

Jan 28, 2025 – 12:41 pm GMT

| PDB ID       | :   | $9\mathrm{EV0}$                                                             |
|--------------|-----|-----------------------------------------------------------------------------|
| EMDB ID      | :   | EMD-19990                                                                   |
| Title        | :   | Structure of the AAP filament of Sulfolobus acidocal<br>darius strain MW039 |
|              |     | (delta agl3 mutant).                                                        |
| Authors      | :   | Daum, B.; Isupov, M.N.; Gaines, M.; McLaren, M.; Mollat, C.                 |
| Deposited on | :   | 2024-03-28                                                                  |
| Resolution   | :   | 2.38  Å(reported)                                                           |
|              |     |                                                                             |
| This is      | a I | Full wwPDB EM Validation Report for a publicly released PDB entry.          |

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev113                                                       |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20231227.v01 (using entries in the PDB archive December 27th 2023) |
| MapQ                           | : | 1.9.13                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.40                                                               |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.38 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

| Metric                | Percentile Ranks              | Value         |
|-----------------------|-------------------------------|---------------|
| Ramachandran outliers |                               | 0             |
| Sidechain outliers    |                               | 0.3%          |
| Worse                 |                               | Better        |
| Percentile            | relative to all structures    |               |
| Percentile            | relative to all EM structures |               |
|                       | <b>XX71 1 1 1</b>             |               |
| Metric                | Whole archive                 | EM structures |
|                       | (# Entries)                   | (# Entries)   |

207382

206894

| The table below summarises the geometric issues observed across the polymeric chains and their fit   |
|------------------------------------------------------------------------------------------------------|
| to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues  |
| that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey |
| segment represents the fraction of residues that are not modelled. The numeric value for each        |
| fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$     |
| The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM    |
| map (all-atom inclusion $< 40\%$ ). The numeric value is given above the bar.                        |

16835

16415

| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
| 1   | А     | 141    | 100%             |
| 1   | В     | 141    | 100%             |
| 1   | С     | 141    | 99% ·            |
| 1   | D     | 141    | 100%             |
| 1   | Е     | 141    | 100%             |
| 1   | F     | 141    | 99% ·            |
| 1   | G     | 141    | 100%             |
| 1   | Н     | 141    | 100%             |
| 1   | Ι     | 141    | •<br>99% •       |



Continued from previous page...

| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
| 1   | J     | 141    | 100%             |
| 1   | Κ     | 141    | 100%             |
| 1   | L     | 141    | 99% •            |
| 1   | М     | 141    | 100%             |
| 1   | Ν     | 141    | 100%             |
| 1   | О     | 141    | 99% ·            |
| 1   | Р     | 141    | 100%             |
| 1   | Q     | 141    | 100%             |
| 1   | R     | 141    | 99%              |
| 1   | S     | 141    | 100%             |
| 1   | Т     | 141    | 100%             |
| 1   | U     | 141    | 99%              |
| 1   | V     | 141    | 100%             |
| 1   | W     | 141    | 100%             |
| 1   | Х     | 141    | 99%              |
| 1   | Y     | 141    | 100%             |
| 1   | Ζ     | 141    | 100%             |
| 1   | a     | 141    | 99% .            |
| 1   | b     | 141    | 100%             |
| 1   | с     | 141    | 100%             |
| 1   | d     | 141    | 99%              |
| 2   | 0     | 3      | 100%             |
| 2   | 0A    | 3      | 100%             |
| 2   | 1     | 3      | 33% 67%          |
| 2   | 1A    | 3      | 100%             |



| Continue | nued fron | ı previous p | page             |  |  |  |  |  |
|----------|-----------|--------------|------------------|--|--|--|--|--|
| Mol      | Chain     | Length       | Quality of chain |  |  |  |  |  |
| 2        | -         | 2            | 67%              |  |  |  |  |  |
| 2        | 2         | 3            | 33% 67%          |  |  |  |  |  |
| 9        | 21        | 2            | 100%             |  |  |  |  |  |
|          | 2A        |              | 67%              |  |  |  |  |  |
| 2        | 3         | 3            | 100%             |  |  |  |  |  |
|          | -         | _            | 100%             |  |  |  |  |  |
| 2        | 3A        | 3            | 100%             |  |  |  |  |  |
|          |           |              | 100%             |  |  |  |  |  |
| 2        | 4         | 3            | 33% 67%          |  |  |  |  |  |
| 9        | 4.4       | 3            | 100%             |  |  |  |  |  |
|          | 47        |              | 100%             |  |  |  |  |  |
| 2        | 5         | 3            | 33% 67%          |  |  |  |  |  |
|          |           | _            | 100%             |  |  |  |  |  |
| 2        | 5A        | 3            | 33% 67%          |  |  |  |  |  |
| -        |           |              | 67%              |  |  |  |  |  |
| 2        | 6         | 3            | 100%             |  |  |  |  |  |
| 9        | 7         | 2            | 100%             |  |  |  |  |  |
|          | 1         | 3            | 67%              |  |  |  |  |  |
| 2        | 8         | 3            | 33% 67%          |  |  |  |  |  |
|          |           |              | 67%              |  |  |  |  |  |
| 2        | 9         | 3            | 33% 67%          |  |  |  |  |  |
| _        |           | _            | 100%             |  |  |  |  |  |
| 2        | AA        | 3            | 33% 67%          |  |  |  |  |  |
| 9        | ΡA        | 2            | 07%              |  |  |  |  |  |
|          | DA        | 3            | 67%              |  |  |  |  |  |
| 2        | CA        | 3            | 33% 67%          |  |  |  |  |  |
|          |           |              | 100%             |  |  |  |  |  |
| 2        | DA        | 3            | 33% 67%          |  |  |  |  |  |
| -        |           |              | 67%              |  |  |  |  |  |
| 2        | EA        | 3            | 33% 67%          |  |  |  |  |  |
| 9        | F٨        | 2            | 07%              |  |  |  |  |  |
|          | ГA        |              |                  |  |  |  |  |  |
| 2        | GA        | 3            | 33% 67%          |  |  |  |  |  |
|          |           | _            | 67%              |  |  |  |  |  |
| 2        | HA        | 3            | 33% 67%          |  |  |  |  |  |
| _        | - 1       | _            | 67%              |  |  |  |  |  |
| 2        | IA        | 3            | 33% 67%          |  |  |  |  |  |
| 9        | ТΛ        | 9            | 100%             |  |  |  |  |  |
|          | JA        | 0            |                  |  |  |  |  |  |
| 2        | KA        | 3            | 33% 67%          |  |  |  |  |  |
|          |           |              | 67%              |  |  |  |  |  |
| 2        | LA        | 3            | 33% 67%          |  |  |  |  |  |
|          |           |              | 100%             |  |  |  |  |  |
| 2        | MA        | 3            | 33% 67%          |  |  |  |  |  |
|          |           |              |                  |  |  |  |  |  |



| Conti          | Continued from previous page |        |      |                  |       |                        |  |  |  |
|----------------|------------------------------|--------|------|------------------|-------|------------------------|--|--|--|
| $\mathbf{Mol}$ | Chain                        | Length |      | Quality of chain |       |                        |  |  |  |
| _              |                              | -      |      | 67%              |       |                        |  |  |  |
| 2              | NA                           | 3      | 33%  | 670/             |       | 67%                    |  |  |  |
| 2              | OA                           | 3      | 220/ | 67%              |       | 670/                   |  |  |  |
| 2              | 0A                           | 0      | 33%  |                  | 100%  | 67%                    |  |  |  |
| 2              | PA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
|                |                              |        |      | 67%              |       |                        |  |  |  |
| 2              | QA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
| 0              | D۸                           | 9      |      | 67%              |       |                        |  |  |  |
| Z              | ΠA                           | 9      | 33%  |                  | 100%  | 67%                    |  |  |  |
| 2              | SA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
|                |                              |        |      | 67%              |       |                        |  |  |  |
| 2              | TA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
| 0              | τιλ                          | 9      |      | 67%              |       |                        |  |  |  |
| Z              | UA                           | 9      | 33%  |                  | 100%  | 67%                    |  |  |  |
| 2              | VA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
|                |                              |        |      | 67%              |       |                        |  |  |  |
| 2              | WA                           | 3      |      |                  | 100%  |                        |  |  |  |
| 0              | XZ A                         | 9      |      | 67%              |       |                        |  |  |  |
| 2              | XA                           | 3      | 33%  |                  | 100%  | 67%                    |  |  |  |
| 2              | YA                           | 3      | 33%  |                  | 100%  | 67%                    |  |  |  |
| _              |                              |        |      |                  | 100%  | 6778                   |  |  |  |
| 2              | ZA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
| 2              |                              | 2      |      |                  | 100%  |                        |  |  |  |
| 2              | aA                           | 3      | 33%  |                  | 100%  | 67%                    |  |  |  |
| 2              | ЬA                           | 3      | 220/ |                  | 100%  | 679/                   |  |  |  |
| 2              | 011                          | 0      | 33%  |                  |       | 0770                   |  |  |  |
| 2              | cA                           | 3      |      |                  | 100%  |                        |  |  |  |
| _              |                              | -      |      | 67%              |       |                        |  |  |  |
| 2              | dA                           | 3      |      | 670/             | 100%  |                        |  |  |  |
| 2              | P                            | 3      | 220/ | 07%              |       | 679/                   |  |  |  |
| 2              | C                            | 0      |      |                  | 100%  | 0770                   |  |  |  |
| 2              | eA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
|                | 0                            | 2      | 33%  |                  |       |                        |  |  |  |
| 2              | f                            | 3      | 220/ |                  | 100%  |                        |  |  |  |
| 2              | fΔ                           | 3      | 33%  |                  | 1000/ |                        |  |  |  |
| 2              | 111                          | 0      |      |                  | 100%  |                        |  |  |  |
| 2              | g                            | 3      | 33%  |                  |       | 67%                    |  |  |  |
| _              |                              | _      |      | 67%              |       |                        |  |  |  |
| 2              | gA                           | 3      |      | 670/             | 100%  |                        |  |  |  |
| 9              | h                            | 3      | 220/ | 0/%              |       | 670/                   |  |  |  |
|                | 11                           | 5      |      |                  | 100%  | 0770                   |  |  |  |
| 2              | hA                           | 3      | 33%  |                  |       | 67%                    |  |  |  |
|                | I                            | I      |      |                  |       | Continued on next page |  |  |  |



Continued from previous page... Chain | Length Quality of chain Mol 33% 2i 3 100% 33% 2iA 3 100% 100% 2j 3 67% 33% 67% 23 jА 100% 67% 2k 3 67% 33% 100% 2kA 3 33% 67% 33% 21 3 100% 33% 2lA 3 100% 100% 23 m 33% 67% 67% 23 mА 100% 67%  $\mathbf{2}$ 3 n 33% 67% 100% 23 nA 33% 67% 33% 23 0 100% 33% 23 оA 100% 100% 23 33% 67%  $\mathbf{p}$ 67% 2рА 3 100% 67%  $\mathbf{2}$ 3  $\mathbf{q}$ 33% 67% 100% 23 qA 67% 33% 33% 23 r 100% 33% 23 rА 100% 100% 23 67%  $\mathbf{S}$ 33% 67% 23  $\mathbf{s}\mathbf{A}$ 100% 67% 23  $\mathbf{t}$ 33% 67% 100% 23  $\mathrm{tA}$ 33% 67% 33% 23 u 100%



| Mol | Chain | Length | Quality of chain |  |  |  |  |  |
|-----|-------|--------|------------------|--|--|--|--|--|
| 2   | 11 Δ  | 2      | 33%              |  |  |  |  |  |
|     | uA    |        | 100%             |  |  |  |  |  |
| 2   | v     | 3      | 33% 67%          |  |  |  |  |  |
| _   |       | _      | 67%              |  |  |  |  |  |
| 2   | vA    | 3      | 100%             |  |  |  |  |  |
| 0   |       | 0      | 67%              |  |  |  |  |  |
| 2   | W     | 3      | 33% 67%          |  |  |  |  |  |
| 2   | ττ. Λ | 2      |                  |  |  |  |  |  |
|     | WA    | 5      | 33% 67%          |  |  |  |  |  |
| 2   | v     | 3      | 100%             |  |  |  |  |  |
|     |       |        | 67%              |  |  |  |  |  |
| 2   | хA    | 3      | 100%             |  |  |  |  |  |
|     |       |        | 100%             |  |  |  |  |  |
| 2   | У     | 3      | 33% 67%          |  |  |  |  |  |
|     |       |        | 67%              |  |  |  |  |  |
| 2   | yА    | 3      | 100%             |  |  |  |  |  |
|     |       |        | 67%              |  |  |  |  |  |
| 2   | Z     | 3      | 33% 67%          |  |  |  |  |  |
|     |       |        | 100%             |  |  |  |  |  |
| 2   | zA    | 3      | 33% 67%          |  |  |  |  |  |

Continued from previous page...



## 2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 33540 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol      | Chain  | Residues |       | Ato          | ms  |     | AltConf | Trace |
|----------|--------|----------|-------|--------------|-----|-----|---------|-------|
| 1        | C      | 1.41     | Total | С            | Ν   | Ο   | 0       | 0     |
|          | G      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | Δ      | 1.4.1    | Total | С            | Ν   | Ο   | 0       | 0     |
|          | A      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | П      | 1.4.1    | Total | С            | Ν   | Ο   | 0       | 0     |
|          | D      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | т      | 1.4.1    | Total | С            | Ν   | Ο   | 0       | 0     |
| 1        | J      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | М      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | 111    | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | р      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
| L        | L      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | S      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | U<br>U | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | V      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | v      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | v      | 141      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | L      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | h      | 141      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | 0      | 111      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | н      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | 11     | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | В      | 141      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | D      | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | E      | 141      | Total | С            | Ν   | Ο   | 0       | 0     |
|          |        | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | K      | 141      | Total | С            | Ν   | Ο   | 0       | 0     |
|          |        | 141      | 1001  | 639          | 165 | 197 | 0       | 0     |
| 1        | N      | 1/1      | Total | С            | Ν   | Ο   | 0       | 0     |
|          | 11     | 111      | 1001  | 639          | 165 | 197 | 0       | U U   |
| 1        | 0      | 141      | Total | $\mathbf{C}$ | Ν   | Ο   | 0       | 0     |
|          | ~      | T I T    | 1001  | 639          | 165 | 197 |         | U     |
| 1        | Т      | 141      | Total | $\mathbf{C}$ | Ν   | Ο   | 0       | 0     |
| <b>1</b> | 1      | 1.11     | 1001  | 639          | 165 | 197 |         | U     |

• Molecule 1 is a protein called DUF4352 domain-containing protein.



| Mol | Chain | Residues |       | Ato   | ms  |      | AltConf | Trace |     |   |   |
|-----|-------|----------|-------|-------|-----|------|---------|-------|-----|---|---|
| 1   | 117   | 1.4.1    | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | VV    | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | 7     | 1.4.1    | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | L     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   |       | 1.4.1    | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | С     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | т     | 1.4.1    | Total | С     | Ν   | 0    | 0       | 0     |     |   |   |
|     | 1     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | C     | 1.41     | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | U     | 141      | 1001  | 639   | 165 | 197  | 0       | U     |     |   |   |
| 1   | Б     | 1.4.1    | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | Г     | 141      | 1001  | 639   | 165 | 197  | 0       |       |     |   |   |
| 1   | T     | 1/1      | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
| L   | Ľ     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | 0     | 0        | 1/1   | Total | С   | Ν    | Ο       | 0     | 0   |   |   |
| L L | U     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | В     | 1/1      | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     | 10    | 10       | 10    | 10    | 141 | 1001 | 639     | 165   | 197 | 0 | 0 |
| 1   | I     | 1/1      | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
| L   | U     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | v     | 1/1      | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
|     |       | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | 9     | 1/1      | Total | С     | Ν   | Ο    | 0       | 0     |     |   |   |
| L   | a     | 141      | 1001  | 639   | 165 | 197  | 0       | 0     |     |   |   |
| 1   | d     | 1.4.1    | Total | С     | Ν   | 0    | 0       | 0     |     |   |   |
|     | 1 d   | 141      | 1001  | 639   | 165 | 197  | U       | U     |     |   |   |

Continued from previous page...

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms            | AltConf | Trace |
|-----|-------|----------|------------------|---------|-------|
| 2   | е     | 3        | Total C N O      | 0       | 0     |
|     |       |          | 39  22  2  15    |         |       |
| 2   | f     | 2        | Total C N O      | 0       | 0     |
|     |       | 5        | 39 $22$ $2$ $15$ | 0       | 0     |
| 0   | cr.   | 2        | Total C N O      | 0       | 0     |
|     | g     | 5        | 39  22  2  15    | 0       | 0     |
| 9   | h     | 2        | Total C N O      | 0       | 0     |
|     | 11    | 5        | 39 $22$ $2$ $15$ | 0       |       |



Continued from previous page...

| Mol | Chain | Residues | I       | Atoms        |   | AltConf | Trace |          |
|-----|-------|----------|---------|--------------|---|---------|-------|----------|
| 0   |       | 2        | Total   | С            | Ν | 0       | 0     | 0        |
| 2   | 1     | 3        | 39      | 22           | 2 | 15      | 0     | 0        |
| 0   | :     | 9        | Total   | С            | Ν | 0       | 0     | 0        |
|     | J     | 0        | 39      | 22           | 2 | 15      | 0     | 0        |
| 0   | 1,    | 2        | Total   | С            | Ν | 0       | 0     | 0        |
|     | K     | 5        | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | 1     | 3        | Total   | С            | Ν | 0       | 0     | 0        |
|     | I     | 5        | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | m     | 3        | Total   | $\mathbf{C}$ | Ν | Ο       | 0     | 0        |
|     |       | 0        | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | n     | 3        | Total   | $\mathbf{C}$ | Ν | Ο       | 0     | 0        |
|     |       | 0        | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | 0     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     | 0     | 0        | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | n     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     | Р     |          | 39      | 22           | 2 | 15      | 0     |          |
| 2   | a     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     | Ч     |          | 39      | 22           | 2 | 15      | Ŭ     |          |
| 2   | r     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     | 1     |          | 39      | 22           | 2 | 15      | 0     | 0        |
| 2   | S     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     |       |          | 39      | 22           | 2 | 15      | Ŭ     |          |
| 2   | t     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     |       | <u> </u> | 39      | 22           | 2 | 15      | Ŭ     | <u> </u> |
| 2   | u     | 3        | Total   | С            | Ν | Ο       | 0     | 0        |
|     |       | <u> </u> | 39      | 22           | 2 | 15      | Ŭ     | <u> </u> |
| 2   | v     | 3        | Total   | С            | Ν | 0       | 0     | 0        |
|     |       | -        | 39      | 22           | 2 | 15      |       |          |
| 2   | w     | 3        | Total   | С            | N | 0       | 0     | 0        |
|     |       | _        | 39      | 22           | 2 | 15      | _     |          |
| 2   | x     | 3        | Total   | С            | N | 0       | 0     | 0        |
|     |       | _        | 39      | 22           | 2 | 15      | _     | _        |
| 2   | v     | 3        | Total   | C            | N | 0       | 0     | 0        |
|     | J     | _        | 39      | 22           | 2 | 15      | _     | _        |
| 2   | Z     | 3        | Total   | C            | N | 0       | 0     | 0        |
|     |       |          | 39      | 22           | 2 | 15      |       |          |
| 2   | 0     | 3        | Total   | C            | N | 0       | 0     | 0        |
|     |       |          | 39      | 22           | 2 | 15      |       |          |
| 2   | 1     | 3        | 'I'otal | C            | N | U<br>15 | 0     | 0        |
|     |       | -        | 39      | 22           | 2 | 15      |       |          |
| 2   | 2     | 3        | Total   | С            | Ν | O       | 0     | 0        |
| -   |       |          | 39      | 22           | 2 | 15      |       |          |



Continued from previous page...

