

Full wwPDB X-ray Structure Validation Report (i)

Aug 16, 2023 – 11:49 PM EDT

PDB ID : 2ETK

Title: Crystal Structure of ROCK 1 bound to hydroxyfasudil

Authors : Jacobs, M. Deposited on : 2005-10-27

Resolution : 2.96 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.35

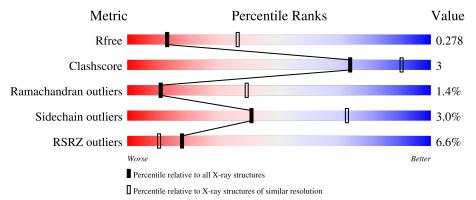
buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.96 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	3104 (3.00-2.92)
Clashscore	141614	3462 (3.00-2.92)
Ramachandran outliers	138981	3340 (3.00-2.92)
Sidechain outliers	138945	3343 (3.00-2.92)
RSRZ outliers	127900	2986 (3.00-2.92)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	415	7%	11%	•
1	В	415	6% 84%	11%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

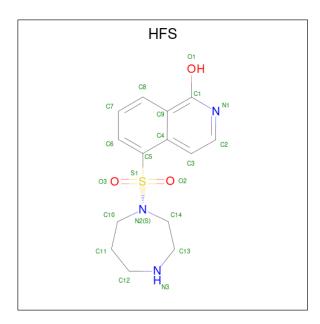
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	HFS	A	416	X	-	-	-
2	HFS	В	416	X	-	=	-

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 6515 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

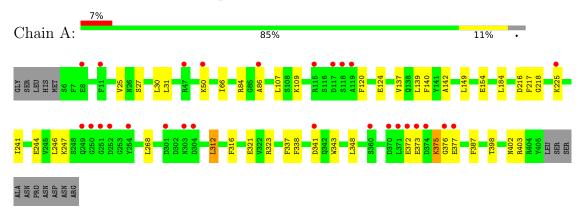
• Molecule 1 is a protein called Rho-associated protein kinase 1.

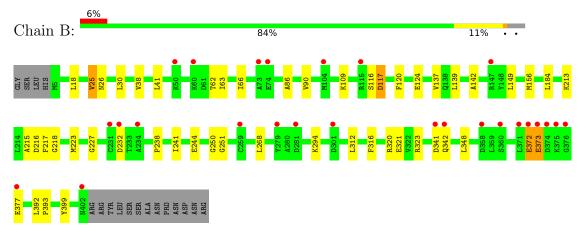

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	A	400	Total 3247	C 2073	N 541	O 612	S 21	0	0	0
1	В	398	Total 3226	C 2061	N 533	O 611	S 21	0	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1	GLY	-	cloning artifact	UNP Q13464
A	2	SER	-	cloning artifact	UNP Q13464
A	3	LEU	-	cloning artifact	UNP Q13464
A	4	HIS	-	cloning artifact	UNP Q13464
A	5	MET	-	cloning artifact	UNP Q13464
В	1	GLY	-	cloning artifact	UNP Q13464
В	2	SER	-	cloning artifact	UNP Q13464
В	3	LEU	-	cloning artifact	UNP Q13464
В	4	HIS	-	cloning artifact	UNP Q13464
В	5	MET	-	cloning artifact	UNP Q13464

• Molecule 2 is 1-(1-HYDROXY-5-ISOQUINOLINESULFONYL)HOMOPIPERAZINE (three-letter code: HFS) (formula: C₁₄H₁₇N₃O₃S).


Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
9	Λ	1	Total	С	N	О	S	0	0
2	A	1	21	14	3	3	1	0	0
9	D	1	Total	С	N	О	S	0	0
2	Б	1	21	14	3	3	1	U	0


3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Rho-associated protein kinase 1

