	Chain	Residues		A	AltConf	Trace			
3	D4	176	Total 3731	C 1670	N 650	O 1235	Р 176	0	0

• Molecule 4 is a protein called U3 small nucleolar ribonucleoprotein protein IMP4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	CJ	282	Total 2281	C 1432	N 426	0 416	${ m S} 7$	0	0

• Molecule 5 is a protein called U3 small nucleolar RNA-associated protein MPP10.

Mol	Chain	Residues		At	oms			AltConf	Trace
5	CK	199	Total 1584	C 984	N 280	0 316	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called Ribosome biogenesis protein BMS1.

Mol	Chain	Residues		Α	AltConf	Trace			
6	CI	818	Total	С	Ν	Ο	\mathbf{S}	0	0
0	UL UL	010	6472	4155	1141	1147	29	0	0

• Molecule 7 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
7	DY	96	Total 761	C 487	N 137	O 137	0	0

• Molecule 8 is a protein called rRNA-processing protein FCF1.

Mol	Chain	Residues		A	toms		AltConf	Trace	
8	UX	174	Total 1396	C 890	N 255	0 241	S 10	0	0

• Molecule 9 is a protein called Ribosomal RNA small subunit methyltransferase NEP1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	JG	231	Total	C	N	0	S	0	0
			1789	1137	308	334	10		
0	IF	917	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
3	51	211	1647	1047	281	308	11	0	0

• Molecule 10 is a protein called rRNA 2'-O-methyltransferase fibrillarin.

Mol	Chain	Residues		Atoms					Trace
10	CA	241	Total	С	Ν	0	\mathbf{S}	0	0
10	UA	241	1868	1185	334	339	10	0	0
10	CP	227	Total	С	Ν	0	\mathbf{S}	0	0
10	CD	221	1778	1129	319	320	10	0	0

• Molecule 11 is a protein called Nucleolar complex protein 14.

Mol	Chain	Residues		At	AltConf	Trace			
11	UB	491	Total 3660	C 2331	N 643	O 675	S 11	0	0

• Molecule 12 is a protein called Something about silencing protein 10.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
12	UC	128	Total 1027	C 633	N 204	O 190	0	0

• Molecule 13 is a protein called U3 small nucleolar RNA-associated protein 5.

Mol	Chain	Residues		At	AltConf	Trace			
13	UE	478	Total 3773	C 2401	N 647	O 712	S 13	0	0

• Molecule 14 is a protein called U3 small nucleolar RNA-associated protein 8.

Mol	Chain	Residues		Ate	AltConf	Trace			
14	UH	581	Total 3518	C 2204	N 633	O 678	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called U3 small nucleolar RNA-associated protein 11.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	UK	240	Total 1985	C 1233	N 384	0 361	S 7	0	0

• Molecule 16 is a protein called U3 small nucleolar RNA-associated protein 12.

Mol	Chain	Residues		Α		AltConf	Trace		
16	UL	849	Total 6393	C 4104	N 1080	0 1185	S 24	0	0

• Molecule 17 is a protein called U3 small nucleolar RNA-associated protein 13.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	UM	160	Total 1269	C 800	N 224	O 236	S 9	0	0

• Molecule 18 is a protein called U3 small nucleolar RNA-associated protein 15.

Mol	Chain	Residues		At	AltConf	Trace			
18	UO	494	Total 3905	C 2459	N 700	0 734	S 12	0	0

• Molecule 19 is a protein called U3 small nucleolar RNA-associated protein 16.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
19	UP	60	Total 419	C 259	N 81	O 79	0	0

• Molecule 20 is a protein called Nucleolar complex protein 4.

Mol	Chain	Residues		At	AltConf	Trace			
20	US	542	Total 3967	C 2581	N 663	0 711	S 12	0	0

• Molecule 21 is a protein called 13 kDa ribonucleoprotein-associated protein.

Mol	Chain	Residues		At	oms	AltConf	Trace			
91	CF	192	Total	С	Ν	0	S	0	0	
	Or	123	932	594	160	174	4	0	U	
91	CC	191	Total	С	Ν	0	S	0	0	
21 (CG 121	121	916	583	158	171	4		0	

• Molecule 22 is a protein called U3 small nucleolar ribonucleoprotein protein IMP3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	CI	182	Total 1531	C 967	N 287	0 270	S 7	0	0

• Molecule 23 is a protein called U3 small nucleolar ribonucleoprotein protein LCP5.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	JE	136	Total 959	C 580	N 180	O 197	S 2	0	0

• Molecule 24 is a protein called Essential nuclear protein 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
24	JH	257	Total 1276	C 762	N 257	O 257	0	0

• Molecule 25 is a protein called Pre-rRNA-processing protein PNO1.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
25	JJ	96	Total 500	C 300	N 101	O 99	0	0

• Molecule 26 is a protein called Protein BFR2.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
26	JK	42	Total 330	C 210	N 53	O 67	0	0

• Molecule 27 is a protein called rRNA-processing protein FCF2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	JM	135	Total 1100	$\begin{array}{c} \mathrm{C} \\ 697 \end{array}$	N 200	O 199	$\frac{S}{4}$	0	0

• Molecule 28 is a protein called Regulator of rDNA transcription protein 14.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	JQ	157	Total 860	C 525	N 164	0 171	0	0

• Molecule 29 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		Ate	AltConf	Trace			
29	DF	209	Total 1638	C 1029	N 296	O 310	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 40S ribosomal protein S8-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	DI	175	Total 1350	C 836	N 264	0 248	${S \over 2}$	0	0

• Molecule 31 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	DJ	177	Total 1406	C 889	N 270	0 246	S 1	0	0

• Molecule 32 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
32	DS	104	Total 526	C 315	N 105	O 106	0	0

• Molecule 33 is a protein called Ribosome biogenesis protein ENP2.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	JC	352	Total 2695	C 1704	N 465	0 517	S 9	0	0

• Molecule 34 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	DE	236	Total 1836	C 1178	N 339	O 316	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	DX	103	Total 774	C 494	N 141	0 137	${S \over 2}$	0	0

• Molecule 36 is a protein called 40S ribosomal protein S22-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	DW	127	Total 954	C 612	N 167	0 172	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	DG	209	Total 1577	C 999	N 304	0 272	${S \over 2}$	0	0

• Molecule 38 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	DL	138	Total 1052	C 673	N 195	0 181	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called Ribosomal RNA-processing protein 9.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	CH	452	Total 3531	C 2248	N 616	O 658	S 9	0	0

• Molecule 40 is a protein called 40S ribosomal protein S28-A.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
40	Dc	63	Total 498	C 306	N 99	O 92	S 1	0	0

• Molecule 41 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	DQ	125	Total 973	$\begin{array}{c} \mathrm{C} \\ 625 \end{array}$	N 174	0 174	0	0

• Molecule 42 is a protein called Nucleolar protein 58.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	CE	436	Total 3038	C 1912	N 541	O 578	${ m S} 7$	0	0

• Molecule 43 is a protein called Nucleolar protein 56.

Mol	Chain	Residues		At	AltConf	Trace			
43	CD	380	Total 2802	C 1771	N 489	O 535	${f S}{7}$	0	0

• Molecule 44 is a protein called U3 small nucleolar RNA-associated protein 14.

Mol	Chain	Residues		At	AltConf	Trace			
44	UN	188	Total 1441	C 894	N 272	0 273	${S \over 2}$	0	0

• Molecule 45 is a protein called U3 small nucleolar RNA-associated protein 6.

Mol	Chain	Residues		At	AltConf	Trace			
45	UF	379	Total 2795	C 1791	N 500	0 493	S 11	0	0

• Molecule 46 is a protein called U3 small nucleolar RNA-associated protein 7.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	UG	515	Total 3917	C 2462	N 706	0 738	S 11	0	0

• Molecule 47 is a protein called Protein FAF1.

Mol	Chain	Residues		At	AltConf	Trace			
47	JN	186	Total 1363	C 844	N 266	O 250	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called KRR1 small subunit processome component.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
48	JO	190	Total 1483	C 955	N 260	O 258	S 10	0	0

• Molecule 49 is a protein called RNA 3'-terminal phosphate cyclase-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
49	CM	363	Total 2768	C 1776	N 469	O 512	S 11	0	0

• Molecule 50 is a protein called Ribosome biogenesis protein UTP30.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	UZ	254	Total 1963	C 1256	N 351	0 349	S 7	0	0

• Molecule 51 is a protein called Protein SOF1.

Mol	Chain	Residues		At	AltConf	Trace			
51	JP	460	Total 3718	C 2330	N 674	O 698	S 16	0	0

• Molecule 52 is a protein called U3 small nucleolar RNA-associated protein 18.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	UR	480	Total 3751	C 2379	N 662	O 700	S 10	0	0

• Molecule 53 is a protein called U3 small nucleolar RNA-associated protein 21.

Mol	Chain	Residues		Α	AltConf	Trace			
52	TITI	846	Total	С	Ν	Ο	\mathbf{S}	0	0
55	00	00 840	6606	4197	1139	1249	21	0	0

• Molecule 54 is a protein called U3 small nucleolar RNA-associated protein 4.

Mol	Chain	Residues		At	AltConf	Trace			
54	UD	680	Total 5176	C 3286	N 901	O 968	S 21	0	0

• Molecule 55 is a protein called NET1-associated nuclear protein 1.

Mol	Chain	Residues		А	AltConf	Trace			
55	ЦО	027	Total	С	Ν	Ο	\mathbf{S}	0	0
00	UQ	001	6559	4181	1110	1249	19	0	U

• Molecule 56 is a protein called Periodic tryptophan protein 2.

Mol	Chain	Residues		А	AltConf	Trace			
56	ΠΔ	834	Total	С	Ν	Ο	\mathbf{S}	0	0
30 0.	UA	UA 834	6602	4203	1135	1246	18	0	0

• Molecule 57 is a protein called U3 small nucleolar RNA-associated protein 9.

Mol	Chain	Residues		At	AltConf	Trace			
57	UI	134	Total 959	C 614	N 171	0 172	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 58 is a protein called U3 small nucleolar RNA-associated protein 10.

Mol	Chain	Residues		A	AltConf	Trace			
59	TTT	1701	Total	С	Ν	Ο	\mathbf{S}	0	0
58	03	1701	10158	6323	1863	1958	14	0	0

• Molecule 59 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
59	DH	170	Total 1207	C 776	N 210	O 221	0	0

• Molecule 60 is a protein called U3 small nucleolar RNA-associated protein 20.

Mol	Chain	Residues		A	AltConf	Trace			
60	UT	2345	Total	С	Ν	0	\mathbf{S}	0	0
00		2040	13871	8770	2561	2529	11		0

• Molecule 61 is a protein called RNA cytidine acetyltransferase.

Mol	Chain	Residues		А	toms			AltConf	Trace
61	JA	891	Total 6631	C 4260	N 1157	O 1190	$\begin{array}{c} \mathrm{S} \\ \mathrm{24} \end{array}$	0	0
61	JB	856	Total 6345	C 4083	N 1094	0 1145	S 23	0	0

• Molecule 62 is GUANOSINE-5'-TRIPHOSPHATE (CCD ID: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues	Atoms					AltConf
62	CI	1	Total	С	Ν	Ο	Р	0
02	CL	1	32	10	5	14	3	0

• Molecule 63 is ZINC ION (CCD ID: ZN) (formula: Zn).

Mol	Chain Residues		Atoms	AltConf
63	UX	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S rRNA

L1044 L1057 L1057 R1057 R1155 R1156 R1152 R1152

- Molecule 7: 40S ribosomal protein S24-A
- Chain DY: 56% 15% 29%
- Molecule 8: rRNA-processing protein FCF1

Chain UX:	Chain UX:										8%	8%
MET GLY LYS LYS LYS LYS LYS LYS LYS F10 F10	T16 L25 Q29	E30 N31 LYS LYS LYS	GLU ASP PRO GLU LEU T41		N7 0 K7 9	M87 D88	R114 R121	D157	K161	L172	F189	

 \bullet Molecule 9: Ribosomal RNA small subunit methyltransferase NEP1

Chain JG:	78%	14% 8%
MET VAL ASP ASP ARG ARG ARG ARG ARG ARG CLY GLY GLY GLY GLY GLY M41 M41 M41	V44 M47 M47 155 SER SER SER ASN ASN ASN ASN ASN CLY CLY CLY CLY CLY CLY R88 R88 R88 R88 R88 R88 R88	P103 1104 N105 L110 Y113 F134 K135 R135 R136
R151 8152 8152 8152 1167 1167 1167 1171 1167 1171 1180 1171 1180 1171 1180 1171 1180 1171 1180 1180	1232 8239 8240 1252 1252	

• Molecule 9: Ribosomal RNA small subunit methyltransferase NEP1

Chain JF:	77%	10%	14%
MET VAL GLU ASP SER ARG ARG ASP	ALA LEEU LEEU CLEU CLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	L68 D83 L96 P103 T114	R118 R132 K174 V178
q190 1191 1192 1193 1193 1193 1193 1196	E200 8201 1202 8223 8228 8228 8228 8224 8224 8224 822		
• Molecule 1	0: rRNA 2'-O-methyltransferase fibrillarin		
Chain CA:	61% 12%	26%	
MET SER PHE ARG PRO GLY SER ARG GLY	SER SER ARG CLY CLY CLY SER SER CLY CLY CLY ALA ARG CLY ALA ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	SER ARG GLY GLY ALA ALA ARG GLY GLY SER	ARG GLY GLY PHE GLY GLY GLY GLY GLY

• Molecule 10: rRNA 2'-O-methyltransferase fibrillarin

Chain CB:	55%	15%	31%	1
MET PHE PHC PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	GLY GLY GLY GLY GLY GLY GLY SER ARG GLY ALA ARG GLY SER SER SER SER	ARG GLY GLY GLY GLY GLY GLY GLY SER SER	GLY GLY GLY GLY GLY SER SER GLY GLY GLY GLY	ARG GLY GLY
ARG ARG GLY GLY GLY ALA ARG GLY GLY GLY GLY GLY GLY GLY	ALA GLY ALA ARG CLY GLY GLY H91 H91 Y95 Y97 Y97 Y97 E103	V107 S116 K121 K121 R122 GLU GLU	S FR LYS LYS GLU ASP ASP ASP PRO PRO PRO PRO PRO PRO 7141	W144 N145
R148 A152 A152 A155 A156 A156 C166 C166 C167 K168 K168 V181	V188 6189 M210 M216 M216 M216 C28 R231 R231 R231 R231 R231 R233 V244	Q249 A250 A250 R251 1252 1253 1253 R259 F260 L261	C2 66 V257 V268 V268 V268 V268 V268 V268 V268 V268	Y309 E310
H313 V317 G318 R322 B323 B222 L175 L175 L175 L175 L175				
• Molecule 11: Nucleo	lar complex protein 14			
Chain UB:	55%	6%	39%	
MET ALA GLY GLN CLU CLU LEU LVS ASN ASN LVS ALA ALA ALA ANG	LLEU THR GLY GLN GLN THR ASN VAL LYS SER LYS ASN LYS SER LYS SER LYS SER LYS SER	ARG GLN ALA ALA CLV GLU ARC GLU GLU	LYS LYS LYS ALA ALA ALA ALA GLU GLU GLU ARG GLU ARG	PHE GLU ILE
LYS LYS ALA ALA ARG ARG CYS CLY GLY CLEU CEU CEU CEU CER CRA CER CER CER CER CER CER CER CER CER CER	ARSP ARS ALA ALA ALA CVAL CVAL CVAL CVA CVA CVA CVA CVA CVA CVA CVA CVA CVA	GLN ARG LYS ARG ALA ALA GLU ARA LYS MET	MET LYS ASN ASN ASN GLY GLY GLY GLY CAL ASP ASP ASP ARG	GLY GLU ARG
ASP LYS LEU LEU LEU CLU GLU GLU CLU CLU CLU CLU CLU ARG ARG ARG	GLU ARG GLN GLN GLN GLN SER ALN ARG ARG ARG ASN ASN ASN CLU CLU ASP ASP ASP ASP	ASP GLU ASP ASP GLY MET ASP MET ASP GLY SSP	LEU THR HIS LEU GLY GLY SER LEU GLU GLU GLU	LEU ALA ASN
ASP CLU GLU ASP PHE LEU ASP ASS ASS ASS ASS ASS ASS ASS ASS ASS	LEU LEU CLN P201 P202 R202 R205 R205 R205 R205 R205 R205 R	1.1.5 (223 (225 (226 (226 (227 (228) (229)	C230 7231 M232 F233 F233 Q235 Q235 Q235 D237 N238 N238 ASP	ASP HER PHE GLU GLU VAE NGL CLEU LEU
MET THR THR GLN PRO LYS LYS ASN MET ASN PRO PLU CV ASN THR THR	L VSP C C C C C C C C C C C C C C C C C C C	ALA PRO SER ASP ARC THR LYS T291	1318 610 610 610 610 611 611 611 716 610 716 610 610 610	ASP ASP ASP
OLY PHE TRP OLU OLU OLU OLU OLU OLU OLU ASP ASP ASP ASP ASP ASP	ALA ASP ASP ASP ASP ASP ASP CJU CJU ASP CJU ASP ASP CJU CJU CJU CJU CJU	PHE SER GLN TLE LLEU LYS LYS ASN TLE	LLE LLE 8379 P412 1412 1422 F425 T426 T428 V428	1433
L456 1459 1460 1462 1462 1462 1478 1438 1438	4615 1519 1524 1524 1524 0531 0531 1548 8548 8548 0554	K555 15565 15565 15566 1566 1586 1586 158	1602 1603 1624 1625 1625 1625 1627 1627 1631	N638 N651 L654

• Molecule 12: Something about silencing protein 10

• Molecule 14: U3 small nucleolar RNA-associated protein 8

• Molecule 18:	U3 small nu	icleolar RNA-ass	ociated protein 1	9	
Chain UO:		79%		17%	·
MET 82 811 82 811 82 823 828 828 828	S32 L35 E38 H44 145	T61 T61 R62 R62 C63 C64 T65 T65 F77 F77 F77 F77	V84 V85 S86 A87 A87 A87 C97 A98 A98 A98 A98 C97 C97 C97	V107 L118 H125 P126 H128 V129	N137 A143 S144 D145
R150 E163 L171 L174 S188 S188	R194 8200 8201 8201 8233 8233 8233 8233	V236 W237 K244 N263 N263 P266 M268 M268 Q269	1273 8276 1277 1277 1278 1278 1278 1278 1278 1278	v319 1326 1329 1329 1330 8334	LYS ARG SER SER ASP LYS
GLU ASN ALA PRO ALA SER PHE ASN ASN	K 353 K 355 Q 358 R 362 Y 366 E 371	R383 R385 M385 N393 L401 E412 E412 L413	T416 V417 E420 R424 R434 T450 I450 R454	D461 L474 Q481 R492 E494 E494	K499 E500 R503
M507 T512 S513					
• Molecule 19:	U3 small nu	icleolar RNA-ass	ociated protein 1	.6	
Chain UP:	24%	•	72%		_
MET SER ASN GLY HIS VAL LYS PHE ASP ASP	ASF GLU GLN ALA ALA ALA ALA ALA VAL	THR ASP ARG GLN ASP ASP VAL LVAL TLEU TLEU SER LVS	LYS ASP LYS GLU VAL VAL HIS SER ASP SER ASP GLU	SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLY LEU HIS SER GLY LYS
SER SER QLU QLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU ALA ILE ARG CLU GLU SER SER GLN	LEU ARG SER LYE ARG ARG CLV GLU GLU CLU TYR	ALA LYS CLYS CLYS CLY SER VAL ASN CLU CLU VAL	THR ASP ASP GLU VAL ILE GLU GLU GLU	GLU LEU LEU LYS ASN TLE
ASP CLN CLN CLN ASP CLU CLU CLU CLU CLN CLN CTN CCN	SER SER ARG HIS VAL THR PHE ASP LYS	LEU ASP GLU SER SER ASP GLU GLU ALA ALA ALA	LYS ALA R173 R173 R177 L160 L180	K193 K194 1199 K213 G214	
• Molecule 20:	Nucleolar co	omplex protein 4			
Chain US:		87%		11%	·
MI V2 II8 AI7 AI7 K22	E33	K78 K79 880 883 883 883 899 1102 1102 1102 1102 1104	1105 1106 1106 1109 1109 7110 7123 7123 7123	F134 N145 W156 S157 S158 S158 K167	F180 Y184 Y185 Q192
L212 N215 H225 D226 K227 F244	K252 N256 L265 Q272 1277	L278 L279 D297 Y303 N303 L305 V315 L305 L320	N321 8333 1352 1353 1354 1357 8367	S378 L388 T397 K408 H417	F426 E450 P453
T456 Y473 L499 E524 N528	N532 E533 ASP GLY ASP SER SER ALA SER	SER GLN GLY GLY N644 V545 C549 G549 G549 M552			
• Molecule 21:	13 kDa ribo	nucleoprotein-as	sociated protein		
Chain CF:		91%		6%	·

Mal 1 119 11 <u>_</u>1 DMA inted tain 15 10 1

MET SER ALA P4

Chain CG:	80%	16%	·
MET SER ALA PRO PRO FS K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3	K42 K42 R46 M54 M54 M54 F60 F60 F61 F61 F63 F63 F63 F63 F63 F64 V85 V85 V85 V99 CV85 V99 V99 V99 V84 V00	LILE	
• Molecule 22: U	3 small nucleolar ribonucleopro	tein protein IMP3	
Chain CI:	86%	14%	
MET V2 K22 Q23 Q25 Q26 M33 M33 M33 M33 M33	L157 L157 S161 S161 S161 F164 F164 F163 F166 F165 F165 F102 F1102 F1102 F1102 F1102 F1102 F1128	H156 E155 E155 N173 N176 N176 N176 S188	
• Molecule 23: U	3 small nucleolar ribonucleopro	tein protein LCP5	
Chain JE:	35% •	62%	-
MET SER GLU CLU CLU ALA ALA LLEU LLEU LLEU LVS ASP ASP ASP ASP ASY	SER THR ALA ALA ALA SER CIU CIU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	TLL PRO CALU SER SER ASW CALW CALW HIS CALW HIS CALW HIS CALW CALW HIS CALW CALW CALW CALW CALW CALW CALW CALW	ALA GLU VAF SER LEU LEU
LEU SER LEU LYS LYS ASN MET CLEU GLY TYR TLE ASN	SER LEU LEU MET LEU LEU LEU ASN ASP ASP CUU CYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	ARG ARG SER TLE TLE CLN ARG CLN VAL LEU ARG GLY VAL LEU VAL LIYS CLY CLY CLY CLY CLY CLY CLY CLU	LYS LEV ALEU TYR GLN
LEU ASP LYS LYS LEU THR ARG ALA ALA TYR LYS MET GLU	TTR TTR TTR ASP ALA ALA ALA ARC ALA ARC ARC ARA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	SIR CLU CLU ASP ASP ASP SIR SIR SIR SIR SIR SIR ASP ASP ASN THR THR SIR SIR SIR SIR SIR SIR SIR SIR SIR SI	GLY ILE ILE ASN THR ASN
LYS LYS SER SER SER ALA ALA GLU GLU GLU CLU CLU	GLN GLV ASN GLV ASN GLU GLU GLU ASP ASP ASP ASP ASP CLU TYR LIYS PRO PRO LIYS THR THR THR THR	LEU PRO PRO PRO GLN GLN GLN GLN G263 S265 S265 S265 S265 S265 S265 S265 S265	1298 R3 16 V3 19
1324 8330 1334 1338 1338 1338			
• Molecule 24: Es	ssential nuclear protein 1		
Chain JH:	53%	47%	-
MET ALA ALA ALA ALA SER SER CYS LYS ALA CLN GLN ARG	HIS PRO PRO LEU LEU LEU LEU ASP ALA ALA ALA ALA ALA CLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	ALA ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	ASP SER LYS ALA SER ARG ARG
LYS LIE ILEU LEU GLN CLU GLN GLN GLN GLN GLN CLU CLN	GLU GLY GLY GLU GLU GLU ALA ASN ASN GLU ARG CLU ALA ASN ASN ASN ASN ASN CLU THR THR THR THR THR THR THR	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	SER ASP PHE GLU GLU GLU
GLY ASP TYR LYS CLU GLU GLU GLU TLE GLU GLU GLU ASP	GLU ASP ALA ALA ALA ALA ALA ALA ALA CLU SC CLU CLU SC CLU CLU SC SC SC SC SC SC SC SC SC SC SC SC SC	TTR LEU ASN ASN ALA ALA ASP ILEU NET ASP ALA SER ALA SER CLV CVS CLV CVS CVA VAL	GLU ASP MET GLN ASP ASP
CLU PRO LEU LEU ALA ALA CLU CLU CLU CLU SER SER SER ASN	ILE SER SER SER SER LEU LEU LYS SER CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	Y214 T215 V217 Q218 Q218 S219 C221 V224 W224 W224 V228 V228	P230 K231 L232 F233 K234 V235 P237 P237 S238 S238 N250
S255 A262 S268 N269 A272 A272 A272	E292 T293 H297 S298 S298 C311 V312 E327 E327 C332 R333 E333 A335 A335 T336	5340 • • • • • • • • • • • • • • • • • • •	ASP GLY SER ASW ASW 6406 E407 E407 A409 A409 A411 V412 V412 L413 L413 D431

• Molecule 35:	40S ribosomal prot	ein S23-A			
Chain DX:	61%		10%	29%	
MET GLY CLYS CLYS GLY PRO ARG GLY CLY ASN SER	ALA ALA LYC LEU LEU ARC VAL ARG ASN ASN ASN ASN ALA	ASN TYR LYS LYS LYS LYS LEU CLEU CLEU CLEU ALA	PHE LYS SER SER SER L54 C58 C58	861 975 090 091 091 092	007 097
R121 L132 E138 K139 K139 K142 P143 R144 SER					
• Molecule 36:	40S ribosomal prot	ein S22-A			
Chain DW:		88%		10%	
MET THR ARG SS SS C C C C C C C C C C C C C C C C	134 135 135 135 135 135 144 165 165 165 193 193	P95 D112 Y130			
• Molecule 37:	40S ribosomal prot	ein S6-A			
Chain DG:		75%	1	13% 11%	
M1 Y7 M10 G11 S12 E35 F35	V49 K51 K7 A NAL VAL SER CYS SER TYR ARG ARG	ARG ARG 690 691 891 893 894 1113 1113 K116	q119 [1126 [1126 [1126 [1128 [1128 [1128 [1128	P135 1158 R159 R150 K164 G165	E166
1175 1177 1177 1177 119 199 199 199 199 199	4210 ARG LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA SER SER LEU LYS ALA			
• Molecule 38:	40S ribosomal prot	ein S11-A			
Chain DL:		77%		11% • 12%	I
MET SER THR GLU GLU CLEU TE 13 K15 K15	1001 1228 1238 1238 1238 1238 1238 1238 123	T78 M879 M879 M879 M870 188 184 184 184 K102 K102 K103	H110 1122 K133 K133 N138 S143 S143	ALA ALA ALA GLY GLY ALA ALA ASN CLN GLN GLN	ALA LYS PHE
• Molecule 39:	Ribosomal RNA-pr	ocessing protein	1 9		
Chain CH:	69°	%	10%	21%	
MET SER ASP VASP THR THR GLN GLN LYS LYS LYS LYS LYS	ARG SER LYS CLYS CLY CLYS CLY CLY ASN PRO FRO FRO TTR YAL YAL YAL	GLU TLE THR ASP SER SER ASP GLU GLU	GLN LEU CLU CLU SER SER ASP GLU GLU ASP ALA	LEU GLU 850 850 860 865 166	Aro ASN ASP ILE
LEU THR ASP ASN ASN ASN ASN ALA GLU CJU CJS ASP	LEU ASN ASN ASN LEU ASN CLU CLU CLU ASP ASP ASN ASN ASN	ALA ALA ALA ALA ALA ALA ALA ALA K114 S119 S119 S119 L121 L121 L121	GLU ASP VAL ALA GLU GLN GLN L141	E144 1150 1150 1150 1155 6153 E154 1156	I160
L167 ASN ASN ASN ASN TTR TTR TTR CLU CLU CLU CLU ASN ASN	0.1 Y ASP 1.4 SS 1.4 SN 4.8 N 4.8 SN 4.1 SP 1.9 1 8.2 07 8.2 1.2 8.2 1	H235 V242 S245 P246 T253 D257	12 86 12 86 12 88 12 86 12 86 12 86	C299 C299 F3305 F319 H322	M333 E334 R335