| Mol | Chain   | Residues | A             | Aton             | ns      |                | AltConf | Trace |
|-----|---------|----------|---------------|------------------|---------|----------------|---------|-------|
| 0   | 0       | 9        | Total         | С                | Ν       | 0              | 0       | 0     |
| 2   | 3       | 3        | 39            | 22               | 2       | 15             | 0       | 0     |
| 0   | 4       | 9        | Total         | С                | Ν       | 0              | 0       | 0     |
|     | 4       | 3        | 39            | 22               | 2       | 15             | 0       | 0     |
| 0   | F       | 9        | Total         | С                | Ν       | 0              | 0       | 0     |
|     | 5       | 5        | 39            | 22               | 2       | 15             | 0       | 0     |
| 2   | 6       | 3        | Total         | С                | Ν       | 0              | 0       | 0     |
|     | 0       | 5        | 39            | 22               | 2       | 15             | 0       | 0     |
| 2   | 7       | 3        | Total         | $\mathbf{C}$     | Ν       | Ο              | 0       | 0     |
|     | -       | 0        | 39            | 22               | 2       | 15             | 0       | 0     |
| 2   | 8       | 3        | Total         | $\mathbf{C}$     | Ν       | Ο              | 0       | 0     |
|     | 0       | 0        | 39            | 22               | 2       | 15             | 0       | 0     |
| 2   | 9       | 3        | Total         | С                | Ν       | Ο              | 0       | 0     |
|     |         |          | 39            | 22               | 2       | 15             | 0       |       |
| 2   | AA      | 3        | Total         | С                | Ν       | Ο              | 0       | 0     |
|     |         |          | 39            | 22               | 2       | 15             | Ŭ       | Ŭ     |
| 2   | BA      | 3        | Total         | С                | Ν       | 0              | 0       | 0     |
|     |         | <u> </u> | 39            | 22               | 2       | 15             | Ŭ       |       |
| 2   | CA      | 3        | Total         | С                | Ν       | 0              | 0       | 0     |
|     |         |          | 39            | 22               | 2       | 15             |         |       |
| 2   | DA      | 3        | Total         | C                | N       | 0              | 0       | 0     |
|     |         |          | 39            | 22               | 2       | 15             |         |       |
| 2   | EA      | 3        | Total         | C                | N       | 0              | 0       | 0     |
|     |         |          | 39            | 22               | 2       | 15             |         |       |
| 2   | FA      | 3        |               | 0                | N<br>O  | 15             | 0       | 0     |
|     |         |          | 39<br>Tetal   | 22               | Z       | $\frac{10}{0}$ |         |       |
| 2   | GA      | 3        |               | U<br>99          | N<br>O  | 15             | 0       | 0     |
|     |         |          | - 39<br>Total | $\frac{22}{C}$   | Z<br>N  | $\frac{10}{0}$ |         |       |
| 2   | HA      | 3        | 10tai<br>30   | 0<br>22          | IN<br>D | 15             | 0       | 0     |
|     |         |          | Total         | $\frac{22}{C}$   | Z<br>N  | $\frac{10}{0}$ |         |       |
| 2   | IA      | 3        | 10tai<br>30   | $\frac{0}{22}$   | 2       | 15             | 0       | 0     |
|     |         |          | Total         | $\frac{22}{C}$   | N       | $\frac{10}{0}$ |         |       |
| 2   | JA      | 3        | 30            | 22               | 2       | 15             | 0       | 0     |
|     |         |          | Total         | $\frac{22}{C}$   | N       | $\frac{10}{0}$ |         |       |
| 2   | KA      | 3        | 39            | 22               | 2       | 15             | 0       | 0     |
|     |         |          | Total         | <u> </u>         | N       | 0              |         |       |
| 2   | LA      | 3        | 39            | $\widetilde{22}$ | 2       | 15             | 0       | 0     |
|     |         |          | Total         | C                | N       | 0              |         |       |
| 2   | MA      | 3        | 39            | 22               | 2       | 15             | 0       | 0     |
|     | <b></b> | <u> </u> | Total         | C                | N       | 0              | 6       | 6     |
| 2   | NA      | 3        | 39            | 22               | 2       | 15             | 0       | 0     |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    | •        |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
| • • • • • • • • • • • •          | J    | P        | r -g |

| Mol | Chain | Residues | A           | Aton         | ns      |    | AltConf | Trace    |
|-----|-------|----------|-------------|--------------|---------|----|---------|----------|
| 0   | 0.4   | 2        | Total       | С            | Ν       | 0  | 0       | 0        |
| 2   | 0A    | 3        | 39          | 22           | 2       | 15 | 0       | 0        |
| 0   | DA    | 9        | Total       | С            | Ν       | 0  | 0       | 0        |
|     | ГA    | 0        | 39          | 22           | 2       | 15 | 0       | 0        |
| 0   |       | 2        | Total       | С            | Ν       | 0  | 0       | 0        |
|     | QA    | 5        | 39          | 22           | 2       | 15 | 0       | 0        |
| 2   | RΔ    | 3        | Total       | С            | Ν       | 0  | 0       | 0        |
|     | 10/1  | 5        | 39          | 22           | 2       | 15 | 0       | 0        |
| 2   | SA    | 3        | Total       | $\mathbf{C}$ | Ν       | Ο  | 0       | 0        |
|     | 571   | 0        | 39          | 22           | 2       | 15 | 0       | 0        |
| 2   | ТА    | 3        | Total       | $\mathbf{C}$ | Ν       | Ο  | 0       | 0        |
|     | 111   | 0        | 39          | 22           | 2       | 15 | 0       | 0        |
| 2   | UA    | 3        | Total       | С            | Ν       | Ο  | 0       | 0        |
|     | 011   |          | 39          | 22           | 2       | 15 | 0       | 0        |
| 2   | VA    | 3        | Total       | С            | Ν       | Ο  | 0       | 0        |
|     | ,,,,  |          | 39          | 22           | 2       | 15 | Ŭ       | Ŭ        |
| 2   | WA    | 3        | Total       | С            | Ν       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | XA    | 3        | Total       | С            | Ν       | Ο  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 | Ŭ       | <u> </u> |
| 2   | YA    | 3        | Total       | С            | N       | 0  | 0       | 0        |
|     |       | _        | 39          | 22           | 2       | 15 | _       |          |
| 2   | ZA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | aA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | bA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | cA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | dA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | eA    | 3        | Total       | C            | N       | 15 | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | fA    | 3        | Total       | C            | N       | 15 | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | gA    | 3        | Total       | C            | N       | 15 | 0       | 0        |
|     | ~     |          | 39<br>Tut 1 | 22           | Z       | 10 |         |          |
| 2   | hA    | 3        | Total       | U            | IN<br>O | 15 | 0       | 0        |
|     |       |          | 39          | 22           | 2       | 15 |         |          |
| 2   | iA    | 3        | Total       | C            | N       | 0  | 0       | 0        |
|     |       | -        | 39          | 22           | 2       | 15 |         |          |



Continued from previous page...

| Mol | Chain | Residues | I      | Aton         | ns |    | AltConf | Trace |
|-----|-------|----------|--------|--------------|----|----|---------|-------|
| 0   | • •   | 9        | Total  | С            | Ν  | 0  | 0       | 0     |
| 2   | JА    | 3        | 39     | 22           | 2  | 15 | 0       | 0     |
| 0   | 1- 1  | ე        | Total  | С            | Ν  | 0  | 0       | 0     |
|     | КА    | 9        | 39     | 22           | 2  | 15 | 0       | 0     |
| 0   | 1.4   | 2        | Total  | С            | Ν  | 0  | 0       | 0     |
|     | IA    | 5        | 39     | 22           | 2  | 15 | 0       | 0     |
| 2   | mΔ    | 3        | Total  | С            | Ν  | 0  | 0       | 0     |
|     | шл    | 5        | 39     | 22           | 2  | 15 | 0       | 0     |
| 2   | nA    | 3        | Total  | $\mathbf{C}$ | Ν  | Ο  | 0       | 0     |
|     | 117 1 | 0        | 39     | 22           | 2  | 15 | 0       | 0     |
| 2   | oA    | 3        | Total  | $\mathbf{C}$ | Ν  | Ο  | 0       | 0     |
|     | 011   | 0        | 39     | 22           | 2  | 15 | 0       |       |
| 2   | nA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     | P     | 0        | 39     | 22           | 2  | 15 | 0       | 0     |
| 2   | αA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     | 411   |          | 39     | 22           | 2  | 15 | Ŭ       |       |
| 2   | rA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 | Ŭ       |       |
| 2   | sA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 | Ŭ       |       |
| 2   | tA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 | Ŭ       |       |
| 2   | uА    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 | Ŭ       |       |
| 2   | vA    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 |         |       |
| 2   | wA    | 3        | Total  | С            | Ν  | 0  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 |         |       |
| 2   | xA    | 3        | Total  | С            | N  | 0  | 0       | 0     |
|     |       | _        | 39     | 22           | 2  | 15 | _       |       |
| 2   | vA    | 3        | Total  | С            | N  | 0  | 0       | 0     |
|     | J     |          | 39     | 22           | 2  | 15 |         |       |
| 2   | zA    | 3        | Total  | С            | N  | 0  | 0       | 0     |
|     |       |          | 39     | 22           | 2  | 15 |         |       |
| 2   | 0A    | 3        | Total  | С            | N  | 0  | 0       | 0     |
|     |       | -        | 39     | 22           | 2  | 15 |         |       |
| 2   | 1A    | 3        | Total  | С            | N  | 0  | 0       | 0     |
|     |       | -        | 39     | 22           | 2  | 15 |         |       |
| 2   | 2A    | 3        | 'Total | С            | N  | 0  | 0       | 0     |
|     |       | · ·      | 39     | 22           | 2  | 15 |         |       |
| 2   | 3A    | 3        | Total  | С            | Ν  | Ο  | 0       | 0     |
|     | 011   | 5        | 39     | 22           | 2  | 15 |         |       |



Mol Chain Residues Atoms AltConf Trace Total С Ν 0 23 0 0 4A3922215С Ν Total 0 20 3 0 5A3922215

Continued from previous page...



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DUF4352 domain-containing protein





• Molecule 1: DUF4352 domain-containing protein







• Molecule 1: DUF4352 domain-containing protein



• Molecule 1: DUF4352 domain-containing protein



| Chain Z:                                       | 100%                              |
|------------------------------------------------|-----------------------------------|
| L16<br>A66<br>S67<br>C68<br>S69<br>S70         |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain c:                                       | 100%                              |
| L16<br>A66<br>S67<br>569<br>S70<br>S70         |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain I:                                       | 99%                               |
| L16<br>N63<br>567<br>6156                      |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain C:                                       | 99%                               |
| L16<br>N63<br>S67<br>G68<br>G156               |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain F:                                       | 99% •                             |
| L16<br>N63<br>667<br>668<br>668<br>668<br>6156 |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain L:                                       | 99% •                             |
| L16<br>N63<br>67<br>6156                       |                                   |
| • Molecule 1:                                  | DUF4352 domain-containing protein |
| Chain O:                                       | 99% .                             |
| L16<br>N63<br>S67<br>S67<br>C156<br>C156       |                                   |



• Molecule 1: DUF4352 domain-containing protein







| Chain f: | 33% | 100% |  |
|----------|-----|------|--|
| MAN3     |     |      |  |

| Chain g: | 33% | 100%<br>67% |
|----------|-----|-------------|
| NAG1     |     |             |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain h:             | 67%<br>33% | 67 <mark>%</mark> |  |
|----------------------|------------|-------------------|--|
| NAG1<br>NAG2<br>MAN3 |            |                   |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| <b>A 1 1 1</b>       | 33% |      |  |
|----------------------|-----|------|--|
| Chain i:             |     | 100% |  |
|                      |     |      |  |
| •                    |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |
|                      |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                   |     | 100% |
|-------------------|-----|------|
| Chain j:          | 33% | 67%  |
|                   |     |      |
| <b>***</b>        |     |      |
| AG1<br>AG2<br>AN3 |     |      |
| NI<br>NI          |     |      |

| 1                 | 67% |     |  |
|-------------------|-----|-----|--|
| Chain k:          | 33% | 67% |  |
|                   |     |     |  |
| <b>*</b>          |     |     |  |
| AG1<br>AG2<br>AN3 |     |     |  |
| /N                |     |     |  |
|                   |     |     |  |
|                   |     |     |  |



|                   | 33% |      |  |
|-------------------|-----|------|--|
| Chain l:          |     | 100% |  |
|                   |     |      |  |
| <b>•</b>          |     |      |  |
| AG1<br>AG2<br>AN3 |     |      |  |
| N N M             |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose



• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain n:             | 67%<br>33% | 674 | % |
|----------------------|------------|-----|---|
| NAG1<br>NAG2<br>MAN3 |            |     |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 33% |      |  |
|----------------------|-----|------|--|
| Chain o:             |     | 100% |  |
| •                    |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                      |     | 100% |  |
|----------------------|-----|------|--|
| Chain p:             | 33% | 67%  |  |
| <b>***</b>           |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |
|                      |     |      |  |

|          | 6   | 7% |   |
|----------|-----|----|---|
| Chain q: | 33% | 67 | % |







• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      |     | 100% |  |
|----------------------|-----|------|--|
| Chain s:             | 33% | 67%  |  |
| •••                  |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain t:             | 33% | 67% |  |
|----------------------|-----|-----|--|
| NAG1<br>NAG2<br>MAN3 |     |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain u:             | 33% | 100% |  |
|----------------------|-----|------|--|
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                   |     | 100% |  |
|-------------------|-----|------|--|
| Chain v:          | 33% | 67%  |  |
|                   |     |      |  |
| <u>ਜ 8 8</u>      |     |      |  |
| NA(<br>NA(<br>MAI |     |      |  |



|                      | 67% |     |
|----------------------|-----|-----|
| Chain w:             | 33% | 67% |
| ••                   |     |     |
| NAG1<br>NAG2<br>MAN3 |     |     |

|                      | 33% |      |  |
|----------------------|-----|------|--|
| Chain x:             |     | 100% |  |
|                      |     |      |  |
| <b>•</b>             |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain y: | 33% | 100%<br>67% |  |
|----------|-----|-------------|--|
| NAG1     |     |             |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain z:             | 67%<br>33% | 67% |
|----------------------|------------|-----|
| NAG1<br>NAG2<br>MAN3 |            |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                              | 33% |      |  |
|------------------------------|-----|------|--|
| Chain 0:                     |     | 100% |  |
|                              |     |      |  |
| <b>•</b>                     |     |      |  |
| VAG1<br>VAG2<br>VAG2<br>MAN3 |     |      |  |
|                              |     |      |  |







• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                   | 67%  | _ |
|-------------------|------|---|
| Chain 3:          | 100% |   |
|                   |      |   |
| <b>*</b>          |      |   |
| ag1<br>ag2<br>an3 |      |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                   |     | 100% |  |
|-------------------|-----|------|--|
| Chain 4:          | 33% | 67%  |  |
|                   |     |      |  |
| <b>***</b>        |     |      |  |
| AG1<br>AG2<br>AN3 |     |      |  |
| N N W             |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                   |     | 100% |
|-------------------|-----|------|
| Chain 5:          | 33% | 67%  |
|                   |     |      |
|                   |     |      |
| NAG<br>NAG<br>MAN |     |      |
|                   |     |      |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                   | 67%  |  |
|-------------------|------|--|
| Chain 6:          | 100% |  |
|                   |      |  |
| ••                |      |  |
| <del></del>       |      |  |
| NAG<br>NAG<br>MAN |      |  |
|                   |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

100%

| $\alpha_1 \cdot \pi$ |     |     |
|----------------------|-----|-----|
| Chain 7:             | 33% | 67% |





|                         | 67% |     |  |
|-------------------------|-----|-----|--|
| Chain 8:                | 33% | 67% |  |
|                         |     |     |  |
|                         |     |     |  |
| NAG 1<br>NAG 2<br>MAN 3 |     |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain 9:             | 67%<br>33% | 67% |
|----------------------|------------|-----|
| NAG2<br>NAG2<br>MAN3 |            |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                         |     | 100% |     |
|-------------------------|-----|------|-----|
| Chain AA:               | 33% | 6    | 57% |
|                         |     |      |     |
| <b>***</b>              |     |      |     |
| IAG 1<br>IAG 2<br>IAN 3 |     |      |     |
|                         |     |      |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose



• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose





|                                     |                               | 100%                             |                |              |                      |
|-------------------------------------|-------------------------------|----------------------------------|----------------|--------------|----------------------|
| Chain DA:                           | 33%                           |                                  | 67%            |              |                      |
| NAG1<br>NAG2<br>MAN3                |                               |                                  |                |              |                      |
| • Molecule 2: al<br>cetamido-2-deox | pha-D-manno<br>y-beta-D-gluc  | pyranose-(1-6)-2-ac<br>opyranose | etamido-2-deox | y-beta-D-glu | copyranose-(1-4)-2-a |
|                                     |                               | 67%                              |                |              |                      |
| Chain EA:                           | 33%                           |                                  | 67%            |              |                      |
| NAG1<br>NAG2<br>MAN3                |                               |                                  |                |              |                      |
| • Molecule 2: al<br>cetamido-2-deox | pha-D-manno<br>cy-beta-D-gluc | pyranose-(1-6)-2-ac<br>opyranose | etamido-2-deox | y-beta-D-glu | copyranose-(1-4)-2-a |
|                                     |                               | 67%                              |                |              |                      |
| Chain FA:                           | 33%                           |                                  | 67%            |              |                      |
| NAG2<br>MAG2<br>MAN3                |                               |                                  |                |              |                      |
| • Molecule 2: al<br>cetamido-2-deox | pha-D-manno<br>cy-beta-D-gluc | pyranose-(1-6)-2-ac<br>opyranose | etamido-2-deox | y-beta-D-glu | copyranose-(1-4)-2-a |
|                                     |                               | 100%                             |                |              |                      |
| Chain CA.                           |                               |                                  |                |              |                      |

| Chain GA: | 33% | 67% |
|-----------|-----|-----|
| NAG1      |     |     |

| Chain HA:            | 67%<br>33% | 67% |  |
|----------------------|------------|-----|--|
| NAG1<br>NAG2<br>MAN3 |            |     |  |

| Chain IA:            | 33% | °%<br>679 | % |
|----------------------|-----|-----------|---|
| NAG1<br>NAG2<br>MAN3 |     |           |   |





• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose



• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                                | 67% |     |  |
|--------------------------------|-----|-----|--|
| Chain LA:                      | 33% | 67% |  |
|                                |     |     |  |
| <b>*</b> *                     |     |     |  |
| <mark>AG1</mark><br>AG2<br>AN3 |     |     |  |
|                                |     |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|           |     | 100% |   |
|-----------|-----|------|---|
| Chain MA: | 33% | 67   | % |
| NAG1      |     |      |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain NA:            | 33% | 67% |  |
|----------------------|-----|-----|--|
| ••                   |     |     |  |
| NAG1<br>NAG2<br>MAN3 |     |     |  |

|           | 67  | 7% |   |
|-----------|-----|----|---|
| Chain OA: | 33% | 67 | % |





|                   |     | 100% |     |
|-------------------|-----|------|-----|
| Chain PA:         | 33% |      | 67% |
|                   |     |      |     |
| <b>***</b>        |     |      |     |
| AG1<br>AG2<br>AN3 |     |      |     |
| N N N             |     |      |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 6   | 7% |   |
|----------------------|-----|----|---|
| Chain QA:            | 33% | 67 | % |
|                      |     |    |   |
| <b>*</b> *           |     |    |   |
| VAG1<br>VAG2<br>VAG2 |     |    |   |
|                      |     |    |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 6   | 7%  |   |
|----------------------|-----|-----|---|
| Chain RA:            | 33% | 67' | % |
| NAGT<br>NAG2<br>MAN3 |     |     |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 100% |     |
|----------------------|------|-----|
| Chain SA:            | 33%  | 67% |
| <b>***</b>           |      |     |
| NAG1<br>NAG2<br>MAN3 |      |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain TA:            | 679<br>33% | 679 | 0 |
|----------------------|------------|-----|---|
| NAG1<br>NAG2<br>MAN3 |            |     |   |



| Chain UA:            | 33% | 67%<br>67% |
|----------------------|-----|------------|
| NAG1<br>MAN3<br>MAN3 |     |            |

|            |                      | 100%                                       |
|------------|----------------------|--------------------------------------------|
| Chain VA:  | 33%                  | 67%                                        |
| NAG1       |                      |                                            |
| • Molecule | 2: alpha-D-mannopyra | anose-(1-6)-2-acetamido-2-deoxy-beta-D-glu |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                                   | 67%  |  |
|-----------------------------------|------|--|
| Chain WA:                         | 100% |  |
|                                   |      |  |
| <b>••</b>                         |      |  |
| <mark>JAG1</mark><br>JAG2<br>JAN3 |      |  |
|                                   |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                                   | 67% |     |
|-----------------------------------|-----|-----|
| Chain XA:                         | 33% | 67% |
| • •                               |     |     |
| <mark>NAG1</mark><br>NAG2<br>MAN3 |     |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| _                 |     | 100% |     |
|-------------------|-----|------|-----|
| Chain YA:         | 33% |      | 67% |
|                   |     |      |     |
|                   |     |      |     |
| NAG<br>NAG<br>MAN |     |      |     |

|                      |     | 100% |  |
|----------------------|-----|------|--|
| Chain ZA:            | 33% | 67%  |  |
|                      |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |
|                      |     |      |  |



|           |     | 100% |  |
|-----------|-----|------|--|
| Chain aA: | 33% | 67%  |  |
| NAG1      |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose



• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 33% |      |  |
|----------------------|-----|------|--|
| Chain cA:            |     | 100% |  |
|                      |     |      |  |
| <b>•</b>             |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| <b>C1</b> · 14       | 67%  |  |
|----------------------|------|--|
| Chain dA:            | 100% |  |
| <b>*</b>             |      |  |
| NAG1<br>NAG2<br>MAN3 |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|           |     | 100% |     |
|-----------|-----|------|-----|
| Chain eA: | 33% |      | 67% |
| NAG1      |     |      |     |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain fA: 100%

33%





| Chain gA:            | 67% |  |
|----------------------|-----|--|
| NAG1<br>NAG2<br>MAN3 |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain hA:      | 33% | 100% 67% |
|----------------|-----|----------|
|                |     |          |
| NA<br>NA<br>MA |     |          |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 33% |      |  |
|----------------------|-----|------|--|
| Chain iA:            |     | 100% |  |
| •                    |     |      |  |
| NAG1<br>NAG2<br>MAN3 |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain jA:            | 67% |  |
|----------------------|-----|--|
| NAG1<br>NAG2<br>MAN3 |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose





| 33%                                                       |                                              |                           |                       |
|-----------------------------------------------------------|----------------------------------------------|---------------------------|-----------------------|
| Chain IA:                                                 | 100%                                         |                           |                       |
| NAG1<br>NAG2<br>MAN3                                      |                                              |                           |                       |
| • Molecule 2: alpha-D-n<br>cetamido-2-deoxy-beta-I        | nannopyranose-(1-6)-2-ace<br>D-glucopyranose | etamido-2-deoxy-beta-D-gl | ucopyranose-(1-4)-2-a |
| Chain mA:                                                 | 67%                                          |                           | -                     |
| NAG1<br>NAG2<br>MAN3<br>MAN3                              |                                              |                           |                       |
| • Molecule 2: alpha-D-n<br>cetamido-2-deoxy-beta-I        | nannopyranose-(1-6)-2-ace<br>D-glucopyranose | etamido-2-deoxy-beta-D-gl | ucopyranose-(1-4)-2-a |
| Chain nA: 33%                                             | 100%                                         | 67%                       | •                     |
| NAG1                                                      |                                              |                           |                       |
| • Molecule 2: alpha-D-n<br>cetamido-2-deoxy-beta-I<br>33% | nannopyranose-(1-6)-2-ace<br>D-glucopyranose | etamido-2-deoxy-beta-D-gl | ucopyranose-(1-4)-2-a |
| Chain oA:                                                 | 100%                                         |                           |                       |
| MAC1<br>MAC2<br>MAN3                                      |                                              |                           |                       |
| • Molecule 2: alpha-D-n<br>cetamido-2-deoxy-beta-I        | nannopyranose-(1-6)-2-ace<br>D-glucopyranose | etamido-2-deoxy-beta-D-gl | ucopyranose-(1-4)-2-a |
| Chain pA:                                                 | 67%                                          |                           | -                     |
| NAG1<br>NAG2<br>MAN3                                      |                                              |                           |                       |
| • Molecule 2: alpha-D-m<br>cetamido-2-deoxy-beta-I        | nannopyranose-(1-6)-2-ace<br>D-glucopyranose | etamido-2-deoxy-beta-D-gl | ucopyranose-(1-4)-2-a |
| Chain aA.                                                 | 100%                                         | 67%                       | •                     |
| 510000 910                                                |                                              |                           |                       |







• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                   | 67%  |  |
|-------------------|------|--|
| Chain sA:         | 100% |  |
| AG1<br>AG2<br>AN3 |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                   |     | 100% |  |
|-------------------|-----|------|--|
| Chain tA:         | 33% | 67%  |  |
|                   |     |      |  |
| <b>***</b>        |     |      |  |
| AG1<br>AG2<br>AN3 |     |      |  |
| N N               |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                        | 33% |      |  |
|------------------------|-----|------|--|
| Chain uA:              |     | 100% |  |
|                        |     |      |  |
| NAG1<br>NAG2<br>MAN3 ▲ |     |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain vA:            | 67% |  |
|----------------------|-----|--|
| NAG1<br>NAG2<br>MAN3 |     |  |

|           |     | 100% |     |
|-----------|-----|------|-----|
| Chain wA: | 33% |      | 67% |





NAG MAN

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|                      | 67%  |  |
|----------------------|------|--|
| Chain xA:            | 100% |  |
|                      |      |  |
| <b>••</b>            |      |  |
| IAG1<br>IAG2<br>IAN3 |      |  |
| <u> </u>             |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

| Chain yA:            | 67% |  |
|----------------------|-----|--|
| NAG1<br>NAG2<br>MAN3 |     |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|           |     | 100% |   |
|-----------|-----|------|---|
| Chain zA: | 33% | 67%  | 6 |
| NAG1      |     |      |   |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                      | 67%  |  |
|----------------------|------|--|
| Chain 0A:            | 100% |  |
|                      |      |  |
| NAG1<br>NAG2<br>MAN3 |      |  |

• Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

|           | 67%  |  |
|-----------|------|--|
| Chain 1A: | 100% |  |
|           |      |  |
| <b>**</b> |      |  |



|                                                                                                                                    |                                       | 100%                           |                                              |   |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|----------------------------------------------|---|--|
| Chain 2A:                                                                                                                          | 33%                                   |                                | 67%                                          |   |  |
| NAG1<br>NAG2<br>MAN3                                                                                                               |                                       |                                |                                              |   |  |
| • Molecule 2: al<br>cetamido-2-deox                                                                                                | lpha-D-mannopyra<br>cy-beta-D-glucopy | anose-(1-6)-2-acetar<br>ranose | amido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a | a |  |
|                                                                                                                                    |                                       | 100%                           |                                              |   |  |
| Chain 3A:                                                                                                                          |                                       | 100%                           |                                              |   |  |
| • Molecule 2: al<br>cetamido-2-deox                                                                                                | lpha-D-mannopyra<br>xy-beta-D-glucopy | anose-(1-6)-2-acetar<br>ranose | amido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a | a |  |
|                                                                                                                                    |                                       | 100%                           |                                              |   |  |
| Chain 4A:                                                                                                                          |                                       | 100%                           |                                              |   |  |
| NAG1<br>NAG2<br>MAN3                                                                                                               |                                       |                                |                                              |   |  |
| • Molecule 2: alpha-D-mannopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose |                                       |                                |                                              |   |  |

|           | 100% |     |  |  |  |
|-----------|------|-----|--|--|--|
| Chain 5A: | 33%  | 67% |  |  |  |
| NAG1      |      |     |  |  |  |



## 4 Experimental information (i)

| Property                           | Value                                                 | Source    |
|------------------------------------|-------------------------------------------------------|-----------|
| EM reconstruction method           | HELICAL                                               | Depositor |
| Imposed symmetry                   | HELICAL, twist= $-39.953^{\circ}$ , rise= $15.282$ Å, | Depositor |
|                                    | axial sym= $C1$                                       |           |
| Number of segments used            | 691479                                                | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF                                     | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE                          | Depositor |
|                                    | CORRECTION                                            |           |
| Microscope                         | FEI TITAN KRIOS                                       | Depositor |
| Voltage (kV)                       | 300                                                   | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 40                                                    | Depositor |
| Minimum defocus (nm)               | 800                                                   | Depositor |
| Maximum defocus (nm)               | 2200                                                  | Depositor |
| Magnification                      | Not provided                                          |           |
| Image detector                     | TFS FALCON 4i (4k x 4k)                               | Depositor |
| Maximum map value                  | 0.155                                                 | Depositor |
| Minimum map value                  | -0.051                                                | Depositor |
| Average map value                  | 0.001                                                 | Depositor |
| Map value standard deviation       | 0.008                                                 | Depositor |
| Recommended contour level          | 0.032                                                 | Depositor |
| Map size (Å)                       | 265.248, 265.248, 265.248                             | wwPDB     |
| Map dimensions                     | 288, 288, 288                                         | wwPDB     |
| Map angles $(^{\circ})$            | 90.0, 90.0, 90.0                                      | wwPDB     |
| Pixel spacing (Å)                  | 0.92099994, 0.92099994, 0.92099994                    | Depositor |


# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | Bond | angles   |
|-----|-------|------|----------|------|----------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5 |
| 1   | А     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | В     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | С     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | D     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Е     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | F     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | G     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Н     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | Ι     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | J     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Κ     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | L     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | М     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Ν     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | 0     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Р     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Q     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | R     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | S     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Т     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | U     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | V     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | W     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | Х     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Y     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | Ζ     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | a     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | b     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| 1   | с     | 0.36 | 0/1019   | 0.66 | 0/1396   |
| 1   | d     | 0.36 | 0/1019   | 0.69 | 0/1396   |
| All | All   | 0.36 | 0/30570  | 0.68 | 0/41880  |



There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|------------|---------|----------|-------|--------|
| 1   | А     | 139/141~(99%) | 138~(99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | В     | 139/141~(99%) | 139 (100%) | 0       | 0        | 100   | 100    |
| 1   | С     | 139/141~(99%) | 138~(99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | D     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | Е     | 139/141~(99%) | 139 (100%) | 0       | 0        | 100   | 100    |
| 1   | F     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | G     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | Н     | 139/141~(99%) | 139 (100%) | 0       | 0        | 100   | 100    |
| 1   | Ι     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | J     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | K     | 139/141~(99%) | 139 (100%) | 0       | 0        | 100   | 100    |
| 1   | L     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | М     | 139/141~(99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | Ν     | 139/141~(99%) | 139 (100%) | 0       | 0        | 100   | 100    |
| 1   | Ο     | 139/141 (99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 1   | Р     | 139/141 (99%) | 138 (99%)  | 1 (1%)  | 0        | 100   | 100    |



| Mol | Chain | Analysed           | Favoured    | Allowed | Outliers | Percentiles |     |  |
|-----|-------|--------------------|-------------|---------|----------|-------------|-----|--|
| 1   | Q     | 139/141~(99%)      | 139 (100%)  | 0       | 0        | 100         | 100 |  |
| 1   | R     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | S     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | Т     | 139/141~(99%)      | 139 (100%)  | 0       | 0        | 100         | 100 |  |
| 1   | U     | 139/141 (99%)      | 138 (99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | V     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | W     | 139/141 (99%)      | 139 (100%)  | 0       | 0        | 100         | 100 |  |
| 1   | Х     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | Y     | 139/141 (99%)      | 138 (99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | Z     | 139/141~(99%)      | 139 (100%)  | 0       | 0        | 100         | 100 |  |
| 1   | a     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | b     | 139/141~(99%)      | 138~(99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| 1   | с     | 139/141~(99%)      | 139 (100%)  | 0       | 0        | 100         | 100 |  |
| 1   | d     | $139/141 \ (99\%)$ | 138 (99%)   | 1 (1%)  | 0        | 100         | 100 |  |
| All | All   | 4170/4230 (99%)    | 4150 (100%) | 20 (0%) | 0        | 100         | 100 |  |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain        | Analysed       | Rotameric  | Outliers | Percentiles |
|-----|--------------|----------------|------------|----------|-------------|
| 1   | А            | 110/110~(100%) | 110 (100%) | 0        | 100 100     |
| 1   | В            | 110/110~(100%) | 110 (100%) | 0        | 100 100     |
| 1   | $\mathbf{C}$ | 110/110~(100%) | 109 (99%)  | 1 (1%)   | 75 87       |
| 1   | D            | 110/110~(100%) | 110 (100%) | 0        | 100 100     |
| 1   | Ε            | 110/110~(100%) | 110 (100%) | 0        | 100 100     |
| 1   | F            | 110/110~(100%) | 109~(99%)  | 1 (1%)   | 75 87       |
| 1   | G            | 110/110~(100%) | 110 (100%) | 0        | 100 100     |



| Mol | Chain | Analysed         | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|------------------|------------|----------|-------|--------|
| 1   | Н     | 110/110 (100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Ι     | 110/110 (100%)   | 109 (99%)  | 1 (1%)   | 75    | 87     |
| 1   | J     | 110/110 (100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Κ     | 110/110 (100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | L     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | М     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Ν     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Ο     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | Р     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Q     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | R     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | S     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Т     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | U     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | V     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | W     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Х     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | Y     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | Z     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | a     | 110/110~(100%)   | 109~(99%)  | 1 (1%)   | 75    | 87     |
| 1   | b     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | С     | 110/110~(100%)   | 110 (100%) | 0        | 100   | 100    |
| 1   | d     | 110/110~(100%)   | 109 (99%)  | 1 (1%)   | 75    | 87     |
| All | All   | 3300/3300 (100%) | 3290(100%) | 10 (0%)  | 90    | 96     |

All (10) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 1   | Ι     | 63                   | ASN  |
| 1   | С     | 63                   | ASN  |
| 1   | F     | 63                   | ASN  |
| 1   | L     | 63                   | ASN  |
| 1   | 0     | 63                   | ASN  |
| 1   | R     | 63                   | ASN  |



Continued from previous page...

|     | *     |                |      |
|-----|-------|----------------|------|
| Mol | Chain | $\mathbf{Res}$ | Type |
| 1   | U     | 63             | ASN  |
| 1   | Х     | 63             | ASN  |
| 1   | a     | 63             | ASN  |
| 1   | d     | 63             | ASN  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

# 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

270 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Turne | Chain   | Dec | Tiple | Bo       | ond leng | $\mathbf{ths}$ | В              | ond ang | les      |
|------|-------|---------|-----|-------|----------|----------|----------------|----------------|---------|----------|
| WIOI | туре  | Ullalli | nes | LIIIK | Counts   | RMSZ     | # Z >2         | Counts         | RMSZ    | # Z  > 2 |
| 2    | NAG   | 0       | 1   | 2,1   | 14,14,15 | 0.60     | 0              | 17,19,21       | 1.35    | 2 (11%)  |
| 2    | NAG   | 0       | 2   | 2     | 14,14,15 | 0.28     | 0              | 17,19,21       | 1.33    | 2 (11%)  |
| 2    | MAN   | 0       | 3   | 2     | 11,11,12 | 1.39     | 2 (18%)        | $15,\!15,\!17$ | 3.76    | 9 (60%)  |
| 2    | NAG   | 0A      | 1   | 2,1   | 14,14,15 | 0.70     | 0              | 17,19,21       | 1.44    | 3 (17%)  |
| 2    | NAG   | 0A      | 2   | 2     | 14,14,15 | 0.60     | 0              | 17,19,21       | 1.37    | 1 (5%)   |
| 2    | MAN   | 0A      | 3   | 2     | 11,11,12 | 0.80     | 0              | $15,\!15,\!17$ | 1.09    | 1 (6%)   |
| 2    | NAG   | 1       | 1   | 2,1   | 14,14,15 | 0.67     | 1 (7%)         | 17,19,21       | 0.77    | 0        |
| 2    | NAG   | 1       | 2   | 2     | 14,14,15 | 0.30     | 0              | 17,19,21       | 0.64    | 1 (5%)   |
| 2    | MAN   | 1       | 3   | 2     | 11,11,12 | 0.47     | 0              | $15,\!15,\!17$ | 0.68    | 0        |
| 2    | NAG   | 1A      | 1   | 2,1   | 14,14,15 | 0.51     | 0              | 17,19,21       | 0.63    | 0        |



| Mal  | Trune | Chain | Dec | Tinle | Bo       | ond leng | ths      | В                         | ond ang | les     |
|------|-------|-------|-----|-------|----------|----------|----------|---------------------------|---------|---------|
| NIOI | Type  | Chain | Res | LINK  | Counts   | RMSZ     | # Z  > 2 | Counts                    | RMSZ    | # Z >2  |
| 2    | NAG   | 1A    | 2   | 2     | 14,14,15 | 0.35     | 0        | 17,19,21                  | 0.68    | 0       |
| 2    | MAN   | 1A    | 3   | 2     | 11,11,12 | 0.42     | 0        | $15,\!15,\!17$            | 0.59    | 0       |
| 2    | NAG   | 2     | 1   | 2,1   | 14,14,15 | 0.37     | 0        | 17,19,21                  | 1.00    | 1 (5%)  |
| 2    | NAG   | 2     | 2   | 2     | 14,14,15 | 0.56     | 0        | $17,\!19,\!21$            | 0.96    | 1 (5%)  |
| 2    | MAN   | 2     | 3   | 2     | 11,11,12 | 0.46     | 0        | $15,\!15,\!17$            | 0.79    | 0       |
| 2    | NAG   | 2A    | 1   | 2,1   | 14,14,15 | 0.28     | 0        | $17,\!19,\!21$            | 1.00    | 1 (5%)  |
| 2    | NAG   | 2A    | 2   | 2     | 14,14,15 | 0.28     | 0        | 17,19,21                  | 0.68    | 1 (5%)  |
| 2    | MAN   | 2A    | 3   | 2     | 11,11,12 | 0.47     | 0        | $15,\!15,\!17$            | 0.68    | 0       |
| 2    | NAG   | 3     | 1   | 2,1   | 14,14,15 | 0.60     | 0        | $17,\!19,\!21$            | 1.35    | 2 (11%) |
| 2    | NAG   | 3     | 2   | 2     | 14,14,15 | 0.28     | 0        | 17,19,21                  | 1.32    | 2 (11%) |
| 2    | MAN   | 3     | 3   | 2     | 11,11,12 | 1.38     | 2 (18%)  | $15,\!15,\!17$            | 3.76    | 9 (60%) |
| 2    | NAG   | 3A    | 1   | 2,1   | 14,14,15 | 0.70     | 0        | 17,19,21                  | 1.44    | 3 (17%) |
| 2    | NAG   | 3A    | 2   | 2     | 14,14,15 | 0.60     | 0        | 17,19,21                  | 1.37    | 1 (5%)  |
| 2    | MAN   | 3A    | 3   | 2     | 11,11,12 | 0.80     | 0        | $15,\!15,\!17$            | 1.09    | 1 (6%)  |
| 2    | NAG   | 4     | 1   | 2,1   | 14,14,15 | 0.68     | 1 (7%)   | 17,19,21                  | 0.77    | 0       |
| 2    | NAG   | 4     | 2   | 2     | 14,14,15 | 0.30     | 0        | 17,19,21                  | 0.63    | 1 (5%)  |
| 2    | MAN   | 4     | 3   | 2     | 11,11,12 | 0.46     | 0        | $15,\!15,\!17$            | 0.68    | 0       |
| 2    | NAG   | 4A    | 1   | 2,1   | 14,14,15 | 0.51     | 0        | 17,19,21                  | 0.64    | 0       |
| 2    | NAG   | 4A    | 2   | 2     | 14,14,15 | 0.35     | 0        | 17,19,21                  | 0.68    | 0       |
| 2    | MAN   | 4A    | 3   | 2     | 11,11,12 | 0.44     | 0        | 15, 15, 17                | 0.59    | 0       |
| 2    | NAG   | 5     | 1   | 2,1   | 14,14,15 | 0.35     | 0        | 17,19,21                  | 1.01    | 1 (5%)  |
| 2    | NAG   | 5     | 2   | 2     | 14,14,15 | 0.55     | 0        | 17,19,21                  | 0.95    | 1(5%)   |
| 2    | MAN   | 5     | 3   | 2     | 11,11,12 | 0.45     | 0        | $15,\!15,\!17$            | 0.79    | 0       |
| 2    | NAG   | 5A    | 1   | 2,1   | 14,14,15 | 0.27     | 0        | $17,\!19,\!21$            | 0.99    | 1 (5%)  |
| 2    | NAG   | 5A    | 2   | 2     | 14,14,15 | 0.28     | 0        | $17,\!19,\!21$            | 0.67    | 1 (5%)  |
| 2    | MAN   | 5A    | 3   | 2     | 11,11,12 | 0.45     | 0        | $15,\!15,\!17$            | 0.69    | 0       |
| 2    | NAG   | 6     | 1   | 2,1   | 14,14,15 | 0.60     | 0        | $17,\!19,\!21$            | 1.35    | 2 (11%) |
| 2    | NAG   | 6     | 2   | 2     | 14,14,15 | 0.27     | 0        | 17,19,21                  | 1.33    | 2 (11%) |
| 2    | MAN   | 6     | 3   | 2     | 11,11,12 | 1.37     | 2 (18%)  | $15,\!15,\!17$            | 3.77    | 9 (60%) |
| 2    | NAG   | 7     | 1   | 2,1   | 14,14,15 | 0.67     | 1 (7%)   | 17,19,21                  | 0.77    | 0       |
| 2    | NAG   | 7     | 2   | 2     | 14,14,15 | 0.30     | 0        | 17,19,21                  | 0.63    | 1 (5%)  |
| 2    | MAN   | 7     | 3   | 2     | 11,11,12 | 0.47     | 0        | $15,\!15,\!17$            | 0.68    | 0       |
| 2    | NAG   | 8     | 1   | 2,1   | 14,14,15 | 0.36     | 0        | 17,19,21                  | 1.42    | 1 (5%)  |
| 2    | NAG   | 8     | 2   | 2     | 14,14,15 | 0.33     | 0        | 17,19,21                  | 1.09    | 2 (11%) |
| 2    | MAN   | 8     | 3   | 2     | 11,11,12 | 0.36     | 0        | $15,\!15,\!17$            | 0.85    | 0       |
| 2    | NAG   | 9     | 1   | 2,1   | 14,14,15 | 0.65     | 0        | $17,\!19,\!\overline{21}$ | 0.67    | 0       |
| 2    | NAG   | 9     | 2   | 2     | 14,14,15 | 0.53     | 0        | $17,\!19,\!21$            | 0.85    | 1(5%)   |