• Molecule 1: Rho-associated protein kinase 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 31 2 1	Depositor
Cell constants	181.78Å 181.78Å 91.75Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	19.91 - 2.96	Depositor
Resolution (A)	19.91 - 2.80	EDS
% Data completeness	92.1 (19.91-2.96)	Depositor
(in resolution range)	92.2 (19.91-2.80)	EDS
R_{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.00 \; (at \; 2.79 \text{Å})$	Xtriage
Refinement program	CNS, CNX 2002	Depositor
D D.	0.277 , 0.298	Depositor
R, R_{free}	0.264 , 0.278	DCC
R_{free} test set	2134 reflections (4.96%)	wwPDB-VP
Wilson B-factor (Å ²)	81.6	Xtriage
Anisotropy	0.188	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.33, 34.6	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.34$	Xtriage
Estimated twinning fraction	0.007 for -h,-k,l	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	6515	wwPDB-VP
Average B, all atoms (Å ²)	74.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.68% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HFS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.33	0/3324	0.47	0/4491	
1	В	0.33	0/3303	0.47	0/4464	
All	All	0.33	0/6627	0.47	0/8955	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	3247	0	3137	22	0
1	В	3226	0	3114	25	0
2	A	21	0	16	1	0
2	В	21	0	16	2	0
All	All	6515	0	6283	42	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (42) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:66:ILE:HD11	1:B:25:VAL:HG21	1.60	0.83
1:B:372:GLU:O	1:B:373:GLU:HB2	1.91	0.70
1:B:244:GLU:HG2	1:B:320:ARG:HD2	1.80	0.62
1:B:232:ASP:HB3	1:B:251:GLY:N	2.16	0.60
1:A:30:LEU:HB3	1:B:30:LEU:HB3	1.86	0.58
1:B:238:PRO:HA	1:B:241:ILE:HD12	1.88	0.56
1:B:244:GLU:CD	1:B:323:ARG:HH22	2.09	0.55
1:B:90:VAL:HG21	2:B:416:HFS:H142	1.88	0.55
1:A:137:VAL:HG11	2:A:416:HFS:H2	1.88	0.55
1:A:241:ILE:HG21	1:A:246:LEU:HD13	1.92	0.52
1:A:120:PHE:HB2	1:A:218:GLY:O	2.11	0.51
1:B:392:LEU:N	1:B:393:PRO:HD2	2.26	0.51
1:A:27:SER:HB2	1:A:402:ASN:OD1	2.14	0.47
1:B:137:VAL:HG11	2:B:416:HFS:H2	1.96	0.47
1:B:316:PHE:O	1:B:323:ARG:HD2	2.16	0.46
1:B:223:MET:HB3	1:B:227:GLY:HA2	1.96	0.46
1:A:142:ALA:O	1:A:398:THR:HA	2.17	0.45
1:A:84:ARG:HH22	1:A:372:GLU:HG3	1.82	0.45
1:B:120:PHE:HB2	1:B:218:GLY:O	2.17	0.45
1:A:124:GLU:HG3	1:A:217:PHE:H	1.81	0.44
1:B:137:VAL:HG21	1:B:215:ALA:HB2	1.99	0.44
1:B:124:GLU:HG3	1:B:217:PHE:H	1.80	0.44
1:B:156:MET:SD	1:B:213:LYS:HD2	2.57	0.44
1:A:140:PHE:HE1	1:A:154:GLU:HB3	1.84	0.43
1:A:107:LEU:HB2	1:A:149:LEU:HB2	2.00	0.43
1:B:109:LYS:HZ1	1:B:149:LEU:HD23	1.83	0.43
1:A:31:LEU:HD11	1:B:18:LEU:HD11	2.01	0.42
1:B:38:VAL:HG11	1:B:63:ILE:HG21	2.01	0.42
1:A:25:VAL:HG21	1:B:66:ILE:HD11	2.00	0.42
1:A:387:PHE:CE1	1:B:41:LEU:HD21	2.54	0.42
1:A:50:LYS:HA	1:A:50:LYS:NZ	2.35	0.41
1:A:109:LYS:HZ1	1:A:149:LEU:HD23	1.85	0.41
1:A:184:LEU:HD12	1:A:348:LEU:HD23	2.01	0.41
1:B:244:GLU:CG	1:B:320:ARG:HD2	2.50	0.41
1:B:116:SER:O	1:B:117:ASP:C	2.59	0.41
1:A:244:GLU:OE1	1:A:323:ARG:NH2	2.52	0.40
1:A:343:TRP:CD2	1:A:348:LEU:HD13	2.56	0.40
1:A:312:LEU:HD12	1:A:337:PHE:CD1	2.56	0.40
1:A:312:LEU:HD11	1:A:338:PHE:CE1	2.57	0.40
1:B:142:ALA:HB3	1:B:399:TYR:HB3	2.02	0.40
1:B:184:LEU:HD12	1:B:348:LEU:HD23	2.03	0.40
1:A:316:PHE:O	1:A:323:ARG:HD2	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	A	398/415 (96%)	371 (93%)	22 (6%)	5 (1%)	12	41
1	В	$396/415 \; (95\%)$	362 (91%)	28 (7%)	6 (2%)	10	38
All	All	794/830 (96%)	733 (92%)	50 (6%)	11 (1%)	11	39