• Molecule 40: 40S ribosomal protein S28-A

• Molecule 44: U3 small nucleolar RNA-associated protein 14

• Molecule 45: U3 small nucleolar RNA-associated protein 6

Chain CM:

82%

17%

• Molecule 50: Ribosome biogenesis protein UTP30

Chain UZ:	83%	10% 7%
MET VAL GLU B4 B5 D5 B5 139 B50 172 172 172 175 D78	Y83 H92 F110 F110 K114 L135 L135 S147 S147 S147 L150 L150 K161 K161 K161 K161 K161 K161 K161	L180 R181 D194 R229 C23 C23 C23 C23 C23 C23 C23 C23 C23 C23
GLU ALA ALA ALA ALA ALA CLU ASN CLU ASN ASN ASN CLU SER ASN CLU SER CLU SER LEU SER LEU SER LEU		
• Molecule 51: Protein S	SOF1	
Chain JP:	81%	13% 6%
K4 K8 818 818 735 735 735 741 741 741 741 741	80 15 15 15 15 15 15 15 15 15 15	44 4 6 4 6 6 6 6 6 6 6 6
		21 21 21 21 21 21 21 21 21 21 21 21 21 2
VAL THR M68 1173 1176 1185 1191 1196 1196 1196 1196 1196 1196 119	W217 W217 D220 M226 M226 M276 M276 M276 M276 M276 M276	K333 U K333 V1 S339 V1 N340 S1 N3446 N1 N356 SE D359 AS N384 AS

• Molecule 52: U3 small nucleolar RNA-associated protein 18

Chain	UR	: -										73	3%												8	%			1	.9%)		-		
MET THR MET ALA THR	THR ALA MFT	ASN VAL	SER VAL	P13	E19	q 20	K24	F44	ILE	ASN	GLU	GLU	MET	ASP VAL	GLU	GLN	GLU	ASP CT 11	GLY	SER GI II	SER	ASP	SER	GLU	ASP	GLU AT A	GLN	ASN GLY	GLU	LEU ASP	HIS	VAL	ASN	GLN	LEU
																													•						
PHE PHE VAL ASP ASP	GLY GLY ASN	GLU ASP	SER	ASP LYS	ASN	GLU ASP	THR	ASP	VAL	ASP	GLU	ASP	SER	SER SER	ASP	TYR	SER	GLU	SER	GLU F122	444	P136	T140	N141 K142	T143	K154		R165	D180		GLU	LEU	ASP ASP	GLU	ASP
ASP GLU GLU GLY GLY	SER	VAL TI.F.	N202	L228 P229		1251 Q252	<mark>\$253</mark>	D278	G279	T281	Loof	1 237 C 298	1000 0	n 307	F313	131 4 A315		R318	M321	4307	LEU	GLU	LEU	THR HIG	SER	GLN T336	2	R3 <u>44</u> L345		0352 R353	S354	F355	N365	S370	
M396 D406 S415	R416	R446	0450	1458		T464	L471	K475	1476	N492		0513	L514	V551		0001	Y594																		

 \bullet Molecule 53: U3 small nucleolar RNA-associated protein 21

1252 1252 1256 1256 1257 1258 1238 1238 1238 1238 1238 1238 1357 1357 1357 1358 1357 1357 1358 1357 1403 1403 1403 1445 1445 1445 1445 1445 1445 1445 144
L525 L525 H527 H527 H526 S570 S570 S570 S570 S570 S570 S570 S570
THR THR VAL THR VAL VAL VAL CLU VAL ASN VAL ASN ASN VAL ASN VAL CLU CLU CLU CLU CLU CLU CLU CL
• Molecule 56: Periodic tryptophan protein 2
Chain UA: 81% 10% 10%
MET MET 115 115 115 115 115 115 115 11
ASP ASP STR: 17559 17559 17559 17559 17559 17310 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17313 17314 17313 17314 17315 17314 17315 17316 17317 17316 17317
E443 L450 L450 L450 L479 L476 L478 8493 8433 8434 84444 84444 84444 84444 844444 844444 84444444 844444444
1828 1834 1834 1834 1834 1834 1844 1844 184
PRO SER ASN ASP ASP ASP ASP ASP ASU ALU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
\bullet Molecule 57: U3 small nucleolar RNA-associated protein 9
Chain UI: 22% · 77%
MET MET SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
SER VAL ASP PHE PHE PHE PHE CTRP CTRP CTRP CTRP ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
111 VAN VAN VAN 1112 1112 1112 1128 1278 1278 1218 1218
HIS GLA GLA ASA ASA ASA ASA ASA CVAL CVA CVA CVA CVA CVA CVA CVA CVA CVA CVA
ASP LEU LEU LEU LYS SER LYS SER TEU LYS CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN
THR PRO PRO SER ASN VGLM VGLM VGLM TTRP CGLM ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN

Chain DH:

79%

 \bullet Molecule 60: U3 small nucleolar RNA-associated protein 20

***** .2421

<u>ട്</u>

• Molecule 61: RNA cytidine acetyltransferase

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	32278	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46.4	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	5.585	Depositor
Minimum map value	0.000	Depositor
Average map value	0.022	Depositor
Map value standard deviation	0.132	Depositor
Recommended contour level	0.45	Depositor
Map size (Å)	522.5, 522.5, 522.5	wwPDB
Map dimensions	500, 500, 500	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GTP, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	D3	0.21	0/21102	0.31	0/32834	
2	D2	0.25	0/12389	0.27	0/19297	
3	D4	0.26	0/4163	0.28	0/6467	
4	CJ	0.27	0/2322	0.49	0/3128	
5	CK	0.24	0/1601	0.53	2/2150~(0.1%)	
6	CL	0.27	0/6612	0.48	0/8919	
7	DY	0.25	0/774	0.56	2/1041~(0.2%)	
8	UX	0.30	0/1419	0.48	0/1906	
9	$_{\rm JF}$	0.22	0/1673	0.52	0/2268	
9	JG	0.26	0/1818	0.50	0/2460	
10	CA	0.30	0/1904	0.48	0/2570	
10	CB	0.28	0/1811	0.56	2/2443~(0.1%)	
11	UB	0.21	0/3722	0.40	0/5048	
12	UC	0.26	0/1035	0.54	0/1365	
13	UE	0.28	0/3841	0.50	0/5213	
14	UH	0.18	0/3555	0.48	2/4897~(0.0%)	
15	UK	0.27	0/2010	0.46	0/2662	
16	UL	0.31	0/6526	0.55	0/8873	
17	UM	0.27	0/1287	0.55	0/1739	
18	UO	0.30	0/3987	0.56	0/5405	
19	UP	0.26	0/423	0.45	0/571	
20	US	0.23	0/4074	0.47	0/5581	
21	CF	0.32	0/945	0.48	0/1284	
21	CG	0.25	0/928	0.48	0/1262	
22	CI	0.31	0/1560	0.51	0/2097	
23	JE	0.22	0/971	0.59	2/1314~(0.2%)	
24	JH	0.13	0/1274	0.32	0/1775	
25	JJ	0.14	$0/\overline{502}$	0.42	$0/\overline{692}$	
26	JK	0.25	0/338	0.53	0/458	
27	JM	0.24	0/1119	0.49	0/1494	
28	JQ	0.18	0/867	0.41	0/1203	
29	DF	0.28	0/1658	0.55	0/2242	

Mal	Mol Chain		ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
30	DI	0.28	0/1372	0.52	0/1839	
31	DJ	0.25	0/1428	0.50	0/1916	
32	DS	0.14	0/523	0.38	0/724	
33	JC	0.27	0/2753	0.49	0/3742	
34	DE	0.23	0/1876	0.51	0/2536	
35	DX	0.28	0/786	0.52	0/1053	
36	DW	0.26	0/970	0.52	0/1312	
37	DG	0.24	0/1598	0.52	0/2151	
38	DL	0.22	0/1077	0.43	0/1466	
39	CH	0.24	0/3601	0.55	0/4862	
40	Dc	0.29	0/500	0.54	0/670	
41	DQ	0.32	0/990	0.55	0/1335	
42	CE	0.23	0/3075	0.46	0/4186	
43	CD	0.25	0/2847	0.47	0/3860	
44	UN	0.26	0/1468	0.50	0/1993	
45	UF	0.24	0/2852	0.46	0/3871	
46	UG	0.32	0/3997	0.51	0/5413	
47	JN	0.25	0/1370	0.56	0/1830	
48	JO	0.23	0/1510	0.49	0/2043	
49	CM	0.24	0/2820	0.49	0/3814	
50	UZ	0.23	0/1998	0.52	0/2704	
51	JP	0.35	1/3797~(0.0%)	0.56	0/5116	
52	UR	0.34	0/3835	0.52	0/5201	
53	UU	0.31	0/6743	0.54	1/9126~(0.0%)	
54	UD	0.30	0/5275	0.54	0/7180	
55	UQ	0.32	0/6692	0.52	0/9087	
56	UA	0.33	0/6747	0.54	0/9136	
57	UI	0.23	0/974	0.54	0/1329	
58	UJ	0.21	0/10267	0.46	1/14176~(0.0%)	
59	DH	0.22	0/1229	0.50	0/1676	
60	UT	0.17	0/14115	0.40	0/19566	
61	JA	0.21	0/6767	0.49	$\overline{1/9207}~(0.0\%)$	
61	JB	0.18	0/6479	0.46	0/8830	
All	All	0.25	1/210541~(0.0%)	0.46	13/293608~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	JG	0	1

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
29	DF	0	1
50	UZ	0	1
All	All	0	3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
51	JP	198	GLY	C-O	5.92	1.27	1.24

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	CK	426	LEU	CA-C-N	6.11	133.22	121.54
5	CK	426	LEU	C-N-CA	6.11	133.22	121.54
10	CB	296	GLU	CA-C-N	5.88	132.77	121.54
10	CB	296	GLU	C-N-CA	5.88	132.77	121.54
53	UU	930	MET	CB-CG-SD	-5.78	95.36	112.70
23	JE	253	SER	CA-C-N	5.61	134.81	124.82
23	JE	253	SER	C-N-CA	5.61	134.81	124.82
7	DY	30	PRO	CA-C-N	5.43	131.92	121.54
7	DY	30	PRO	C-N-CA	5.43	131.92	121.54
14	UH	612	GLU	CA-CB-CG	5.40	124.89	114.10
58	UJ	405	GLU	N-CA-CB	5.24	118.40	110.28
14	UH	612	GLU	N-CA-CB	5.16	118.28	110.28
61	JA	323	GLU	N-CA-CB	5.11	118.16	110.30

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
29	DF	49	GLU	Peptide
9	JG	213	LYS	Peptide
50	UZ	78	ASP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	D3	18883	0	9534	126	0
2	D2	11078	0	5570	60	0
3	D4	3731	0	1892	16	0
4	CJ	2281	0	2297	22	0
5	CK	1584	0	1589	25	0
6	CL	6472	0	6530	72	0
7	DY	761	0	782	15	0
8	UX	1396	0	1473	12	0
9	JF	1647	0	1643	16	0
9	JG	1789	0	1841	26	0
10	CA	1868	0	1909	27	0
10	CB	1778	0	1823	30	0
11	UB	3660	0	3404	34	0
12	UC	1027	0	1080	21	0
13	UE	3773	0	3787	33	0
14	UH	3518	0	2497	34	0
15	UK	1985	0	2051	18	0
16	UL	6393	0	6116	66	0
17	UM	1269	0	1247	13	0
18	UO	3905	0	3894	52	0
19	UP	419	0	380	6	0
20	US	3967	0	3505	39	0
21	CF	932	0	983	6	0
21	CG	916	0	964	11	0
22	CI	1531	0	1572	21	0
23	JE	959	0	787	12	0
24	JH	1276	0	561	1	0
25	JJ	500	0	275	2	0
26	JK	330	0	302	6	0
27	JM	1100	0	1099	14	0
28	JQ	860	0	469	4	0
29	DF	1638	0	1683	17	0
30	DI	1350	0	1343	25	0
31	DJ	1406	0	1465	14	0
32	DS	526	0	247	2	0
33	JC	2695	0	2512	25	0
34	DE	1836	0	1867	27	0
35	DX	774	0	810	10	0
36	DW	954	0	945	9	0
37	DG	1577	0	1597	22	0
38	DL	1052	0	1035	16	0
39	СН	3531	0	3473	37	0
40	Dc	498	0	535	5	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
41	DQ	973	0	1029	15	0
42	CE	3038	0	2817	33	0
43	CD	2802	0	2625	21	0
44	UN	1441	0	1330	13	0
45	UF	2795	0	2461	27	0
46	UG	3917	0	3777	42	0
47	JN	1363	0	1295	18	0
48	JO	1483	0	1522	12	0
49	CM	2768	0	2844	42	0
50	UZ	1963	0	1971	20	0
51	JP	3718	0	3645	40	0
52	UR	3751	0	3706	34	0
53	UU	6606	0	6523	69	0
54	UD	5176	0	4984	49	0
55	UQ	6559	0	6385	59	0
56	UA	6602	0	6461	56	0
57	UI	959	0	881	7	0
58	UJ	10158	0	7084	41	0
59	DH	1207	0	1092	12	0
60	UT	13871	0	8948	60	0
61	JA	6631	0	6373	85	0
61	JB	6345	0	6043	93	0
62	CL	32	0	12	0	0
63	UX	1	0	0	0	0
All	All	203584	0	173176	1597	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (1597) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
20:US:130:GLU:O	20:US:134:PHE:HB2	1.75	0.86
54:UD:614:TRP:NE1	54:UD:618:ASN:HD22	1.75	0.85
61:JA:309:PHE:HB2	61:JA:384:VAL:HG22	1.63	0.81
55:UQ:818:ASN:N	55:UQ:818:ASN:HD22	1.78	0.80
55:UQ:16:SER:O	55:UQ:783:LEU:HB2	1.83	0.78
52:UR:307:GLN:NE2	52:UR:471:LEU:O	2.20	0.75
61:JA:343:ILE:HB	61:JA:356:ARG:HB2	1.68	0.75
23:JE:263:GLY:HA3	31:DJ:138:LYS:H	1.53	0.73
50:UZ:243:PHE:HB3	50:UZ:251:SER:HB2	1.70	0.72

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
27:JM:114:ARG:O	27:JM:118:GLN:HB3	1.90	0.72
4:CJ:123:VAL:HG12	4:CJ:125:PRO:HD2	1.71	0.72
22:CI:65:PRO:HD3	47:JN:203:ILE:HG22	1.72	0.71
16:UL:538:ARG:NH1	16:UL:580:ASP:OD1	2.23	0.70
58:UJ:151:ILE:O	58:UJ:155:ILE:HB	1.92	0.69
36:DW:93:LEU:HD13	47:JN:311:VAL:HG21	1.74	0.69
23:JE:251:GLU:OE2	31:DJ:78:ARG:NH1	2.25	0.69
55:UQ:459:ILE:HD12	55:UQ:469:ASN:HB3	1.75	0.69
55:UQ:882:VAL:HG11	55:UQ:890:ARG:HH22	1.58	0.68
33:JC:101:ASN:HD21	33:JC:104:PHE:HB3	1.57	0.68
54:UD:426:GLN:O	54:UD:444:ARG:NH1	2.27	0.68
10:CA:218:ILE:HD11	43:CD:152:LEU:HD22	1.75	0.67
49:CM:176:GLN:HE21	49:CM:305:LYS:HE2	1.59	0.67
1:D3:259:U:OP1	30:DI:75:LYS:NZ	2.28	0.67
49:CM:196:TYR:HA	49:CM:228:ASP:O	1.94	0.67
49:CM:289:VAL:O	49:CM:317:GLN:NE2	2.27	0.67
16:UL:387:LEU:O	16:UL:415:LYS:NZ	2.27	0.67
2:D2:125:G:OP1	20:US:145:ASN:ND2	2.28	0.67
30:DI:172:ARG:HE	30:DI:175:GLN:HG3	1.58	0.67
23:JE:256:PRO:HB2	39:CH:357:LEU:HD22	1.76	0.66
16:UL:137:ILE:HG12	16:UL:147:VAL:HG22	1.76	0.66
61:JA:165:THR:HG21	61:JA:210:LEU:HD22	1.76	0.66
61:JA:359:ILE:HB	61:JA:365:GLN:HB2	1.77	0.66
1:D3:1606:C:OP2	4:CJ:94:ARG:NH2	2.29	0.66
1:D3:1514:U:OP2	50:UZ:142:ARG:NH2	2.29	0.66
47:JN:166:SER:HB2	48:JO:158:LEU:HD11	1.77	0.66
14:UH:556:VAL:HG23	14:UH:557:THR:HG23	1.78	0.66
61:JA:375:HIS:HA	61:JA:378:LEU:HD23	1.77	0.65
2:D2:358:G:H1	2:D2:367:C:H42	1.42	0.65
46:UG:224:LEU:HD21	46:UG:227:GLU:HG3	1.76	0.65
54:UD:549:VAL:HG22	54:UD:565:ARG:HD2	1.79	0.65
23:JE:334:LEU:HD12	31:DJ:68:LYS:HA	1.78	0.65
10:CB:242:ALA:HB2	10:CB:253:ILE:HD11	1.78	0.65
6:CL:832:HIS:HD2	6:CL:834:TRP:H	1.45	0.65
29:DF:74:ALA:O	41:DQ:122:ARG:NH2	2.30	0.64
1:D3:469:C:H5'	1:D3:471:A:H62	1.62	0.64
20:US:102:LEU:HA	20:US:105:ILE:HD12	1.80	0.64
41:DQ:94:GLN:HB3	41:DQ:102:LYS:HG3	1.78	0.64
20:US:352:VAL:HG12	20:US:354:TYR:H	1.63	0.64
41:DQ:98:ASP:OD1	53:UU:495:ARG:NH2	2.31	0.64
51:JP:83:LEU:HB2	51:JP:97:MET:HE2	1.78	0.64

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
52:UR:450:GLN:O	52:UR:492:ASN:ND2	2.31	0.64
61:JA:360:LYS:O	61:JA:364:ARG:NH2	2.31	0.64
10:CA:186:ASP:OD1	10:CA:214:ARG:NH1	2.31	0.64
34:DE:203:GLY:HA2	38:DL:70:ILE:H	1.63	0.64
42:CE:207:ARG:HH12	42:CE:226:ILE:HA	1.62	0.63
42:CE:264:GLU:HB3	43:CD:277:ARG:HH22	1.64	0.63
53:UU:835:ALA:O	53:UU:839:ASN:ND2	2.31	0.63
13:UE:280:GLN:HB3	13:UE:288:LYS:HE2	1.80	0.63
20:US:279:LEU:HA	20:US:357:ARG:HH12	1.64	0.63
4:CJ:143:HIS:HB2	4:CJ:151:SER:HB3	1.80	0.63
56:UA:570:THR:HG22	56:UA:572:LYS:H	1.64	0.63
1:D3:332:U:OP1	30:DI:56:ARG:NH2	2.32	0.63
51:JP:273:GLU:OE1	51:JP:276:ASN:ND2	2.30	0.63
52:UR:344:ARG:HH12	55:UQ:379:LEU:HB2	1.63	0.63
11:UB:527:GLN:O	11:UB:531:GLN:HB2	1.99	0.63
38:DL:57:LYS:O	38:DL:138:ASN:ND2	2.32	0.62
47:JN:232:GLU:O	47:JN:239:ARG:NH2	2.32	0.62
16:UL:549:SER:HA	16:UL:555:VAL:HG12	1.82	0.62
56:UA:58:ILE:HA	56:UA:74:ASP:HA	1.80	0.62
2:D2:316:U:OP1	46:UG:364:ARG:NH2	2.31	0.62
6:CL:1152:ARG:HE	6:CL:1156:LYS:HZ1	1.47	0.62
31:DJ:57:ARG:NH1	31:DJ:61:THR:OG1	2.32	0.62
14:UH:498:SER:HB3	14:UH:531:LEU:HD12	1.82	0.62
55:UQ:390:PRO:HB2	55:UQ:438:THR:HG21	1.81	0.62
61:JB:160:GLN:HG3	61:JB:172:TYR:HB3	1.82	0.62
7:DY:15:ASN:ND2	34:DE:54:TYR:O	2.33	0.62
16:UL:220:THR:HG23	16:UL:259:ILE:HD11	1.81	0.62
42:CE:161:VAL:O	42:CE:165:GLN:NE2	2.32	0.62
42:CE:65:GLU:O	42:CE:93:LYS:NZ	2.33	0.62
10:CA:100:ARG:NH1	10:CA:104:ASP:OD2	2.31	0.61
13:UE:245:ALA:HB1	13:UE:253:LEU:HD11	1.81	0.61
53:UU:724:SER:O	53:UU:728:ARG:NH2	2.34	0.61
61:JB:187:ARG:NH2	61:JB:488:LYS:O	2.33	0.61
1:D3:1599:C:H3'	6:CL:988:ARG:HH12	1.64	0.61
21:CG:8:ALA:HB2	21:CG:61:ILE:HD11	1.83	0.61
61:JB:548:ASN:OD1	61:JB:637:ARG:NH1	2.33	0.61
14:UH:596:LYS:HE2	18:UO:513:SER:HB2	1.81	0.61
52:UR:140:THR:HG1	52:UR:143:THR:HG1	1.43	0.61
1:D3:584:C:H5"	15:UK:12:GLN:HG2	1.83	0.61
46:UG:74:LEU:HD22	46:UG:369:MET:HE2	1.81	0.61
61:JA:23:ARG:NH1	61:JA:139:ILE:O	2.34	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
45:UF:16:ASP:OD2	46:UG:15:ARG:NH2	2.32	0.61
61:JB:187:ARG:NH2	61:JB:491:CYS:SG	2.72	0.61
51:JP:311:VAL:HG22	51:JP:322:THR:HG22	1.83	0.60
2:D2:68:U:H5'	55:UQ:426:ARG:HH22	1.65	0.60
10:CB:116:SER:HB3	10:CB:122:ARG:HD2	1.83	0.60
33:JC:147:ASN:ND2	33:JC:150:ASN:OD1	2.34	0.60
61:JA:548:ASN:OD1	61:JA:637:ARG:NH1	2.28	0.60
6:CL:828:ARG:NH1	35:DX:97:ASP:OD1	2.35	0.60
8:UX:161:LYS:HG2	8:UX:172:LEU:HD21	1.83	0.60
10:CA:228:GLN:O	10:CA:231:ARG:NH1	2.34	0.60
56:UA:492:SER:OG	56:UA:493:TRP:N	2.34	0.60
4:CJ:185:VAL:O	4:CJ:220:ARG:NH1	2.32	0.60
46:UG:369:MET:HE1	46:UG:404:PRO:HD2	1.84	0.60
49:CM:228:ASP:OD2	49:CM:230:TRP:NE1	2.34	0.60
2:D2:316:U:H5'	46:UG:364:ARG:HH22	1.66	0.60
8:UX:9:LYS:HE3	8:UX:10:PHE:H	1.66	0.60
53:UU:897:HIS:O	53:UU:900:ASN:ND2	2.34	0.60
61:JA:380:GLN:NE2	61:JB:366:THR:OG1	2.35	0.60
1:D3:545:A:H3'	12:UC:559:ARG:HH21	1.66	0.60
11:UB:796:LYS:HB2	35:DX:121:ARG:HD3	1.84	0.60
14:UH:650:LEU:HD23	14:UH:655:LEU:HD12	1.84	0.60
37:DG:199:GLN:OE1	37:DG:202:ARG:NH1	2.35	0.60
61:JB:23:ARG:NH1	61:JB:139:ILE:O	2.34	0.60
61:JA:565:PHE:HB2	61:JA:586:ILE:HB	1.82	0.60
6:CL:91:ARG:NE	61:JA:89:ASN:O	2.32	0.60
10:CB:240:VAL:HG23	10:CB:261:LEU:HD13	1.83	0.60
14:UH:321:ILE:HA	14:UH:334:THR:O	2.02	0.60
39:CH:348:LEU:HD23	39:CH:357:LEU:HD12	1.82	0.60
42:CE:408:THR:O	58:UJ:166:ASN:ND2	2.34	0.60
51:JP:345:THR:HG22	51:JP:347:ARG:H	1.66	0.60
54:UD:338:ALA:HB1	54:UD:361:LEU:HD11	1.83	0.60
56:UA:402:MET:HG2	56:UA:416:LEU:HD11	1.84	0.60
56:UA:407:LEU:HD22	56:UA:432:GLN:HB3	1.84	0.60
61:JA:833:ILE:HG13	61:JA:834:PHE:HD1	1.66	0.60
1:D3:592:A:H62	12:UC:558:ASN:HD22	1.50	0.59
4:CJ:183:SER:HB2	4:CJ:220:ARG:HD2	1.83	0.59
5:CK:449:ASP:O	5:CK:453:SER:HB3	2.02	0.59
61:JA:522:THR:HB	61:JA:706:PRO:HG2	1.83	0.59
6:CL:830:ARG:HH21	6:CL:878:HIS:HA	1.66	0.59
6:CL:997:MET:O	15:UK:22:ARG:NH2	2.36	0.59
16:UL:356:THR:HG22	16:UL:362:ILE:HG12	1.83	0.59