| N/L-1 | <b>T</b> |       | D   | T 1. | Bo             | ond leng | ths    | Bond angles    |      |          |
|-------|----------|-------|-----|------|----------------|----------|--------|----------------|------|----------|
| NIOI  | Type     | Chain | Res | LINK | Counts         | RMSZ     | # Z >2 | Counts         | RMSZ | # Z  > 2 |
| 2     | MAN      | 9     | 3   | 2    | $11,\!11,\!12$ | 0.26     | 0      | $15,\!15,\!17$ | 0.77 | 1 (6%)   |
| 2     | NAG      | AA    | 1   | 2,1  | 14,14,15       | 0.30     | 0      | 17,19,21       | 1.27 | 1 (5%)   |
| 2     | NAG      | AA    | 2   | 2    | 14,14,15       | 0.28     | 0      | 17,19,21       | 0.65 | 1 (5%)   |
| 2     | MAN      | AA    | 3   | 2    | 11,11,12       | 0.42     | 0      | 15,15,17       | 0.73 | 0        |
| 2     | NAG      | BA    | 1   | 2,1  | 14,14,15       | 0.36     | 0      | 17,19,21       | 1.42 | 1 (5%)   |
| 2     | NAG      | BA    | 2   | 2    | 14,14,15       | 0.33     | 0      | 17,19,21       | 1.08 | 2 (11%)  |
| 2     | MAN      | BA    | 3   | 2    | 11,11,12       | 0.36     | 0      | 15,15,17       | 0.85 | 0        |
| 2     | NAG      | CA    | 1   | 2,1  | 14,14,15       | 0.65     | 0      | 17,19,21       | 0.66 | 0        |
| 2     | NAG      | CA    | 2   | 2    | 14,14,15       | 0.53     | 0      | 17,19,21       | 0.86 | 1 (5%)   |
| 2     | MAN      | CA    | 3   | 2    | 11,11,12       | 0.26     | 0      | 15,15,17       | 0.77 | 1 (6%)   |
| 2     | NAG      | DA    | 1   | 2,1  | 14,14,15       | 0.30     | 0      | 17,19,21       | 1.27 | 1 (5%)   |
| 2     | NAG      | DA    | 2   | 2    | 14,14,15       | 0.28     | 0      | 17,19,21       | 0.65 | 1 (5%)   |
| 2     | MAN      | DA    | 3   | 2    | 11,11,12       | 0.41     | 0      | 15,15,17       | 0.73 | 0        |
| 2     | NAG      | EA    | 1   | 2,1  | 14,14,15       | 0.37     | 0      | 17,19,21       | 1.42 | 1 (5%)   |
| 2     | NAG      | EA    | 2   | 2    | 14,14,15       | 0.32     | 0      | 17,19,21       | 1.09 | 2 (11%)  |
| 2     | MAN      | EA    | 3   | 2    | 11,11,12       | 0.36     | 0      | 15,15,17       | 0.84 | 0        |
| 2     | NAG      | FA    | 1   | 2,1  | 14,14,15       | 0.66     | 0      | 17,19,21       | 0.67 | 0        |
| 2     | NAG      | FA    | 2   | 2    | 14,14,15       | 0.52     | 0      | 17,19,21       | 0.85 | 1 (5%)   |
| 2     | MAN      | FA    | 3   | 2    | 11,11,12       | 0.26     | 0      | $15,\!15,\!17$ | 0.77 | 1 (6%)   |
| 2     | NAG      | GA    | 1   | 2,1  | 14,14,15       | 0.30     | 0      | 17,19,21       | 1.26 | 1 (5%)   |
| 2     | NAG      | GA    | 2   | 2    | 14,14,15       | 0.29     | 0      | 17,19,21       | 0.66 | 1 (5%)   |
| 2     | MAN      | GA    | 3   | 2    | 11,11,12       | 0.41     | 0      | 15,15,17       | 0.73 | 0        |
| 2     | NAG      | НА    | 1   | 2,1  | 14,14,15       | 0.38     | 0      | 17,19,21       | 1.42 | 1 (5%)   |
| 2     | NAG      | НА    | 2   | 2    | 14,14,15       | 0.33     | 0      | 17,19,21       | 1.09 | 2 (11%)  |
| 2     | MAN      | HA    | 3   | 2    | 11,11,12       | 0.36     | 0      | 15,15,17       | 0.85 | 0        |
| 2     | NAG      | IA    | 1   | 2,1  | 14,14,15       | 0.65     | 0      | 17,19,21       | 0.67 | 0        |
| 2     | NAG      | IA    | 2   | 2    | 14,14,15       | 0.54     | 0      | $17,\!19,\!21$ | 0.86 | 1 (5%)   |
| 2     | MAN      | IA    | 3   | 2    | 11,11,12       | 0.28     | 0      | $15,\!15,\!17$ | 0.77 | 1 (6%)   |
| 2     | NAG      | JA    | 1   | 2,1  | 14,14,15       | 0.29     | 0      | 17,19,21       | 1.26 | 1 (5%)   |
| 2     | NAG      | JA    | 2   | 2    | 14,14,15       | 0.29     | 0      | 17,19,21       | 0.65 | 1 (5%)   |
| 2     | MAN      | JA    | 3   | 2    | 11,11,12       | 0.41     | 0      | 15,15,17       | 0.73 | 0        |
| 2     | NAG      | KA    | 1   | 2,1  | 14,14,15       | 0.38     | 0      | 17,19,21       | 1.42 | 1 (5%)   |
| 2     | NAG      | KA    | 2   | 2    | 14,14,15       | 0.34     | 0      | 17,19,21       | 1.08 | 2 (11%)  |
| 2     | MAN      | KA    | 3   | 2    | 11,11,12       | 0.37     | 0      | 15,15,17       | 0.85 | 0        |
| 2     | NAG      | LA    | 1   | 2,1  | 14,14,15       | 0.65     | 0      | 17,19,21       | 0.67 | 0        |
| 2     | NAG      | LA    | 2   | 2    | 14,14,15       | 0.53     | 0      | 17,19,21       | 0.86 | 1 (5%)   |
| 2     | MAN      | LA    | 3   | 2    | 11,11,12       | 0.27     | 0      | 15,15,17       | 0.77 | 1 (6%)   |



| <b>N</b> <i>T</i> - 1 | <b>T</b> |       | D   | T 1. | Bo       | ond leng | ths      | В        | ond ang | les      |
|-----------------------|----------|-------|-----|------|----------|----------|----------|----------|---------|----------|
| NIOI                  | Type     | Chain | Res | LINK | Counts   | RMSZ     | # Z  > 2 | Counts   | RMSZ    | # Z  > 2 |
| 2                     | NAG      | MA    | 1   | 2,1  | 14,14,15 | 0.31     | 0        | 17,19,21 | 1.27    | 1 (5%)   |
| 2                     | NAG      | MA    | 2   | 2    | 14,14,15 | 0.28     | 0        | 17,19,21 | 0.65    | 1 (5%)   |
| 2                     | MAN      | MA    | 3   | 2    | 11,11,12 | 0.42     | 0        | 15,15,17 | 0.73    | 0        |
| 2                     | NAG      | NA    | 1   | 2,1  | 14,14,15 | 0.37     | 0        | 17,19,21 | 1.42    | 1 (5%)   |
| 2                     | NAG      | NA    | 2   | 2    | 14,14,15 | 0.33     | 0        | 17,19,21 | 1.08    | 2 (11%)  |
| 2                     | MAN      | NA    | 3   | 2    | 11,11,12 | 0.35     | 0        | 15,15,17 | 0.85    | 0        |
| 2                     | NAG      | OA    | 1   | 2,1  | 14,14,15 | 0.65     | 0        | 17,19,21 | 0.67    | 0        |
| 2                     | NAG      | OA    | 2   | 2    | 14,14,15 | 0.53     | 0        | 17,19,21 | 0.86    | 1 (5%)   |
| 2                     | MAN      | OA    | 3   | 2    | 11,11,12 | 0.26     | 0        | 15,15,17 | 0.77    | 1 (6%)   |
| 2                     | NAG      | PA    | 1   | 2,1  | 14,14,15 | 0.31     | 0        | 17,19,21 | 1.27    | 1 (5%)   |
| 2                     | NAG      | PA    | 2   | 2    | 14,14,15 | 0.28     | 0        | 17,19,21 | 0.65    | 1 (5%)   |
| 2                     | MAN      | PA    | 3   | 2    | 11,11,12 | 0.42     | 0        | 15,15,17 | 0.73    | 0        |
| 2                     | NAG      | QA    | 1   | 2,1  | 14,14,15 | 0.36     | 0        | 17,19,21 | 1.42    | 1 (5%)   |
| 2                     | NAG      | QA    | 2   | 2    | 14,14,15 | 0.34     | 0        | 17,19,21 | 1.09    | 2 (11%)  |
| 2                     | MAN      | QA    | 3   | 2    | 11,11,12 | 0.37     | 0        | 15,15,17 | 0.84    | 0        |
| 2                     | NAG      | RA    | 1   | 2,1  | 14,14,15 | 0.66     | 0        | 17,19,21 | 0.67    | 0        |
| 2                     | NAG      | RA    | 2   | 2    | 14,14,15 | 0.53     | 0        | 17,19,21 | 0.86    | 1 (5%)   |
| 2                     | MAN      | RA    | 3   | 2    | 11,11,12 | 0.26     | 0        | 15,15,17 | 0.77    | 1 (6%)   |
| 2                     | NAG      | SA    | 1   | 2,1  | 14,14,15 | 0.30     | 0        | 17,19,21 | 1.26    | 1 (5%)   |
| 2                     | NAG      | SA    | 2   | 2    | 14,14,15 | 0.27     | 0        | 17,19,21 | 0.65    | 1 (5%)   |
| 2                     | MAN      | SA    | 3   | 2    | 11,11,12 | 0.41     | 0        | 15,15,17 | 0.73    | 0        |
| 2                     | NAG      | ТА    | 1   | 2,1  | 14,14,15 | 0.37     | 0        | 17,19,21 | 1.42    | 1 (5%)   |
| 2                     | NAG      | ТА    | 2   | 2    | 14,14,15 | 0.33     | 0        | 17,19,21 | 1.09    | 2 (11%)  |
| 2                     | MAN      | ТА    | 3   | 2    | 11,11,12 | 0.36     | 0        | 15,15,17 | 0.85    | 0        |
| 2                     | NAG      | UA    | 1   | 2,1  | 14,14,15 | 0.65     | 0        | 17,19,21 | 0.66    | 0        |
| 2                     | NAG      | UA    | 2   | 2    | 14,14,15 | 0.53     | 0        | 17,19,21 | 0.85    | 1 (5%)   |
| 2                     | MAN      | UA    | 3   | 2    | 11,11,12 | 0.27     | 0        | 15,15,17 | 0.77    | 1 (6%)   |
| 2                     | NAG      | VA    | 1   | 2,1  | 14,14,15 | 0.31     | 0        | 17,19,21 | 1.28    | 1 (5%)   |
| 2                     | NAG      | VA    | 2   | 2    | 14,14,15 | 0.27     | 0        | 17,19,21 | 0.65    | 1 (5%)   |
| 2                     | MAN      | VA    | 3   | 2    | 11,11,12 | 0.42     | 0        | 15,15,17 | 0.73    | 0        |
| 2                     | NAG      | WA    | 1   | 2,1  | 14,14,15 | 0.37     | 0        | 17,19,21 | 1.42    | 1 (5%)   |
| 2                     | NAG      | WA    | 2   | 2    | 14,14,15 | 0.34     | 0        | 17,19,21 | 1.09    | 2 (11%)  |
| 2                     | MAN      | WA    | 3   | 2    | 11,11,12 | 0.37     | 0        | 15,15,17 | 0.85    | 1 (6%)   |
| 2                     | NAG      | XA    | 1   | 2,1  | 14,14,15 | 0.67     | 0        | 17,19,21 | 0.66    | 0        |
| 2                     | NAG      | XA    | 2   | 2    | 14,14,15 | 0.53     | 0        | 17,19,21 | 0.85    | 1 (5%)   |
| 2                     | MAN      | XA    | 3   | 2    | 11,11,12 | 0.27     | 0        | 15,15,17 | 0.76    | 1 (6%)   |
| 2                     | NAG      | YA    | 1   | 2,1  | 14,14,15 | 0.30     | 0        | 17,19,21 | 1.27    | 1 (5%)   |



|      | m    |       | Ъ   | <b>T</b> • 1 | Bo       | ond leng | ths      | В              | ond ang           | les     |
|------|------|-------|-----|--------------|----------|----------|----------|----------------|-------------------|---------|
| NIOI | Type | Chain | Res | LINK         | Counts   | RMSZ     | # Z  > 2 | Counts         | RMSZ              | # Z >2  |
| 2    | NAG  | YA    | 2   | 2            | 14,14,15 | 0.27     | 0        | 17,19,21       | 0.66              | 1 (5%)  |
| 2    | MAN  | YA    | 3   | 2            | 11,11,12 | 0.41     | 0        | $15,\!15,\!17$ | 0.74              | 0       |
| 2    | NAG  | ZA    | 1   | 2,1          | 14,14,15 | 0.38     | 0        | 17,19,21       | 1.42              | 1 (5%)  |
| 2    | NAG  | ZA    | 2   | 2            | 14,14,15 | 0.32     | 0        | 17,19,21       | 1.08              | 2 (11%) |
| 2    | MAN  | ZA    | 3   | 2            | 11,11,12 | 0.36     | 0        | 15,15,17       | 0.85              | 0       |
| 2    | NAG  | aA    | 1   | 2,1          | 14,14,15 | 0.65     | 0        | 17,19,21       | 0.66              | 0       |
| 2    | NAG  | aA    | 2   | 2            | 14,14,15 | 0.54     | 0        | 17,19,21       | 0.86              | 1 (5%)  |
| 2    | MAN  | aA    | 3   | 2            | 11,11,12 | 0.27     | 0        | $15,\!15,\!17$ | 0.78              | 1 (6%)  |
| 2    | NAG  | bA    | 1   | 2,1          | 14,14,15 | 0.31     | 0        | 17,19,21       | 1.27              | 1 (5%)  |
| 2    | NAG  | bA    | 2   | 2            | 14,14,15 | 0.27     | 0        | 17,19,21       | 0.66              | 1 (5%)  |
| 2    | MAN  | bA    | 3   | 2            | 11,11,12 | 0.42     | 0        | 15,15,17       | 0.73              | 0       |
| 2    | NAG  | cA    | 1   | 2,1          | 14,14,15 | 0.71     | 0        | 17,19,21       | 1.44              | 3 (17%) |
| 2    | NAG  | cA    | 2   | 2            | 14,14,15 | 0.60     | 0        | 17,19,21       | 1.37              | 1 (5%)  |
| 2    | MAN  | cA    | 3   | 2            | 11,11,12 | 0.80     | 0        | 15,15,17       | 1.10              | 1 (6%)  |
| 2    | NAG  | dA    | 1   | 2,1          | 14,14,15 | 0.52     | 0        | 17,19,21       | 0.64              | 0       |
| 2    | NAG  | dA    | 2   | 2            | 14,14,15 | 0.35     | 0        | 17,19,21       | 0.68              | 0       |
| 2    | MAN  | dA    | 3   | 2            | 11,11,12 | 0.44     | 0        | $15,\!15,\!17$ | 0.59              | 0       |
| 2    | NAG  | е     | 1   | 2,1          | 14,14,15 | 0.37     | 0        | 17,19,21       | 1.01              | 1 (5%)  |
| 2    | NAG  | е     | 2   | 2            | 14,14,15 | 0.55     | 0        | 17,19,21       | 0.96              | 1 (5%)  |
| 2    | MAN  | е     | 3   | 2            | 11,11,12 | 0.45     | 0        | $15,\!15,\!17$ | 0.79              | 0       |
| 2    | NAG  | eA    | 1   | 2,1          | 14,14,15 | 0.28     | 0        | 17,19,21       | 1.00              | 1 (5%)  |
| 2    | NAG  | eA    | 2   | 2            | 14,14,15 | 0.28     | 0        | 17,19,21       | 0.68              | 1 (5%)  |
| 2    | MAN  | eA    | 3   | 2            | 11,11,12 | 0.46     | 0        | 15,15,17       | 0.68              | 0       |
| 2    | NAG  | f     | 1   | 2,1          | 14,14,15 | 0.60     | 0        | 17,19,21       | 1.35              | 2 (11%) |
| 2    | NAG  | f     | 2   | 2            | 14,14,15 | 0.28     | 0        | 17,19,21       | 1.33              | 2 (11%) |
| 2    | MAN  | f     | 3   | 2            | 11,11,12 | 1.38     | 2 (18%)  | 15,15,17       | 3.76              | 9 (60%) |
| 2    | NAG  | fA    | 1   | 2,1          | 14,14,15 | 0.71     | 0        | 17,19,21       | 1.45              | 3 (17%) |
| 2    | NAG  | fA    | 2   | 2            | 14,14,15 | 0.60     | 0        | 17,19,21       | 1.37              | 1 (5%)  |
| 2    | MAN  | fA    | 3   | 2            | 11,11,12 | 0.79     | 0        | 15,15,17       | 1.09              | 1 (6%)  |
| 2    | NAG  | g     | 1   | 2,1          | 14,14,15 | 0.67     | 1 (7%)   | 17,19,21       | 0.77              | 0       |
| 2    | NAG  | g     | 2   | 2            | 14,14,15 | 0.31     | 0        | 17,19,21       | 0.63              | 1 (5%)  |
| 2    | MAN  | g     | 3   | 2            | 11,11,12 | 0.47     | 0        | 15,15,17       | 0.68              | 0       |
| 2    | NAG  | gA    | 1   | 2,1          | 14,14,15 | 0.51     | 0        | 17,19,21       | 0.63              | 0       |
| 2    | NAG  | gA    | 2   | 2            | 14,14,15 | 0.36     | 0        | 17,19,21       | 0.68              | 0       |
| 2    | MAN  | gA    | 3   | 2            | 11,11,12 | 0.43     | 0        | 15,15,17       | $0.5\overline{9}$ | 0       |
| 2    | NAG  | h     | 1   | 2,1          | 14,14,15 | 0.36     | 0        | 17,19,21       | 1.01              | 1 (5%)  |
| 2    | NAG  | h     | 2   | 2            | 14,14,15 | 0.56     | 0        | 17,19,21       | 0.96              | 1 (5%)  |