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	86	ALA
1	В	372	GLU
1	В	373	GLU
1	A	377	GLU
1	В	117	ASP
1	В	86	ALA
1	A	375	LYS
1	A	216	ASP
1	В	216	ASP
1	В	250	GLY
1	A	376	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A	352/369~(95%)	342 (97%)	10 (3%)	43	74
1	В	351/369 (95%)	340 (97%)	11 (3%)	40	71
All	All	703/738 (95%)	682 (97%)	21 (3%)	41	72

All (21) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	139	LEU
1	A	225	LYS
1	A	247	LYS
1	A	268	LEU
1	A	312	LEU
1	A	321	GLU
1	A	341	ASP
1	A	373	GLU
1	A	375	LYS
1	A	403	ARG
1	В	25	VAL
1	В	26	ASN
1	В	62	THR
1	В	139	LEU
1	В	268	LEU
1	В	294	LYS
1	В	312	LEU
1	В	321	GLU
1	В	341	ASP
1	В	342	GLN
1	В	377	GLU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such side chains are listed below:

Mol	Chain	Res	Type
1	A	16	ASN
1	A	54	ASN
1	A	167	ASN
1	A	292	ASN
1	В	16	ASN
1	В	54	ASN
1	В	167	ASN
1	В	292	ASN
1	В	342	GLN

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	
1	В	391	GLN	

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Trme	Chain	Res	Link	Bo	ond leng	$ ag{ths}$	В	ond ang	les
MIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	HFS	A	416	-	20,23,23	3.45	6 (30%)	27,33,33	2.15	7 (25%)
2	HFS	В	416	-	20,23,23	3.46	6 (30%)	27,33,33	2.13	7 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	HFS	A	416	-	1/1/2/3	2/12/21/21	0/3/3/3
2	HFS	В	416	-	1/1/2/3	3/12/21/21	0/3/3/3

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(A)	$Ideal(\AA)$
2	В	416	HFS	C5-S1	-11.98	1.60	1.77
2	A	416	HFS	C5-S1	-11.91	1.61	1.77
2	В	416	HFS	S1-N2	-6.81	1.53	1.63
2	A	416	HFS	S1-N2	-6.73	1.53	1.63
2	A	416	HFS	C5-C4	4.24	1.50	1.43
2	В	416	HFS	C5-C4	4.17	1.50	1.43
2	A	416	HFS	C9-C4	3.11	1.49	1.43
2	В	416	HFS	C9-C4	3.07	1.49	1.43
2	A	416	HFS	C3-C2	2.77	1.40	1.36
2	В	416	HFS	C3-C2	2.76	1.40	1.36
2	A	416	HFS	C6-C5	2.43	1.40	1.37
2	В	416	HFS	C6-C5	2.43	1.40	1.37

All (14) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^{o})$
2	A	416	HFS	O3-S1-O2	-6.97	108.23	119.52
2	В	416	HFS	O3-S1-O2	-6.80	108.51	119.52
2	A	416	HFS	O3-S1-N2	4.02	110.36	106.69
2	В	416	HFS	O3-S1-N2	3.94	110.28	106.69
2	A	416	HFS	C6-C5-C4	-3.67	117.32	121.00
2	В	416	HFS	C6-C5-C4	-3.52	117.47	121.00
2	В	416	HFS	C13-C14-N2	-3.48	106.71	112.26
2	A	416	HFS	C13-C14-N2	-3.18	107.19	112.26
2	A	416	HFS	O2-S1-N2	2.46	108.94	106.69
2	В	416	HFS	C2-N1-C1	2.31	122.41	116.57
2	A	416	HFS	C2-N1-C1	2.30	122.40	116.57
2	В	416	HFS	O2-S1-N2	2.29	108.78	106.69
2	В	416	HFS	C6-C5-S1	2.27	120.31	116.97
2	A	416	HFS	C6-C5-S1	2.27	120.31	116.97