	1	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
39:CH:414:ILE:HD11	39:CH:480:ALA:HB2	1.82	0.59
49:CM:267:ILE:HB	49:CM:270:GLU:HG3	1.84	0.59
60:UT:2086:ILE:O	60:UT:2090:ALA:HB2	2.02	0.59
52:UR:446:ARG:NH2	54:UD:269:PHE:O	2.33	0.59
53:UU:569:VAL:HB	53:UU:579:ARG:HB2	1.84	0.59
10:CA:299:LYS:HB2	10:CA:325:LEU:HD22	1.82	0.59
10:CB:166:PRO:HA	10:CB:188:VAL:HA	1.84	0.59
11:UB:548:ARG:NH2	11:UB:638:ASN:OD1	2.35	0.59
14:UH:494:ASP:HB2	14:UH:497:ILE:HD13	1.85	0.59
61:JA:309:PHE:O	61:JA:384:VAL:HA	2.03	0.59
16:UL:633:CYS:HB2	16:UL:663:LEU:HD22	1.85	0.59
52:UR:165:ARG:NH2	53:UU:219:ASP:OD1	2.36	0.59
2:D2:12:G:H21	2:D2:70:A:H8	1.49	0.59
13:UE:434:THR:O	13:UE:463:ARG:NH1	2.35	0.59
44:UN:879:ILE:HA	51:JP:399:LYS:HG3	1.85	0.59
51:JP:48:THR:HG21	51:JP:410:ILE:HG23	1.85	0.59
1:D3:17:C:O2	3:D4:14:A:N6	2.35	0.59
1:D3:334:G:O6	30:DI:5:ARG:NH2	2.35	0.59
1:D3:1654:G:H1	1:D3:1746:A:H62	1.51	0.59
53:UU:605:LEU:HD23	53:UU:628:VAL:HG11	1.85	0.59
18:UO:60:SER:HA	18:UO:83:VAL:HG23	1.83	0.59
29:DF:222:LYS:HA	29:DF:225:ARG:HE	1.68	0.59
61:JA:515:LEU:HB3	61:JA:712:LEU:HD11	1.84	0.59
61:JB:491:CYS:HB3	61:JB:538:MET:HE2	1.84	0.59
10:CB:253:ILE:HG13	10:CB:269:ILE:HD12	1.84	0.58
53:UU:500:LEU:HD11	53:UU:539:LYS:HD3	1.84	0.58
5:CK:436:GLU:OE2	22:CI:60:LYS:NZ	2.36	0.58
42:CE:161:VAL:HA	42:CE:164:ILE:HG12	1.85	0.58
53:UU:463:VAL:HG13	53:UU:477:ILE:HG23	1.85	0.58
61:JB:112:GLU:OE2	61:JB:137:ARG:NH1	2.36	0.58
61:JB:124:LEU:HD11	61:JB:150:ILE:HG23	1.84	0.58
1:D3:477:A:H5'	12:UC:560:ASN:HD22	1.68	0.58
2:D2:347:U:OP1	48:JO:62:ARG:NH2	2.35	0.58
61:JA:32:ARG:HB2	61:JA:203:ASP:HB2	1.84	0.58
6:CL:968:THR:HG22	6:CL:970:SER:H	1.68	0.58
9:JF:174:LYS:HE2	9:JF:200:GLU:HB2	1.85	0.58
10:CB:144:TRP:CE2	10:CB:152:ALA:HB3	2.38	0.58
34:DE:55:ALA:HB1	34:DE:60:GLU:HG3	1.86	0.58
53:UU:326:PRO:O	53:UU:338:GLN:NE2	2.36	0.58
54:UD:498:VAL:HG12	54:UD:500:LEU:H	1.68	0.58
34:DE:100:ARG:HB2	34:DE:114:ILE:HD13	1.86	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
34:DE:195:ILE:HA	34:DE:210:ILE:HA	1.84	0.58
55:UQ:568:ASN:ND2	55:UQ:586:SER:OG	2.36	0.58
6:CL:87:ARG:NH2	6:CL:213:GLY:O	2.36	0.58
38:DL:80:MET:HG3	38:DL:83:THR:HB	1.86	0.58
61:JB:385:VAL:HG22	61:JB:407:PHE:HB2	1.86	0.58
61:JB:889:GLY:O	61:JB:892:ARG:NH1	2.36	0.58
2:D2:162:U:OP1	52:UR:318:ARG:NH1	2.37	0.58
21:CG:6:PRO:HG2	39:CH:465:GLN:HG3	1.84	0.58
34:DE:195:ILE:HG22	34:DE:210:ILE:HG12	1.83	0.58
53:UU:596:GLU:HB2	56:UA:711:LEU:HA	1.86	0.58
60:UT:58:ASN:HD22	60:UT:105:PRO:HG2	1.68	0.58
1:D3:372:G:OP2	23:JE:243:GLN:NE2	2.37	0.58
2:D2:102:A:OP2	2:D2:103:G:N2	2.33	0.58
15:UK:248:ARG:NH1	21:CF:94:SER:OG	2.37	0.58
19:UP:213:LYS:O	54:UD:767:LYS:NZ	2.34	0.58
58:UJ:235:VAL:HG22	58:UJ:264:PHE:HZ	1.69	0.58
61:JB:26:PHE:HA	61:JB:199:LEU:O	2.04	0.58
1:D3:561:G:OP2	4:CJ:282:ARG:NH2	2.35	0.57
10:CA:122:ARG:NE	10:CA:140:GLU:OE2	2.33	0.57
18:UO:11:SER:H	18:UO:416:THR:HG22	1.69	0.57
52:UR:315:ALA:HB2	52:UR:321:MET:HG3	1.86	0.57
4:CJ:3:ARG:NH2	22:CI:155:GLU:O	2.36	0.57
6:CL:907:THR:HG22	6:CL:912:ARG:HD3	1.85	0.57
51:JP:324:SER:OG	51:JP:325:TYR:N	2.37	0.57
53:UU:733:THR:O	53:UU:737:LEU:HB2	2.04	0.57
41:DQ:32:ASN:OD1	41:DQ:68:ARG:NH1	2.38	0.57
55:UQ:283:VAL:HG22	55:UQ:290:ILE:HG22	1.87	0.57
1:D3:1545:A:H61	1:D3:1566:U:H3	1.50	0.57
10:CA:240:VAL:HG23	10:CA:261:LEU:HD13	1.87	0.57
13:UE:145:CYS:HB3	13:UE:148:LEU:HD11	1.86	0.57
29:DF:16:VAL:HG21	53:UU:534:SER:HB3	1.85	0.57
39:CH:260:LEU:HD21	39:CH:283:VAL:HG11	1.86	0.57
55:UQ:769:ASN:HB3	55:UQ:773:ASP:HB2	1.86	0.57
60:UT:201:ARG:NH2	60:UT:241:THR:O	2.38	0.57
1:D3:497:G:O6	6:CL:1131:LYS:NZ	2.37	0.57
18:UO:358:GLN:O	18:UO:362:ARG:HB3	2.05	0.57
52:UR:365:ASN:ND2	52:UR:370:SER:OG	2.37	0.57
42:CE:238:ALA:O	42:CE:242:SER:HB2	2.04	0.57
48:JO:53:LEU:HA	48:JO:56:ILE:HG12	1.86	0.57
52:UR:513:GLN:HG3	52:UR:551:VAL:HG21	1.87	0.57
54:UD:618:ASN:HD21	54:UD:662:ASP:HA	1.69	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
58:UJ:153:SER:O	58:UJ:169:ARG:NH1	2.38	0.57
61:JB:343:ILE:HD12	61:JB:356:ARG:HB3	1.86	0.57
61:JB:555:LEU:O	61:JB:559:ALA:HB2	2.04	0.57
14:UH:540:LEU:HD12	14:UH:544:LEU:HD13	1.87	0.57
1:D3:487:G:OP1	6:CL:1126:LYS:NZ	2.37	0.57
16:UL:227:LYS:NZ	16:UL:244:GLU:OE2	2.32	0.57
18:UO:90:ARG:HH21	18:UO:137:ASN:HB3	1.69	0.57
61:JB:395:PRO:HA	61:JB:398:LYS:HD2	1.85	0.57
2:D2:489:G:O6	45:UF:120:ARG:NH1	2.37	0.56
11:UB:701:ALA:HA	20:US:417:HIS:HA	1.87	0.56
21:CF:54:MET:HB3	21:CF:64:LEU:HD13	1.86	0.56
39:CH:212:LYS:HG3	39:CH:268:LEU:HD22	1.86	0.56
49:CM:66:GLU:HB2	49:CM:75:ILE:HB	1.86	0.56
51:JP:89:ASP:O	51:JP:107:LYS:NZ	2.37	0.56
29:DF:118:LEU:HD22	29:DF:129:PRO:HB2	1.86	0.56
31:DJ:136:VAL:HG22	31:DJ:156:ILE:HG12	1.87	0.56
39:CH:150:THR:HG22	39:CH:207:ARG:HD3	1.86	0.56
45:UF:11:CYS:SG	45:UF:91:ARG:NH1	2.78	0.56
61:JB:319:LYS:HA	61:JB:322:PHE:HD2	1.70	0.56
1:D3:515:A:N6	1:D3:537:G:O2'	2.39	0.56
2:D2:480:C:O2	45:UF:46:ARG:NH1	2.39	0.56
5:CK:489:SER:O	56:UA:420:ARG:NH2	2.38	0.56
9:JG:151:ARG:NH1	9:JG:156:GLU:O	2.37	0.56
10:CB:268:VAL:HG12	10:CB:317:VAL:HG22	1.87	0.56
16:UL:217:LEU:HB3	16:UL:229:TRP:HB2	1.87	0.56
52:UR:280:LYS:HG3	52:UR:281:THR:HG23	1.86	0.56
54:UD:33:VAL:HG22	54:UD:752:LEU:HB3	1.87	0.56
54:UD:61:THR:HG21	54:UD:681:ILE:HD12	1.87	0.56
4:CJ:4:ARG:NH2	22:CI:153:ASN:OD1	2.27	0.56
8:UX:114:ARG:NH1	36:DW:70:ASN:OD1	2.38	0.56
10:CA:231:ARG:NH2	43:CD:10:GLU:OE1	2.32	0.56
43:CD:166:SER:HB3	43:CD:169:LYS:HB2	1.88	0.56
6:CL:553:ILE:HG12	49:CM:323:ILE:HD12	1.86	0.56
14:UH:587:LEU:HD12	14:UH:633:GLN:HG3	1.88	0.56
39:CH:235:HIS:ND1	39:CH:257:ASP:OD2	2.35	0.56
46:UG:130:ARG:NH2	46:UG:379:GLU:OE2	2.39	0.56
10:CA:236:MET:HG3	43:CD:133:LEU:HA	1.87	0.56
27:JM:54:GLU:HA	27:JM:57:THR:HG22	1.87	0.56
34:DE:196:VAL:N	34:DE:209:HIS:O	2.38	0.56
20:US:367:SER:OG	20:US:408:LYS:NZ	2.37	0.56
61:JA:593:GLU:HG2	61:JA:631:SER:HB2	1.87	0.56

A + a 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
61:JB:420:ARG:NH1	61:JB:494:VAL:O	2.39	0.56
1:D3:334:G:N7	30:DI:5:ARG:NH1	2.48	0.56
33:JC:194:LEU:HD21	33:JC:206:PHE:HD2	1.71	0.56
37:DG:7:TYR:HB2	37:DG:113:ILE:HD12	1.88	0.56
56:UA:114:ALA:HB2	56:UA:152:LEU:HD23	1.88	0.56
1:D3:1204:A:H5'	1:D3:1209:C:H4'	1.86	0.56
2:D2:6:A:N6	2:D2:8:A:N3	2.54	0.56
7:DY:82:ALA:O	7:DY:86:GLU:HB2	2.06	0.56
61:JA:259:GLN:HE21	61:JA:288:GLY:HA3	1.71	0.56
13:UE:308:ASN:HB2	13:UE:311:MET:HG3	1.88	0.56
16:UL:913:ASN:O	16:UL:917:ASN:HB2	2.06	0.56
17:UM:665:GLN:HB3	17:UM:688:LEU:HD21	1.88	0.56
35:DX:92:CYS:HA	35:DX:95:PHE:HD2	1.71	0.56
41:DQ:97:VAL:HG12	41:DQ:98:ASP:H	1.71	0.56
42:CE:380:ARG:NH1	42:CE:382:ASP:OD1	2.38	0.56
46:UG:283:ASP:OD1	46:UG:285:SER:OG	2.24	0.56
49:CM:137:LEU:HD22	49:CM:296:LEU:HD22	1.88	0.56
18:UO:276:SER:OG	18:UO:278:ASP:OD1	2.22	0.55
44:UN:857:TYR:O	44:UN:860:SER:OG	2.21	0.55
54:UD:573:VAL:HG22	54:UD:584:VAL:HG22	1.88	0.55
3:D4:325:C:N4	42:CE:318:GLN:OE1	2.40	0.55
18:UO:309:PRO:O	18:UO:316:ARG:NH1	2.39	0.55
56:UA:450:LEU:HA	56:UA:475:PRO:HB3	1.88	0.55
11:UB:484:ARG:NH1	11:UB:492:ALA:O	2.40	0.55
46:UG:409:ALA:O	51:JP:8:ARG:NH2	2.39	0.55
54:UD:301:ASP:O	54:UD:771:GLN:NE2	2.39	0.55
55:UQ:17:GLY:HA3	55:UQ:782:THR:HA	1.87	0.55
1:D3:1217:A:O2'	1:D3:1218:G:N2	2.39	0.55
6:CL:553:ILE:HD13	49:CM:326:LEU:HD12	1.89	0.55
54:UD:106:ASN:O	54:UD:153:GLN:NE2	2.40	0.55
5:CK:480:GLN:NE2	5:CK:482:LEU:O	2.40	0.55
20:US:252:LYS:O	20:US:256:ASN:ND2	2.40	0.55
6:CL:819:GLU:O	6:CL:852:ARG:NH2	2.38	0.55
34:DE:106:LYS:HD3	34:DE:108:ARG:HH22	1.71	0.55
61:JB:518:VAL:HG21	61:JB:537:MET:HE1	1.88	0.55
49:CM:310:ARG:HG2	49:CM:353:THR:HG22	1.88	0.55
9:JF:192:TYR:OH	9:JF:223:GLU:OE2	2.25	0.55
20:US:305:LEU:HD23	20:US:315:VAL:HG21	1.87	0.55
51:JP:267:ILE:HG12	51:JP:279:THR:HG22	1.88	0.55
52:UR:136:PRO:HG3	52:UR:154:LYS:HE2	1.88	0.55
55:UQ:818:ASN:N	55:UQ:818:ASN:ND2	2.50	0.55

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
59:DH:91:ILE:HG21	59:DH:129:LEU:HD23	1.89	0.55
2:D2:90:G:O2'	2:D2:91:U:O4'	2.24	0.55
16:UL:592:SER:OG	16:UL:593:ALA:N	2.40	0.55
21:CG:84:ARG:HG3	21:CG:96:PRO:HB3	1.89	0.55
30:DI:42:ARG:HH21	33:JC:335:SER:HA	1.71	0.55
5:CK:305:ILE:HD13	5:CK:308:ARG:HH21	1.71	0.55
7:DY:7:ILE:HD13	7:DY:43:LYS:HG2	1.89	0.55
46:UG:140:ARG:HD2	58:UJ:20:LEU:HD22	1.89	0.55
46:UG:152:GLU:OE1	46:UG:170:GLN:NE2	2.41	0.55
60:UT:994:ILE:HD11	60:UT:1036:VAL:HG21	1.88	0.55
61:JA:275:LEU:O	61:JA:463:ARG:NH1	2.40	0.55
61:JB:744:PRO:HD3	61:JB:762:MET:HE3	1.88	0.55
26:JK:497:LEU:HD23	26:JK:498:LEU:HG	1.89	0.54
20:US:528:ASN:HB2	20:US:545:VAL:HG12	1.89	0.54
55:UQ:145:PHE:HE1	55:UQ:201:ILE:HD13	1.72	0.54
61:JA:282:THR:HG22	61:JA:410:SER:HB3	1.88	0.54
1:D3:8:U:C4	47:JN:236:MET:HG3	2.42	0.54
3:D4:92:A:O2'	42:CE:323:GLU:OE1	2.25	0.54
6:CL:410:LYS:NZ	61:JA:165:THR:O	2.35	0.54
55:UQ:54:VAL:HG21	55:UQ:121:TYR:HB2	1.88	0.54
55:UQ:403:ILE:HD11	55:UQ:417:LEU:HD22	1.89	0.54
56:UA:775:LEU:HA	56:UA:778:ILE:HG22	1.89	0.54
2:D2:126:A:H5"	20:US:244:PRO:HB3	1.89	0.54
6:CL:157:ASN:O	6:CL:161:HIS:ND1	2.41	0.54
14:UH:592:ARG:H	55:UQ:603:ASN:HB3	1.72	0.54
51:JP:73:ILE:HG12	51:JP:85:THR:HG22	1.89	0.54
58:UJ:675:ASN:HA	58:UJ:681:ALA:HB2	1.88	0.54
61:JA:357:VAL:HB	61:JA:367:ILE:HB	1.90	0.54
3:D4:198:U:O2	3:D4:200:C:N4	2.40	0.54
4:CJ:231:ILE:HB	4:CJ:256:MET:HG2	1.89	0.54
29:DF:65:ARG:NH2	29:DF:86:GLN:OE1	2.38	0.54
36:DW:18:GLU:HG2	36:DW:65:LEU:HD13	1.88	0.54
43:CD:382:LYS:HD2	43:CD:404:LEU:HD22	1.89	0.54
11:UB:459:LEU:HD12	11:UB:462:LEU:HD11	1.89	0.54
49:CM:192:THR:HA	49:CM:224:ASN:O	2.08	0.54
56:UA:115:SER:OG	56:UA:120:GLN:NE2	2.37	0.54
59:DH:58:LEU:HB2	59:DH:90:VAL:HG12	1.90	0.54
60:UT:2070:TYR:O	60:UT:2076:ARG:NH1	2.41	0.54
61:JB:201:VAL:HG12	61:JB:207:VAL:HA	1.90	0.54
1:D3:147:A:H62	1:D3:167:U:H3	1.56	0.54
5:CK:456:PHE:HB3	56:UA:365:GLU:HB3	1.90	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:UX:25:LEU:O	8:UX:29:GLN:HB2	2.07	0.54
49:CM:22:VAL:HG11	49:CM:105:TYR:HD1	1.71	0.54
59:DH:67:LEU:HD22	59:DH:94:ALA:HB2	1.89	0.54
61:JA:387:ASP:HA	61:JA:409:ALA:HB3	1.88	0.54
1:D3:1207:C:O2	1:D3:1209:C:N4	2.41	0.54
5:CK:515:MET:HE2	5:CK:520:LEU:HD21	1.88	0.54
8:UX:79:LYS:NZ	36:DW:92:ASN:O	2.39	0.54
12:UC:580:ARG:NH1	12:UC:581:ALA:O	2.41	0.54
17:UM:669:LEU:HD22	17:UM:693:ARG:HH11	1.73	0.54
20:US:185:TYR:O	20:US:192:GLN:NE2	2.40	0.54
49:CM:365:LYS:HE2	49:CM:367:ALA:HB2	1.90	0.54
54:UD:774:LEU:HD23	54:UD:776:PHE:HE1	1.72	0.54
53:UU:632:VAL:HG22	53:UU:643:THR:HG22	1.90	0.54
53:UU:897:HIS:HB2	56:UA:849:LEU:HD22	1.89	0.54
55:UQ:778:ASP:OD2	55:UQ:782:THR:OG1	2.25	0.54
61:JA:171:ARG:HH12	61:JA:190:LEU:HD11	1.73	0.54
1:D3:1490:C:OP1	6:CL:1062:ARG:NH2	2.41	0.54
20:US:109:ILE:HG22	20:US:111:PHE:H	1.73	0.54
34:DE:176:ASP:HB3	34:DE:179:LYS:HE3	1.88	0.54
54:UD:326:ARG:NH1	54:UD:364:PHE:O	2.39	0.54
60:UT:2314:PRO:HA	60:UT:2331:THR:HA	1.90	0.54
2:D2:185:A:H61	2:D2:212:U:H3	1.55	0.53
15:UK:248:ARG:NH2	52:UR:514:LEU:O	2.41	0.53
18:UO:200:SER:OG	18:UO:201:SER:N	2.37	0.53
51:JP:435:SER:HB3	51:JP:439:ARG:HH12	1.73	0.53
47:JN:282:ASP:OD2	47:JN:285:ARG:NH1	2.42	0.53
51:JP:140:SER:OG	51:JP:141:ASP:N	2.41	0.53
1:D3:61:A:OP2	60:UT:12:LYS:NZ	2.42	0.53
14:UH:348:SER:HA	14:UH:415:SER:HA	1.89	0.53
29:DF:80:LYS:HB3	29:DF:83:ARG:HB2	1.90	0.53
29:DF:92:ARG:NH2	29:DF:169:ASN:OD1	2.42	0.53
51:JP:80:LEU:HD11	51:JP:359:ASP:HB2	1.90	0.53
1:D3:1597:A:H5'	4:CJ:279:ARG:HG3	1.90	0.53
7:DY:20:ARG:NH2	7:DY:22:GLN:OE1	2.38	0.53
16:UL:479:LEU:HG	16:UL:488:LEU:HD11	1.89	0.53
39:CH:299:CYS:SG	39:CH:305:ARG:NH1	2.81	0.53
61:JB:308:ILE:HG12	61:JB:383:LEU:HD23	1.89	0.53
1:D3:246:G:N2	38:DL:38:ALA:O	2.40	0.53
2:D2:168:G:H22	2:D2:227:U:H3	1.56	0.53
52:UR:321:MET:HB2	52:UR:355:PHE:HD2	1.74	0.53
54:UD:614:TRP:NE1	54:UD:618:ASN:ND2	2.53	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
56:UA:342:GLN:O	56:UA:370:LYS:NZ	2.42	0.53
58:UJ:637:ILE:O	58:UJ:641:LEU:HB2	2.08	0.53
60:UT:421:LEU:O	60:UT:425:TRP:HB3	2.08	0.53
61:JB:29:VAL:HG13	61:JB:152:LEU:HB2	1.91	0.53
1:D3:469:C:OP1	1:D3:471:A:N6	2.42	0.53
6:CL:826:LYS:HD3	6:CL:921:GLU:HB3	1.90	0.53
11:UB:560:TYR:OH	20:US:388:LEU:O	2.26	0.53
33:JC:74:THR:HG21	33:JC:101:ASN:HD22	1.73	0.53
46:UG:244:ASN:HB3	46:UG:446:PRO:HG3	1.91	0.53
56:UA:313:THR:OG1	56:UA:315:GLU:OE1	2.23	0.53
1:D3:524:U:N3	1:D3:527:A:OP2	2.37	0.53
18:UO:500:GLU:OE2	18:UO:503:ARG:NH1	2.39	0.53
43:CD:182:ASP:OD2	43:CD:314:ARG:NH1	2.40	0.53
54:UD:105:SER:HB3	54:UD:113:ARG:HB2	1.91	0.53
58:UJ:1659:GLU:O	58:UJ:1663:GLY:N	2.42	0.53
61:JB:98:ILE:HG23	61:JB:103:ILE:HG21	1.91	0.53
61:JB:308:ILE:O	61:JB:367:ILE:HA	2.09	0.53
2:D2:267:U:O4	41:DQ:66:ARG:NH2	2.42	0.53
3:D4:91:C:OP1	42:CE:324:LYS:NZ	2.35	0.53
18:UO:263:ASN:OD1	18:UO:269:GLN:NE2	2.41	0.53
56:UA:160:PHE:HB3	56:UA:172:ILE:HD11	1.91	0.53
56:UA:559:ILE:HG23	56:UA:598:ASN:HD22	1.74	0.53
61:JB:398:LYS:HE3	61:JB:429:GLN:HE22	1.74	0.53
1:D3:1745:G:OP2	1:D3:1745:G:N2	2.36	0.53
12:UC:502:LYS:HZ2	50:UZ:250:THR:HG1	1.53	0.53
26:JK:496:GLY:HA3	61:JB:506:GLY:HA3	1.91	0.53
59:DH:173:TYR:HE2	59:DH:181:ILE:HD12	1.74	0.53
61:JA:33:ALA:HB1	61:JA:151:LEU:HD22	1.90	0.53
61:JB:283:ALA:HB3	61:JB:289:LYS:HD3	1.91	0.53
4:CJ:57:ARG:HG2	47:JN:207:ARG:HH12	1.74	0.53
11:UB:555:ARG:HG3	11:UB:556:ILE:HG12	1.90	0.53
52:UR:278:ASP:OD1	52:UR:281:THR:OG1	2.26	0.53
61:JA:329:PHE:HB3	61:JA:334:TYR:HB2	1.91	0.53
1:D3:24:U:O4	1:D3:601:A:N6	2.42	0.52
2:D2:148:G:N7	18:UO:383:ARG:NH2	2.57	0.52
2:D2:394:U:OP1	22:CI:108:ARG:NH2	2.38	0.52
13:UE:6:LEU:HD21	52:UR:280:LYS:HE2	1.91	0.52
39:CH:333:MET:HG3	39:CH:335:ARG:HG2	1.91	0.52
42:CE:414:ARG:NH2	58:UJ:187:ASP:OD2	2.42	0.52
60:UT:1900:ARG:HD3	60:UT:1933:ILE:HG23	1.90	0.52
1:D3:442:C:O2'	1:D3:525:A:N1	2.39	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
20:US:130:GLU:O	20:US:134:PHE:CB	2.55	0.52
1:D3:1499:G:N2	50:UZ:194:ASP:OD2	2.42	0.52
14:UH:670:GLU:OE2	18:UO:499:LYS:NZ	2.41	0.52
18:UO:474:LEU:O	18:UO:481:GLN:NE2	2.42	0.52
45:UF:120:ARG:HG3	45:UF:124:THR:HG23	1.91	0.52
60:UT:635:ALA:HB1	60:UT:676:PRO:HG3	1.91	0.52
9:JF:196:LEU:HD11	9:JF:202:ILE:HD13	1.91	0.52
10:CB:103:GLU:OE2	10:CB:121:LYS:NZ	2.42	0.52
18:UO:129:VAL:HB	18:UO:143:ALA:HB3	1.91	0.52
42:CE:290:LEU:O	42:CE:391:ARG:NH1	2.42	0.52
56:UA:259:ASN:OD1	56:UA:260:GLN:N	2.41	0.52
61:JB:276:ASN:HA	61:JB:463:ARG:HD2	1.90	0.52
11:UB:426:THR:HG22	11:UB:462:LEU:HD13	1.91	0.52
38:DL:101:GLU:OE2	38:DL:103:ARG:NH2	2.42	0.52
44:UN:295:VAL:HG21	51:JP:291:MET:HE1	1.92	0.52
45:UF:15:MET:HE3	45:UF:36:ARG:HH12	1.73	0.52
51:JP:149:SER:HB3	51:JP:173:ILE:HD11	1.90	0.52
61:JA:142:VAL:HG21	61:JA:148:VAL:HG22	1.91	0.52
10:CB:228:GLN:HA	10:CB:259:MET:HE1	1.92	0.52
16:UL:367:ILE:HG12	16:UL:379:PRO:HB3	1.90	0.52
16:UL:877:LYS:NZ	17:UM:814:ASP:OD1	2.37	0.52
27:JM:127:ARG:HA	27:JM:130:LEU:HD13	1.92	0.52
43:CD:195:VAL:HG22	43:CD:274:PHE:HB3	1.91	0.52
49:CM:342:VAL:HG12	49:CM:344:GLU:H	1.74	0.52
1:D3:53:G:N2	1:D3:439:U:O2	2.42	0.52
6:CL:88:SER:HB3	6:CL:220:ILE:HG13	1.91	0.52
18:UO:233:ASN:OD1	18:UO:235:LYS:NZ	2.42	0.52
2:D2:102:A:OP1	18:UO:454:ARG:NH2	2.42	0.52
6:CL:118:LEU:HD21	6:CL:809:PRO:HB3	1.91	0.52
10:CB:228:GLN:O	10:CB:231:ARG:NH1	2.43	0.52
13:UE:544:ASP:OD2	18:UO:492:ARG:NH1	2.41	0.52
27:JM:123:LEU:HD13	27:JM:177:LEU:HD12	1.91	0.52
51:JP:330:ARG:NH1	51:JP:339:SER:OG	2.43	0.52
1:D3:1210:C:H42	1:D3:1453:G:H1	1.58	0.52
1:D3:1510:U:OP1	50:UZ:50:ARG:NH1	2.43	0.52
53:UU:335:VAL:HG11	58:UJ:194:SER:HB3	1.91	0.52
23:JE:257:ASP:OD2	23:JE:257:ASP:N	2.41	0.52
42:CE:11:GLY:HA3	42:CE:49:LYS:HA	1.92	0.52
61:JB:32:ARG:HE	61:JB:203:ASP:HB2	1.74	0.52
61:JB:104:ARG:NH1	61:JB:105:TYR:O	2.43	0.52
1:D3:1221:A:N6	1:D3:1261:G:O6	2.43	0.51