|     | m    |       | Ъ   | <b>T</b> • 1 | Bond lengths |      |          | Bond angles    |      |          |  |
|-----|------|-------|-----|--------------|--------------|------|----------|----------------|------|----------|--|
| MOI | Type | Chain | Res | Link         | Counts       | RMSZ | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |  |
| 2   | MAN  | h     | 3   | 2            | 11,11,12     | 0.44 | 0        | 15,15,17       | 0.79 | 0        |  |
| 2   | NAG  | hA    | 1   | 2,1          | 14,14,15     | 0.30 | 0        | 17,19,21       | 1.00 | 1 (5%)   |  |
| 2   | NAG  | hA    | 2   | 2            | 14,14,15     | 0.28 | 0        | 17,19,21       | 0.67 | 1 (5%)   |  |
| 2   | MAN  | hA    | 3   | 2            | 11,11,12     | 0.45 | 0        | $15,\!15,\!17$ | 0.68 | 0        |  |
| 2   | NAG  | i     | 1   | 2,1          | 14,14,15     | 0.61 | 0        | 17,19,21       | 1.35 | 2 (11%)  |  |
| 2   | NAG  | i     | 2   | 2            | 14,14,15     | 0.27 | 0        | 17,19,21       | 1.33 | 2 (11%)  |  |
| 2   | MAN  | i     | 3   | 2            | 11,11,12     | 1.39 | 2 (18%)  | 15,15,17       | 3.76 | 9 (60%)  |  |
| 2   | NAG  | iA    | 1   | 2,1          | 14,14,15     | 0.71 | 0        | 17,19,21       | 1.45 | 3 (17%)  |  |
| 2   | NAG  | iA    | 2   | 2            | 14,14,15     | 0.61 | 0        | 17,19,21       | 1.36 | 1(5%)    |  |
| 2   | MAN  | iA    | 3   | 2            | 11,11,12     | 0.81 | 0        | 15,15,17       | 1.09 | 1 (6%)   |  |
| 2   | NAG  | j     | 1   | 2,1          | 14,14,15     | 0.68 | 1 (7%)   | 17,19,21       | 0.77 | 0        |  |
| 2   | NAG  | j     | 2   | 2            | 14,14,15     | 0.30 | 0        | 17,19,21       | 0.63 | 1 (5%)   |  |
| 2   | MAN  | j     | 3   | 2            | 11,11,12     | 0.48 | 0        | 15,15,17       | 0.68 | 0        |  |
| 2   | NAG  | jA    | 1   | 2,1          | 14,14,15     | 0.52 | 0        | 17,19,21       | 0.64 | 0        |  |
| 2   | NAG  | jА    | 2   | 2            | 14,14,15     | 0.35 | 0        | 17,19,21       | 0.67 | 0        |  |
| 2   | MAN  | jА    | 3   | 2            | 11,11,12     | 0.44 | 0        | 15,15,17       | 0.59 | 0        |  |
| 2   | NAG  | k     | 1   | 2,1          | 14,14,15     | 0.37 | 0        | 17,19,21       | 1.01 | 1 (5%)   |  |
| 2   | NAG  | k     | 2   | 2            | 14,14,15     | 0.55 | 0        | 17,19,21       | 0.96 | 1 (5%)   |  |
| 2   | MAN  | k     | 3   | 2            | 11,11,12     | 0.44 | 0        | 15,15,17       | 0.79 | 0        |  |
| 2   | NAG  | kA    | 1   | 2,1          | 14,14,15     | 0.28 | 0        | 17,19,21       | 1.00 | 1 (5%)   |  |
| 2   | NAG  | kA    | 2   | 2            | 14,14,15     | 0.28 | 0        | 17,19,21       | 0.68 | 1 (5%)   |  |
| 2   | MAN  | kA    | 3   | 2            | 11,11,12     | 0.45 | 0        | 15,15,17       | 0.69 | 0        |  |
| 2   | NAG  | 1     | 1   | 2,1          | 14,14,15     | 0.59 | 0        | 17,19,21       | 1.35 | 2 (11%)  |  |
| 2   | NAG  | 1     | 2   | 2            | 14,14,15     | 0.27 | 0        | 17,19,21       | 1.33 | 2 (11%)  |  |
| 2   | MAN  | 1     | 3   | 2            | 11,11,12     | 1.38 | 2 (18%)  | 15,15,17       | 3.76 | 9 (60%)  |  |
| 2   | NAG  | lA    | 1   | 2,1          | 14,14,15     | 0.71 | 0        | 17,19,21       | 1.45 | 3 (17%)  |  |
| 2   | NAG  | lA    | 2   | 2            | 14,14,15     | 0.60 | 0        | 17,19,21       | 1.36 | 1(5%)    |  |
| 2   | MAN  | lA    | 3   | 2            | 11,11,12     | 0.79 | 0        | 15,15,17       | 1.09 | 1 (6%)   |  |
| 2   | NAG  | m     | 1   | 2,1          | 14,14,15     | 0.67 | 1 (7%)   | 17,19,21       | 0.77 | 0        |  |
| 2   | NAG  | m     | 2   | 2            | 14,14,15     | 0.30 | 0        | 17,19,21       | 0.63 | 1 (5%)   |  |
| 2   | MAN  | m     | 3   | 2            | 11,11,12     | 0.48 | 0        | 15,15,17       | 0.68 | 0        |  |
| 2   | NAG  | mA    | 1   | 2,1          | 14,14,15     | 0.53 | 0        | 17,19,21       | 0.64 | 0        |  |
| 2   | NAG  | mA    | 2   | 2            | 14,14,15     | 0.34 | 0        | 17,19,21       | 0.68 | 0        |  |
| 2   | MAN  | mA    | 3   | 2            | 11,11,12     | 0.45 | 0        | 15,15,17       | 0.59 | 0        |  |
| 2   | NAG  | n     | 1   | 2,1          | 14,14,15     | 0.37 | 0        | 17,19,21       | 1.01 | 1 (5%)   |  |
| 2   | NAG  | n     | 2   | 2            | 14,14,15     | 0.55 | 0        | 17,19,21       | 0.96 | 1 (5%)   |  |
| 2   | MAN  | n     | 3   | 2            | 11,11,12     | 0.45 | 0        | 15,15,17       | 0.79 | 0        |  |



| Mal   | <b>T</b> | Chain | Dec | T :1- | Bond lengths |      | В       | Bond angles    |             |         |
|-------|----------|-------|-----|-------|--------------|------|---------|----------------|-------------|---------|
| IVIOI | Type     | Chain | Res | Link  | Counts       | RMSZ | # Z >2  | Counts         | RMSZ        | # Z >2  |
| 2     | NAG      | nA    | 1   | 2,1   | 14, 14, 15   | 0.27 | 0       | $17,\!19,\!21$ | 1.00        | 1 (5%)  |
| 2     | NAG      | nA    | 2   | 2     | 14,14,15     | 0.29 | 0       | 17,19,21       | 0.67        | 1 (5%)  |
| 2     | MAN      | nA    | 3   | 2     | 11,11,12     | 0.46 | 0       | $15,\!15,\!17$ | 0.68        | 0       |
| 2     | NAG      | О     | 1   | 2,1   | 14,14,15     | 0.60 | 0       | $17,\!19,\!21$ | 1.35        | 2 (11%) |
| 2     | NAG      | 0     | 2   | 2     | 14,14,15     | 0.28 | 0       | 17,19,21       | 1.33        | 2 (11%) |
| 2     | MAN      | 0     | 3   | 2     | 11,11,12     | 1.39 | 2 (18%) | $15,\!15,\!17$ | <b>3.76</b> | 9 (60%) |
| 2     | NAG      | oA    | 1   | 2,1   | 14,14,15     | 0.71 | 0       | 17,19,21       | 1.44        | 3 (17%) |
| 2     | NAG      | oA    | 2   | 2     | 14,14,15     | 0.61 | 0       | 17,19,21       | 1.37        | 1 (5%)  |
| 2     | MAN      | oA    | 3   | 2     | 11,11,12     | 0.81 | 0       | 15,15,17       | 1.10        | 1 (6%)  |
| 2     | NAG      | р     | 1   | 2,1   | 14,14,15     | 0.67 | 1 (7%)  | 17,19,21       | 0.77        | 0       |
| 2     | NAG      | р     | 2   | 2     | 14,14,15     | 0.31 | 0       | 17,19,21       | 0.64        | 1 (5%)  |
| 2     | MAN      | р     | 3   | 2     | 11,11,12     | 0.47 | 0       | 15,15,17       | 0.68        | 0       |
| 2     | NAG      | pА    | 1   | 2,1   | 14,14,15     | 0.52 | 0       | 17,19,21       | 0.63        | 0       |
| 2     | NAG      | pА    | 2   | 2     | 14,14,15     | 0.35 | 0       | 17,19,21       | 0.68        | 0       |
| 2     | MAN      | pА    | 3   | 2     | 11,11,12     | 0.45 | 0       | $15,\!15,\!17$ | 0.60        | 0       |
| 2     | NAG      | q     | 1   | 2,1   | 14,14,15     | 0.36 | 0       | 17,19,21       | 1.01        | 1 (5%)  |
| 2     | NAG      | q     | 2   | 2     | 14,14,15     | 0.56 | 0       | 17,19,21       | 0.96        | 1 (5%)  |
| 2     | MAN      | q     | 3   | 2     | 11,11,12     | 0.46 | 0       | $15,\!15,\!17$ | 0.79        | 0       |
| 2     | NAG      | qA    | 1   | 2,1   | 14,14,15     | 0.28 | 0       | 17,19,21       | 1.00        | 1 (5%)  |
| 2     | NAG      | qA    | 2   | 2     | 14,14,15     | 0.27 | 0       | 17,19,21       | 0.68        | 1 (5%)  |
| 2     | MAN      | qA    | 3   | 2     | 11,11,12     | 0.47 | 0       | $15,\!15,\!17$ | 0.68        | 0       |
| 2     | NAG      | r     | 1   | 2,1   | 14,14,15     | 0.59 | 0       | 17,19,21       | 1.35        | 2 (11%) |
| 2     | NAG      | r     | 2   | 2     | 14,14,15     | 0.28 | 0       | 17,19,21       | 1.33        | 2 (11%) |
| 2     | MAN      | r     | 3   | 2     | 11,11,12     | 1.38 | 2 (18%) | $15,\!15,\!17$ | 3.76        | 9 (60%) |
| 2     | NAG      | rA    | 1   | 2,1   | 14,14,15     | 0.72 | 0       | 17,19,21       | 1.44        | 3 (17%) |
| 2     | NAG      | rA    | 2   | 2     | 14,14,15     | 0.61 | 0       | 17,19,21       | 1.36        | 1 (5%)  |
| 2     | MAN      | rA    | 3   | 2     | 11,11,12     | 0.80 | 0       | 15, 15, 17     | 1.10        | 1 (6%)  |
| 2     | NAG      | s     | 1   | 2,1   | 14,14,15     | 0.66 | 1 (7%)  | 17,19,21       | 0.77        | 0       |
| 2     | NAG      | s     | 2   | 2     | 14,14,15     | 0.30 | 0       | 17,19,21       | 0.63        | 1 (5%)  |
| 2     | MAN      | s     | 3   | 2     | 11,11,12     | 0.48 | 0       | 15,15,17       | 0.68        | 0       |
| 2     | NAG      | sA    | 1   | 2,1   | 14,14,15     | 0.52 | 0       | 17,19,21       | 0.64        | 0       |
| 2     | NAG      | sA    | 2   | 2     | 14,14,15     | 0.35 | 0       | 17,19,21       | 0.68        | 0       |
| 2     | MAN      | sA    | 3   | 2     | 11,11,12     | 0.43 | 0       | 15,15,17       | 0.60        | 0       |
| 2     | NAG      | t     | 1   | 2,1   | 14,14,15     | 0.37 | 0       | 17,19,21       | 1.01        | 1 (5%)  |
| 2     | NAG      | t     | 2   | 2     | 14,14,15     | 0.56 | 0       | 17,19,21       | 0.96        | 1 (5%)  |
| 2     | MAN      | t     | 3   | 2     | 11,11,12     | 0.44 | 0       | 15,15,17       | 0.79        | 0       |
| 2     | NAG      | tA    | 1   | 2,1   | 14,14,15     | 0.28 | 0       | 17,19,21       | 1.00        | 1 (5%)  |



| 3.6.1 | т    |       | Ъ   | <b>T</b> • 1 | Bond lengths   |      |         | Bond angles    |      |         |  |
|-------|------|-------|-----|--------------|----------------|------|---------|----------------|------|---------|--|
| NIOI  | Type | Chain | Res | LINK         | Counts         | RMSZ | # Z >2  | Counts         | RMSZ | # Z >2  |  |
| 2     | NAG  | tA    | 2   | 2            | 14,14,15       | 0.27 | 0       | $17,\!19,\!21$ | 0.67 | 1 (5%)  |  |
| 2     | MAN  | tA    | 3   | 2            | 11,11,12       | 0.47 | 0       | $15,\!15,\!17$ | 0.68 | 0       |  |
| 2     | NAG  | u     | 1   | 2,1          | 14,14,15       | 0.61 | 0       | $17,\!19,\!21$ | 1.35 | 2 (11%) |  |
| 2     | NAG  | u     | 2   | 2            | 14,14,15       | 0.29 | 0       | 17,19,21       | 1.33 | 2 (11%) |  |
| 2     | MAN  | u     | 3   | 2            | 11,11,12       | 1.38 | 2 (18%) | $15,\!15,\!17$ | 3.76 | 9 (60%) |  |
| 2     | NAG  | uA    | 1   | 2,1          | 14,14,15       | 0.71 | 0       | 17,19,21       | 1.44 | 3 (17%) |  |
| 2     | NAG  | uA    | 2   | 2            | 14,14,15       | 0.59 | 0       | 17,19,21       | 1.37 | 1 (5%)  |  |
| 2     | MAN  | uA    | 3   | 2            | 11,11,12       | 0.80 | 0       | $15,\!15,\!17$ | 1.09 | 1 (6%)  |  |
| 2     | NAG  | V     | 1   | 2,1          | 14,14,15       | 0.67 | 1 (7%)  | 17,19,21       | 0.77 | 0       |  |
| 2     | NAG  | v     | 2   | 2            | 14,14,15       | 0.31 | 0       | 17,19,21       | 0.63 | 1 (5%)  |  |
| 2     | MAN  | v     | 3   | 2            | 11,11,12       | 0.47 | 0       | 15,15,17       | 0.68 | 0       |  |
| 2     | NAG  | vA    | 1   | 2,1          | 14,14,15       | 0.50 | 0       | 17,19,21       | 0.64 | 0       |  |
| 2     | NAG  | vA    | 2   | 2            | $14,\!14,\!15$ | 0.35 | 0       | 17,19,21       | 0.68 | 0       |  |
| 2     | MAN  | vA    | 3   | 2            | 11,11,12       | 0.45 | 0       | 15,15,17       | 0.59 | 0       |  |
| 2     | NAG  | W     | 1   | 2,1          | 14,14,15       | 0.37 | 0       | 17,19,21       | 1.01 | 1 (5%)  |  |
| 2     | NAG  | W     | 2   | 2            | 14,14,15       | 0.55 | 0       | $17,\!19,\!21$ | 0.96 | 1 (5%)  |  |
| 2     | MAN  | W     | 3   | 2            | 11,11,12       | 0.45 | 0       | $15,\!15,\!17$ | 0.79 | 0       |  |
| 2     | NAG  | wA    | 1   | 2,1          | 14,14,15       | 0.28 | 0       | $17,\!19,\!21$ | 1.00 | 1 (5%)  |  |
| 2     | NAG  | wA    | 2   | 2            | 14,14,15       | 0.28 | 0       | 17,19,21       | 0.68 | 1 (5%)  |  |
| 2     | MAN  | wA    | 3   | 2            | 11,11,12       | 0.46 | 0       | $15,\!15,\!17$ | 0.68 | 0       |  |
| 2     | NAG  | x     | 1   | 2,1          | 14,14,15       | 0.60 | 0       | 17,19,21       | 1.35 | 2 (11%) |  |
| 2     | NAG  | x     | 2   | 2            | 14,14,15       | 0.28 | 0       | 17,19,21       | 1.33 | 2 (11%) |  |
| 2     | MAN  | x     | 3   | 2            | 11,11,12       | 1.37 | 2 (18%) | $15,\!15,\!17$ | 3.76 | 9 (60%) |  |
| 2     | NAG  | xA    | 1   | 2,1          | 14,14,15       | 0.70 | 0       | 17,19,21       | 1.44 | 3 (17%) |  |
| 2     | NAG  | xA    | 2   | 2            | 14,14,15       | 0.61 | 0       | 17,19,21       | 1.36 | 1 (5%)  |  |
| 2     | MAN  | xA    | 3   | 2            | 11,11,12       | 0.81 | 0       | $15,\!15,\!17$ | 1.10 | 1 (6%)  |  |
| 2     | NAG  | У     | 1   | 2,1          | 14,14,15       | 0.68 | 1 (7%)  | 17,19,21       | 0.77 | 0       |  |
| 2     | NAG  | У     | 2   | 2            | 14,14,15       | 0.30 | 0       | 17,19,21       | 0.63 | 1 (5%)  |  |
| 2     | MAN  | у     | 3   | 2            | 11,11,12       | 0.47 | 0       | 15,15,17       | 0.69 | 0       |  |
| 2     | NAG  | yА    | 1   | 2,1          | 14,14,15       | 0.53 | 0       | 17,19,21       | 0.63 | 0       |  |
| 2     | NAG  | yА    | 2   | 2            | 14,14,15       | 0.35 | 0       | 17,19,21       | 0.68 | 0       |  |
| 2     | MAN  | yА    | 3   | 2            | 11,11,12       | 0.44 | 0       | $15,\!15,\!17$ | 0.59 | 0       |  |
| 2     | NAG  | Z     | 1   | 2,1          | 14,14,15       | 0.37 | 0       | 17,19,21       | 1.00 | 1 (5%)  |  |
| 2     | NAG  | Z     | 2   | 2            | 14,14,15       | 0.55 | 0       | 17,19,21       | 0.95 | 1 (5%)  |  |
| 2     | MAN  | Z     | 3   | 2            | 11,11,12       | 0.45 | 0       | $15,\!15,\!17$ | 0.79 | 0       |  |
| 2     | NAG  | zA    | 1   | 2,1          | 14,14,15       | 0.27 | 0       | 17,19,21       | 0.99 | 1 (5%)  |  |
| 2     | NAG  | zA    | 2   | 2            | 14,14,15       | 0.28 | 0       | 17,19,21       | 0.68 | 1 (5%)  |  |



| Mol | Turne | Chain | Dec | Link | Bo       | ond leng | $\mathbf{ths}$ | Bond angles    |      |          |
|-----|-------|-------|-----|------|----------|----------|----------------|----------------|------|----------|
|     | туре  |       | nes |      | Counts   | RMSZ     | # Z >2         | Counts         | RMSZ | # Z  > 2 |
| 2   | MAN   | zA    | 3   | 2    | 11,11,12 | 0.46     | 0              | $15,\!15,\!17$ | 0.69 | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | 0     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 0     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 0A    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0A    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 0A    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 1     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 1     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 1     | 3   | 2    | _       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 1A    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 1A    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 1A    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 2     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 2     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 2     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 2A    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 2A    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 2A    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 3     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 3     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 3     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 3A    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 3A    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 3A    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 4     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 4     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 4     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 4A    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 4A    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 4A    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 5     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 5     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | MAN  | 5     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 5A    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 5A    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 5A    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 6     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 6     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 6     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 7     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 7     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 7     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 8     | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 8     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 8     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 9     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 9     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 9     | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | AA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | AA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | AA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | BA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | BA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | BA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | CA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | CA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | CA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | DA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | DA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | DA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | EA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | EA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | EA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | FA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | FA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | FA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | GA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | GA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | GA    | 3   | 2    | _       | 0/2/19/22 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | НА    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | HA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | НА    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | IA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | IA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | IA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | JA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | JA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | JA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | KA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | KA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | KA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | LA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | LA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | LA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | MA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | MA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | MA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | NA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | NA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | NA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | OA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | OA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | OA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | PA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | PA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | PA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | QA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | QA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | QA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | RA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | RA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | RA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | SA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | SA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | SA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |

Continued from previous page...



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | ТА    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | ТА    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | ТА    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | UA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | UA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | UA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | VA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | VA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | VA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | WA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | WA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | WA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | XA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | XA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | XA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | YA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | YA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | YA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | ZA    | 1   | 2,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | ZA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | ZA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | aA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | aA    | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | aA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | bA    | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | bA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | bA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | cA    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | cA    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1 |
| 2   | MAN  | cA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | dA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | dA    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | dA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | е     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | е     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | е     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | eA    | 1   | 2.1  | _       | 0/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings               |
|-----|------|-------|-----|------|---------|-----------|---------------------|
| 2   | NAG  | eA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1             |
| 2   | MAN  | eA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | f     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | f     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1             |
| 2   | MAN  | f     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | fA    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | NAG  | fA    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1             |
| 2   | MAN  | fA    | 3   | 2    | _       | 2/2/19/22 | 0/1/1/1             |
| 2   | NAG  | g     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | g     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1             |
| 2   | MAN  | g     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | gĂ    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | gA    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | MAN  | gA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | h     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | NAG  | h     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1             |
| 2   | MAN  | h     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | hA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | hA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1             |
| 2   | MAN  | hA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | i     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | i     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1             |
| 2   | MAN  | i     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | iA    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | NAG  | iA    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1             |
| 2   | MAN  | iA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1             |
| 2   | NAG  | j     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | j     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1             |
| 2   | MAN  | j     | 3   | 2    | _       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | jA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | jA    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | MAN  | jA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | k     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1             |
| 2   | NAG  | k     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1             |
| 2   | MAN  | k     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | kA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1             |
| 2   | NAG  | kA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1             |
| 2   | MAN  | kA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1             |
| 2   | NAG  | 1     | 1   | 2.1  | _       | 0/6/23/26 | $\frac{1}{0/1/1/1}$ |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | 1     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 1     | 3   | 2    | _       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | lA    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | lA    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1 |
| 2   | MAN  | lA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | m     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | m     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | m     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | mA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | mA    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | mA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | n     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | n     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | n     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | nA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | nA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | nA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 0     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | 0     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | oA    | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | oA    | 2   | 2    | -       | 4/6/23/26 | 0/1/1/1 |
| 2   | MAN  | oA    | 3   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | р     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | р     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | р     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | pА    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | pА    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | pА    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | q     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | q     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | q     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | qA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | qA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | qA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | r     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | r     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | r     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | rA    | 1   | 2.1  | _       | 1/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions                    | Rings   |
|-----|------|-------|-----|------|---------|-----------------------------|---------|
| 2   | NAG  | rA    | 2   | 2    | _       | 4/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | rA    | 3   | 2    | _       | $\frac{2}{2/2}$             | 0/1/1/1 |
| 2   | NAG  | s     | 1   | 2.1  | _       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | s     | 2   | 2    | _       | $\frac{2}{6}/\frac{23}{26}$ | 0/1/1/1 |
| 2   | MAN  | s     | 3   | 2    | _       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | sA    | 1   | 2,1  | _       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | sA    | 2   | 2    | -       | 1/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | sA    | 3   | 2    | _       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | t     | 1   | 2,1  | -       | 1/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | t     | 2   | 2    | -       | 3/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | t     | 3   | 2    | _       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | tA    | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | tA    | 2   | 2    | -       | 2/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | tA    | 3   | 2    | _       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | u     | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | u     | 2   | 2    | -       | 3/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | u     | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | uA    | 1   | 2,1  | _       | 1/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | uA    | 2   | 2    | -       | 4/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | uA    | 3   | 2    | -       | 2/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | V     | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | v     | 2   | 2    | -       | 2/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | v     | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | vA    | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | vA    | 2   | 2    | -       | 1/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | vA    | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | W     | 1   | 2,1  | -       | 1/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | W     | 2   | 2    | -       | 3/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | W     | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | wA    | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | wA    | 2   | 2    | -       | 2/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | wA    | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | х     | 1   | 2,1  | -       | 0/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | х     | 2   | 2    | -       | 3/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | х     | 3   | 2    | -       | 0/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | xA    | 1   | 2,1  | -       | 1/6/23/26                   | 0/1/1/1 |
| 2   | NAG  | xA    | 2   | 2    | -       | 4/6/23/26                   | 0/1/1/1 |
| 2   | MAN  | xA    | 3   | 2    | -       | 2/2/19/22                   | 0/1/1/1 |
| 2   | NAG  | v     | 1   | 2.1  | _       | 0/6/23/26                   | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | У     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | у     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | yА    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | yА    | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | MAN  | yА    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | Z     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Z     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | MAN  | Z     | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | zA    | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | zA    | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | zA    | 3   | 2    | -       | 0/2/19/22 | 0/1/1/1 |

All (30) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 2   | 3     | 3   | MAN  | O2-C2 | 2.86  | 1.49        | 1.43     |
| 2   | 0     | 3   | MAN  | O2-C2 | 2.86  | 1.49        | 1.43     |
| 2   | 6     | 3   | MAN  | O2-C2 | 2.84  | 1.49        | 1.43     |
| 2   | r     | 3   | MAN  | O2-C2 | 2.84  | 1.49        | 1.43     |
| 2   | i     | 3   | MAN  | O2-C2 | 2.84  | 1.49        | 1.43     |
| 2   | u     | 3   | MAN  | O2-C2 | 2.84  | 1.49        | 1.43     |
| 2   | f     | 3   | MAN  | O2-C2 | 2.83  | 1.49        | 1.43     |
| 2   | 0     | 3   | MAN  | O2-C2 | 2.83  | 1.49        | 1.43     |
| 2   | 1     | 3   | MAN  | O2-C2 | 2.81  | 1.49        | 1.43     |
| 2   | Х     | 3   | MAN  | O2-C2 | 2.81  | 1.49        | 1.43     |
| 2   | 0     | 3   | MAN  | C2-C3 | 2.55  | 1.56        | 1.52     |
| 2   | i     | 3   | MAN  | C2-C3 | 2.54  | 1.56        | 1.52     |
| 2   | 1     | 3   | MAN  | C2-C3 | 2.53  | 1.56        | 1.52     |
| 2   | 0     | 3   | MAN  | C2-C3 | 2.52  | 1.56        | 1.52     |
| 2   | f     | 3   | MAN  | C2-C3 | 2.51  | 1.56        | 1.52     |
| 2   | u     | 3   | MAN  | C2-C3 | 2.50  | 1.56        | 1.52     |
| 2   | Х     | 3   | MAN  | C2-C3 | 2.50  | 1.56        | 1.52     |
| 2   | 3     | 3   | MAN  | C2-C3 | 2.49  | 1.56        | 1.52     |
| 2   | r     | 3   | MAN  | C2-C3 | 2.49  | 1.56        | 1.52     |
| 2   | 6     | 3   | MAN  | C2-C3 | 2.47  | 1.56        | 1.52     |
| 2   | 4     | 1   | NAG  | O5-C1 | -2.17 | 1.40        | 1.43     |
| 2   | у     | 1   | NAG  | O5-C1 | -2.17 | 1.40        | 1.43     |
| 2   | j     | 1   | NAG  | O5-C1 | -2.15 | 1.40        | 1.43     |
| 2   | g     | 1   | NAG  | O5-C1 | -2.14 | 1.40        | 1.43     |
| 2   | р     | 1   | NAG  | O5-C1 | -2.14 | 1.40        | 1.43     |
| 2   | m     | 1   | NAG  | O5-C1 | -2.13 | 1.40        | 1.43     |
| 2   | V     | 1   | NAG  | O5-C1 | -2.12 | 1.40        | 1.43     |



| 001000 | e ontrinaca from processas pagem |                |      |       |       |             |          |  |  |  |
|--------|----------------------------------|----------------|------|-------|-------|-------------|----------|--|--|--|
| Mol    | Chain                            | $\mathbf{Res}$ | Type | Atoms | Z     | Observed(A) | Ideal(Å) |  |  |  |
| 2      | 7                                | 1              | NAG  | O5-C1 | -2.12 | 1.40        | 1.43     |  |  |  |
| 2      | 1                                | 1              | NAG  | O5-C1 | -2.11 | 1.40        | 1.43     |  |  |  |
| 2      | S                                | 1              | NAG  | O5-C1 | -2.10 | 1.40        | 1.43     |  |  |  |

All (301) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms Z  |               | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|---------------|------------------|---------------|
| 2   | 6     | 3   | MAN  | O2-C2-C3 | 8.27          | 126.70           | 110.14        |
| 2   | r     | 3   | MAN  | O2-C2-C3 | 8.25          | 126.67           | 110.14        |
| 2   | 3     | 3   | MAN  | O2-C2-C3 | O2-C2-C3 8.25 |                  | 110.14        |
| 2   | 1     | 3   | MAN  | O2-C2-C3 | 8.25          | 126.67           | 110.14        |
| 2   | Х     | 3   | MAN  | O2-C2-C3 | 8.25          | 126.67           | 110.14        |
| 2   | f     | 3   | MAN  | O2-C2-C3 | 8.25          | 126.66           | 110.14        |
| 2   | i     | 3   | MAN  | O2-C2-C3 | 8.24          | 126.65           | 110.14        |
| 2   | 0     | 3   | MAN  | O2-C2-C3 | 8.24          | 126.64           | 110.14        |
| 2   | 0     | 3   | MAN  | O2-C2-C3 | 8.24          | 126.64           | 110.14        |
| 2   | u     | 3   | MAN  | O2-C2-C3 | 8.23          | 126.63           | 110.14        |
| 2   | u     | 3   | MAN  | O5-C5-C6 | -7.81         | 94.95            | 107.20        |
| 2   | i     | 3   | MAN  | O5-C5-C6 | -7.80         | 94.97            | 107.20        |
| 2   | f     | 3   | MAN  | O5-C5-C6 | -7.80         | 94.98            | 107.20        |
| 2   | 0     | 3   | MAN  | O5-C5-C6 | -7.80         | 94.98            | 107.20        |
| 2   | 6     | 3   | MAN  | O5-C5-C6 | -7.79         | 94.98            | 107.20        |
| 2   | 0     | 3   | MAN  | O5-C5-C6 | -7.79         | 94.98            | 107.20        |
| 2   | Х     | 3   | MAN  | O5-C5-C6 | -7.79         | 94.99            | 107.20        |
| 2   | r     | 3   | MAN  | O5-C5-C6 | -7.79         | 94.99            | 107.20        |
| 2   | 3     | 3   | MAN  | O5-C5-C6 | -7.79         | 95.00            | 107.20        |
| 2   | 1     | 3   | MAN  | O5-C5-C6 | -7.78         | 95.00            | 107.20        |
| 2   | VA    | 1   | NAG  | C1-O5-C5 | 5.02          | 119.00           | 112.19        |
| 2   | PA    | 1   | NAG  | C1-O5-C5 | 5.02          | 118.99           | 112.19        |
| 2   | AA    | 1   | NAG  | C1-O5-C5 | 4.99          | 118.96           | 112.19        |
| 2   | MA    | 1   | NAG  | C1-O5-C5 | 4.99          | 118.96           | 112.19        |
| 2   | bA    | 1   | NAG  | C1-O5-C5 | 4.99          | 118.96           | 112.19        |
| 2   | DA    | 1   | NAG  | C1-O5-C5 | 4.99          | 118.95           | 112.19        |
| 2   | YA    | 1   | NAG  | C1-O5-C5 | 4.98          | 118.94           | 112.19        |
| 2   | SA    | 1   | NAG  | C1-O5-C5 | 4.96          | 118.92           | 112.19        |
| 2   | JA    | 1   | NAG  | C1-O5-C5 | 4.95          | 118.90           | 112.19        |
| 2   | GA    | 1   | NAG  | C1-O5-C5 | 4.94          | 118.89           | 112.19        |
| 2   | NA    | 1   | NAG  | C2-N2-C7 | 4.45          | 129.24           | 122.90        |
| 2   | EA    | 1   | NAG  | C2-N2-C7 | 4.42          | 129.20           | 122.90        |
| 2   | KA    | 1   | NAG  | C2-N2-C7 | 4.42          | 129.19           | 122.90        |
| 2   | QA    | 1   | NAG  | C2-N2-C7 | 4.42          | 129.19           | 122.90        |
| 2   | ZA    | 1   | NAG  | C2-N2-C7 | 4.42          | 129.19           | 122.90        |



| Mol | Chain | Res | Type | Atoms Z  |      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|------------------|---------------|
| 2   | HA    | 1   | NAG  | C2-N2-C7 | 4.41 | 129.19           | 122.90        |
| 2   | 8     | 1   | NAG  | C2-N2-C7 | 4.41 | 129.18           | 122.90        |
| 2   | WA    | 1   | NAG  | C2-N2-C7 | 4.40 | 129.18           | 122.90        |
| 2   | BA    | 1   | NAG  | C2-N2-C7 | 4.40 | 129.17           | 122.90        |
| 2   | TA    | 1   | NAG  | C2-N2-C7 | 4.39 | 129.15           | 122.90        |
| 2   | 0A    | 2   | NAG  | C1-O5-C5 | 4.26 | 117.96           | 112.19        |
| 2   | oA    | 2   | NAG  | C1-O5-C5 | 4.25 | 117.95           | 112.19        |
| 2   | fA    | 2   | NAG  | C1-O5-C5 | 4.24 | 117.94           | 112.19        |
| 2   | iA    | 2   | NAG  | C1-O5-C5 | 4.24 | 117.93           | 112.19        |
| 2   | 3A    | 2   | NAG  | C1-O5-C5 | 4.24 | 117.93           | 112.19        |
| 2   | cA    | 2   | NAG  | C1-O5-C5 | 4.23 | 117.93           | 112.19        |
| 2   | uA    | 2   | NAG  | C1-O5-C5 | 4.23 | 117.92           | 112.19        |
| 2   | rA    | 2   | NAG  | C1-O5-C5 | 4.22 | 117.91           | 112.19        |
| 2   | lA    | 2   | NAG  | C1-O5-C5 | 4.22 | 117.91           | 112.19        |
| 2   | xA    | 2   | NAG  | C1-O5-C5 | 4.21 | 117.89           | 112.19        |
| 2   | u     | 3   | MAN  | O3-C3-C2 | 4.01 | 117.67           | 109.99        |
| 2   | 1     | 3   | MAN  | O3-C3-C2 | 4.00 | 117.65           | 109.99        |
| 2   | 6     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.64           | 109.99        |
| 2   | 0     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.64           | 109.99        |
| 2   | f     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.64           | 109.99        |
| 2   | 3     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.63           | 109.99        |
| 2   | r     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.63           | 109.99        |
| 2   | Х     | 3   | MAN  | O3-C3-C2 | 3.99 | 117.63           | 109.99        |
| 2   | i     | 3   | MAN  | O3-C3-C2 | 3.98 | 117.62           | 109.99        |
| 2   | 0     | 3   | MAN  | O3-C3-C2 | 3.98 | 117.61           | 109.99        |
| 2   | u     | 3   | MAN  | C1-C2-C3 | 3.97 | 114.55           | 109.67        |
| 2   | r     | 3   | MAN  | C1-C2-C3 | 3.97 | 114.54           | 109.67        |
| 2   | 6     | 3   | MAN  | C1-C2-C3 | 3.96 | 114.53           | 109.67        |
| 2   | f     | 3   | MAN  | C1-C2-C3 | 3.95 | 114.52           | 109.67        |
| 2   | 3     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.51           | 109.67        |
| 2   | 0     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.51           | 109.67        |
| 2   | i     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.51           | 109.67        |
| 2   | 1     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.51           | 109.67        |
| 2   | 0     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.51           | 109.67        |
| 2   | Х     | 3   | MAN  | C1-C2-C3 | 3.94 | 114.50           | 109.67        |
| 2   | iA    | 1   | NAG  | C2-N2-C7 | 3.84 | 128.38           | 122.90        |
| 2   | lA    | 1   | NAG  | C2-N2-C7 | 3.82 | 128.34           | 122.90        |
| 2   | uA    | 1   | NAG  | C2-N2-C7 | 3.81 | 128.33           | 122.90        |
| 2   | oA    | 1   | NAG  | C2-N2-C7 | 3.81 | 128.33           | 122.90        |
| 2   | 0A    | 1   | NAG  | C2-N2-C7 | 3.81 | 128.33           | 122.90        |
| 2   | cA    | 1   | NAG  | C2-N2-C7 | 3.81 | 128.32           | 122.90        |
| 2   | хA    | 1   | NAG  | C2-N2-C7 | 3.80 | 128.32           | 122.90        |