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
56:UA:150:THR:N	56:UA:164:THR:O	2.41	0.51
61:JA:585:VAL:HB	61:JA:639:ALA:HB3	1.92	0.51
14:UH:508:ASP:OD1	14:UH:536:ARG:NH1	2.43	0.51
34:DE:141:THR:OG1	34:DE:143:ASP:OD1	2.27	0.51
54:UD:80:ASN:O	54:UD:85:TRP:HA	2.09	0.51
59:DH:123:ASP:OD1	59:DH:138:LYS:NZ	2.43	0.51
13:UE:441:LEU:HD13	13:UE:456:VAL:HG11	1.92	0.51
16:UL:332:ILE:HG12	16:UL:379:PRO:HG3	1.92	0.51
60:UT:631:THR:O	60:UT:635:ALA:N	2.44	0.51
5:CK:491:ALA:HA	56:UA:418:ARG:HH12	1.75	0.51
28:JQ:201:ASP:OD2	28:JQ:202:SER:N	2.44	0.51
46:UG:17:ASN:ND2	46:UG:64:ASP:OD2	2.42	0.51
4:CJ:100:LEU:HD13	4:CJ:144:GLU:HB3	1.91	0.51
18:UO:310:SER:O	18:UO:316:ARG:NH2	2.41	0.51
34:DE:118:GLU:OE1	34:DE:237:SER:N	2.42	0.51
42:CE:430:ASP:HA	53:UU:125:GLY:HA2	1.92	0.51
44:UN:894:LEU:HD22	51:JP:272:MET:HA	1.91	0.51
61:JA:200:VAL:HG12	61:JA:208:LEU:HD12	1.92	0.51
61:JB:132:PRO:HB3	61:JB:490:LEU:HD22	1.91	0.51
61:JB:164:MET:HE1	61:JB:186:GLU:HA	1.92	0.51
61:JB:391:ALA:HA	61:JB:422:LEU:HD13	1.93	0.51
9:JG:178:VAL:HA	9:JG:223:GLU:O	2.11	0.51
10:CB:165:ALA:HB3	10:CB:168:LYS:HG2	1.93	0.51
21:CF:62:GLU:HG3	21:CF:65:LEU:HD12	1.93	0.51
35:DX:54:LEU:HD11	35:DX:75:GLN:HB2	1.93	0.51
53:UU:576:ARG:NH2	56:UA:716:ASP:OD1	2.39	0.51
15:UK:185:MET:HG2	15:UK:190:LEU:HB2	1.92	0.51
16:UL:589:ILE:HG21	16:UL:621:VAL:HG11	1.92	0.51
45:UF:66:LEU:HD11	45:UF:70:ARG:HH21	1.75	0.51
51:JP:220:ASP:OD1	59:DH:141:ARG:NH2	2.38	0.51
58:UJ:579:ARG:NH1	58:UJ:632:THR:O	2.44	0.51
11:UB:554:GLN:OE1	11:UB:557:SER:OG	2.29	0.51
21:CG:54:MET:HE1	21:CG:78:TYR:HB2	1.93	0.51
53:UU:430:ILE:HB	53:UU:443:TRP:HB2	1.93	0.51
55:UQ:745:ILE:O	55:UQ:754:LEU:N	2.44	0.51
58:UJ:363:LEU:HD13	58:UJ:366:ILE:HD12	1.92	0.51
1:D3:564:G:O6	15:UK:42:HIS:NE2	2.43	0.51
1:D3:1559:A:H62	1:D3:1563:C:H41	1.57	0.51
2:D2:490:G:O2'	45:UF:86:TRP:NE1	2.40	0.51
4:CJ:60:GLN:OE1	47:JN:207:ARG:NH2	2.43	0.51
16:UL:606:ASP:OD1	16:UL:606:ASP:N	2.43	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
43:CD:29:SER:O	43:CD:35:GLN:NE2	2.44	0.51
45:UF:67:ARG:NH2	45:UF:84:SER:OG	2.38	0.51
61:JB:408:MET:HE1	61:JB:426:LEU:HD21	1.93	0.51
2:D2:12:G:HO2'	2:D2:70:A:H62	1.55	0.51
10:CB:144:TRP:NE1	10:CB:152:ALA:HB3	2.26	0.51
11:UB:460:LYS:NZ	20:US:524:GLU:O	2.43	0.51
13:UE:436:THR:OG1	20:US:297:ASP:OD2	2.29	0.51
16:UL:433:ALA:HB1	16:UL:447:LEU:HD11	1.93	0.51
55:UQ:665:ILE:HD11	55:UQ:720:ILE:HD11	1.93	0.51
56:UA:689:THR:HG21	56:UA:826:ARG:HH11	1.75	0.51
61:JA:48:ASP:HB3	61:JA:51:MET:HB2	1.92	0.51
61:JB:425:LYS:NZ	61:JB:543:SER:O	2.44	0.51
5:CK:516:SER:HB3	5:CK:519:GLU:HG2	1.93	0.50
16:UL:177:LEU:HB3	16:UL:189:TRP:HB2	1.93	0.50
18:UO:38:GLU:OE1	18:UO:62:ARG:NH2	2.45	0.50
26:JK:493:PHE:O	26:JK:497:LEU:HB2	2.11	0.50
51:JP:50:LEU:HA	51:JP:53:MET:HE3	1.92	0.50
53:UU:32:ASN:HA	53:UU:317:ASN:HD21	1.75	0.50
53:UU:909:LEU:HB3	56:UA:846:TYR:HE1	1.75	0.50
60:UT:2095:LEU:O	60:UT:2099:SER:N	2.44	0.50
61:JB:55:VAL:HG22	61:JB:121:MET:HB2	1.93	0.50
61:JB:359:ILE:HB	61:JB:365:GLN:HB2	1.93	0.50
61:JB:540:LEU:HD23	61:JB:585:VAL:HG23	1.93	0.50
1:D3:199:G:H5'	60:UT:1055:ARG:HH12	1.76	0.50
1:D3:1610:G:OP1	29:DF:72:HIS:NE2	2.39	0.50
6:CL:364:VAL:HG12	6:CL:373:ILE:HG12	1.91	0.50
9:JG:77:LEU:HD13	9:JG:84:ILE:HA	1.92	0.50
46:UG:197:ASP:HB2	46:UG:238:MET:HE3	1.93	0.50
47:JN:155:LEU:HD21	48:JO:197:ILE:HG12	1.93	0.50
61:JA:741:SER:O	61:JA:764:ASN:ND2	2.44	0.50
16:UL:23:CYS:HB2	16:UL:41:LEU:HD11	1.93	0.50
47:JN:195:ILE:HG13	47:JN:196:VAL:H	1.77	0.50
53:UU:27:PHE:HB2	53:UU:655:THR:HG23	1.94	0.50
60:UT:1683:ARG:O	60:UT:1687:ILE:N	2.43	0.50
1:D3:-7:A:N3	44:UN:303:GLN:NE2	2.60	0.50
6:CL:166:ARG:HB3	6:CL:230:MET:HE1	1.93	0.50
16:UL:643:ASP:HB2	16:UL:650:ILE:HD11	1.92	0.50
33:JC:19:THR:H	33:JC:339:HIS:CE1	2.29	0.50
46:UG:289:MET:HB2	46:UG:303:ILE:HD11	1.92	0.50
49:CM:140:VAL:HB	49:CM:296:LEU:HD23	1.94	0.50
53:UU:21:SER:HB2	53:UU:623:ILE:HG12	1.92	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
53:UU:731:MET:HE1	56:UA:834:GLU:HB3	1.92	0.50
56:UA:165:SER:OG	56:UA:167:ASP:OD1	2.30	0.50
1:D3:381:C:H2'	1:D3:382:C:H4'	1.93	0.50
33:JC:13:VAL:HG22	33:JC:343:ILE:HG12	1.93	0.50
61:JA:621:GLN:OE1	61:JA:784:ARG:NH1	2.44	0.50
61:JB:895:ILE:HD13	61:JB:910:ILE:HG12	1.93	0.50
1:D3:337:G:N2	1:D3:340:U:OP2	2.45	0.50
2:D2:481:U:O2'	45:UF:102:LYS:NZ	2.44	0.50
11:UB:740:MET:HE1	32:DS:102:ALA:HB3	1.94	0.50
14:UH:483:LEU:HD12	14:UH:485:ILE:H	1.76	0.50
39:CH:286:LEU:HD22	39:CH:295:LEU:HD21	1.94	0.50
42:CE:214:ILE:HG22	42:CE:216:SER:H	1.75	0.50
2:D2:192:G:H2'	2:D2:193:G:H8	1.76	0.50
6:CL:953:SER:OG	6:CL:957:GLU:OE1	2.25	0.50
15:UK:6:HIS:HB2	15:UK:9:GLN:HG3	1.93	0.50
18:UO:45:ILE:HD13	18:UO:319:VAL:HG12	1.94	0.50
18:UO:127:THR:HG22	18:UO:144:SER:HB3	1.93	0.50
30:DI:43:ILE:HA	30:DI:56:ARG:O	2.12	0.50
46:UG:70:SER:OG	51:JP:4:LYS:NZ	2.44	0.50
55:UQ:655:LEU:HD12	55:UQ:659:ILE:HD11	1.93	0.50
59:DH:61:PHE:HA	59:DH:93:LEU:O	2.12	0.50
1:D3:50:C:H42	1:D3:429:G:H1	1.60	0.50
6:CL:293:VAL:HG13	6:CL:1022:LEU:HD21	1.94	0.50
14:UH:523:LEU:HD21	14:UH:544:LEU:HD21	1.94	0.50
17:UM:768:ASN:HB3	17:UM:771:LYS:HG2	1.93	0.50
33:JC:153:LEU:HB2	33:JC:167:LEU:HD11	1.94	0.50
54:UD:340:GLN:HG3	54:UD:361:LEU:HD12	1.94	0.50
55:UQ:139:GLU:HG2	55:UQ:157:PHE:HB3	1.93	0.50
61:JA:280:ALA:HB1	61:JA:408:MET:HE3	1.94	0.50
2:D2:357:G:H1	2:D2:368:U:H3	1.60	0.50
9:JF:179:THR:HB	9:JF:224:LYS:HG2	1.94	0.50
10:CB:251:ARG:NH1	54:UD:178:GLU:OE1	2.44	0.50
18:UO:87:ALA:HA	18:UO:97:CYS:O	2.12	0.50
56:UA:351:LEU:HD23	56:UA:696:ALA:HB2	1.93	0.50
58:UJ:29:HIS:O	58:UJ:123:ARG:NH2	2.36	0.50
61:JA:108:TYR:OH	61:JA:126:ASP:O	2.27	0.50
4:CJ:99:ARG:HG2	4:CJ:172:MET:HE1	1.94	0.49
7:DY:55:VAL:HG22	7:DY:75:VAL:HG22	1.93	0.49
9:JG:103:PRO:HG3	9:JF:232:LEU:HD21	1.93	0.49
22:CI:125:GLN:HG2	22:CI:129:LYS:HE3	1.94	0.49
29:DF:84:LYS:HD3	29:DF:92:ARG:HH12	1.77	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
10:CB:322:ARG:HH22	42:CE:114:LEU:HD23	1.77	0.49
16:UL:159:LEU:HD23	16:UL:189:TRP:CD2	2.46	0.49
16:UL:185:MET:HE3	16:UL:187:LYS:HE2	1.93	0.49
34:DE:128:LYS:HB2	34:DE:140:VAL:HB	1.93	0.49
1:D3:1273:G:H1	1:D3:1437:U:H3	1.61	0.49
20:US:378:SER:OG	20:US:453:PRO:O	2.29	0.49
35:DX:58:GLY:O	35:DX:61:SER:OG	2.27	0.49
39:CH:405:VAL:HG23	39:CH:415:THR:HG22	1.93	0.49
46:UG:128:THR:HG23	46:UG:134:VAL:HG22	1.94	0.49
54:UD:232:ASP:OD2	54:UD:263:LYS:NZ	2.42	0.49
56:UA:520:ALA:HB3	56:UA:533:SER:HB3	1.95	0.49
58:UJ:362:LYS:HB3	58:UJ:365:ILE:HB	1.94	0.49
61:JB:281:LEU:HD11	61:JB:470:LEU:HG	1.95	0.49
33:JC:15:GLN:NE2	33:JC:20:ASN:OD1	2.46	0.49
61:JB:134:LEU:HA	61:JB:137:ARG:HD2	1.93	0.49
61:JB:182:ALA:HB1	61:JB:185:ASN:HB2	1.94	0.49
61:JB:913:PHE:HA	61:JB:916:ILE:HD12	1.95	0.49
3:D4:8:U:OP1	11:UB:797:ASN:ND2	2.41	0.49
11:UB:425:PHE:HA	11:UB:428:VAL:HG22	1.95	0.49
14:UH:665:GLN:HA	14:UH:668:ILE:HG22	1.95	0.49
16:UL:903:GLN:NE2	56:UA:845:THR:OG1	2.45	0.49
29:DF:18:GLU:HG2	53:UU:496:LYS:HG2	1.94	0.49
42:CE:366:LYS:HB3	42:CE:390:SER:HB2	1.95	0.49
53:UU:840:PHE:HE2	53:UU:848:GLU:HG3	1.77	0.49
54:UD:458:ASN:OD1	54:UD:459:LYS:N	2.45	0.49
58:UJ:48:ILE:HD13	58:UJ:123:ARG:HD3	1.93	0.49
61:JB:255:LYS:HD2	61:JB:474:ILE:HD12	1.95	0.49
7:DY:91:LEU:HD22	7:DY:96:LEU:HD22	1.93	0.49
9:JG:152:SER:HB2	9:JG:159:LEU:HD11	1.94	0.49
13:UE:253:LEU:HD21	13:UE:301:LEU:HD11	1.95	0.49
20:US:450:GLU:HB3	20:US:456:THR:HG22	1.94	0.49
21:CG:34:LYS:HB3	21:CG:39:GLU:HG2	1.93	0.49
22:CI:23:GLN:NE2	22:CI:24:ASP:OD1	2.46	0.49
56:UA:363:ALA:HB2	56:UA:393:VAL:HG23	1.94	0.49
56:UA:400:GLN:HG3	56:UA:401:VAL:HG23	1.94	0.49
61:JB:187:ARG:NH1	61:JB:531:GLU:OE1	2.45	0.49
5:CK:449:ASP:O	5:CK:453:SER:CB	2.61	0.49
7:DY:81:GLU:HA	7:DY:84:LYS:HG2	1.94	0.49
26:JK:460:LYS:O	33:JC:121:ARG:NH2	2.42	0.49
51:JP:145:VAL:HB	51:JP:176:PHE:HB2	1.93	0.49
61:JA:356:ARG:HH21	61:JA:368:GLN:HB2	1.77	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D3:451:A:N6	1:D3:455:C:OP2	2.46	0.49
2:D2:426:G:C2	2:D2:428:A:H5"	2.46	0.49
17:UM:673:MET:HE1	17:UM:693:ARG:HB3	1.95	0.49
20:US:199:PHE:HE1	20:US:212:LEU:HD22	1.77	0.49
50:UZ:83:TYR:OH	50:UZ:169:GLU:OE2	2.30	0.49
56:UA:518:VAL:HG13	56:UA:532:VAL:HG13	1.92	0.49
8:UX:16:THR:HG22	46:UG:183:GLU:HB3	1.95	0.49
9:JG:55:ILE:HG12	9:JG:76:LEU:HD21	1.94	0.49
16:UL:676:SER:OG	16:UL:677:HIS:N	2.44	0.49
58:UJ:398:SER:HA	58:UJ:401:VAL:HG12	1.95	0.49
18:UO:86:SER:O	18:UO:98:ALA:HA	2.12	0.49
54:UD:310:ASN:OD1	54:UD:310:ASN:N	2.46	0.49
54:UD:473:THR:HG21	54:UD:496:PHE:HZ	1.78	0.49
61:JB:743:VAL:HG21	61:JB:811:ALA:HB2	1.94	0.49
5:CK:350:THR:HG21	6:CL:975:GLU:HB2	1.95	0.48
10:CB:309:TYR:OH	15:UK:127:PHE:O	2.27	0.48
18:UO:63:VAL:HB	18:UO:77:PHE:HB2	1.95	0.48
22:CI:29:ASP:O	22:CI:33:MET:HG3	2.12	0.48
54:UD:44:ALA:HB3	54:UD:71:ARG:HB3	1.95	0.48
54:UD:631:GLU:HG2	54:UD:651:ALA:HB3	1.95	0.48
1:D3:444:C:N4	1:D3:459:G:OP2	2.37	0.48
5:CK:299:SER:HA	5:CK:302:LYS:HE2	1.94	0.48
6:CL:830:ARG:NH2	35:DX:138:GLU:OE1	2.46	0.48
10:CA:236:MET:HE2	43:CD:133:LEU:HB2	1.95	0.48
45:UF:144:VAL:HG21	45:UF:178:VAL:HG11	1.94	0.48
50:UZ:72:ILE:HD13	50:UZ:180:LEU:HD21	1.95	0.48
53:UU:416:ALA:HB3	53:UU:433:ALA:HB3	1.94	0.48
60:UT:2086:ILE:O	60:UT:2090:ALA:CB	2.61	0.48
61:JB:123:ILE:HG23	61:JB:149:VAL:HG23	1.95	0.48
1:D3:366:A:H2	1:D3:379:U:H3	1.60	0.48
4:CJ:140:VAL:HA	4:CJ:153:THR:O	2.13	0.48
13:UE:146:VAL:HG23	13:UE:147:GLN:HG3	1.95	0.48
20:US:107:SER:HA	20:US:158:SER:HB3	1.95	0.48
41:DQ:37:THR:O	41:DQ:45:ARG:NH1	2.45	0.48
42:CE:113:THR:HA	42:CE:116:ILE:HD13	1.95	0.48
49:CM:214:LYS:HA	49:CM:217:LYS:HE3	1.95	0.48
60:UT:1331:LEU:HA	60:UT:1335:GLY:HA3	1.93	0.48
61:JB:32:ARG:HA	61:JB:35:ASN:HB2	1.95	0.48
11:UB:478:ILE:HG23	11:UB:524:LEU:HD22	1.95	0.48
15:UK:72:THR:O	22:CI:175:ASN:ND2	2.47	0.48
4:CJ:57:ARG:HD2	22:CI:62:SER:HB3	1.94	0.48

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
14:UH:495:ARG:NH2	55:UQ:693:ASP:OD2	2.41	0.48
34:DE:207:LEU:HD22	34:DE:219:VAL:HG12	1.94	0.48
44:UN:277:ARG:NH2	59:DH:163:ASP:OD2	2.46	0.48
49:CM:291:ARG:HG2	49:CM:317:GLN:HG2	1.95	0.48
54:UD:324:SER:OG	54:UD:325:ASN:N	2.47	0.48
61:JB:418:THR:HB	61:JB:548:ASN:H	1.78	0.48
1:D3:261:U:H4'	1:D3:262:U:H5'	1.94	0.48
9:JG:252:LEU:OXT	9:JF:228:SER:OG	2.26	0.48
39:CH:212:LYS:NZ	39:CH:266:GLU:O	2.45	0.48
48:JO:166:VAL:HG13	48:JO:171:VAL:HG22	1.95	0.48
50:UZ:110:PHE:HA	50:UZ:114:LYS:HD2	1.94	0.48
52:UR:321:MET:HB2	52:UR:355:PHE:CD2	2.49	0.48
60:UT:1019:THR:HA	60:UT:1023:LEU:HB3	1.96	0.48
61:JA:160:GLN:HG2	61:JA:172:TYR:HB3	1.94	0.48
61:JB:200:VAL:HG12	61:JB:208:LEU:HD12	1.95	0.48
16:UL:386:GLU:O	16:UL:391:ARG:NH1	2.41	0.48
33:JC:290:VAL:HG22	33:JC:299:ILE:HG12	1.95	0.48
39:CH:150:THR:HG22	39:CH:207:ARG:HH11	1.79	0.48
48:JO:68:ASN:O	48:JO:85:THR:OG1	2.28	0.48
52:UR:475:LYS:NZ	55:UQ:849:ASP:OD2	2.42	0.48
60:UT:1684:GLY:O	60:UT:1688:HIS:ND1	2.45	0.48
2:D2:467:A:H61	3:D4:49:C:H42	1.62	0.48
31:DJ:148:VAL:HG11	31:DJ:156:ILE:HD11	1.96	0.48
34:DE:202:ASP:N	34:DE:202:ASP:OD1	2.45	0.48
35:DX:92:CYS:HB3	35:DX:132:LEU:HD22	1.95	0.48
49:CM:124:SER:OG	49:CM:125:HIS:N	2.46	0.48
58:UJ:22:ARG:O	58:UJ:26:GLN:HG2	2.13	0.48
58:UJ:401:VAL:HG23	58:UJ:433:LEU:HD13	1.96	0.48
59:DH:86:GLN:HE22	60:UT:2074:SER:H	1.62	0.48
10:CB:156:MET:HE3	10:CB:156:MET:HB3	1.71	0.48
17:UM:747:ASN:HD21	17:UM:789:THR:HG23	1.78	0.48
53:UU:641:LEU:HB3	53:UU:654:TRP:HB2	1.96	0.48
60:UT:177:LEU:HD12	60:UT:196:LEU:HD13	1.96	0.48
1:D3:513:U:O2'	1:D3:514:G:O4'	2.25	0.48
1:D3:1588:G:H1	1:D3:1608:U:H3	1.61	0.48
6:CL:124:ASP:OD1	6:CL:127:ALA:N	2.42	0.48
9:JF:51:GLU:OE2	9:JF:118:ARG:NH1	2.44	0.48
9:JF:96:LEU:HD21	9:JF:114:ILE:HD11	1.96	0.48
37:DG:12:SER:OG	37:DG:124:LEU:O	2.32	0.48
45:UF:15:MET:HG3	45:UF:33:MET:HE2	1.94	0.48
58:UJ:136:LEU:O	58:UJ:140:LEU:HB2	2.14	0.48