| 001000   | nucu jion | " preev | ous page |          |       |                  |               |
|----------|-----------|---------|----------|----------|-------|------------------|---------------|
| Mol      | Chain     | Res     | Type     | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 2        | fA        | 1       | NAG      | C2-N2-C7 | 3.80  | 128.31           | 122.90        |
| 2        | 3         | 3       | MAN      | O4-C4-C5 | -3.80 | 99.87            | 109.30        |
| 2        | 3A        | 1       | NAG      | C2-N2-C7 | 3.80  | 128.31           | 122.90        |
| 2        | 0         | 3       | MAN      | O4-C4-C5 | -3.79 | 99.88            | 109.30        |
| 2        | X         | 3       | MAN      | O4-C4-C5 | -3.79 | 99.89            | 109.30        |
| 2        | u         | 3       | MAN      | O4-C4-C5 | -3.78 | 99.90            | 109.30        |
| 2        | rA        | 1       | NAG      | C2-N2-C7 | 3.78  | 128.29           | 122.90        |
| 2        | 0         | 3       | MAN      | O4-C4-C5 | -3.78 | 99.91            | 109.30        |
| 2        | 6         | 3       | MAN      | O4-C4-C5 | -3.78 | 99.91            | 109.30        |
| 2        | f         | 3       | MAN      | O4-C4-C5 | -3.78 | 99.91            | 109.30        |
| 2        | r         | 3       | MAN      | O4-C4-C5 | -3.78 | 99.92            | 109.30        |
| 2        | i         | 3       | MAN      | O4-C4-C5 | -3.77 | 99.93            | 109.30        |
| 2        | 1         | 3       | MAN      | O4-C4-C5 | -3.77 | 99.93            | 109.30        |
| 2        | i         | 3       | MAN      | O5-C1-C2 | 3.60  | 116.33           | 110.77        |
| 2        | 0         | 3       | MAN      | O5-C1-C2 | 3.60  | 116.32           | 110.77        |
| 2        | 6         | 3       | MAN      | O5-C1-C2 | 3.60  | 116.32           | 110.77        |
| 2        | 0         | 3       | MAN      | O5-C1-C2 | 3.59  | 116.31           | 110.77        |
| 2        | 1         | 3       | MAN      | O5-C1-C2 | 3.59  | 116.31           | 110.77        |
| 2        | 3         | 3       | MAN      | O5-C1-C2 | 3.59  | 116.31           | 110.77        |
| 2        | f         | 3       | MAN      | O5-C1-C2 | 3.58  | 116.30           | 110.77        |
| 2        | X         | 3       | MAN      | O5-C1-C2 | 3.57  | 116.29           | 110.77        |
| 2        | r         | 3       | MAN      | O5-C1-C2 | 3.57  | 116.28           | 110.77        |
| 2        | u         | 3       | MAN      | O5-C1-C2 | 3.57  | 116.28           | 110.77        |
| 2        | kA        | 1       | NAG      | C1-O5-C5 | 3.48  | 116.91           | 112.19        |
| 2        | 2A        | 1       | NAG      | C1-O5-C5 | 3.48  | 116.90           | 112.19        |
| 2        | tA        | 1       | NAG      | C1-O5-C5 | 3.47  | 116.90           | 112.19        |
| 2        | hA        | 1       | NAG      | C1-O5-C5 | 3.47  | 116.90           | 112.19        |
| 2        | eA        | 1       | NAG      | C1-O5-C5 | 3.47  | 116.89           | 112.19        |
| 2        | nA        | 1       | NAG      | C1-O5-C5 | 3.46  | 116.89           | 112.19        |
| 2        | wA        | 1       | NAG      | C1-O5-C5 | 3.46  | 116.88           | 112.19        |
| 2        | qA        | 1       | NAG      | C1-O5-C5 | 3.45  | 116.87           | 112.19        |
| 2        | 5A        | 1       | NAG      | C1-O5-C5 | 3.45  | 116.86           | 112.19        |
| 2        | zA        | 1       | NAG      | C1-O5-C5 | 3.42  | 116.83           | 112.19        |
| 2        | 1         | 1       | NAG      | O5-C1-C2 | -3.38 | 105.94           | 111.29        |
| 2        | r         | 1       | NAG      | O5-C1-C2 | -3.36 | 105.98           | 111.29        |
| 2        | 3         | 1       | NAG      | O5-C1-C2 | -3.35 | 105.99           | 111.29        |
| 2        | 0         | 1       | NAG      | O5-C1-C2 | -3.35 | 106.00           | 111.29        |
| 2        | X         | 1       | NAG      | 05-C1-C2 | -3.35 | 106.00           | 111.29        |
| 2        | f         | 1       | NAG      | O5-C1-C2 | -3.35 | 106.00           | 111.29        |
| 2        | u         | 1       | NAG      | 05-C1-C2 | -3.35 | 106.00           | 111.29        |
| 2        | i         | 1       | NAG      | 05-C1-C2 | -3.34 | 106.01           | 111.29        |
| $\mid 2$ | 6         | 1       | NAG      | O5-C1-C2 | -3.34 | 106.01           | 111.29        |



| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 2   | 0     | 1   | NAG  | O5-C1-C2 | -3.33 | 106.02           | 111.29        |
| 2   | Х     | 2   | NAG  | C2-N2-C7 | 3.15  | 127.38           | 122.90        |
| 2   | u     | 2   | NAG  | C2-N2-C7 | 3.13  | 127.36           | 122.90        |
| 2   | r     | 2   | NAG  | C2-N2-C7 | 3.13  | 127.36           | 122.90        |
| 2   | i     | 2   | NAG  | C2-N2-C7 | 3.12  | 127.35           | 122.90        |
| 2   | f     | 2   | NAG  | C2-N2-C7 | 3.11  | 127.34           | 122.90        |
| 2   | 6     | 2   | NAG  | C2-N2-C7 | 3.11  | 127.33           | 122.90        |
| 2   | 3     | 2   | NAG  | C2-N2-C7 | 3.10  | 127.31           | 122.90        |
| 2   | 0     | 2   | NAG  | C2-N2-C7 | 3.09  | 127.31           | 122.90        |
| 2   | 0     | 2   | NAG  | C2-N2-C7 | 3.09  | 127.30           | 122.90        |
| 2   | 1     | 2   | NAG  | C2-N2-C7 | 3.09  | 127.30           | 122.90        |
| 2   | oA    | 3   | MAN  | O2-C2-C1 | -2.97 | 103.08           | 109.15        |
| 2   | 0     | 2   | NAG  | C1-O5-C5 | -2.97 | 108.17           | 112.19        |
| 2   | 6     | 2   | NAG  | C1-O5-C5 | -2.95 | 108.20           | 112.19        |
| 2   | rA    | 3   | MAN  | O2-C2-C1 | -2.95 | 103.12           | 109.15        |
| 2   | r     | 1   | NAG  | C3-C4-C5 | 2.94  | 115.49           | 110.24        |
| 2   | 3     | 1   | NAG  | C3-C4-C5 | 2.94  | 115.49           | 110.24        |
| 2   | cA    | 3   | MAN  | O2-C2-C1 | -2.94 | 103.14           | 109.15        |
| 2   | fA    | 3   | MAN  | O2-C2-C1 | -2.94 | 103.14           | 109.15        |
| 2   | uA    | 3   | MAN  | O2-C2-C1 | -2.94 | 103.14           | 109.15        |
| 2   | Х     | 2   | NAG  | C1-O5-C5 | -2.94 | 108.21           | 112.19        |
| 2   | 1     | 2   | NAG  | C1-O5-C5 | -2.94 | 108.21           | 112.19        |
| 2   | u     | 1   | NAG  | C3-C4-C5 | 2.93  | 115.47           | 110.24        |
| 2   | f     | 2   | NAG  | C1-O5-C5 | -2.93 | 108.22           | 112.19        |
| 2   | 0     | 2   | NAG  | C1-O5-C5 | -2.93 | 108.22           | 112.19        |
| 2   | xA    | 3   | MAN  | O2-C2-C1 | -2.93 | 103.15           | 109.15        |
| 2   | 0     | 1   | NAG  | C3-C4-C5 | 2.93  | 115.46           | 110.24        |
| 2   | i     | 1   | NAG  | C3-C4-C5 | 2.93  | 115.46           | 110.24        |
| 2   | 3A    | 3   | MAN  | O2-C2-C1 | -2.93 | 103.16           | 109.15        |
| 2   | Х     | 3   | MAN  | O3-C3-C4 | -2.93 | 103.58           | 110.35        |
| 2   | iA    | 3   | MAN  | O2-C2-C1 | -2.92 | 103.17           | 109.15        |
| 2   | 6     | 1   | NAG  | C3-C4-C5 | 2.92  | 115.45           | 110.24        |
| 2   | 0A    | 3   | MAN  | O2-C2-C1 | -2.92 | 103.17           | 109.15        |
| 2   | r     | 2   | NAG  | C1-O5-C5 | -2.92 | 108.23           | 112.19        |
| 2   | lA    | 3   | MAN  | O2-C2-C1 | -2.92 | 103.18           | 109.15        |
| 2   | f     | 1   | NAG  | C3-C4-C5 | 2.92  | 115.44           | 110.24        |
| 2   | 3     | 2   | NAG  | C1-O5-C5 | -2.91 | 108.24           | 112.19        |
| 2   | 6     | 3   | MAN  | O3-C3-C4 | -2.91 | 103.61           | 110.35        |
| 2   | 0     | 3   | MAN  | O3-C3-C4 | -2.91 | 103.62           | 110.35        |
| 2   | u     | 3   | MAN  | O3-C3-C4 | -2.91 | 103.62           | 110.35        |
| 2   | i     | 2   | NAG  | C1-O5-C5 | -2.91 | 108.25           | 112.19        |
| 2   | 1     | 1   | NAG  | C3-C4-C5 | 2.91  | 115.43           | 110.24        |



| Mol | Chain | Res | Type | Atoms Z  |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 2   | r     | 3   | MAN  | O3-C3-C4 | -2.91 | 103.62           | 110.35        |
| 2   | f     | 3   | MAN  | O3-C3-C4 | -2.91 | 103.63           | 110.35        |
| 2   | Х     | 1   | NAG  | C3-C4-C5 | 2.91  | 115.42           | 110.24        |
| 2   | 3     | 3   | MAN  | O3-C3-C4 | -2.90 | 103.64           | 110.35        |
| 2   | i     | 3   | MAN  | O3-C3-C4 | -2.90 | 103.65           | 110.35        |
| 2   | 1     | 3   | MAN  | O3-C3-C4 | -2.90 | 103.65           | 110.35        |
| 2   | u     | 2   | NAG  | C1-O5-C5 | -2.90 | 108.27           | 112.19        |
| 2   | 0     | 1   | NAG  | C3-C4-C5 | 2.90  | 115.40           | 110.24        |
| 2   | 0     | 3   | MAN  | O3-C3-C4 | -2.89 | 103.66           | 110.35        |
| 2   | k     | 1   | NAG  | C1-O5-C5 | 2.89  | 116.10           | 112.19        |
| 2   | t     | 1   | NAG  | C1-O5-C5 | 2.86  | 116.07           | 112.19        |
| 2   | е     | 1   | NAG  | C1-O5-C5 | 2.85  | 116.05           | 112.19        |
| 2   | n     | 1   | NAG  | C1-O5-C5 | 2.85  | 116.05           | 112.19        |
| 2   | q     | 1   | NAG  | C1-O5-C5 | 2.85  | 116.05           | 112.19        |
| 2   | 5     | 1   | NAG  | C1-O5-C5 | 2.85  | 116.05           | 112.19        |
| 2   | 2     | 1   | NAG  | C1-O5-C5 | 2.84  | 116.04           | 112.19        |
| 2   | W     | 1   | NAG  | C1-O5-C5 | 2.84  | 116.03           | 112.19        |
| 2   | h     | 1   | NAG  | C1-O5-C5 | 2.83  | 116.03           | 112.19        |
| 2   | Z     | 1   | NAG  | C1-O5-C5 | 2.82  | 116.02           | 112.19        |
| 2   | fA    | 1   | NAG  | C1-O5-C5 | 2.82  | 116.02           | 112.19        |
| 2   | lA    | 1   | NAG  | C1-O5-C5 | 2.82  | 116.01           | 112.19        |
| 2   | xA    | 1   | NAG  | C1-O5-C5 | 2.80  | 115.99           | 112.19        |
| 2   | rA    | 1   | NAG  | C1-O5-C5 | 2.80  | 115.98           | 112.19        |
| 2   | 3A    | 1   | NAG  | C1-O5-C5 | 2.80  | 115.98           | 112.19        |
| 2   | cA    | 1   | NAG  | C1-O5-C5 | 2.79  | 115.98           | 112.19        |
| 2   | 0A    | 1   | NAG  | C1-O5-C5 | 2.79  | 115.97           | 112.19        |
| 2   | iA    | 1   | NAG  | C1-O5-C5 | 2.79  | 115.97           | 112.19        |
| 2   | uA    | 1   | NAG  | C1-O5-C5 | 2.79  | 115.97           | 112.19        |
| 2   | oA    | 1   | NAG  | C1-O5-C5 | 2.78  | 115.95           | 112.19        |
| 2   | ТА    | 2   | NAG  | O7-C7-C8 | -2.67 | 117.09           | 122.06        |
| 2   | WA    | 2   | NAG  | O7-C7-C8 | -2.67 | 117.10           | 122.06        |
| 2   | BA    | 2   | NAG  | O7-C7-C8 | -2.66 | 117.11           | 122.06        |
| 2   | QA    | 2   | NAG  | O7-C7-C8 | -2.66 | 117.11           | 122.06        |
| 2   | ZA    | 2   | NAG  | O7-C7-C8 | -2.66 | 117.11           | 122.06        |
| 2   | EA    | 2   | NAG  | O7-C7-C8 | -2.66 | 117.11           | 122.06        |
| 2   | 8     | 2   | NAG  | O7-C7-C8 | -2.66 | 117.12           | 122.06        |
| 2   | KA    | 2   | NAG  | O7-C7-C8 | -2.65 | 117.13           | 122.06        |
| 2   | NA    | 2   | NAG  | O7-C7-C8 | -2.65 | 117.14           | 122.06        |
| 2   | НА    | 2   | NAG  | O7-C7-C8 | -2.65 | 117.14           | 122.06        |
| 2   | i     | 3   | MAN  | C3-C4-C5 | 2.57  | 114.83           | 110.24        |
| 2   | 0     | 3   | MAN  | C3-C4-C5 | 2.57  | 114.82           | 110.24        |
| 2   | 1     | 3   | MAN  | C3-C4-C5 | 2.57  | 114.81           | 110.24        |



| Continued from proceedes page |       |     |      |          |       |                  |               |
|-------------------------------|-------|-----|------|----------|-------|------------------|---------------|
| Mol                           | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 2                             | Х     | 3   | MAN  | C3-C4-C5 | 2.56  | 114.81           | 110.24        |
| 2                             | 3     | 3   | MAN  | C3-C4-C5 | 2.56  | 114.81           | 110.24        |
| 2                             | f     | 3   | MAN  | C3-C4-C5 | 2.56  | 114.80           | 110.24        |
| 2                             | 0     | 3   | MAN  | C3-C4-C5 | 2.56  | 114.80           | 110.24        |
| 2                             | 6     | 3   | MAN  | C3-C4-C5 | 2.55  | 114.79           | 110.24        |
| 2                             | u     | 3   | MAN  | C3-C4-C5 | 2.55  | 114.78           | 110.24        |
| 2                             | r     | 3   | MAN  | C3-C4-C5 | 2.54  | 114.78           | 110.24        |
| 2                             | k     | 2   | NAG  | O7-C7-C8 | -2.45 | 117.52           | 122.06        |
| 2                             | W     | 2   | NAG  | O7-C7-C8 | -2.45 | 117.52           | 122.06        |
| 2                             | h     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.54           | 122.06        |
| 2                             | 2     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.54           | 122.06        |
| 2                             | е     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.54           | 122.06        |
| 2                             | q     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.55           | 122.06        |
| 2                             | t     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.55           | 122.06        |
| 2                             | n     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.55           | 122.06        |
| 2                             | Z     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.55           | 122.06        |
| 2                             | 5     | 2   | NAG  | O7-C7-C8 | -2.43 | 117.55           | 122.06        |
| 2                             | X     | 3   | MAN  | C2-C3-C4 | 2.33  | 114.93           | 110.89        |
| 2                             | r     | 3   | MAN  | C2-C3-C4 | 2.33  | 114.93           | 110.89        |
| 2                             | u     | 3   | MAN  | C2-C3-C4 | 2.33  | 114.92           | 110.89        |
| 2                             | 6     | 3   | MAN  | C2-C3-C4 | 2.33  | 114.92           | 110.89        |
| 2                             | i     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.92           | 110.89        |
| 2                             | 3     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.92           | 110.89        |
| 2                             | f     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.91           | 110.89        |
| 2                             | 1     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.91           | 110.89        |
| 2                             | 0     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.91           | 110.89        |
| 2                             | 0     | 3   | MAN  | C2-C3-C4 | 2.32  | 114.91           | 110.89        |
| 2                             | zA    | 2   | NAG  | C1-O5-C5 | 2.30  | 115.31           | 112.19        |
| 2                             | kA    | 2   | NAG  | C1-O5-C5 | 2.30  | 115.31           | 112.19        |
| 2                             | 2A    | 2   | NAG  | C1-O5-C5 | 2.29  | 115.29           | 112.19        |
| 2                             | wA    | 2   | NAG  | C1-O5-C5 | 2.28  | 115.28           | 112.19        |
| 2                             | qA    | 2   | NAG  | C1-O5-C5 | 2.28  | 115.28           | 112.19        |
| 2                             | eA    | 2   | NAG  | C1-O5-C5 | 2.28  | 115.28           | 112.19        |
| 2                             | nA    | 2   | NAG  | C1-O5-C5 | 2.27  | 115.27           | 112.19        |
| 2                             | tA    | 2   | NAG  | C1-O5-C5 | 2.27  | 115.27           | 112.19        |
| 2                             | GA    | 2   | NAG  | C1-O5-C5 | 2.26  | 115.26           | 112.19        |
| 2                             | 5A    | 2   | NAG  | C1-O5-C5 | 2.26  | 115.25           | 112.19        |
| 2                             | hA    | 2   | NAG  | C1-O5-C5 | 2.25  | 115.24           | 112.19        |
| 2                             | bA    | 2   | NAG  | C1-O5-C5 | 2.24  | 115.23           | 112.19        |
| 2                             | MA    | 2   | NAG  | C1-O5-C5 | 2.23  | 115.21           | 112.19        |
| 2                             | HA    | 2   | NAG  | C2-N2-C7 | -2.22 | 119.74           | 122.90        |
| 2                             | AA    | 2   | NAG  | C1-O5-C5 | 2.21  | 115.19           | 112.19        |



| 001000 | nucu jion | " PICOU | ous puye | • • •    |                   |                     |          |
|--------|-----------|---------|----------|----------|-------------------|---------------------|----------|
| Mol    | Chain     | Res     | Type     | Atoms    | Z                 | Observed(°)         | Ideal(°) |
| 2      | KA        | 2       | NAG      | C2-N2-C7 | -2.21             | 119.75              | 122.90   |
| 2      | QA        | 2       | NAG      | C2-N2-C7 | -2.21             | 119.75              | 122.90   |
| 2      | JA        | 2       | NAG      | C1-O5-C5 | 2.21              | 115.19              | 112.19   |
| 2      | SA        | 2       | NAG      | C1-O5-C5 | 2.21              | 115.18              | 112.19   |
| 2      | BA        | 2       | NAG      | C2-N2-C7 | -2.21             | 119.76              | 122.90   |
| 2      | YA        | 2       | NAG      | C1-O5-C5 | 2.21              | 115.18              | 112.19   |
| 2      | 8         | 2       | NAG      | C2-N2-C7 | -2.20             | 119.77              | 122.90   |
| 2      | EA        | 2       | NAG      | C2-N2-C7 | -2.20             | 119.77              | 122.90   |
| 2      | VA        | 2       | NAG      | C1-O5-C5 | 2.20              | 115.17              | 112.19   |
| 2      | PA        | 2       | NAG      | C1-O5-C5 | 2.19              | 115.16              | 112.19   |
| 2      | DA        | 2       | NAG      | C1-O5-C5 | 2.19              | 115.16              | 112.19   |
| 2      | TA        | 2       | NAG      | C2-N2-C7 | -2.19             | 119.79              | 122.90   |
| 2      | ZA        | 2       | NAG      | C2-N2-C7 | -2.18             | 119.79              | 122.90   |
| 2      | 1         | 2       | NAG      | C1-O5-C5 | 2.18              | 115.14              | 112.19   |
| 2      | aA        | 3       | MAN      | O5-C5-C6 | 2.18              | 110.62              | 107.20   |
| 2      | NA        | 2       | NAG      | C2-N2-C7 | -2.18             | 119.81              | 122.90   |
| 2      | WA        | 2       | NAG      | C2-N2-C7 | -2.17             | 119.81              | 122.90   |
| 2      | р         | 2       | NAG      | C1-O5-C5 | 2.17              | 115.13              | 112.19   |
| 2      | RA        | 2       | NAG      | C1-O5-C5 | 2.16              | 115.12              | 112.19   |
| 2      | IA        | 3       | MAN      | O5-C5-C6 | 2.16              | 110.58              | 107.20   |
| 2      | OA        | 3       | MAN      | O5-C5-C6 | 2.16              | 110.58              | 107.20   |
| 2      | IA        | 2       | NAG      | C1-O5-C5 | 2.16              | 115.11              | 112.19   |
| 2      | LA        | 3       | MAN      | O5-C5-C6 | 2.15              | 110.58              | 107.20   |
| 2      | CA        | 2       | NAG      | C1-O5-C5 | 2.15              | 115.10              | 112.19   |
| 2      | UA        | 3       | MAN      | O5-C5-C6 | 2.14              | 110.56              | 107.20   |
| 2      | V         | 2       | NAG      | C1-O5-C5 | 2.14              | 115.09              | 112.19   |
| 2      | 9         | 3       | MAN      | O5-C5-C6 | 2.14              | 110.56              | 107.20   |
| 2      | FA        | 3       | MAN      | O5-C5-C6 | 2.13              | 110.55              | 107.20   |
| 2      | m         | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | OA        | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | XA        | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | S         | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | LA        | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | g         | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | j         | 2       | NAG      | C1-O5-C5 | 2.13              | 115.08              | 112.19   |
| 2      | CA        | 3       | MAN      | O5-C5-C6 | 2.13              | $110.5\overline{4}$ | 107.20   |
| 2      | 4         | 2       | NAG      | C1-O5-C5 | 2.12              | 115.07              | 112.19   |
| 2      | 9         | 2       | NAG      | C1-O5-C5 | 2.12              | 115.07              | 112.19   |
| 2      | RA        | 3       | MAN      | O5-C5-C6 | 2.12              | 110.53              | 107.20   |
| 2      | XA        | 3       | MAN      | O5-C5-C6 | 2.12              | 110.53              | 107.20   |
| 2      | 7         | 2       | NAG      | C1-O5-C5 | $2.1\overline{2}$ | $115.0\overline{6}$ | 112.19   |
| 2      | aA        | 2       | NAG      | C1-O5-C5 | 2.11              | 115.05              | 112.19   |