A 4 1	A 4 a a a a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
59:DH:46:ILE:HD11	59:DH:58:LEU:HD23	1.96	0.48
60:UT:2007:VAL:O	60:UT:2010:HIS:ND1	2.47	0.48
6:CL:244:MET:HB2	6:CL:275:LEU:HD23	1.95	0.47
6:CL:373:ILE:HD12	61:JA:6:ILE:HG21	1.95	0.47
18:UO:412:GLU:O	18:UO:416:THR:HG23	2.14	0.47
38:DL:101:GLU:OE1	38:DL:103:ARG:NE	2.46	0.47
43:CD:33:GLU:HB3	51:JP:384:ASN:HB3	1.96	0.47
47:JN:165:LEU:O	47:JN:169:ASN:HB2	2.14	0.47
60:UT:2099:SER:HA	60:UT:2102:PHE:HB2	1.96	0.47
37:DG:74:LYS:HB3	37:DG:94:ARG:HD2	1.95	0.47
46:UG:321:ASN:ND2	46:UG:333:SER:OG	2.44	0.47
2:D2:12:G:O2'	2:D2:70:A:N6	2.43	0.47
10:CB:210:MET:HE2	10:CB:210:MET:HB3	1.77	0.47
13:UE:20:VAL:HG22	13:UE:29:VAL:HG22	1.95	0.47
13:UE:296:ILE:HD12	13:UE:301:LEU:HD12	1.97	0.47
17:UM:747:ASN:HD22	17:UM:785:ILE:HG23	1.78	0.47
21:CG:42:LYS:O	21:CG:46:ARG:HG2	2.14	0.47
42:CE:288:THR:HG23	42:CE:293:GLU:HG3	1.96	0.47
53:UU:242:ARG:NH1	53:UU:278:LEU:O	2.46	0.47
54:UD:487:VAL:HG22	54:UD:497:ILE:HG12	1.96	0.47
61:JB:9:ARG:NE	61:JB:214:LYS:O	2.47	0.47
61:JB:289:LYS:HD2	61:JB:409:ALA:HB1	1.95	0.47
5:CK:534:ARG:HE	5:CK:534:ARG:HB2	1.51	0.47
34:DE:31:PRO:HG3	34:DE:43:PRO:HG3	1.95	0.47
55:UQ:682:ASN:HB2	55:UQ:689:ILE:HD11	1.95	0.47
61:JB:378:LEU:HD22	61:JB:400:LEU:HD22	1.95	0.47
1:D3:-6:A:H1'	46:UG:41:LYS:HG2	1.96	0.47
1:D3:68:A:OP1	37:DG:171:LYS:NZ	2.47	0.47
1:D3:523:G:H4'	7:DY:61:ARG:HH12	1.79	0.47
2:D2:371:G:N7	46:UG:502:ARG:NH2	2.62	0.47
6:CL:246:ALA:HB3	6:CL:810:ILE:HB	1.96	0.47
10:CA:290:VAL:HG13	10:CA:300:PRO:HG3	1.97	0.47
12:UC:435:LYS:HA	12:UC:435:LYS:HD3	1.64	0.47
34:DE:192:ILE:HD13	34:DE:238:LEU:HD13	1.97	0.47
52:UR:352:GLN:NE2	52:UR:354:SER:O	2.47	0.47
1:D3:1165:G:H5"	29:DF:99:MET:HE1	1.97	0.47
2:D2:97:G:O2'	2:D2:154:A:N3	2.45	0.47
3:D4:312:U:H2'	3:D4:313:A:H8	1.79	0.47
10:CA:249:GLN:HE22	10:CA:271:ILE:HG12	1.80	0.47
14:UH:275:SER:HA	14:UH:287:LEU:O	2.14	0.47
51:JP:333:LYS:HD3	51:JP:340:ARG:HD3	1.97	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D3:66:U:O2	37:DG:160:ARG:NE	2.48	0.47
1:D3:67:A:N6	1:D3:83:G:O2'	2.47	0.47
1:D3:106:U:O4	1:D3:308:C:N4	2.48	0.47
6:CL:1057:ILE:HD12	15:UK:15:GLU:HB3	1.96	0.47
10:CB:261:LEU:O	42:CE:118:ARG:NH1	2.43	0.47
12:UC:502:LYS:NZ	50:UZ:251:SER:OG	2.46	0.47
15:UK:75:LYS:HB2	15:UK:75:LYS:HE2	1.71	0.47
20:US:167:LYS:O	20:US:272:GLN:NE2	2.46	0.47
33:JC:55:PHE:HE1	33:JC:80:GLN:HG3	1.79	0.47
37:DG:10:ASN:HA	37:DG:128:THR:HG23	1.96	0.47
39:CH:504:ASN:HD22	39:CH:506:ARG:HH21	1.62	0.47
45:UF:73:ARG:NH1	52:UR:19:GLU:OE2	2.48	0.47
52:UR:415:SER:OG	52:UR:416:ARG:N	2.46	0.47
60:UT:240:MET:HA	60:UT:251:ALA:HB1	1.97	0.47
61:JA:612:ASP:HB2	61:JA:615:PRO:HD2	1.97	0.47
61:JA:845:TYR:HD2	61:JA:917:MET:HE3	1.79	0.47
61:JB:203:ASP:N	61:JB:203:ASP:OD1	2.46	0.47
61:JB:422:LEU:HA	61:JB:425:LYS:HE2	1.96	0.47
1:D3:602:U:OP2	11:UB:803:ARG:NH2	2.46	0.47
16:UL:549:SER:HB3	16:UL:579:ILE:HD11	1.97	0.47
18:UO:319:VAL:HG22	18:UO:329:ILE:HG23	1.96	0.47
18:UO:385:MET:SD	18:UO:393:ASN:ND2	2.88	0.47
30:DI:62:THR:HG22	30:DI:77:ARG:HG2	1.97	0.47
38:DL:21:ASN:O	38:DL:21:ASN:ND2	2.46	0.47
52:UR:142:LYS:HG3	52:UR:143:THR:HG23	1.96	0.47
55:UQ:656:ASP:OD1	55:UQ:656:ASP:N	2.44	0.47
56:UA:631:ASN:ND2	56:UA:633:LYS:HB2	2.29	0.47
58:UJ:168:VAL:HG12	58:UJ:169:ARG:HG2	1.96	0.47
58:UJ:328:ASP:O	58:UJ:331:SER:OG	2.26	0.47
58:UJ:559:ASN:ND2	58:UJ:597:HIS:O	2.48	0.47
60:UT:2013:LEU:HB2	60:UT:2016:LEU:HG	1.96	0.47
1:D3:78:A:H1'	37:DG:175:ILE:HG12	1.96	0.47
2:D2:169:A:H4'	2:D2:170:U:H3'	1.96	0.47
10:CA:273:ALA:HA	10:CA:285:VAL:HG11	1.97	0.47
10:CB:253:ILE:HD13	10:CB:253:ILE:HA	1.74	0.47
33:JC:315:VAL:HG21	33:JC:335:SER:HB3	1.97	0.47
44:UN:867:GLN:O	51:JP:26:ARG:NH2	2.48	0.47
61:JA:37:LEU:HD13	61:JA:123:ILE:HD13	1.97	0.47
5:CK:297:LEU:HD12	5:CK:301:GLU:HG2	1.96	0.47
11:UB:555:ARG:NH2	20:US:524:GLU:OE1	2.37	0.47
54:UD:207:ASP:O	54:UD:233:LYS:NZ	2.47	0.47

	A O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
55:UQ:520:LEU:O	55:UQ:523:LYS:NZ	2.47	0.47
60:UT:1311:TYR:HA	60:UT:1319:TYR:HA	1.97	0.47
61:JA:293:LEU:HD11	61:JA:409:ALA:HB2	1.96	0.47
61:JB:29:VAL:HG22	61:JB:152:LEU:HD12	1.96	0.47
2:D2:99:U:O4	18:UO:25:ARG:NH1	2.49	0.46
15:UK:143:MET:HE1	19:UP:180:LEU:HB2	1.96	0.46
18:UO:366:TYR:OH	18:UO:371:GLU:OE2	2.25	0.46
37:DG:48:TYR:OH	37:DG:119:GLN:O	2.27	0.46
39:CH:141:LEU:HD13	39:CH:144:GLU:HB2	1.95	0.46
45:UF:33:MET:O	45:UF:37:THR:OG1	2.30	0.46
50:UZ:39:ILE:HB	50:UZ:243:PHE:HB2	1.97	0.46
53:UU:894:ASP:OD1	53:UU:895:VAL:N	2.49	0.46
54:UD:211:ARG:HB3	54:UD:225:LEU:HD11	1.96	0.46
55:UQ:771:ASP:N	55:UQ:771:ASP:OD1	2.45	0.46
56:UA:730:LEU:HD13	56:UA:754:VAL:HG22	1.98	0.46
1:D3:38:C:O2'	1:D3:470:A:N1	2.37	0.46
10:CA:128:PRO:HA	10:CA:136:PRO:HA	1.97	0.46
34:DE:155:LYS:HD3	34:DE:155:LYS:HA	1.75	0.46
44:UN:837:LYS:HA	44:UN:840:LEU:HD13	1.97	0.46
45:UF:274:PHE:O	45:UF:278:MET:HG2	2.14	0.46
61:JA:200:VAL:N	61:JA:211:SER:OG	2.48	0.46
61:JA:203:ASP:OD1	61:JA:203:ASP:N	2.47	0.46
61:JB:420:ARG:NH1	61:JB:492:LEU:O	2.48	0.46
9:JF:178:VAL:HA	9:JF:223:GLU:O	2.15	0.46
16:UL:181:SER:OG	16:UL:182:LYS:N	2.48	0.46
16:UL:209:GLY:O	16:UL:219:THR:HA	2.16	0.46
27:JM:52:PHE:O	27:JM:56:GLU:HG2	2.14	0.46
27:JM:64:LYS:NZ	45:UF:156:GLU:OE1	2.48	0.46
35:DX:97:ASP:OD2	35:DX:142:LYS:NZ	2.43	0.46
45:UF:335:ILE:HA	45:UF:338:VAL:HG12	1.98	0.46
53:UU:821:LEU:HA	53:UU:833:LEU:HD22	1.98	0.46
61:JA:536:LYS:NZ	61:JA:581:ASP:OD1	2.43	0.46
61:JA:802:LEU:HD12	61:JA:886:LEU:HD13	1.98	0.46
2:D2:358:G:O6	46:UG:493:LYS:NZ	2.37	0.46
5:CK:494:GLU:OE2	56:UA:420:ARG:NH1	2.49	0.46
6:CL:906:ASP:OD2	6:CL:1030:LYS:NZ	2.49	0.46
14:UH:678:LEU:HD11	57:UI:457:LYS:HG3	1.97	0.46
18:UO:44:HIS:ND1	18:UO:85:TYR:O	2.48	0.46
38:DL:21:ASN:HD22	38:DL:21:ASN:C	2.21	0.46
42:CE:161:VAL:HB	42:CE:165:GLN:HE22	1.80	0.46
47:JN:262:ILE:HD13	48:JO:165:LEU:HD11	1.97	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
53:UU:179:LYS:HA	53:UU:191:PHE:O	2.15	0.46
6:CL:547:TRP:HB3	6:CL:552:LEU:HD11	1.97	0.46
9:JG:88:ARG:HH22	9:JF:132:ARG:HD2	1.80	0.46
10:CA:92:ARG:NE	12:UC:600:LYS:O	2.44	0.46
11:UB:484:ARG:HB3	11:UB:492:ALA:HB1	1.98	0.46
11:UB:515:HIS:HB3	11:UB:518:ILE:HB	1.96	0.46
29:DF:133:VAL:HG22	29:DF:198:LEU:HD13	1.98	0.46
49:CM:95:PRO:HG3	49:CM:124:SER:HB3	1.96	0.46
49:CM:204:LEU:HD22	49:CM:268:PRO:HG2	1.97	0.46
54:UD:166:VAL:HG22	54:UD:182:ILE:HG12	1.98	0.46
55:UQ:88:ILE:HG23	55:UQ:109:VAL:HG13	1.97	0.46
60:UT:2255:HIS:NE2	60:UT:2296:VAL:O	2.48	0.46
1:D3:1525:A:N3	1:D3:1589:C:O2'	2.45	0.46
1:D3:1602:C:H5'	4:CJ:146:ARG:HD2	1.97	0.46
9:JG:192:TYR:OH	9:JG:223:GLU:OE2	2.24	0.46
16:UL:7:ARG:HH12	16:UL:71:ALA:HA	1.80	0.46
33:JC:3:LEU:HB2	33:JC:359:ILE:HG22	1.97	0.46
33:JC:74:THR:HG22	33:JC:81:ILE:HG23	1.97	0.46
34:DE:181:VAL:HG12	34:DE:227:VAL:HG22	1.98	0.46
46:UG:394:HIS:HD1	46:UG:396:THR:H	1.62	0.46
56:UA:111:PHE:HD1	56:UA:124:THR:HG22	1.81	0.46
60:UT:1892:LEU:HA	60:UT:1895:PHE:HD2	1.80	0.46
61:JA:115:LEU:HD21	61:JA:137:ARG:HG2	1.96	0.46
61:JB:792:ASP:O	61:JB:795:LYS:NZ	2.49	0.46
1:D3:1482:C:O2'	41:DQ:72:GLY:O	2.26	0.46
6:CL:91:ARG:HH21	61:JA:90:GLU:HB3	1.80	0.46
6:CL:415:GLY:HA2	6:CL:426:HIS:HA	1.97	0.46
10:CA:103:GLU:HG2	12:UC:595:LYS:HA	1.97	0.46
14:UH:533:PRO:HB2	14:UH:536:ARG:HG2	1.96	0.46
20:US:531:ASP:HA	20:US:545:VAL:HG11	1.98	0.46
37:DG:159:ARG:HE	37:DG:172:ALA:HB2	1.81	0.46
43:CD:29:SER:HA	43:CD:34:VAL:HG11	1.98	0.46
49:CM:185:ARG:HG3	49:CM:312:ARG:HH11	1.80	0.46
51:JP:402:GLU:O	51:JP:405:ARG:NH1	2.48	0.46
61:JA:289:LYS:NZ	61:JA:387:ASP:OD1	2.49	0.46
2:D2:292:A:H4'	53:UU:385:GLN:HA	1.97	0.46
5:CK:520:LEU:HD22	5:CK:524:ASP:HB3	1.97	0.46
6:CL:876:PRO:HB2	6:CL:879:THR:HB	1.96	0.46
11:UB:548:ARG:HH12	20:US:549:GLY:HA3	1.81	0.46
23:JE:319:VAL:HG22	23:JE:324:ASP:HB3	1.97	0.46
45:UF:317:LEU:HA	45:UF:320:ILE:HD12	1.98	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
53:UU:595:PRO:HD3	53:UU:634:PHE:CD2	2.50	0.46
55:UQ:144:VAL:HG22	55:UQ:153:ILE:HG22	1.96	0.46
55:UQ:512:ILE:HG21	55:UQ:525:LEU:HD23	1.97	0.46
61:JA:592:GLY:HA3	61:JA:631:SER:HA	1.98	0.46
61:JB:124:LEU:HD13	61:JB:130:LEU:HD11	1.97	0.46
6:CL:300:GLN:HB2	6:CL:792:VAL:HB	1.98	0.46
12:UC:546:LYS:HA	12:UC:546:LYS:HD3	1.74	0.46
23:JE:324:ASP:O	31:DJ:79:ARG:NH1	2.47	0.46
30:DI:100:ALA:HB3	30:DI:169:ILE:HD12	1.98	0.46
49:CM:339:LEU:HB3	49:CM:350:MET:HE2	1.97	0.46
54:UD:148:SER:OG	54:UD:157:SER:OG	2.34	0.46
11:UB:602:LEU:HA	11:UB:675:TYR:HE1	1.81	0.46
30:DI:36:THR:O	30:DI:96:LEU:N	2.39	0.46
53:UU:503:ARG:HG3	53:UU:523:ASP:HB3	1.97	0.46
6:CL:910:GLY:O	12:UC:538:ARG:NH2	2.49	0.45
7:DY:84:LYS:O	60:UT:14:TYR:OH	2.32	0.45
10:CB:107:VAL:HB	10:CB:141:TYR:HB3	1.98	0.45
15:UK:105:ASN:HB3	42:CE:330:LEU:HD22	1.98	0.45
42:CE:61:ASN:HA	42:CE:64:ILE:HB	1.98	0.45
42:CE:359:ILE:HG13	42:CE:398:LEU:HD13	1.97	0.45
46:UG:210:GLU:HA	46:UG:234:PRO:HB3	1.98	0.45
46:UG:301:TRP:HA	46:UG:308:GLN:HA	1.98	0.45
54:UD:66:ARG:NE	54:UD:88:GLU:OE2	2.49	0.45
55:UQ:604:PHE:HB3	55:UQ:606:HIS:H	1.80	0.45
60:UT:478:GLU:HA	60:UT:481:TRP:CD1	2.51	0.45
61:JB:139:ILE:HD12	61:JB:486:LEU:HD13	1.98	0.45
1:D3:1641:C:H5	5:CK:534:ARG:HH11	1.65	0.45
11:UB:515:HIS:O	11:UB:519:THR:OG1	2.32	0.45
17:UM:686:MET:HE3	17:UM:686:MET:HB3	1.84	0.45
39:CH:488:ILE:HG12	39:CH:498:VAL:HG22	1.98	0.45
42:CE:183:ARG:HG2	43:CD:180:LEU:HD13	1.98	0.45
50:UZ:92:HIS:HB3	50:UZ:177:ARG:HH11	1.80	0.45
51:JP:41:TYR:HE1	51:JP:407:MET:HG3	1.81	0.45
53:UU:115:ASP:OD2	53:UU:115:ASP:N	2.48	0.45
55:UQ:245:LEU:HD13	55:UQ:257:ARG:HG2	1.98	0.45
61:JA:164:MET:HE2	61:JA:171:ARG:HH11	1.81	0.45
1:D3:1133:A:H4'	49:CM:199:ARG:HD3	1.99	0.45
10:CB:244:VAL:HG23	10:CB:249:GLN:HG2	1.97	0.45
11:UB:523:ILE:HG22	20:US:473:TYR:HE1	1.81	0.45
20:US:180:PHE:O	20:US:184:TYR:HB2	2.16	0.45
22:CI:63:LEU:HB3	47:JN:204:GLY:HA2	1.98	0.45

A 4 1	A 4 a a a a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
31:DJ:59:LEU:HD22	31:DJ:69:ARG:HA	1.98	0.45
1:D3:113:U:H5"	1:D3:114:C:H5'	1.98	0.45
2:D2:68:U:H2'	2:D2:70:A:H2	1.81	0.45
5:CK:515:MET:SD	5:CK:528:LEU:HD21	2.56	0.45
6:CL:84:THR:HG22	6:CL:87:ARG:HH21	1.82	0.45
6:CL:1044:LEU:HD23	6:CL:1044:LEU:HA	1.82	0.45
8:UX:88:ASP:OD2	31:DJ:57:ARG:NE	2.42	0.45
10:CA:103:GLU:OE2	12:UC:595:LYS:NZ	2.49	0.45
16:UL:393:ASP:N	16:UL:393:ASP:OD1	2.47	0.45
20:US:225:HIS:HD2	20:US:227:LYS:HB2	1.82	0.45
54:UD:420:LEU:HD11	54:UD:462:VAL:HG21	1.99	0.45
55:UQ:473:LEU:HB2	55:UQ:495:ILE:HD11	1.99	0.45
61:JB:285:ARG:HB2	61:JB:414:GLY:HA2	1.97	0.45
6:CL:69:PRO:HD3	6:CL:114:ARG:HH21	1.82	0.45
9:JG:47:MET:HE3	9:JG:47:MET:HB3	1.86	0.45
10:CB:145:ASN:HB3	10:CB:148:ARG:HB2	1.98	0.45
11:UB:651:TRP:HA	11:UB:654:LEU:HD12	1.98	0.45
16:UL:658:SER:OG	16:UL:659:GLU:OE1	2.35	0.45
26:JK:459:SER:OG	26:JK:460:LYS:N	2.48	0.45
33:JC:283:VAL:HG21	33:JC:346:LEU:HB3	1.99	0.45
37:DG:135:PRO:HD2	37:DG:158:ILE:HD13	1.98	0.45
39:CH:160:ILE:HG22	39:CH:523:LYS:HB3	1.99	0.45
48:JO:80:MET:HE2	48:JO:101:ILE:HB	1.99	0.45
54:UD:382:VAL:HG11	54:UD:755:ILE:HG13	1.97	0.45
56:UA:605:ASP:HB2	56:UA:612:LEU:HD21	1.99	0.45
58:UJ:960:VAL:O	58:UJ:964:PHE:N	2.43	0.45
61:JA:282:THR:O	61:JA:469:SER:HA	2.16	0.45
1:D3:1511:U:OP1	50:UZ:147:SER:OG	2.33	0.45
13:UE:151:LEU:HD11	13:UE:163:LEU:HD13	1.99	0.45
13:UE:519:LEU:HB3	18:UO:512:THR:HG22	1.98	0.45
16:UL:673:VAL:HG22	16:UL:683:ILE:HG12	1.99	0.45
22:CI:25:GLN:OE1	46:UG:188:LYS:NZ	2.50	0.45
22:CI:179:ASP:HB2	41:DQ:7:VAL:HG13	1.99	0.45
34:DE:106:LYS:HE3	34:DE:108:ARG:HH12	1.81	0.45
46:UG:244:ASN:ND2	46:UG:444:LEU:O	2.45	0.45
52:UR:512:ASP:OD1	52:UR:512:ASP:N	2.48	0.45
53:UU:455:PHE:HB3	53:UU:477:ILE:HD11	1.99	0.45
55:UQ:431:SER:O	55:UQ:434:GLN:NE2	2.50	0.45
1:D3:53:G:H5'	6:CL:221:LEU:HD11	1.98	0.45
13:UE:121:ASP:HB2	13:UE:127:TYR:HE1	1.82	0.45
16:UL:634:SER:OG	16:UL:635:LYS:N	2.48	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
33:JC:52:ASP:OD2	37:DG:92:ARG:NH1	2.50	0.45
49:CM:279:LEU:O	49:CM:283:ILE:HG12	2.16	0.45
51:JP:35:PHE:O	51:JP:39:ARG:HB2	2.16	0.45
61:JA:584:CYS:HA	61:JA:639:ALA:O	2.17	0.45
1:D3:337:G:H3'	38:DL:133:LYS:HB2	1.99	0.45
1:D3:562:G:N7	4:CJ:281:ILE:HG23	2.31	0.45
13:UE:343:ARG:HH22	55:UQ:380:THR:HG21	1.82	0.45
20:US:202:LEU:HB3	20:US:212:LEU:HD11	1.99	0.45
39:CH:156:ASN:HA	39:CH:544:ALA:HB1	1.99	0.45
41:DQ:40:GLU:OE1	41:DQ:45:ARG:NH2	2.49	0.45
53:UU:212:ALA:HA	53:UU:222:ALA:O	2.17	0.45
61:JB:635:ILE:HB	61:JB:725:VAL:HG12	1.98	0.45
61:JB:656:LEU:HD22	61:JB:665:PHE:HZ	1.81	0.45
6:CL:49:VAL:HA	6:CL:52:ARG:HD3	1.98	0.45
6:CL:236:LYS:HB3	6:CL:236:LYS:HE3	1.79	0.45
9:JG:69:ASN:HD21	9:JG:134:PHE:HE2	1.63	0.45
9:JG:136:ARG:NH2	12:UC:438:ASP:O	2.41	0.45
16:UL:261:PHE:HE2	16:UL:286:ILE:HD11	1.81	0.45
16:UL:631:PHE:HB3	16:UL:663:LEU:HD21	1.99	0.45
18:UO:32:SER:O	18:UO:330:ARG:HA	2.16	0.45
18:UO:65:ILE:HB	18:UO:75:LYS:HB2	1.98	0.45
49:CM:263:ASP:OD1	49:CM:264:ALA:N	2.46	0.45
54:UD:183:LEU:HD22	54:UD:223:GLY:HA2	1.99	0.45
55:UQ:510:TYR:HE1	55:UQ:527:HIS:HB3	1.81	0.45
61:JA:656:LEU:HD22	61:JA:665:PHE:HZ	1.82	0.45
61:JA:894:ASN:O	61:JA:897:THR:OG1	2.33	0.45
61:JB:124:LEU:HG	61:JB:150:ILE:HA	1.99	0.45
1:D3:472:U:H4'	23:JE:316:ARG:HH22	1.82	0.45
14:UH:553:GLN:O	14:UH:557:THR:OG1	2.31	0.45
16:UL:107:ASP:OD1	16:UL:107:ASP:N	2.49	0.45
46:UG:170:GLN:OE1	46:UG:177:TYR:OH	2.31	0.45
55:UQ:203:SER:HB2	55:UQ:266:ASN:HD21	1.82	0.45
55:UQ:848:GLU:OE1	58:UJ:381:ARG:NH1	2.50	0.45
60:UT:1892:LEU:HB2	60:UT:1926:PHE:HZ	1.82	0.45
6:CL:768:GLU:HG3	49:CM:308:ILE:HG21	1.99	0.44
10:CA:111:MET:HE1	10:CA:190:PRO:HG3	1.99	0.44
15:UK:70:ARG:HD3	15:UK:78:LEU:HD11	1.99	0.44
18:UO:107:VAL:HB	18:UO:118:LEU:HB3	1.99	0.44
30:DI:101:ILE:HD12	30:DI:184:LEU:HD11	1.97	0.44
53:UU:352:PRO:HA	53:UU:353:PRO:HD3	1.88	0.44
61:JA:568:LEU:HD11	61:JA:709:LEU:HD22	1.98	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D3:1206:U:O2'	1:D3:1208:A:N7	2.49	0.44
3:D4:39:C:O2'	51:JP:18:SER:O	2.31	0.44
6:CL:934:LEU:HD12	6:CL:1003:LEU:HD23	2.00	0.44
10:CB:91:HIS:HB3	10:CB:96:VAL:O	2.17	0.44
14:UH:655:LEU:HD11	57:UI:506:LEU:HB3	1.99	0.44
54:UD:392:VAL:HG22	54:UD:401:ILE:HG12	1.99	0.44
60:UT:2063:PHE:O	60:UT:2067:ASN:ND2	2.50	0.44
5:CK:341:LEU:O	6:CL:960:ARG:NH1	2.50	0.44
6:CL:555:MET:O	49:CM:327:ARG:NH2	2.50	0.44
9:JG:41:MET:HE3	9:JG:241:PHE:HD1	1.83	0.44
39:CH:475:ILE:HG21	39:CH:478:LEU:HD12	1.99	0.44
40:Dc:12:VAL:HA	40:Dc:30:VAL:HG12	1.99	0.44
51:JP:217:TRP:HE3	51:JP:254:PRO:HB2	1.82	0.44
54:UD:402:TRP:HA	54:UD:415:LYS:O	2.18	0.44
58:UJ:1510:PHE:O	58:UJ:1514:SER:CB	2.65	0.44
1:D3:-1:G:H4'	1:D3:0:U:H3'	1.99	0.44
1:D3:498:G:N7	27:JM:138:LYS:NZ	2.61	0.44
5:CK:480:GLN:O	53:UU:743:ARG:NH2	2.51	0.44
7:DY:77:ASN:ND2	60:UT:57:ILE:HG12	2.32	0.44
40:Dc:64:ARG:HD3	40:Dc:64:ARG:HA	1.72	0.44
58:UJ:1038:PRO:O	58:UJ:1042:LEU:CB	2.66	0.44
61:JA:590:LEU:O	61:JA:595:SER:OG	2.36	0.44
1:D3:259:U:O2'	1:D3:261:U:OP2	2.33	0.44
1:D3:369:A:O2'	1:D3:377:G:N2	2.50	0.44
2:D2:192:G:H2'	2:D2:193:G:C8	2.52	0.44
2:D2:427:A:N6	2:D2:428:A:N3	2.66	0.44
8:UX:186:PRO:HA	31:DJ:23:ARG:HH21	1.83	0.44
13:UE:299:ASP:OD1	13:UE:320:ARG:NE	2.39	0.44
18:UO:237:TRP:HA	18:UO:244:LYS:HA	1.99	0.44
21:CG:85:VAL:HG13	39:CH:552:TRP:HB3	1.99	0.44
34:DE:48:LEU:HD11	34:DE:70:VAL:HG21	1.99	0.44
49:CM:23:LEU:HD22	49:CM:333:PHE:HE2	1.83	0.44
60:UT:1624:THR:O	60:UT:1628:ILE:N	2.42	0.44
61:JB:160:GLN:HG2	61:JB:164:MET:HE3	1.99	0.44
1:D3:105:A:H62	1:D3:308:C:H42	1.65	0.44
1:D3:337:G:H1	26:JK:460:LYS:NZ	2.16	0.44
6:CL:549:ILE:HG21	49:CM:350:MET:HE1	2.00	0.44
24:JH:222:LYS:HA	24:JH:255:SER:H	1.83	0.44
51:JP:280:ALA:HB2	51:JP:311:VAL:HG23	2.00	0.44
56:UA:296:GLN:OE1	56:UA:330:TYR:OH	2.23	0.44
60:UT:1609:ARG:O	60:UT:1613:ALA:N	2.47	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
61:JA:579:ILE:HD12	61:JA:580:PRO:HD2	2.00	0.44
1:D3:7:G:N7	3:D4:28:A:O2'	2.45	0.44
1:D3:209:U:H2'	1:D3:210:A:C8	2.53	0.44
1:D3:411:C:H42	1:D3:422:G:H1	1.66	0.44
8:UX:70:ASN:HD21	8:UX:157:ASP:HB2	1.82	0.44
9:JG:180:LEU:HD12	9:JG:206:VAL:HG22	1.99	0.44
9:JG:252:LEU:HB2	20:US:426:PHE:HE2	1.83	0.44
10:CB:189:GLY:O	10:CB:216:ASN:ND2	2.51	0.44
13:UE:126:PHE:O	13:UE:139:HIS:HA	2.18	0.44
15:UK:183:SER:OG	15:UK:184:ILE:N	2.51	0.44
15:UK:183:SER:O	15:UK:185:MET:N	2.51	0.44
16:UL:388:GLN:HE22	16:UL:423:LYS:HB2	1.82	0.44
18:UO:450:ILE:HG22	18:UO:494:GLU:HG3	1.98	0.44
36:DW:95:PRO:HB3	47:JN:308:ILE:HD11	1.99	0.44
39:CH:157:LEU:HD23	39:CH:191:SER:HB3	1.99	0.44
46:UG:287:TYR:HD1	46:UG:304:ARG:HD2	1.82	0.44
50:UZ:229:ARG:HE	50:UZ:233:GLY:HA3	1.82	0.44
53:UU:309:ILE:HG12	53:UU:323:VAL:HG23	1.99	0.44
56:UA:200:SER:OG	56:UA:201:HIS:N	2.49	0.44
58:UJ:218:ILE:HG23	58:UJ:263:VAL:HG11	2.00	0.44
59:DH:60:ILE:HB	59:DH:92:PHE:HD1	1.82	0.44
60:UT:670:LEU:HG	60:UT:681:VAL:HG11	2.00	0.44
61:JA:251:VAL:O	61:JA:254:SER:OG	2.33	0.44
1:D3:351:C:O2	38:DL:103:ARG:NH2	2.50	0.44
1:D3:1491:U:OP2	27:JM:213:ARG:NH1	2.51	0.44
1:D3:1642:G:OP2	5:CK:530:ARG:NH2	2.37	0.44
9:JG:105:ASN:HB2	9:JG:110:LEU:HD23	1.99	0.44
16:UL:140:SER:OG	16:UL:141:LYS:N	2.50	0.44
17:UM:808:TYR:HB2	53:UU:932:VAL:HG22	2.00	0.44
18:UO:125:HIS:HB3	18:UO:145:ASP:HB2	2.00	0.44
37:DG:116:LYS:HE3	37:DG:116:LYS:HB2	1.90	0.44
39:CH:322:HIS:HB2	39:CH:343:ASP:HB3	1.99	0.44
60:UT:2080:MET:HA	60:UT:2083:ILE:HG22	1.99	0.44
61:JA:342:ILE:HG23	61:JA:354:ILE:HG23	1.99	0.44
2:D2:5:G:H2'	2:D2:6:A:H5"	1.99	0.44
4:CJ:153:THR:HG23	4:CJ:164:GLN:HG2	2.00	0.44
10:CA:219:PRO:O	43:CD:159:SER:OG	2.25	0.44
14:UH:655:LEU:HD21	57:UI:507:ARG:HG2	2.00	0.44
15:UK:18:GLN:HB2	15:UK:28:LEU:HB2	2.00	0.44
16:UL:836:ILE:O	16:UL:840:MET:HG2	2.18	0.44
16:UL:843:LYS:HD3	16:UL:843:LYS:HA	1.77	0.44

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
18:UO:21:THR:HG22	18:UO:23:GLU:H	1.83	0.44
33:JC:254:ILE:O	33:JC:263:SER:N	2.47	0.44
46:UG:278:ASN:N	46:UG:292:THR:O	2.50	0.44
48:JO:110:PHE:O	48:JO:114:VAL:HG23	2.18	0.44
53:UU:546:ILE:HG21	53:UU:560:LEU:HD22	2.00	0.44
58:UJ:1281:ALA:O	58:UJ:1285:VAL:N	2.42	0.44
61:JB:584:CYS:HA	61:JB:639:ALA:O	2.18	0.44
2:D2:329:A:OP1	46:UG:229:ARG:NH2	2.51	0.43
7:DY:7:ILE:HG21	7:DY:44:LEU:HD21	1.99	0.43
14:UH:492:GLU:OE1	55:UQ:675:ARG:NH1	2.43	0.43
14:UH:549:ARG:NH1	14:UH:549:ARG:HA	2.33	0.43
16:UL:753:MET:HG2	16:UL:824:MET:HG2	1.99	0.43
18:UO:420:GLU:O	18:UO:424:ARG:HG2	2.18	0.43
31:DJ:166:GLY:HA2	39:CH:227:GLU:HB3	2.00	0.43
42:CE:173:LEU:HD22	42:CE:269:ARG:HD3	2.00	0.43
53:UU:587:ARG:HB3	53:UU:605:LEU:HD12	2.00	0.43
55:UQ:152:ARG:HD3	55:UQ:175:ALA:HA	2.00	0.43
60:UT:1918:LEU:HB3	60:UT:1962:PHE:HE1	1.83	0.43
1:D3:445:A:H1'	1:D3:525:A:H5"	1.99	0.43
19:UP:172:LYS:HA	19:UP:177:ARG:HA	1.98	0.43
29:DF:144:GLU:OE1	29:DF:225:ARG:NH2	2.51	0.43
34:DE:174:LYS:HE3	34:DE:174:LYS:HB2	1.84	0.43
52:UR:20:GLN:O	52:UR:24:LYS:HG2	2.18	0.43
53:UU:173:LEU:HD11	53:UU:235:MET:HG3	2.00	0.43
53:UU:464:LYS:HA	53:UU:464:LYS:HD2	1.84	0.43
56:UA:441:SER:O	56:UA:443:GLU:N	2.51	0.43
60:UT:1514:LEU:O	60:UT:1518:MET:N	2.50	0.43
61:JA:250:LEU:HB3	61:JA:295:ILE:HG23	2.00	0.43
61:JB:421:SER:HB3	61:JB:542:VAL:HG12	1.98	0.43
6:CL:416:LEU:HD23	61:JA:529:VAL:HB	2.01	0.43
11:UB:422:LEU:O	11:UB:426:THR:HG23	2.18	0.43
14:UH:712:ASP:OD1	14:UH:712:ASP:N	2.45	0.43
16:UL:884:LYS:HB3	16:UL:884:LYS:HE3	1.70	0.43
18:UO:190:ASP:OD2	18:UO:194:ARG:NH2	2.38	0.43
18:UO:401:LEU:HB3	18:UO:434:ARG:HH22	1.83	0.43
34:DE:113:ARG:NH2	39:CH:119:SER:OG	2.48	0.43
35:DX:89:ASN:OD1	35:DX:90:ASP:N	2.52	0.43
41:DQ:48:VAL:HG23	41:DQ:78:VAL:HG13	2.00	0.43
45:UF:123:GLN:N	45:UF:123:GLN:OE1	2.51	0.43
46:UG:218:ASP:OD1	46:UG:220:SER:OG	2.28	0.43
53:UU:235:MET:HE3	53:UU:235:MET:HB3	1.89	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
53:UU:828:LYS:HA	53:UU:828:LYS:HD3	1.82	0.43
54:UD:736:ASP:OD1	54:UD:736:ASP:N	2.51	0.43
61:JA:635:ILE:HB	61:JA:725:VAL:HG12	2.00	0.43
1:D3:372:G:N3	23:JE:330:SER:OG	2.51	0.43
12:UC:547:ASN:O	35:DX:139:LYS:NZ	2.52	0.43
16:UL:444:LEU:HD23	16:UL:456:LEU:HD11	2.00	0.43
16:UL:800:THR:HG23	16:UL:803:GLN:H	1.83	0.43
40:Dc:58:GLU:CD	40:Dc:61:ARG:HE	2.26	0.43
42:CE:248:THR:HG22	42:CE:250:THR:H	1.82	0.43
48:JO:59:ASP:OD2	48:JO:62:ARG:NH1	2.52	0.43
60:UT:590:MET:O	60:UT:770:TYR:OH	2.34	0.43
2:D2:392:U:H5"	22:CI:102:THR:HG22	1.99	0.43
6:CL:53:LYS:HD2	6:CL:53:LYS:HA	1.77	0.43
6:CL:94:THR:HG21	6:CL:354:ILE:HB	2.01	0.43
6:CL:250:THR:HG23	6:CL:270:ALA:HB3	2.01	0.43
22:CI:128:VAL:O	22:CI:132:GLU:HG3	2.19	0.43
43:CD:399:VAL:O	43:CD:402:SER:OG	2.35	0.43
55:UQ:586:SER:HB3	55:UQ:597:LYS:HG3	2.01	0.43
60:UT:2037:ASP:OD1	60:UT:2040:ARG:NH1	2.47	0.43
61:JB:9:ARG:HD2	61:JB:216:VAL:H	1.83	0.43
61:JB:107:TYR:HD2	61:JB:109:LYS:HG2	1.84	0.43
1:D3:523:G:H1'	1:D3:529:A:H61	1.83	0.43
1:D3:1272:U:H2'	1:D3:1273:G:H8	1.83	0.43
5:CK:483:TYR:CE1	53:UU:732:ASN:HB3	2.53	0.43
27:JM:58:ASN:HA	27:JM:61:LYS:HG2	2.00	0.43
36:DW:6:VAL:HG12	36:DW:34:ILE:HD11	2.00	0.43
39:CH:152:VAL:HG12	39:CH:154:GLU:H	1.83	0.43
39:CH:547:HIS:HB2	39:CH:553:ILE:HD13	1.99	0.43
42:CE:229:GLU:O	42:CE:233:GLU:N	2.50	0.43
46:UG:13:LYS:HE3	46:UG:13:LYS:HB2	1.76	0.43
55:UQ:145:PHE:CE1	55:UQ:201:ILE:HD13	2.54	0.43
60:UT:1499:ARG:O	60:UT:1503:ILE:HG12	2.19	0.43
60:UT:1945:ILE:O	60:UT:1985:ARG:NH1	2.51	0.43
1:D3:250:C:H2'	1:D3:251:A:H8	1.84	0.43
1:D3:1743:U:H2'	1:D3:1744:A:C8	2.54	0.43
10:CA:303:GLN:HB3	12:UC:606:VAL:HG13	2.01	0.43
16:UL:888:ARG:NH2	17:UM:807:ASP:OD2	2.44	0.43
18:UO:461:ASP:HB3	55:UQ:519:LEU:HD22	2.00	0.43
38:DL:74:THR:HG22	38:DL:122:ILE:HG13	1.99	0.43
43:CD:100:ILE:HG22	43:CD:102:ASP:H	1.83	0.43
45:UF:50:ILE:HD12	45:UF:50:ILE:HA	1.87	0.43

	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
46:UG:102:LYS:HB3	46:UG:389:LEU:HD11	2.00	0.43
46:UG:287:TYR:HD1	46:UG:304:ARG:HH11	1.66	0.43
47:JN:116:LEU:O	49:CM:134:LYS:NZ	2.40	0.43
52:UR:165:ARG:HH21	53:UU:236:ARG:HH21	1.66	0.43
53:UU:354:SER:H	53:UU:370:SER:HA	1.84	0.43
53:UU:370:SER:OG	53:UU:371:LYS:N	2.51	0.43
54:UD:568:ASN:HD22	54:UD:588:ASP:HB2	1.83	0.43
56:UA:360:VAL:HG23	56:UA:374:ILE:HD11	2.01	0.43
61:JA:765:VAL:HG23	61:JA:774:LEU:HD22	2.01	0.43
10:CA:163:PHE:CG	10:CA:266:GLY:HA3	2.53	0.43
16:UL:646:LYS:HE3	16:UL:646:LYS:HB2	1.92	0.43
19:UP:173:ARG:HA	19:UP:173:ARG:HD3	1.80	0.43
28:JQ:183:ARG:HD3	50:UZ:161:LYS:HE3	1.99	0.43
54:UD:179:HIS:HE1	54:UD:182:ILE:HG13	1.83	0.43
54:UD:552:ILE:O	54:UD:560:SER:HA	2.18	0.43
56:UA:532:VAL:O	56:UA:539:ILE:HA	2.18	0.43
60:UT:413:GLY:HA2	60:UT:416:PHE:HD2	1.84	0.43
3:D4:326:U:OP1	21:CF:46:ARG:NH2	2.42	0.43
9:JG:44:VAL:HG22	9:JG:113:TYR:HB2	2.00	0.43
10:CB:97:TYR:HB2	10:CB:107:VAL:HG23	2.00	0.43
13:UE:140:PHE:HE2	13:UE:142:ILE:HD11	1.83	0.43
14:UH:494:ASP:OD1	14:UH:494:ASP:N	2.52	0.43
14:UH:523:LEU:HD23	14:UH:550:LEU:HD13	2.01	0.43
14:UH:638:LEU:HD22	57:UI:499:ILE:HD13	2.01	0.43
27:JM:65:LEU:HD23	45:UF:187:LYS:HD2	2.00	0.43
30:DI:107:THR:O	30:DI:111:GLN:HG3	2.19	0.43
49:CM:122:THR:HG21	49:CM:156:ARG:HA	1.99	0.43
61:JB:418:THR:OG1	61:JB:546:TYR:O	2.34	0.43
1:D3:330:G:OP2	30:DI:172:ARG:NH1	2.52	0.43
1:D3:1461:C:OP2	11:UB:746:LYS:NZ	2.43	0.43
7:DY:86:GLU:O	60:UT:13:ARG:NH2	2.48	0.43
13:UE:8:SER:HA	13:UE:18:CYS:O	2.18	0.43
16:UL:631:PHE:CE2	16:UL:672:VAL:HG21	2.54	0.43
16:UL:635:LYS:HA	16:UL:659:GLU:HB2	2.01	0.43
20:US:303:TYR:CZ	20:US:320:LEU:HD13	2.54	0.43
52:UR:406:ASP:HB3	52:UR:458:ILE:HG22	2.01	0.43
53:UU:544:ALA:HB1	53:UU:563:ASP:HB2	2.01	0.43
55:UQ:493:PRO:HG3	55:UQ:513:GLU:HG3	2.00	0.43
1:D3:479:C:OP1	12:UC:566:ARG:NH2	2.46	0.42
2:D2:12:G:HO2'	2:D2:70:A:N6	2.16	0.42
2:D2:300:C:H4'	46:UG:374:ALA:HB1	2.01	0.42

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:CL:609:GLU:OE2	49:CM:17:PHE:N	2.50	0.42
8:UX:47:VAL:HB	12:UC:580:ARG:HB3	2.01	0.42
9:JG:35:ASP:O	9:JG:40:ARG:NH2	2.49	0.42
16:UL:822:MET:SD	40:Dc:14:LYS:HE2	2.59	0.42
20:US:321:ASN:HB3	20:US:357:ARG:HH21	1.84	0.42
29:DF:131:GLN:NE2	29:DF:135:ASP:OD1	2.52	0.42
34:DE:182:TYR:O	34:DE:226:PHE:N	2.52	0.42
43:CD:26:ASP:HA	43:CD:29:SER:HB3	2.01	0.42
44:UN:231:SER:O	44:UN:240:GLY:N	2.52	0.42
45:UF:5:ARG:HD2	45:UF:5:ARG:HA	1.83	0.42
52:UR:228:LEU:HD12	52:UR:229:PRO:HD2	2.00	0.42
55:UQ:325:GLN:OE1	55:UQ:328:THR:OG1	2.34	0.42
61:JB:789:LEU:HA	61:JB:793:PHE:HB2	2.00	0.42
61:JB:793:PHE:O	61:JB:796:PHE:HB2	2.19	0.42
1:D3:562:G:C5	4:CJ:281:ILE:HG23	2.54	0.42
1:D3:1743:U:H2'	1:D3:1744:A:H8	1.84	0.42
2:D2:428:A:H2'	2:D2:429:A:H8	1.84	0.42
6:CL:310:THR:HG23	6:CL:313:TYR:H	1.84	0.42
16:UL:589:ILE:HG12	16:UL:599:ILE:HG12	2.00	0.42
23:JE:319:VAL:HA	23:JE:324:ASP:HA	2.01	0.42
25:JJ:273:ARG:HB2	56:UA:315:GLU:HG2	2.01	0.42
34:DE:37:LYS:HD3	34:DE:39:ARG:HH21	1.84	0.42
42:CE:319:ILE:HD12	42:CE:326:LEU:HD22	2.00	0.42
60:UT:892:LEU:HD23	60:UT:892:LEU:HA	1.88	0.42
1:D3:17:C:O2'	3:D4:14:A:N6	2.52	0.42
1:D3:87:C:O2'	1:D3:169:A:N1	2.44	0.42
6:CL:1034:LEU:O	6:CL:1038:ILE:HG13	2.19	0.42
10:CB:301:LEU:HG	10:CB:318:GLY:HA2	2.00	0.42
18:UO:35:LEU:HD23	18:UO:326:LEU:HD13	2.01	0.42
21:CG:7:LYS:NZ	21:CG:62:GLU:OE1	2.52	0.42
30:DI:117:TYR:OH	38:DL:24:LYS:NZ	2.51	0.42
38:DL:78:THR:HG22	38:DL:84:ILE:HG22	2.02	0.42
42:CE:190:TRP:HE1	43:CD:172:ASN:HD22	1.66	0.42
50:UZ:75:ILE:HG21	50:UZ:135:LEU:HD21	2.00	0.42
54:UD:88:GLU:OE2	54:UD:527:TYR:OH	2.32	0.42
55:UQ:570:SER:O	$55:UQ:570:SER:O\overline{G}$	2.27	0.42
61:JA:373:GLN:HG3	61:JA:396:ILE:HD13	2.01	0.42
61:JA:586:ILE:HG21	61:JA:657:LEU:HD22	2.00	0.42
61:JB:858:MET:HE3	61:JB:858:MET:HB3	1.78	0.42
1:D3:1452:U:H2'	1:D3:1453:G:C8	2.54	0.42
2:D2:361:G:N2	2:D2:364:A:OP2	2.38	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D2:428:A:H2'	2:D2:429:A:C8	2.54	0.42
7:DY:22:GLN:HG2	7:DY:74:LEU:HD22	2.01	0.42
18:UO:273:ILE:HD13	18:UO:283:VAL:HG22	2.01	0.42
58:UJ:387:LEU:HD12	58:UJ:407:PHE:HE2	1.84	0.42
61:JA:345:SER:N	61:JA:353:ALA:O	2.52	0.42
61:JB:352:LYS:HB2	61:JB:352:LYS:HE3	1.83	0.42
61:JB:555:LEU:O	61:JB:559:ALA:CB	2.68	0.42
1:D3:341:A:O2'	30:DI:86:SER:O	2.38	0.42
1:D3:400:A:H5"	30:DI:25:ARG:HA	2.01	0.42
4:CJ:12:TYR:OH	4:CJ:76:GLU:OE2	2.29	0.42
11:UB:429:LEU:HD11	11:UB:455:LEU:HD22	2.01	0.42
14:UH:507:LEU:HD13	14:UH:536:ARG:HG3	2.02	0.42
14:UH:708:MET:HG2	54:UD:32:ILE:HD11	2.02	0.42
19:UP:192:PRO:HG2	54:UD:122:VAL:HG21	2.00	0.42
20:US:397:THR:HG23	20:US:499:LEU:HD23	2.01	0.42
33:JC:323:VAL:HA	33:JC:324:PRO:HD3	1.93	0.42
39:CH:335:ARG:HD3	39:CH:348:LEU:HD11	2.00	0.42
42:CE:60:ALA:HB1	42:CE:147:ILE:HD11	2.02	0.42
49:CM:143:LYS:HD2	49:CM:143:LYS:HA	1.94	0.42
52:UR:298:CYS:HA	52:UR:313:PHE:O	2.18	0.42
53:UU:232:MET:HG3	53:UU:242:ARG:HB3	2.02	0.42
56:UA:265:CYS:SG	56:UA:308:VAL:HG23	2.59	0.42
56:UA:283:GLU:OE2	56:UA:297:GLN:NE2	2.53	0.42
61:JB:871:MET:HE1	61:JB:920:MET:HE1	2.01	0.42
9:JG:89:PRO:HG2	9:JG:134:PHE:HZ	1.84	0.42
18:UO:103:GLY:HA2	18:UO:127:THR:HG23	2.01	0.42
32:DS:27:LYS:HA	32:DS:57:ARG:HA	2.00	0.42
36:DW:44:HIS:NE2	36:DW:112:ASP:OD2	2.39	0.42
49:CM:138:MET:HE1	49:CM:151:LEU:HB2	2.02	0.42
51:JP:210:LYS:HD3	51:JP:210:LYS:HA	1.95	0.42
55:UQ:379:LEU:HD23	55:UQ:379:LEU:HA	1.90	0.42
58:UJ:209:GLN:O	58:UJ:213:THR:HG23	2.20	0.42
61:JA:418:THR:HB	61:JA:548:ASN:H	1.85	0.42
61:JA:895:ILE:HA	61:JA:898:ILE:HD12	2.01	0.42
61:JB:727:TYR:OH	61:JB:762:MET:SD	2.71	0.42
1:D3:1592:A:H2'	1:D3:1593:A:C8	2.54	0.42
1:D3:1663:G:H1	1:D3:1738:U:H3	1.66	0.42
2:D2:20:C:H2'	2:D2:21:A:H8	1.83	0.42
27:JM:51:LYS:HA	27:JM:54:GLU:CD	2.45	0.42
30:DI:53:LYS:HB3	30:DI:53:LYS:HE2	1.74	0.42
39:CH:114:LYS:HB2	39:CH:114:LYS:HE2	1.83	0.42

	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
53:UU:455:PHE:HE1	53:UU:492:GLY:HA2	1.85	0.42
56:UA:180:LYS:HE3	56:UA:180:LYS:HB2	1.84	0.42
56:UA:479:LEU:HD22	56:UA:488:LEU:HD11	2.01	0.42
58:UJ:408:ILE:HD12	58:UJ:412:GLU:HG3	2.02	0.42
61:JA:789:LEU:HA	61:JA:793:PHE:HB2	2.01	0.42
1:D3:1644:C:H2'	1:D3:1645:G:H8	1.85	0.42
2:D2:20:C:H2'	2:D2:21:A:C8	2.54	0.42
10:CB:276:ILE:HG22	10:CB:277:ASP:H	1.85	0.42
13:UE:542:ALA:O	13:UE:546:ARG:HG2	2.19	0.42
16:UL:751:ARG:HA	16:UL:754:GLU:HG2	2.02	0.42
37:DG:35:GLU:OE2	37:DG:49:VAL:HG12	2.19	0.42
51:JP:185:ILE:HG13	51:JP:196:THR:HG22	2.01	0.42
53:UU:353:PRO:HA	53:UU:370:SER:HA	2.02	0.42
60:UT:2148:TRP:HD1	60:UT:2157:PHE:CZ	2.38	0.42
61:JB:293:LEU:O	61:JB:297:ILE:HG12	2.20	0.42
6:CL:89:LEU:HD22	6:CL:93:MET:HE3	2.02	0.42
16:UL:574:LEU:HD23	16:UL:574:LEU:HA	1.87	0.42
18:UO:150:ARG:HG2	18:UO:163:GLU:HG2	2.00	0.42
22:CI:66:PRO:HD3	47:JN:207:ARG:HE	1.85	0.42
41:DQ:39:VAL:HG11	41:DQ:48:VAL:HG21	2.01	0.42
53:UU:876:LYS:HE3	53:UU:876:LYS:HB2	1.87	0.42
55:UQ:680:ALA:HB2	55:UQ:750:LEU:HD12	2.01	0.42
56:UA:4:ASP:O	56:UA:706:THR:OG1	2.37	0.42
61:JB:136:ALA:HB1	61:JB:415:TYR:HB2	2.00	0.42
61:JB:159:LYS:HB3	61:JB:687:LEU:HD13	2.01	0.42
61:JB:165:THR:HG22	61:JB:210:LEU:HB3	2.01	0.42
1:D3:34:G:H21	1:D3:468:A:H1'	1.84	0.42
1:D3:511:A:OP2	31:DJ:176:ASN:ND2	2.34	0.42
6:CL:150:MET:HE1	12:UC:541:ASN:HD22	1.85	0.42
11:UB:738:ASN:OD1	11:UB:741:LYS:NZ	2.49	0.42
19:UP:194:LYS:HD2	19:UP:199:ILE:HD11	2.02	0.42
23:JE:338:THR:HB	39:CH:66:LEU:HD22	2.02	0.42
37:DG:126:ASP:OD1	37:DG:127:THR:N	2.53	0.42
41:DQ:46:PHE:HA	41:DQ:49:TYR:HB2	2.00	0.42
52:UR:251:ILE:O	52:UR:566:THR:OG1	2.34	0.42
54:UD:252:GLN:HA	54:UD:265:TRP:O	2.20	0.42
55:UQ:321:MET:HE2	55:UQ:321:MET:HB3	1.88	0.42
55:UQ:703:LYS:HB2	55:UQ:706:HIS:CD2	2.55	0.42
58:UJ:137:LEU:HD11	58:UJ:191:LEU:HG	2.01	0.42
60:UT:1722:MET:HE2	60:UT:1722:MET:HB2	1.81	0.42
61:JA:400:LEU:O	61:JA:404:TYR:OH	2.23	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D3:469:C:H5"	1:D3:470:A:N7	2.35	0.41
1:D3:502:U:H5"	12:UC:574:LYS:HD3	2.01	0.41
2:D2:254:C:H2'	28:JQ:183:ARG:HH11	1.85	0.41
2:D2:329:A:O2'	2:D2:331:U:OP2	2.38	0.41
7:DY:83:LYS:HG2	7:DY:96:LEU:HD21	2.01	0.41
8:UX:121:ARG:NH1	51:JP:66:HIS:O	2.53	0.41
13:UE:445:LEU:HD23	13:UE:445:LEU:HA	1.91	0.41
16:UL:220:THR:HG22	16:UL:226:VAL:HG22	2.02	0.41
16:UL:757:ASP:OD1	16:UL:831:LYS:NZ	2.48	0.41
21:CG:64:LEU:HD23	21:CG:98:ILE:HD12	2.02	0.41
33:JC:329:PHE:HE2	33:JC:343:ILE:HD12	1.85	0.41
39:CH:62:LYS:HA	39:CH:65:ARG:HG2	2.02	0.41
51:JP:122:ARG:NH1	51:JP:191:ASN:O	2.53	0.41
54:UD:141:SER:HB2	54:UD:164:THR:HG21	2.02	0.41
61:JA:842:LEU:HD12	61:JA:917:MET:HE2	2.02	0.41
61:JB:115:LEU:HD11	61:JB:137:ARG:HG2	2.02	0.41
1:D3:384:G:O2'	30:DI:21:PHE:O	2.37	0.41
2:D2:194:G:H2'	2:D2:195:A:H8	1.84	0.41
10:CA:291:GLN:O	10:CA:295:GLU:HG2	2.20	0.41
13:UE:150:LYS:HG3	13:UE:191:VAL:HG12	2.01	0.41
16:UL:89:LYS:HD2	16:UL:89:LYS:HA	1.91	0.41
30:DI:76:THR:HG22	30:DI:108:PRO:HG2	2.02	0.41
33:JC:62:ILE:HD13	33:JC:330:PHE:HB3	2.02	0.41
38:DL:57:LYS:HB2	38:DL:110:HIS:CE1	2.55	0.41
39:CH:111:ASP:HA	39:CH:114:LYS:HE2	2.02	0.41
49:CM:47:ASP:OD1	49:CM:48:TYR:N	2.53	0.41
49:CM:321:ARG:HA	49:CM:324:ILE:HG22	2.01	0.41
53:UU:718:LYS:HA	53:UU:718:LYS:HD2	1.70	0.41
59:DH:159:VAL:HG11	59:DH:188:GLU:HG3	2.02	0.41
60:UT:2021:ASP:O	60:UT:2024:ARG:HG2	2.20	0.41
61:JA:385:VAL:HG22	61:JA:407:PHE:HB2	2.02	0.41
61:JB:57:TRP:HE1	61:JB:59:TYR:HB3	1.85	0.41
61:JB:178:GLY:O	61:JB:601:ASN:ND2	2.47	0.41
1:D3:416:A:N1	61:JA:59:TYR:OH	2.43	0.41
1:D3:1512:G:H2'	1:D3:1513:G:C8	2.54	0.41
9:JF:242:CYS:O	9:JF:246:GLU:HG3	2.20	0.41
10:CA:160:ASP:HB2	12:UC:603:THR:HG21	2.02	0.41
11:UB:412:PRO:HA	11:UB:418:ASN:HB2	2.02	0.41
41:DQ:83:GLN:HE22	41:DQ:119:ALA:HA	1.85	0.41
44:UN:299:ASN:HA	44:UN:302:VAL:HG22	2.02	0.41
45:UF:14:GLU:OE2	45:UF:91:ARG:NH2	2.53	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
46:UG:333:SER:HB3	46:UG:381:LEU:HD11	2.02	0.41
49:CM:46:LYS:HD3	49:CM:46:LYS:HA	1.74	0.41
49:CM:176:GLN:HE21	49:CM:305:LYS:HB3	1.85	0.41
50:UZ:114:LYS:HA	50:UZ:117:GLN:HG3	2.02	0.41
53:UU:516:LYS:HE2	53:UU:573:VAL:HG12	2.02	0.41
53:UU:557:LEU:HD23	53:UU:571:ASP:HA	2.02	0.41
53:UU:834:LEU:O	53:UU:838:ILE:HG12	2.20	0.41
54:UD:80:ASN:ND2	54:UD:88:GLU:OE1	2.43	0.41
55:UQ:97:THR:OG1	55:UQ:130:LYS:NZ	2.36	0.41
56:UA:475:PRO:HD2	56:UA:493:TRP:HB2	2.01	0.41
60:UT:670:LEU:HD23	60:UT:670:LEU:HA	1.92	0.41
61:JA:380:GLN:NE2	61:JB:307:ASN:OD1	2.54	0.41
2:D2:223:C:H2'	2:D2:224:G:C8	2.56	0.41
6:CL:248:ARG:HD3	6:CL:357:PRO:HB2	2.02	0.41
10:CA:85:LYS:HG3	27:JM:172:THR:HA	2.02	0.41
13:UE:443:GLN:NE2	20:US:333:GLU:O	2.53	0.41
22:CI:162:ASP:OD1	22:CI:162:ASP:N	2.53	0.41
28:JQ:200:GLU:O	50:UZ:181:ARG:NH1	2.42	0.41
42:CE:215:ARG:HB3	42:CE:239:ALA:HB1	2.01	0.41
55:UQ:249:THR:HA	55:UQ:252:LEU:HD12	2.03	0.41
56:UA:843:LYS:HE2	56:UA:843:LYS:HB3	1.90	0.41
57:UI:435:LEU:HD23	57:UI:478:ASN:HD22	1.85	0.41
58:UJ:559:ASN:HB2	58:UJ:598:TYR:HA	2.02	0.41
60:UT:266:SER:O	60:UT:313:ARG:NH1	2.53	0.41
61:JA:855:ILE:O	61:JA:859:ILE:HG13	2.20	0.41
61:JB:308:ILE:HB	61:JB:367:ILE:HG12	2.03	0.41
1:D3:52:U:H2'	1:D3:53:G:C8	2.55	0.41
1:D3:1572:G:O6	9:JG:151:ARG:NH1	2.53	0.41
3:D4:327:G:OP1	15:UK:222:ARG:NH2	2.47	0.41
11:UB:548:ARG:NH1	20:US:548:PRO:O	2.51	0.41
33:JC:257:LEU:HD23	33:JC:257:LEU:HA	1.88	0.41
33:JC:331:THR:OG1	33:JC:339:HIS:HB2	2.19	0.41
34:DE:139:VAL:HG13	34:DE:150:PRO:HG3	2.03	0.41
37:DG:207:GLU:HA	37:DG:210:GLN:HG3	2.01	0.41
43:CD:146:ASP:OD1	43:CD:146:ASP:N	2.51	0.41
61:JA:45:MET:HE2	61:JA:53:LYS:HG2	2.03	0.41
61:JA:913:PHE:HA	61:JA:916:ILE:HD12	2.01	0.41
61:JB:258:ASN:ND2	61:JB:472:GLU:H	2.18	0.41
1:D3:209:U:H2'	1:D3:210:A:H8	1.85	0.41
1:D3:1615:C:C5	29:DF:81:ARG:HA	2.55	0.41
2:D2:425:U:H3	2:D2:431:A:H62	1.67	0.41