| Mol | Chain | Res | Type | Atoms    | Ζ    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|------------------|---------------|
| 2   | У     | 2   | NAG  | C1-O5-C5 | 2.10 | 115.04           | 112.19        |
| 2   | UA    | 2   | NAG  | C1-O5-C5 | 2.10 | 115.04           | 112.19        |
| 2   | FA    | 2   | NAG  | C1-O5-C5 | 2.09 | 115.02           | 112.19        |
| 2   | 3A    | 1   | NAG  | O7-C7-N2 | 2.06 | 125.74           | 121.95        |
| 2   | fA    | 1   | NAG  | O7-C7-N2 | 2.05 | 125.72           | 121.95        |
| 2   | rA    | 1   | NAG  | O7-C7-N2 | 2.04 | 125.71           | 121.95        |
| 2   | cA    | 1   | NAG  | 07-C7-N2 | 2.04 | 125.69           | 121.95        |
| 2   | oA    | 1   | NAG  | O7-C7-N2 | 2.03 | 125.69           | 121.95        |
| 2   | iA    | 1   | NAG  | O7-C7-N2 | 2.03 | 125.68           | 121.95        |
| 2   | xA    | 1   | NAG  | O7-C7-N2 | 2.03 | 125.68           | 121.95        |
| 2   | 0A    | 1   | NAG  | O7-C7-N2 | 2.03 | 125.68           | 121.95        |
| 2   | lA    | 1   | NAG  | 07-C7-N2 | 2.03 | 125.68           | 121.95        |
| 2   | uA    | 1   | NAG  | 07-C7-N2 | 2.02 | 125.67           | 121.95        |
| 2   | WA    | 3   | MAN  | C1-O5-C5 | 2.01 | 114.92           | 112.19        |

There are no chirality outliers.

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | f     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | f     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | f     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | i     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | i     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | i     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 1     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | l     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | 1     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 0     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 0     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | 0     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | r     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | r     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | r     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | u     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | u     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | u     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | Х     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | Х     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | Х     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 0     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 0     | 2   | NAG  | C8-C7-N2-C2 |

All (350) torsion outliers are listed below:



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | 0     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 3     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 3     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | 3     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 6     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 6     | 2   | NAG  | C8-C7-N2-C2 |
| 2   | 6     | 2   | NAG  | O7-C7-N2-C2 |
| 2   | 9     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | CA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | FA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | IA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | LA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | OA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | RA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | UA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | XA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | aA    | 2   | NAG  | C3-C2-N2-C7 |
| 2   | cA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | fA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | iA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | lA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | oA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | rA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | uA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | xA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 0A    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 3A    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 9     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | CA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | FA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | IA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | LA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | OA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | RA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | UA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | XA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | aA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | AA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | DA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | GA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | JA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | MA    | 1   | NAG  | O5-C5-C6-O6 |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | PA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | SA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | VA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | YA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | bA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | g     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | i     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | m     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | р     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | S     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | V     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | у     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 1     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 4     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 7     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | g     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | j     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | m     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | р     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | s     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | V     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | У     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 1     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 4     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 7     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 9     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | CA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | FA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | IA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | LA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | OA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | RA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | UA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | XA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | aA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | eA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | hA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | kA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | nA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | qA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | tA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | wA    | 2   | NAG  | O5-C5-C6-O6 |

Continued from previous page...



| Mol | Chain     | Res      |        | Atoms                     |
|-----|-----------|----------|--------|---------------------------|
| 2   |           | 2        | NAC    | 05.05.06.06               |
| 2   |           | 2        | NAG    | 05-05-00-00               |
| 2   | ZA<br>5 A | 2        | NAG    | $O_{5} C_{5} C_{6} O_{6}$ |
| 2   |           |          | NAG    | $O_{2}-C_{2}-C_{2}-C_{2}$ |
| 2   | AA        | 2        | NAG    | 05-C5-C6-06               |
| 2   | DA        | 2        | NAG    | 05-C5-C6-O6               |
| 2   | GA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | JA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | MA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | PA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | SA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | VA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | YA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | bA        | 2        | NAG    | O5-C5-C6-O6               |
| 2   | cA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | fA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | iA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | lA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | oA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | rA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | uA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | xA        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | 0A        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | 3A        | 3        | MAN    | O5-C5-C6-O6               |
| 2   | cA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | fA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | iA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | lA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | oA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | rA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | uA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | xA        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | 0A        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | 3A        | 2        | NAG    | C4-C5-C6-O6               |
| 2   | aA        | 1        | NAG    | O5-C5-C6-O6               |
| 2   | AA        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | DA        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | GA        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | JA        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | MA        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | PΔ        | 1        | NAG    | C4-C5-C6-O6               |
| 2   | SA SA     | 1        | NAC    | C4-C5-C6-O6               |
| 2   | VA        | 1        | NAC    | C4-C5-C6-O6               |
|     | vЛ        | <b>1</b> | I INAU |                           |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | YA    | 1   | NAG  | C4-C5-C6-O6 |
| 2   | bA    | 1   | NAG  | C4-C5-C6-O6 |
| 2   | 9     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | BA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | CA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | FA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | IA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | LA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | OA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | RA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | UA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | WA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | XA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | 8     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | EA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | HA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | KA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | NA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | QA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | ТА    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | ZA    | 2   | NAG  | O5-C5-C6-O6 |
| 2   | IA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | RA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | 9     | 3   | MAN  | O5-C5-C6-O6 |
| 2   | CA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | FA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | LA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | OA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | UA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | XA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | aA    | 3   | MAN  | O5-C5-C6-O6 |
| 2   | AA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | DA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | GA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | JA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | MA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | PA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | SA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | VA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | YA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | bA    | 2   | NAG  | C4-C5-C6-O6 |
| 2   | eA    | 2   | NAG  | C4-C5-C6-O6 |



| Mol | Chain | Res | Type | Atoms                    |
|-----|-------|-----|------|--------------------------|
| 2   | hA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | kA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | nA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | qA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | tA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | wA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | zA    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | 2A    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | 5A    | 2   | NAG  | C4-C5-C6-O6              |
| 2   | 9     | 1   | NAG  | C4-C5-C6-O6              |
| 2   | CA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | FA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | IA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | LA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | OA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | RA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | UA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | XA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | aA    | 1   | NAG  | C4-C5-C6-O6              |
| 2   | е     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | h     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | k     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | n     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | q     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | t     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | W     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | Z     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | 2     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | 5     | 2   | NAG  | O5-C5-C6-O6              |
| 2   | cA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | fA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | iA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | iA    | 2   | NAG  | 07-C7-N2-C2              |
| 2   | lA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | lA    | 2   | NAG  | 07-C7-N2-C2              |
| 2   | oA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | rA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | uA    | 2   | NAG  | $C8-C7-N\overline{2-C2}$ |
| 2   | uA    | 2   | NAG  | 07-C7-N2-C2              |
| 2   | xA    | 2   | NAG  | C8-C7-N2-C2              |
| 2   | xA    | 2   | NAG  | 07-C7-N2-C2              |
| 2   | 0A    | 2   | NAG  | C8-C7-N2-C2              |

Continued from previous page...



| 00.000 | naca ji on | · r · · · · · | o ao pago | •••         |
|--------|------------|---------------|-----------|-------------|
| Mol    | Chain      | Res           | Type      | Atoms       |
| 2      | 3A         | 2             | NAG       | C8-C7-N2-C2 |
| 2      | cA         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | fA         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | oA         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | rA         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | 0A         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | 3A         | 2             | NAG       | O7-C7-N2-C2 |
| 2      | CA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | XA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | 9          | 3             | MAN       | C4-C5-C6-O6 |
| 2      | LA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | OA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | RA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | aA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | FA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | IA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | UA         | 3             | MAN       | C4-C5-C6-O6 |
| 2      | EA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | NA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | QA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | ZA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | 8          | 1             | NAG       | C4-C5-C6-O6 |
| 2      | HA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | KA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | TA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | BA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | WA         | 1             | NAG       | C4-C5-C6-O6 |
| 2      | BA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | NA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | ZA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | 8          | 2             | NAG       | C4-C5-C6-O6 |
| 2      | EA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | HA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | KA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | QA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | TA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | WA         | 2             | NAG       | C4-C5-C6-O6 |
| 2      | 8          | 1             | NAG       | O5-C5-C6-O6 |
| 2      | BA         | 1             | NAG       | O5-C5-C6-O6 |
| 2      | EA         | 1             | NAG       | O5-C5-C6-O6 |
| 2      | HA         | 1             | NAG       | O5-C5-C6-O6 |
| 2      | KA         | 1             | NAG       | O5-C5-C6-O6 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | NA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | QA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | TA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | WA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | ZA    | 1   | NAG  | O5-C5-C6-O6 |
| 2   | iA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | oA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | rA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | xA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | cA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | fA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | uA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | 3A    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | lA    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | 0A    | 3   | MAN  | C4-C5-C6-O6 |
| 2   | h     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | n     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | W     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | е     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | k     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | q     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | t     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 5     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | 2     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Z     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | е     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | h     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | k     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | n     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | q     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | t     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | W     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | Z     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 2     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 5     | 2   | NAG  | C3-C2-N2-C7 |
| 2   | 8     | 1   | NAG  | C3-C2-N2-C7 |
| 2   | BA    | 1   | NAG  | C3-C2-N2-C7 |
| 2   | EA    | 1   | NAG  | C3-C2-N2-C7 |
| 2   | HA    | 1   | NAG  | C3-C2-N2-C7 |
| 2   | KA    | 1   | NAG  | C3-C2-N2-C7 |
| 2   | NA    | 1   | NAG  | C3-C2-N2-C7 |
| 2   | QA    | 1   | NAG  | C3-C2-N2-C7 |

Continued from previous page...



| Mol | Chain        | Res | Type | Atoms       |
|-----|--------------|-----|------|-------------|
| 2   | ТА           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | WA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | ZA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | cA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | fA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | iA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | lA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | oA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | rA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | uA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | xA           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | 0A           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | 3A           | 1   | NAG  | C3-C2-N2-C7 |
| 2   | 4A           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | gA           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | vA           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | yА           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | 1A           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | dA           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | mA           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | sA           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | рА           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | jА           | 2   | NAG  | O5-C5-C6-O6 |
| 2   | k            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | q            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | 5            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | е            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | h            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | n            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | W            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | $\mathbf{t}$ | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Z            | 1   | NAG  | O5-C5-C6-O6 |
| 2   | 2            | 1   | NAG  | O5-C5-C6-O6 |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.






































































































































































































































































































































































# 5.6 Ligand geometry (i)

There are no ligands in this entry.

# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-19990. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



## 6.2 Central slices (i)

### 6.2.1 Primary map



X Index: 144





Z Index: 144

#### 6.2.2 Raw map



X Index: 144

Y Index: 144



The images above show central slices of the map in three orthogonal directions.



## 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 147





Z Index: 144

#### 6.3.2 Raw map



X Index: 147

Y Index: 150



The images above show the largest variance slices of the map in three orthogonal directions.



## 6.4 Orthogonal standard-deviation projections (False-color) (i)

### 6.4.1 Primary map



6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



# 6.5 Orthogonal surface views (i)

6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.032. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

## 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is 266  $\rm nm^3;$  this corresponds to an approximate mass of 240 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.420  $\text{\AA}^{-1}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.420  ${\rm \AA^{-1}}$ 



## 8.2 Resolution estimates (i)

| $\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$ | Estimation criterion (FSC cut-off) |      |          |
|---------------------------------------------------------|------------------------------------|------|----------|
| resolution estimate (A)                                 | 0.143                              | 0.5  | Half-bit |
| Reported by author                                      | 2.38                               | -    | -        |
| Author-provided FSC curve                               | 2.38                               | 2.63 | 2.41     |
| Unmasked-calculated*                                    | 2.82                               | 3.17 | 2.86     |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.82 differs from the reported value 2.38 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-19990 and PDB model 9EV0. Per-residue inclusion information can be found in section 3 on page 15.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.032 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.032).



## 9.4 Atom inclusion (i)



At the recommended contour level, 96% of all backbone atoms, 82% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.032) and Q-score for the entire model and for each chain.

| $\mathbf{Chain}$ | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|------------------|----------------|----------------------------|
| All              | 0.8220         | 0.5560                     |
| 0                | 0.4360         | 0.3670                     |
| 0A               | 0.3080         | 0.3100                     |
| 1                | 0.0000         | 0.1590                     |
| 1A               | 0.1540         | 0.2720                     |
| 2                | 0.1790         | 0.2530                     |
| 2A               | 0.0000         | 0.2180                     |
| 3                | 0.3330         | 0.3430                     |
| 3A               | 0.1030         | 0.2580                     |
| 4                | 0.0000         | 0.1500                     |
| 4A               | 0.0770         | 0.2630                     |
| 5                | 0.0510         | 0.1750                     |
| 5A               | 0.0000         | 0.1890                     |
| 6                | 0.2050         | 0.3130                     |
| 7                | 0.0000         | 0.0930                     |
| 8                | 0.2310         | 0.2990                     |
| 9                | 0.2050         | 0.2460                     |
| А                | 0.8910         | 0.5910                     |
| AA               | 0.0000         | 0.1920                     |
| В                | 0.8510         | 0.5680                     |
| BA               | 0.2310         | 0.3070                     |
| $\mathbf{C}$     | 0.9010         | 0.5960                     |
| CA               | 0.2050         | 0.2590                     |
| D                | 0.9070         | 0.5990                     |
| DA               | 0.0000         | 0.1810                     |
| Ε                | 0.8710         | 0.5730                     |
| EA               | 0.2310         | 0.3140                     |
| F                | 0.9170         | 0.6040                     |
| FA               | 0.2050         | 0.2560                     |
| G                | 0.9200         | 0.6040                     |
| GA               | 0.0000         | 0.2100                     |
| H                | 0.8970         | 0.5800                     |
| HA               | 0.2560         | 0.3380                     |
| I                | 0.9280         | 0.6040                     |
| IA               | 0.1790         | 0.2380                     |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| J     | 0.9200         | 0.6040  |
| JA    | 0.0000         | 0.1820  |
| К     | 0.9060         | 0.5810  |
| KA    | 0.2560         | 0.3300  |
| L     | 0.9300         | 0.6060  |
| LA    | 0.1790         | 0.2130  |
| М     | 0.9200         | 0.6060  |
| MA    | 0.0000         | 0.1700  |
| N     | 0.9050         | 0.5860  |
| NA    | 0.2560         | 0.3320  |
| 0     | 0.9340         | 0.6080  |
| OA    | 0.1790         | 0.2230  |
| Р     | 0.9150         | 0.6010  |
| PA    | 0.0000         | 0.1710  |
| Q     | 0.9040         | 0.5810  |
| QA    | 0.2560         | 0.3080  |
| R     | 0.9330         | 0.6040  |
| RA    | 0.1790         | 0.2260  |
| S     | 0.9080         | 0.5970  |
| SA    | 0.0000         | 0.1810  |
| Т     | 0.8940         | 0.5780  |
| TA    | 0.2310         | 0.2940  |
| U     | 0.9240         | 0.6020  |
| UA    | 0.1790         | 0.2160  |
| V     | 0.9000         | 0.5910  |
| VA    | 0.0000         | 0.1740  |
| W     | 0.8860         | 0.5750  |
| WA    | 0.1790         | 0.2420  |
| X     | 0.9120         | 0.5980  |
| XA    | 0.1790         | 0.2350  |
| Y     | 0.8730         | 0.5850  |
| YA    | 0.0000         | 0.1970  |
| Z     | 0.8650         | 0.5730  |
| ZA    | 0.1030         | 0.2030  |
| a     | 0.8920         | 0.5930  |
| aA    | 0.1030         | 0.2030  |
| b     | 0.8200         | 0.5760  |
| bA    | 0.0000         | 0.1250  |
| с     | 0.8230         | 0.5650  |
| cA    | 0.4620         | 0.3080  |
| d     | 0.8350         | 0.5820  |
| dA dA | 0.2050         | 0.3000  |

Continued on next page...



|                | •               |  |
|----------------|-----------------|--|
| Continued from | m previous page |  |

| Chain | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|-------|----------------|----------------------------|
| е     | 0.2560         | 0.2370                     |
| eA    | 0.0000         | 0.2670                     |
| f     | 0.5640         | 0.3730                     |
| fA    | 0.4620         | 0.2920                     |
| g     | 0.0260         | 0.2160                     |
| gA    | 0.2050         | 0.2860                     |
| h     | 0.2560         | 0.2520                     |
| hA    | 0.0000         | 0.2860                     |
| i     | 0.4620         | 0.3680                     |
| iA    | 0.4620         | 0.3050                     |
| j     | 0.0000         | 0.2060                     |
| jА    | 0.2050         | 0.2810                     |
| k     | 0.2820         | 0.2500                     |
| kA    | 0.0000         | 0.2870                     |
| l     | 0.5130         | 0.3710                     |
| lA    | 0.4620         | 0.3220                     |
| m     | 0.0260         | 0.2570                     |
| mA    | 0.2050         | 0.3080                     |
| n     | 0.2820         | 0.2470                     |
| nA    | 0.0000         | 0.2730                     |
| 0     | 0.5380         | 0.3750                     |
| oA    | 0.4870         | 0.3240                     |
| р     | 0.0260         | 0.2060                     |
| pA    | 0.2050         | 0.2950                     |
| q     | 0.2820         | 0.2490                     |
| qA    | 0.0000         | 0.2340                     |
| r     | 0.4870         | 0.3670                     |
| rA    | 0.4620         | 0.3520                     |
| S     | 0.0260         | 0.1860                     |
| sA    | 0.2050         | 0.2990                     |
| t     | 0.2560         | 0.2880                     |
| tA    | 0.0000         | 0.2350                     |
| u     | 0.4870         | 0.3810                     |
| uA    | 0.4360         | 0.3530                     |
| V     | 0.0260         | 0.2190                     |
| vA    | 0.1790         | 0.2730                     |
| W     | 0.2820         | 0.2730                     |
| wA    | 0.0000         | 0.2040                     |
| X     | 0.4620         | 0.3850                     |
| xA    | 0.4100         | 0.3230                     |
| У     | 0.0260         | 0.1840                     |
| yА    | 0.2050         | 0.2630                     |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| Z     | 0.2050         | 0.2640  |
| zA    | 0.0000         | 0.2350  |