A 4 1	A 4 a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:CK:314:LEU:HD13	6:CL:857:LEU:HD11	2.03	0.41
9:JG:232:LEU:HD21	9:JF:103:PRO:HG3	2.02	0.41
10:CA:171:LEU:HB2	10:CA:237:VAL:HG11	2.02	0.41
10:CB:175:ALA:HB1	10:CB:181:VAL:HG21	2.03	0.41
13:UE:28:ARG:HA	13:UE:51:LEU:O	2.21	0.41
13:UE:283:SER:OG	13:UE:285:ASP:OD1	2.37	0.41
13:UE:503:LYS:HG2	18:UO:507:MET:HE1	2.02	0.41
16:UL:749:GLY:O	16:UL:753:MET:HG3	2.20	0.41
37:DG:51:LYS:HE2	37:DG:51:LYS:HB3	1.80	0.41
46:UG:287:TYR:CD1	46:UG:304:ARG:HD2	2.55	0.41
52:UR:345:LEU:HD13	52:UR:352:GLN:HB3	2.02	0.41
55:UQ:40:ASP:OD1	55:UQ:40:ASP:N	2.52	0.41
58:UJ:539:LEU:HD13	58:UJ:542:ILE:HD11	2.03	0.41
9:JF:51:GLU:HB2	9:JF:68:LEU:HB2	2.02	0.41
10:CA:227:PRO:HG2	10:CA:255:LEU:HB3	2.02	0.41
10:CB:163:PHE:CG	10:CB:266:GLY:HA3	2.56	0.41
10:CB:310:GLU:HB2	10:CB:313:HIS:HB2	2.03	0.41
11:UB:772:LYS:HB3	11:UB:772:LYS:HE3	1.91	0.41
21:CG:33:LEU:HD11	21:CG:100:ALA:HB1	2.03	0.41
34:DE:188:ASN:HD22	34:DE:218:PHE:HD2	1.69	0.41
45:UF:128:LYS:HE3	45:UF:128:LYS:HB3	1.89	0.41
45:UF:286:ILE:HD13	45:UF:286:ILE:HA	1.91	0.41
49:CM:176:GLN:NE2	49:CM:305:LYS:HB3	2.35	0.41
60:UT:2015:GLU:N	60:UT:2015:GLU:OE2	2.54	0.41
1:D3:1615:C:H5"	1:D3:1616:G:O4'	2.20	0.41
1:D3:1658:G:H1	1:D3:1743:U:H3	1.68	0.41
2:D2:550:C:H42	2:D2:587:G:H1	1.69	0.41
3:D4:79:G:C5	21:CF:95:ARG:HD3	2.56	0.41
3:D4:87:G:H21	3:D4:90:C:N4	2.19	0.41
10:CA:97:TYR:HB2	10:CA:107:VAL:HG23	2.01	0.41
11:UB:498:LEU:HD13	11:UB:545:VAL:HG11	2.03	0.41
11:UB:628:PRO:HG2	11:UB:631:GLN:HB3	2.02	0.41
13:UE:519:LEU:HD12	13:UE:519:LEU:HA	1.85	0.41
16:UL:555:VAL:HG23	16:UL:569:LEU:HB2	2.02	0.41
17:UM:728:ILE:HA	17:UM:731:LEU:HD13	2.02	0.41
30:DI:65:PHE:HA	30:DI:181:GLY:O	2.21	0.41
30:DI:121:LEU:HD11	30:DI:152:ILE:HD11	2.02	0.41
33:JC:273:ASP:OD1	33:JC:273:ASP:N	2.51	0.41
37:DG:130:PRO:HB3	60:UT:633:GLN:HA	2.03	0.41
41:DQ:71:GLY:O	41:DQ:77:GLN:NE2	2.48	0.41
50:UZ:147:SER:HA	50:UZ:150:LEU:HG	2.03	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
50:UZ:161:LYS:NZ	50:UZ:162:LEU:O	2.52	0.41
55:UQ:22:LEU:HD11	55:UQ:357:ILE:HD13	2.02	0.41
55:UQ:282:ILE:HD11	55:UQ:312:LEU:HD22	2.02	0.41
55:UQ:765:TRP:O	55:UQ:776:PHE:HA	2.20	0.41
1:D3:65:A:N6	1:D3:84:A:OP2	2.53	0.41
1:D3:143:G:O6	37:DG:177:ARG:NH2	2.51	0.41
1:D3:1131:A:N6	1:D3:1137:A:OP2	2.52	0.41
2:D2:210:U:H2'	2:D2:211:G:H8	1.85	0.41
2:D2:522:C:O2'	51:JP:125:ASP:O	2.29	0.41
6:CL:288:VAL:HG12	6:CL:814:GLY:HA2	2.02	0.41
6:CL:411:PHE:HZ	61:JA:190:LEU:HD13	1.85	0.41
6:CL:1082:GLN:OE1	22:CI:173:TYR:OH	2.30	0.41
7:DY:91:LEU:HB3	7:DY:97:ALA:HB3	2.02	0.41
9:JG:19:LEU:O	18:UO:125:HIS:NE2	2.39	0.41
9:JG:239:SER:OG	9:JF:239:SER:OG	2.26	0.41
18:UO:129:VAL:HG11	18:UO:174:LEU:HG	2.03	0.41
20:US:156:TRP:HB3	20:US:215:ASN:HD21	1.86	0.41
27:JM:208:LYS:HE3	27:JM:209:MET:HE2	2.02	0.41
34:DE:148:ARG:NH1	37:DG:201:GLN:OE1	2.54	0.41
38:DL:13:PHE:CE2	38:DL:15:LYS:HB3	2.56	0.41
39:CH:66:LEU:HD23	39:CH:66:LEU:HA	1.93	0.41
43:CD:21:LYS:HE2	43:CD:49:GLU:HB2	2.02	0.41
44:UN:315:LEU:HD12	51:JP:272:MET:HE1	2.01	0.41
46:UG:97:VAL:HG21	58:UJ:91:ILE:HD12	2.02	0.41
46:UG:340:LEU:O	46:UG:368:TYR:N	2.54	0.41
48:JO:201:LYS:HE3	48:JO:205:ILE:HD11	2.03	0.41
50:UZ:72:ILE:HG12	50:UZ:124:LEU:HD23	2.03	0.41
51:JP:18:SER:HA	58:UJ:26:GLN:HE22	1.85	0.41
51:JP:154:ASP:OD1	51:JP:154:ASP:N	2.54	0.41
52:UR:396:MET:HE1	52:UR:437:LEU:HB3	2.03	0.41
52:UR:464:THR:HG21	52:UR:476:ILE:HA	2.02	0.41
53:UU:121:LEU:HD22	53:UU:128:LEU:HD11	2.03	0.41
53:UU:611:THR:HB	53:UU:621:ASP:HB3	2.03	0.41
53:UU:830:TYR:HD1	53:UU:833:LEU:HD23	1.85	0.41
56:UA:412:ARG:HD3	56:UA:421:ASN:ND2	2.35	0.41
56:UA:743:PHE:HZ	56:UA:778:ILE:HD13	1.86	0.41
57:UI:463:LYS:HE3	57:UI:466:GLU:OE2	2.21	0.41
60:UT:1806:SER:HA	60:UT:1811:ILE:HG13	2.01	0.41
60:UT:1915:LEU:HA	60:UT:1915:LEU:HD23	1.83	0.41
60:UT:1993:PRO:HA	60:UT:1996:GLN:HG2	2.03	0.41
61:JB:190:LEU:HD23	61:JB:190:LEU:HA	1.91	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
61:JB:612:ASP:HB3	61:JB:615:PRO:HD2	2.03	0.41
61:JB:662:GLU:HG3	61:JB:664:LYS:HE3	2.03	0.41
2:D2:194:G:H2'	2:D2:195:A:C8	2.56	0.41
2:D2:408:U:H2'	2:D2:409:C:C6	2.56	0.41
5:CK:451:LEU:HD11	22:CI:50:ILE:HD13	2.03	0.41
6:CL:836:LYS:HD3	6:CL:836:LYS:HA	1.92	0.41
6:CL:893:ASN:HB2	49:CM:366:ILE:HG13	2.03	0.41
9:JG:41:MET:HE3	9:JG:241:PHE:CD1	2.56	0.41
9:JG:103:PRO:HG2	9:JF:240:LYS:HE3	2.03	0.41
18:UO:266:SER:OG	18:UO:268:MET:O	2.33	0.41
20:US:104:ALA:O	20:US:108:ASP:HB2	2.21	0.41
22:CI:22:LYS:HE3	22:CI:22:LYS:HB2	1.91	0.41
37:DG:159:ARG:NE	37:DG:172:ALA:HB2	2.36	0.41
39:CH:245:SER:HA	39:CH:246:PRO:HD3	1.98	0.41
43:CD:26:ASP:OD1	43:CD:26:ASP:N	2.49	0.41
44:UN:327:PHE:CD2	45:UF:167:ILE:HD11	2.56	0.41
46:UG:140:ARG:HG3	58:UJ:20:LEU:HD13	2.03	0.41
46:UG:302:ASP:OD2	46:UG:305:ASN:ND2	2.46	0.41
53:UU:929:CYS:HB3	56:UA:828:ILE:HD13	2.03	0.41
55:UQ:895:LEU:HD11	58:UJ:263:VAL:HA	2.02	0.41
60:UT:1312:SER:N	60:UT:1318:GLU:O	2.45	0.41
61:JA:562:HIS:HA	61:JA:588:ILE:O	2.21	0.41
61:JB:519:ASN:HB3	61:JB:522:THR:HG22	2.02	0.41
5:CK:440:LEU:HB3	22:CI:57:LEU:HD13	2.02	0.40
6:CL:275:LEU:HD23	6:CL:275:LEU:HA	1.90	0.40
6:CL:295:ASP:OD2	6:CL:852:ARG:NH1	2.54	0.40
8:UX:87:MET:HE3	8:UX:87:MET:HB2	1.85	0.40
9:JF:190:GLN:O	9:JF:194:GLU:HG3	2.21	0.40
12:UC:596:THR:HB	27:JM:137:LYS:HG3	2.03	0.40
13:UE:476:LEU:HD23	13:UE:479:ILE:HD12	2.04	0.40
14:UH:2:PRO:HG3	14:UH:404:GLY:HA3	2.03	0.40
14:UH:676:TRP:CZ3	57:UI:483:LYS:HG3	2.56	0.40
18:UO:413:LEU:O	18:UO:417:VAL:HG23	2.21	0.40
21:CF:35:LYS:HE3	21:CF:35:LYS:HB2	1.95	0.40
30:DI:11:ARG:O	38:DL:133:LYS:NZ	2.40	0.40
30:DI:83:TYR:HB2	30:DI:196:LEU:HD21	2.04	0.40
33:JC:208:ASP:OD1	33:JC:210:ARG:NH1	2.54	0.40
36:DW:36:LYS:HA	36:DW:36:LYS:HD3	1.87	0.40
39:CH:242:VAL:HG23	39:CH:253:THR:HG22	2.03	0.40
39:CH:257:ASP:N	39:CH:257:ASP:OD1	2.49	0.40
53:UU:366:MET:HE2	53:UU:366:MET:HB3	1.78	0.40

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
56:UA:176:ASP:HB2	56:UA:179:GLU:HB2	2.02	0.40
56:UA:631:ASN:HD22	56:UA:633:LYS:HB2	1.86	0.40
60:UT:39:HIS:HB2	60:UT:46:HIS:HB3	2.02	0.40
60:UT:1892:LEU:O	60:UT:1896:ILE:HG13	2.21	0.40
61:JB:677:TYR:HB3	61:JB:706:PRO:HB3	2.02	0.40
1:D3:575:C:HO2'	1:D3:576:G:H8	1.69	0.40
2:D2:163:G:H4'	52:UR:354:SER:HB3	2.03	0.40
2:D2:182:G:H2'	2:D2:183:A:C8	2.56	0.40
6:CL:100:ASP:O	6:CL:359:SER:OG	2.36	0.40
16:UL:888:ARG:HH22	17:UM:807:ASP:CG	2.28	0.40
17:UM:702:LEU:O	17:UM:706:ARG:HG2	2.21	0.40
18:UO:171:VAL:HG22	18:UO:188:SER:HB3	2.02	0.40
20:US:99:LYS:HG2	20:US:123:TYR:CE1	2.56	0.40
31:DJ:132:ARG:HG2	31:DJ:142:ASN:HB3	2.03	0.40
40:Dc:18:ARG:HD3	40:Dc:18:ARG:HA	1.84	0.40
44:UN:311:LEU:HD23	44:UN:315:LEU:HD11	2.03	0.40
58:UJ:256:ALA:O	58:UJ:259:THR:OG1	2.37	0.40
61:JA:462:SER:OG	61:JA:463:ARG:N	2.54	0.40
61:JB:894:ASN:O	61:JB:898:ILE:HG12	2.21	0.40
1:D3:355:G:H2'	1:D3:356:G:H8	1.87	0.40
13:UE:128:GLN:OE1	13:UE:138:GLN:NE2	2.38	0.40
13:UE:344:ASP:OD1	13:UE:348:LYS:N	2.55	0.40
14:UH:642:LEU:HD23	14:UH:642:LEU:HA	1.93	0.40
16:UL:7:ARG:NH2	16:UL:70:GLY:O	2.54	0.40
16:UL:68:PRO:HA	16:UL:69:PRO:HD3	1.96	0.40
21:CG:60:PRO:HG2	21:CG:63:ILE:HG23	2.03	0.40
45:UF:196:LEU:HD23	45:UF:196:LEU:HA	1.96	0.40
49:CM:141:MET:HE2	49:CM:141:MET:HB3	1.94	0.40
53:UU:859:ASP:OD1	53:UU:860:GLU:N	2.55	0.40
55:UQ:865:LYS:HE2	55:UQ:865:LYS:HB3	1.77	0.40
56:UA:212:ASP:OD2	56:UA:212:ASP:N	2.55	0.40
58:UJ:262:VAL:HG13	58:UJ:301:LYS:HG2	2.03	0.40
58:UJ:566:CYS:SG	58:UJ:567:LEU:N	2.95	0.40
3:D4:27:U:N3	47:JN:236:MET:HE2	2.36	0.40
4:CJ:84:MET:HE3	4:CJ:84:MET:HB2	1.94	0.40
6:CL:838:ILE:HD12	6:CL:874:TYR:HB3	2.02	0.40
11:UB:433:ILE:HD12	11:UB:459:LEU:HD22	2.03	0.40
14:UH:567:LEU:HD23	14:UH:567:LEU:HA	1.97	0.40
16:UL:126:LEU:HD13	16:UL:168:GLY:HA2	2.03	0.40
16:UL:255:ARG:NH1	16:UL:257:LEU:HD21	2.36	0.40
16:UL:671:PHE:HA	16:UL:684:TRP:O	2.22	0.40

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
16:UL:836:ILE:HD12	16:UL:853:ILE:HG23	2.03	0.40
20:US:265:LEU:HD21	20:US:277:ILE:HG21	2.02	0.40
25:JJ:271:LYS:HB2	56:UA:334:SER:HB3	2.02	0.40
29:DF:162:VAL:HG23	29:DF:166:ARG:HD3	2.03	0.40
30:DI:172:ARG:HH21	30:DI:175:GLN:HE21	1.69	0.40
37:DG:158:ILE:HG12	60:UT:632:LEU:HD11	2.03	0.40
52:UR:253:SER:OG	52:UR:297:THR:HA	2.22	0.40
53:UU:872:LEU:HD23	53:UU:872:LEU:HA	1.90	0.40
60:UT:672:VAL:O	60:UT:678:TRP:NE1	2.55	0.40
61:JA:29:VAL:HG11	61:JA:158:LEU:HD13	2.03	0.40
61:JA:213:ALA:O	61:JA:216:VAL:HB	2.21	0.40
61:JA:569:PRO:HD3	61:JA:583:LEU:HG	2.04	0.40
61:JA:884:ILE:O	61:JA:888:ILE:HG13	2.21	0.40
1:D3:32:U:O2'	1:D3:594:A:N1	2.44	0.40
2:D2:406:U:H5"	6:CL:1066:GLY:HA3	2.03	0.40
6:CL:217:ASP:OD1	6:CL:218:ARG:N	2.54	0.40
9:JG:167:ILE:HG13	9:JG:171:LEU:HG	2.03	0.40
13:UE:479:ILE:O	13:UE:483:ARG:HG2	2.21	0.40
16:UL:255:ARG:NH1	16:UL:277:ALA:HB2	2.37	0.40
29:DF:206:SER:O	29:DF:212:LYS:NZ	2.52	0.40
30:DI:81:VAL:HA	30:DI:102:VAL:HG12	2.03	0.40
31:DJ:138:LYS:HA	39:CH:319:TYR:HE2	1.87	0.40
36:DW:26:LEU:HD11	36:DW:60:LYS:HE3	2.03	0.40
47:JN:198:GLN:NE2	48:JO:208:GLU:OE2	2.51	0.40
49:CM:22:VAL:HG11	49:CM:105:TYR:CD1	2.55	0.40
51:JP:75:LYS:NZ	51:JP:356:TYR:O	2.42	0.40
53:UU:749:ALA:HA	53:UU:750:PRO:HD3	1.95	0.40
54:UD:127:ASP:HB2	54:UD:134:LEU:HB2	2.03	0.40
55:UQ:22:LEU:HD12	55:UQ:22:LEU:HA	1.87	0.40
61:JA:743:VAL:HG11	61:JA:811:ALA:HB2	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	CJ	278/290~(96%)	272 (98%)	6(2%)	0	100	100
5	CK	193/593~(32%)	192 (100%)	0	1 (0%)	25	54
6	CL	806/1183~(68%)	792 (98%)	14 (2%)	0	100	100
7	DY	94/135~(70%)	91 (97%)	3~(3%)	0	100	100
8	UX	170/189~(90%)	167 (98%)	3(2%)	0	100	100
9	JF	213/252~(84%)	209~(98%)	4 (2%)	0	100	100
9	JG	227/252~(90%)	223~(98%)	4 (2%)	0	100	100
10	CA	237/327~(72%)	230~(97%)	7 (3%)	0	100	100
10	CB	223/327~(68%)	211 (95%)	11 (5%)	1 (0%)	30	58
11	UB	483/810~(60%)	477 (99%)	6 (1%)	0	100	100
12	UC	124/610~(20%)	124 (100%)	0	0	100	100
13	UE	468/643~(73%)	453 (97%)	15 (3%)	0	100	100
14	UH	565/713~(79%)	550~(97%)	15 (3%)	0	100	100
15	UK	234/250~(94%)	226 (97%)	7 (3%)	1 (0%)	30	58
16	UL	841/943~(89%)	815 (97%)	26~(3%)	0	100	100
17	UM	156/817~(19%)	154 (99%)	2(1%)	0	100	100
18	UO	490/513~(96%)	478 (98%)	12 (2%)	0	100	100
19	UP	58/214~(27%)	57 (98%)	1 (2%)	0	100	100
20	US	538/552~(98%)	518 (96%)	20 (4%)	0	100	100
21	CF	121/126~(96%)	119 (98%)	2(2%)	0	100	100
21	CG	119/126~(94%)	118 (99%)	1 (1%)	0	100	100
22	CI	180/183~(98%)	178 (99%)	2(1%)	0	100	100
23	JE	134/357~(38%)	129 (96%)	5 (4%)	0	100	100
24	JH	253/483~(52%)	249 (98%)	4 (2%)	0	100	100
25	JJ	94/274~(34%)	93 (99%)	1 (1%)	0	100	100
26	JK	40/534~(8%)	39 (98%)	1 (2%)	0	100	100
27	JM	129/217~(59%)	127 (98%)	2 (2%)	0	100	100
28	JQ	151/206~(73%)	148 (98%)	3 (2%)	0	100	100
29	DF	205/225~(91%)	198 (97%)	7 (3%)	0	100	100
30	DI	171/200~(86%)	168 (98%)	3 (2%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
31	DJ	175/197~(89%)	171 (98%)	4 (2%)	0	100	100
32	DS	98/146~(67%)	98 (100%)	0	0	100	100
33	JC	346/707~(49%)	341 (99%)	5 (1%)	0	100	100
34	DE	234/261~(90%)	230 (98%)	4 (2%)	0	100	100
35	DX	101/145~(70%)	99~(98%)	2 (2%)	0	100	100
36	DW	125/130~(96%)	124 (99%)	1 (1%)	0	100	100
37	DG	205/236~(87%)	203 (99%)	2 (1%)	0	100	100
38	DL	136/156~(87%)	132 (97%)	4 (3%)	0	100	100
39	CH	442/573~(77%)	428 (97%)	14 (3%)	0	100	100
40	Dc	61/67~(91%)	60 (98%)	1 (2%)	0	100	100
41	DQ	123/143~(86%)	120 (98%)	3 (2%)	0	100	100
42	CE	434/511~(85%)	427 (98%)	7 (2%)	0	100	100
43	CD	376/504~(75%)	369~(98%)	7 (2%)	0	100	100
44	UN	182/899~(20%)	180 (99%)	2 (1%)	0	100	100
45	UF	373/440~(85%)	370~(99%)	3 (1%)	0	100	100
46	UG	511/554~(92%)	499 (98%)	12 (2%)	0	100	100
47	JN	178/346~(51%)	169 (95%)	9 (5%)	0	100	100
48	JO	188/316~(60%)	187 (100%)	1 (0%)	0	100	100
49	CM	361/367~(98%)	354 (98%)	7 (2%)	0	100	100
50	UZ	252/274~(92%)	245 (97%)	7(3%)	0	100	100
51	JP	456/489~(93%)	446 (98%)	10 (2%)	0	100	100
52	UR	472/594~(80%)	457 (97%)	15 (3%)	0	100	100
53	UU	840/939~(90%)	818 (97%)	22 (3%)	0	100	100
54	UD	670/776~(86%)	648 (97%)	21 (3%)	1 (0%)	48	77
55	UQ	829/896~(92%)	805 (97%)	23 (3%)	1 (0%)	48	77
56	UA	830/923~(90%)	808 (97%)	22 (3%)	0	100	100
57	UI	$\overline{132/575}~(23\%)$	130 (98%)	2 (2%)	0	100	100
58	UJ	$1\overline{693}/17\overline{69}~(96\%)$	1659 (98%)	33 (2%)	1 (0%)	48	77
59	DH	$166/\overline{190}\;(87\%)$	163 (98%)	3 (2%)	0	100	100
60	UT	2335/2493~(94%)	2313 (99%)	22 (1%)	0	100	100
61	JA	$885/\overline{1056\ (84\%)}$	867 (98%)	18 (2%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
61	JB	848/1056~(80%)	833~(98%)	15 (2%)	0	100	100
All	All	23052/31272 (74%)	22558 (98%)	488 (2%)	6 (0%)	100	100

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
5	CK	427	SER
10	CB	297	ARG
55	UQ	454	ILE
58	UJ	1037	ASP
15	UK	184	ILE
54	UD	85	TRP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	CJ	247/258~(96%)	247~(100%)	0	100 100
5	CK	174/535~(32%)	174 (100%)	0	100 100
6	CL	683/1039~(66%)	683 (100%)	0	100 100
7	DY	80/113~(71%)	80 (100%)	0	100 100
8	UX	156/169~(92%)	156 (100%)	0	100 100
9	JF	179/222 (81%)	179 (100%)	0	100 100
9	JG	202/222 (91%)	202 (100%)	0	100 100
10	CA	200/240~(83%)	200 (100%)	0	100 100
10	CB	192/240~(80%)	192 (100%)	0	100 100
11	UB	348/732~(48%)	348 (100%)	0	100 100
12	UC	107/538~(20%)	107 (100%)	0	100 100
13	UE	425/574~(74%)	425 (100%)	0	100 100
14	UH	193/657~(29%)	193 (100%)	0	100 100
15	UK	219/234~(94%)	219 (100%)	0	100 100

α \cdot \cdot \cdot	ſ		
Continued	from	previous	page
		1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
16	UL	648/832~(78%)	648 (100%)	0	100	100
17	UM	135/719~(19%)	135 (100%)	0	100	100
18	UO	435/454~(96%)	435 (100%)	0	100	100
19	UP	37/196~(19%)	37 (100%)	0	100	100
20	US	357/506~(71%)	357 (100%)	0	100	100
21	CF	102/104~(98%)	102 (100%)	0	100	100
21	CG	100/104~(96%)	100 (100%)	0	100	100
22	CI	171/172~(99%)	171 (100%)	0	100	100
23	JE	80/315~(25%)	80 (100%)	0	100	100
25	JJ	7/238~(3%)	7 (100%)	0	100	100
26	JK	34/482~(7%)	34 (100%)	0	100	100
27	JM	114/200~(57%)	114 (100%)	0	100	100
28	JQ	24/192~(12%)	24 (100%)	0	100	100
29	DF	177/191~(93%)	177 (100%)	0	100	100
30	DI	134/161~(83%)	134 (100%)	0	100	100
31	DJ	146/166~(88%)	146 (100%)	0	100	100
32	DS	4/129~(3%)	4 (100%)	0	100	100
33	JC	280/636~(44%)	279~(100%)	1 (0%)	89	93
34	DE	190/222~(86%)	190 (100%)	0	100	100
35	DX	82/120~(68%)	82 (100%)	0	100	100
36	DW	96/111~(86%)	96 (100%)	0	100	100
37	DG	152/201~(76%)	152 (100%)	0	100	100
38	DL	109/137~(80%)	108~(99%)	1 (1%)	75	86
39	CH	372/503~(74%)	372 (100%)	0	100	100
40	Dc	56/60~(93%)	56 (100%)	0	100	100
41	DQ	105/119~(88%)	105 (100%)	0	100	100
42	CE	$\overline{258/433}~(60\%)$	258 (100%)	0	100	100
43	CD	267/435~(61%)	267 (100%)	0	100	100
44	UN	143/808~(18%)	142 (99%)	1 (1%)	81	89
45	UF	240/414~(58%)	240 (100%)	0	100	100
46	UG	$399/\overline{480}~(83\%)$	399 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
47	JN	124/304~(41%)	124 (100%)	0	100	100
48	JO	158/289~(55%)	158 (100%)	0	100	100
49	CM	300/312~(96%)	300 (100%)	0	100	100
50	UZ	208/256~(81%)	208 (100%)	0	100	100
51	JP	406/443~(92%)	406 (100%)	0	100	100
52	UR	411/529 (78%)	411 (100%)	0	100	100
53	UU	724/819~(88%)	724 (100%)	0	100	100
54	UD	554/713~(78%)	554 (100%)	0	100	100
55	UQ	732/826~(89%)	731 (100%)	1 (0%)	92	96
56	UA	721/812~(89%)	721 (100%)	0	100	100
57	UI	85/533~(16%)	85 (100%)	0	100	100
58	UJ	512/1633~(31%)	512 (100%)	0	100	100
59	DH	105/170~(62%)	105~(100%)	0	100	100
60	UT	571/2307~(25%)	571 (100%)	0	100	100
61	JA	652/934~(70%)	652 (100%)	0	100	100
61	JB	622/934~(67%)	622 (100%)	0	100	100
All	All	15744/27427~(57%)	15740 (100%)	4 (0%)	100	100

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
33	JC	76	THR
38	DL	21	ASN
44	UN	299	ASN
55	UQ	818	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (160) such sidechains are listed below:

Mol	Chain	Res	Type
4	CJ	121	ASN
4	CJ	164	GLN
4	CJ	168	HIS
5	CK	316	ASN
6	CL	126	ASN
6	CL	222	ASN

Mol	Chain	Res	Type
6	CL	289	HIS
6	CL	426	HIS
6	CL	832	HIS
6	CL	1074	GLN
8	UX	43	ASN
9	JG	69	ASN
9	JG	93	HIS
9	JF	73	HIS
9	JF	74	GLN
10	CA	249	GLN
10	CB	183	HIS
10	CB	249	GLN
11	UB	308	GLN
11	UB	418	ASN
11	UB	453	ASN
11	UB	479	ASN
11	UB	658	ASN
11	UB	666	GLN
11	UB	683	ASN
11	UB	697	HIS
12	UC	503	GLN
12	UC	560	ASN
13	UE	35	GLN
13	UE	302	ASN
13	UE	316	ASN
13	UE	336	ASN
13	UE	527	HIS
14	UH	597	GLN
14	UH	633	GLN
15	UK	203	GLN
16	UL	10	GLN
16	UL	553	ASN
16	UL	596	ASN
16	UL	803	GLN
16	UL	879	GLN
16	UL	903	GLN
17	UM	690	HIS
17	UM	726	GLN
17	UM	747	ASN
17	UM	757	GLN
18	UO	137	ASN
18	UO	161	GLN

Mol	Chain	Res	Type
20	US	225	HIS
20	US	260	ASN
20	US	427	GLN
20	US	441	ASN
21	CF	18	GLN
21	CF	25	GLN
22	CI	8	HIS
22	CI	23	GLN
22	CI	37	HIS
22	CI	45	HIS
22	CI	116	HIS
23	JE	238	ASN
27	JM	112	ASN
27	JM	135	HIS
27	JM	184	ASN
29	DF	116	HIS
29	DF	170	GLN
29	DF	186	ASN
33	JC	15	GLN
33	JC	96	HIS
33	JC	101	ASN
33	JC	230	GLN
33	JC	339	HIS
34	DE	153	ASN
35	DX	65	ASN
37	DG	59	GLN
37	DG	139	ASN
38	DL	14	GLN
38	DL	21	ASN
39	CH	156	ASN
42	CE	61	ASN
42	CE	165	GLN
42	CE	428	ASN
43	CD	65	ASN
43	CD	85	ASN
43	CD	151	GLN
43	CD	183	GLN
43	CD	328	GLN
43	CD	391	ASN
44	UN	335	GLN
44	UN	832	ASN
45	UF	44	ASN

Mol	Chain	Res	Type
45	UF	191	ASN
45	UF	337	HIS
46	UG	71	ASN
46	UG	240	GLN
46	UG	248	HIS
46	UG	310	HIS
48	JO	167	GLN
49	CM	176	GLN
50	UZ	192	ASN
50	UZ	214	GLN
52	UR	162	ASN
52	UR	217	ASN
52	UR	276	HIS
52	UR	283	HIS
52	UR	310	GLN
52	UR	380	ASN
52	UR	450	GLN
53	UU	387	GLN
53	UU	627	ASN
53	UU	910	GLN
54	UD	75	ASN
54	UD	87	GLN
54	UD	329	HIS
54	UD	426	GLN
54	UD	533	HIS
54	UD	595	ASN
54	UD	618	ASN
55	UQ	469	ASN
55	UQ	489	ASN
55	UQ	491	GLN
55	UQ	542	ASN
55	UQ	660	GLN
55	UQ	679	ASN
55	UQ	682	ASN
55	UQ	699	ASN
55	UQ	868	ASN
56	UA	147	GLN
56	UA	421	ASN
56	UA	552	ASN
56	UA	707	ASN
57	UI	468	ASN
57	UI	474	HIS

Mol	Chain	Res	Type
58	UJ	10	GLN
58	UJ	96	ASN
58	UJ	131	ASN
58	UJ	144	GLN
58	UJ	209	GLN
58	UJ	293	HIS
59	DH	150	GLN
59	DH	160	GLN
59	DH	190	HIS
60	UT	248	HIS
60	UT	829	ASN
60	UT	1891	HIS
60	UT	1943	ASN
60	UT	2067	ASN
61	JA	19	GLN
61	JA	36	GLN
61	JA	39	ASN
61	JA	307	ASN
61	JA	380	GLN
61	JA	428	GLN
61	JA	432	ASN
61	JA	434	ASN
61	JA	734	HIS
61	JA	847	ASN
61	JB	347	ASN
61	JB	363	HIS
61	JB	641	ASN
61	JB	749	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	D3	866/1808~(47%)	213 (24%)	17~(1%)
2	D2	513/700~(73%)	96 (18%)	3(0%)
3	D4	170/333~(51%)	34 (20%)	1 (0%)
All	All	1549/2841~(54%)	343 (22%)	21 (1%)

All (343) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	D3	-1	G

Mol	Chain	Res	Type
1	D3	0	U
1	D3	1	U
1	D3	10	G
1	D3	17	С
1	D3	25	С
1	D3	26	А
1	D3	51	А
1	D3	54	С
1	D3	55	А
1	D3	66	U
1	D3	69	G
1	D3	73	U
1	D3	75	U
1	D3	76	A
1	D3	77	U
1	D3	78	A
1	D3	93	A
1	D3	104	А
1	D3	109	G
1	D3	112	А
1	D3	114	С
1	D3	116	U
1	D3	126	А
1	D3	141	U
1	D3	144	U
1	D3	145	А
1	D3	150	U
1	D3	151	G
1	D3	155	U
1	D3	156	A
1	D3	159	U
1	D3	160	С
1	D3	166	С
1	D3	167	U
1	D3	170	U
1	D3	171	A
1	D3	176	С
1	D3	186	С
1	D3	187	G
1	D3	188	A
1	D3	191	С
1	D3	192	U

Mol	Chain	Res	Type
1	D3	194	U
1	D3	195	G
1	D3	196	G
1	D3	201	G
1	D3	203	U
1	D3	204	G
1	D3	250	С
1	D3	260	U
1	D3	261	U
1	D3	265	А
1	D3	270	С
1	D3	271	А
1	D3	277	U
1	D3	278	U
1	D3	280	U
1	D3	281	G
1	D3	284	G
1	D3	287	G
1	D3	290	G
1	D3	299	А
1	D3	307	G
1	D3	313	U
1	D3	316	A
1	D3	320	U
1	D3	321	С
1	D3	322	G
1	D3	325	G
1	D3	337	G
1	D3	344	A
1	D3	345	U
1	D3	351	С
1	D3	352	А
1	D3	359	А
1	D3	360	A
1	D3	361	С
1	D3	366	A
1	D3	369	А
1	D3	371	G
1	D3	372	G
1	D3	373	G
1	D3	$37\overline{4}$	U
1	D3	376	С

Mol	Chain	Res	Type
1	D3	382	С
1	D3	383	G
1	D3	388	G
1	D3	395	U
1	D3	400	A
1	D3	416	А
1	D3	418	G
1	D3	419	G
1	D3	440	U
1	D3	444	С
1	D3	445	А
1	D3	454	U
1	D3	460	A
1	D3	461	G
1	D3	466	U
1	D3	467	G
1	D3	468	А
1	D3	469	С
1	D3	470	А
1	D3	471	А
1	D3	472	U
1	D3	477	А
1	D3	480	G
1	D3	486	G
1	D3	487	G
1	D3	496	G
1	D3	501	U
1	D3	502	U
1	D3	505	А
1	D3	506	А
1	D3	510	G
1	D3	525	A
1	D3	534	A
1	D3	540	G
1	D3	541	A
1	D3	542	A
1	D3	545	A
1	D3	557	G
1	D3	563	U
1	D3	564	G
1	D3	565	C
1	D3	570	A

Mol	Chain	Res	Type
1	D3	576	G
1	D3	579	А
1	D3	580	А
1	D3	582	U
1	D3	583	С
1	D3	584	С
1	D3	585	А
1	D3	586	G
1	D3	587	С
1	D3	594	А
1	D3	595	G
1	D3	1118	G
1	D3	1119	G
1	D3	$11\overline{27}$	G
1	D3	1128	C
1	D3	1131	А
1	D3	1132	А
1	D3	1134	С
1	D3	1136	U
1	D3	1139	А
1	D3	1140	G
1	D3	1141	G
1	D3	1144	U
1	D3	1145	U
1	D3	1146	G
1	D3	1158	C
1	D3	1159	C
1	D3	1178	G
1	D3	1205	C
1	D3	1207	С
1	D3	1208	A
1	D3	1211	A
1	D3	1212	G
1	D3	1214	U
1	D3	1217	A
1	D3	1223	A
1	D3	1224	A
1	D3	1225	U
1	D3	1260	U
1	D3	1261	G
1	D3	1263	G
1	D3	1267	G

Mol	Chain	Res	Type
1	D3	1268	G
1	D3	1269	U
1	D3	1270	G
1	D3	1276	U
1	D3	1443	U
1	D3	1449	U
1	D3	1451	С
1	D3	1471	А
1	D3	1474	G
1	D3	1487	А
1	D3	1488	G
1	D3	1491	U
1	D3	1492	А
1	D3	1493	A
1	D3	1495	С
1	D3	1498	G
1	D3	1506	G
1	D3	1512	G
1	D3	1537	С
1	D3	1539	G
1	D3	1541	G
1	D3	1543	А
1	D3	1553	G
1	D3	1554	U
1	D3	1559	А
1	D3	1570	А
1	D3	1573	А
1	D3	1574	G
1	D3	1584	G
1	D3	1585	U
1	D3	1590	G
1	D3	1595	U
1	D3	1596	С
1	D3	1601	G
1	D3	1602	С
1	D3	1607	G
1	D3	1614	A
1	D3	1618	С
1	D3	1621	U
1	D3	1628	U
1	D3	1633	А
1	D3	1656	U

Mol	Chain	Res	Type
1	D3	1746	А
1	D3	1747	G
2	D2	6	А
2	D2	9	G
2	D2	16	А
2	D2	68	U
2	D2	69	U
2	D2	70	А
2	D2	83	U
2	D2	85	G
2	D2	86	С
2	D2	89	С
2	D2	91	U
2	D2	102	A
2	D2	103	G
2	D2	104	А
2	D2	105	G
2	D2	109	С
2	D2	124	А
2	D2	125	G
2	D2	129	U
2	D2	130	G
2	D2	142	U
2	D2	150	G
2	D2	156	U
2	D2	163	G
2	D2	168	G
2	D2	169	А
2	D2	176	U
2	D2	177	U
2	D2	178	G
2	D2	188	A
2	D2	201	U
2	D2	207	G
2	D2	233	G
2	D2	236	С
2	D2	238	G
2	D2	253	U
2	D2	256	U
2	D2	259	G
2	D2	261	U
2	D2	267	U

Mol	Chain	Res	Type
2	D2	271	G
2	D2	279	А
2	D2	280	A
2	D2	281	G
2	D2	296	С
2	D2	298	А
2	D2	302	А
2	D2	303	А
2	D2	304	U
2	D2	305	А
2	D2	309	А
2	D2	310	U
2	D2	313	A
2	D2	316	U
2	D2	323	А
2	D2	324	U
2	D2	325	U
2	D2	326	С
2	D2	331	U
2	D2	337	G
2	D2	354	G
2	D2	357	G
2	D2	368	U
2	D2	370	U
2	D2	371	G
2	D2	372	А
2	D2	373	U
2	D2	382	U
2	D2	385	А
2	D2	386	A
2	D2	395	С
2	D2	397	A
2	D2	407	A
2	D2	428	А
2	D2	431	A
2	D2	432	С
2	D2	441	С
2	D2	461	A
2	D2	469	С
2	D2	481	U
2	D2	482	A
2	D2	486	U

Mol	Chain	Res	Type
2	D2	487	А
2	D2	488	U
2	D2	490	G
2	D2	491	U
2	D2	493	А
2	D2	518	A
2	D2	519	А
2	D2	525	U
2	D2	533	G
2	D2	536	А
2	D2	541	U
2	D2	546	G
2	D2	586	А
2	D2	590	G
3	D4	2	U
3	D4	3	С
3	D4	14	А
3	D4	23	U
3	D4	24	U
3	D4	25	U
3	D4	27	U
3	D4	28	А
3	D4	30	А
3	D4	32	G
3	D4	33	A
3	D4	34	A
3	D4	35	U
3	D4	49	С
3	D4	60	А
3	D4	61	G
3	D4	82	G
3	D4	87	G
3	D4	90	С
3	D4	91	С
3	D4	111	G
3	D4	115	G
3	D4	199	G
3	D4	205	G
3	D4	260	U
3	D4	267	A
3	D4	313	A
3	D4	318	U

Continued from previous page...

Mol	Chain	Res	Type
3	D4	319	G
3	D4	322	А
3	D4	324	U
3	D4	325	С
3	D4	329	С
3	D4	333	U

All (21) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	D3	0	U
1	D3	144	U
1	D3	185	U
1	D3	195	G
1	D3	375	U
1	D3	394	С
1	D3	417	А
1	D3	540	G
1	D3	562	G
1	D3	579	А
1	D3	1118	G
1	D3	1140	G
1	D3	1267	G
1	D3	1573	А
1	D3	1594	G
1	D3	1620	С
1	D3	1632	С
2	D2	90	G
2	D2	370	U
2	D2	492	G
3	D4	312	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain Rea		Link	Bond lengths			Bond angles				
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
62	GTP	CL	2001	-	26,34,34	1.17	2 (7%)	32,54,54	1.45	6 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
62	GTP	CL	2001	-	-	5/18/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
62	CL	2001	GTP	C5-C6	-4.07	1.39	1.47
62	CL	2001	GTP	C2-N3	2.03	1.38	1.33

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
62	CL	2001	GTP	C5-C6-N1	3.23	119.66	113.95
62	CL	2001	GTP	C8-N7-C5	3.03	108.76	102.99
62	CL	2001	GTP	PA-O3A-PB	-3.01	122.51	132.83
62	CL	2001	GTP	C2-N1-C6	-2.87	119.81	125.10
62	CL	2001	GTP	C3'-C2'-C1'	2.80	105.19	100.98
62	CL	2001	GTP	PB-O3B-PG	-2.22	125.21	132.83

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
62	CL	2001	GTP	C5'-O5'-PA-O1A
62	CL	2001	GTP	C5'-O5'-PA-O2A
62	CL	2001	GTP	C5'-O5'-PA-O3A
62	CL	2001	GTP	PG-O3B-PB-O2B
62	CL	2001	GTP	PB-O3A-PA-O2A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-50991. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 250

Y Index: 250

Z Index: 250

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 265

Y Index: 290

Z Index: 210

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.45. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1930 nm^3 ; this corresponds to an approximate mass of 1743 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.328 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-50991 and PDB model 9G33. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.45 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.45).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 89% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.45) and Q-score for the entire model and for each chain.

All 0.8920 0.4850 CA 0.9520 0.5910 CB 0.9510 0.5240 CD 0.9090 0.4920 CE 0.9180 0.4950 CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.920 0.4460 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.	\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
CA 0.9520 0.5910 CB 0.9510 0.5240 CD 0.9090 0.4920 CE 0.9180 0.4950 CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 D5 0.970 0.5760 DG 0.9920 0.4660 DH 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DV 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8840 0.4790 JG 0.9330 0.5450	All	0.8920	0.4850
CB 0.9510 0.5240 CD 0.9090 0.4920 CE 0.9180 0.4950 CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9200 0.4460 DI 0.9380 0.5130 DJ 0.9380 0.5130 DJ 0.9380 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9430 0.5450 DL 0.	CA	0.9520	0.5910
CD 0.9090 0.4920 CE 0.9180 0.4950 CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 D5 0.970 0.5760 D6 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DX 0.9480 0.5790 DX 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9330 0.5450	CB	0.9510	0.5240
CE 0.9180 0.4950 CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 D5 0.9770 0.4680 DF 0.9970 0.5760 DG 0.9020 0.4660 DH 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5020 JA 0.7910 0.3960 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CD	0.9090	0.4920
CF 0.9700 0.5890 CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 D5 0.9770 0.4680 DF 0.9770 0.4660 DH 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DX 0.9480 0.5790 DX 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4770 JG 0.9330 0.5450	CE	0.9180	0.4950
CG 0.9390 0.5250 CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 D5 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CF	0.9700	0.5890
CH 0.9230 0.4930 CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4460 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CG	0.9390	0.5250
CI 0.9830 0.6240 CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DY 0.8960 0.4890 DC 0.9370 0.5700 JA 0.7910 0.3960 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CH	0.9230	0.4930
CJ 0.9410 0.5720 CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9480 0.5790 DY 0.8960 0.4890 DC 0.9370 0.5700 JA 0.7910 0.3960 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CI	0.9830	0.6240
CK 0.8680 0.5210 CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.	CJ	0.9410	0.5720
CL 0.9210 0.5440 CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.	CK	0.8680	0.5210
CM 0.8940 0.5180 D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CL	0.9210	0.5440
D2 0.9710 0.5120 D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	CM	0.8940	0.5180
D3 0.9220 0.4450 D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 DC 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	D2	0.9710	0.5120
D4 0.9640 0.5140 DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4790 JF 0.8840 0.4790 JG 0.9330 0.5450	D3	0.9220	0.4450
DE 0.9170 0.4680 DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4790 JF 0.8840 0.4790 JG 0.9330 0.5450	D4	0.9640	0.5140
DF 0.9570 0.5760 DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DX 0.9480 0.5790 DY 0.8960 0.4890 DC 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DE	0.9170	0.4680
DG 0.9020 0.4660 DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DX 0.9480 0.5790 DX 0.9480 0.5700 DX 0.9480 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DF	0.9570	0.5760
DH 0.8480 0.4440 DI 0.9380 0.5130 DJ 0.9430 0.5450 DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DG	0.9020	0.4660
DI0.93800.5130DJ0.94300.5450DL0.93900.4770DQ0.97300.6050DS0.78500.3810DW0.94000.5320DX0.94800.5790DY0.89600.4890Dc0.93700.5700JA0.79100.3960JE0.87400.4510JF0.88400.4790JG0.93300.5450	DH	0.8480	0.4440
DJ0.94300.5450DL0.93900.4770DQ0.97300.6050DS0.78500.3810DW0.94000.5320DX0.94800.5790DY0.89600.4890Dc0.93700.5700JA0.79100.3960JE0.85500.2550JE0.87400.4510JF0.88400.4790JG0.93300.5450	DI	0.9380	0.5130
DL 0.9390 0.4770 DQ 0.9730 0.6050 DS 0.7850 0.3810 DW 0.9400 0.5320 DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JE 0.8550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DJ	0.9430	0.5450
DQ0.97300.6050DS0.78500.3810DW0.94000.5320DX0.94800.5790DY0.89600.4890Dc0.93700.5700JA0.79100.3960JB0.55500.2550JC0.93000.5020JE0.87400.4510JF0.88400.4790JG0.93300.5450	DL	0.9390	0.4770
DS0.78500.3810DW0.94000.5320DX0.94800.5790DY0.89600.4890Dc0.93700.5700JA0.79100.3960JB0.55500.2550JC0.93000.5020JE0.87400.4510JF0.88400.4790JG0.93300.5450	DQ	0.9730	0.6050
DW0.94000.5320DX0.94800.5790DY0.89600.4890Dc0.93700.5700JA0.79100.3960JB0.55500.2550JC0.93000.5020JE0.87400.4510JF0.88400.4790JG0.93300.5450	DS	0.7850	0.3810
DX 0.9480 0.5790 DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DW	0.9400	0.5320
DY 0.8960 0.4890 Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DX	0.9480	0.5790
Dc 0.9370 0.5700 JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	DY	0.8960	0.4890
JA 0.7910 0.3960 JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	Dc	0.9370	0.5700
JB 0.5550 0.2550 JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	JA	0.7910	0.3960
JC 0.9300 0.5020 JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	JB	0.5550	0.2550
JE 0.8740 0.4510 JF 0.8840 0.4790 JG 0.9330 0.5450	JC	0.9300	0.5020
JF 0.8840 0.4790 JG 0.9330 0.5450	JE	0.8740	0.4510
JG 0.9330 0.5450	JF	0.8840	0.4790
	JG	0.9330	0.5450

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
JH	0.6530	0.2360
JJ	0.2860	0.3190
JK	0.8980	0.4690
JM	0.8630	0.5240
JN	0.9110	0.5230
JO	0.8650	0.5030
JP	0.9780	0.5930
JQ	0.7020	0.3690
UA	0.9640	0.6110
UB	0.8670	0.4510
UC	0.8610	0.5040
UD	0.9660	0.5590
UE	0.9460	0.5630
UF	0.9000	0.4730
UG	0.9630	0.5980
UH	0.6730	0.3420
UI	0.9090	0.4200
UJ	0.7650	0.3700
UK	0.9460	0.5690
UL	0.9390	0.5010
UM	0.9440	0.5090
UN	0.8980	0.5270
UO	0.9740	0.5740
UP	0.9440	0.4920
UQ	0.9560	0.5620
UR	0.9710	0.5980
US	0.9240	0.4750
UT	0.8020	0.3350
UU	0.9440	0.6000
UX	0.9690	0.5900
UZ	0.9030	0.4890