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
2	A	416	HFS	N2
2	В	416	HFS	N2

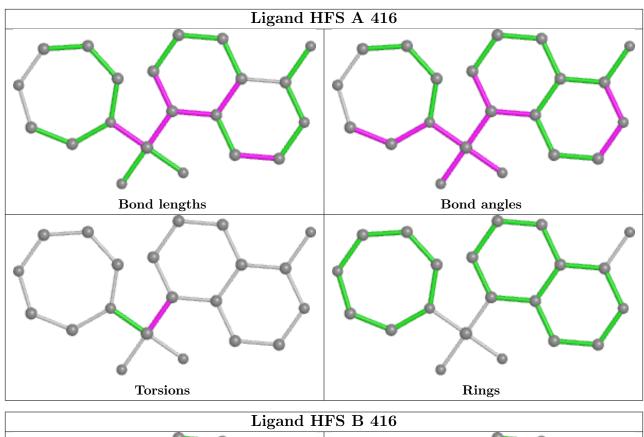
All (5) torsion outliers are listed below:

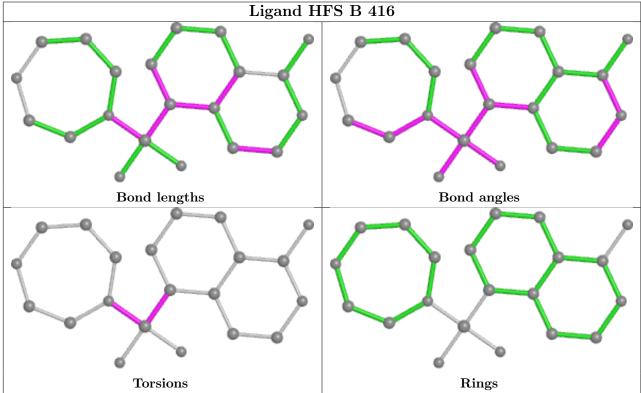
Mol	Chain	Res	Type	Atoms
2	A	416	HFS	C6-C5-S1-N2

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	В	416	HFS	C6-C5-S1-N2
2	В	416	HFS	C14-N2-S1-O2
2	A	416	HFS	C4-C5-S1-N2
2	В	416	HFS	C4-C5-S1-N2


There are no ring outliers.


2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	A	416	HFS	1	0
2	В	416	HFS	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$		$OWAB(A^2)$	Q<0.9
1	A	400/415 (96%)	0.37	27 (6%)	17 10	50, 72, 97, 108	0
1	В	$398/415 \ (95\%)$	0.42	26 (6%)	18 11	49, 77, 93, 109	0
All	All	798/830 (96%)	0.39	53 (6%)	18 10	49, 74, 96, 109	0

All (53) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	376	GLY	5.7
1	A	303	ASN	4.8
1	В	375	LYS	4.8
1	В	374	ASP	4.7
1	A	118	SER	4.6
1	A	372	GLU	4.4
1	A	377	GLU	4.0
1	A	251	GLY	3.9
1	В	372	GLU	3.9
1	В	231	CYS	3.9
1	В	377	GLU	3.8
1	В	234	ALA	3.8
1	В	402	ASN	3.6
1	В	376	GLY	3.6
1	A	373	GLU	3.4
1	A	374	ASP	3.4
1	A	115	ARG	3.3
1	В	147	ARG	3.3
1	В	341	ASP	3.3
1	В	373	GLU	3.2
1	A	47	ARG	3.0
1	В	50	LYS	2.9
1	A	341	ASP	2.9
1	A	8	GLU	2.8

Continued on next page...

Continued from previous page...

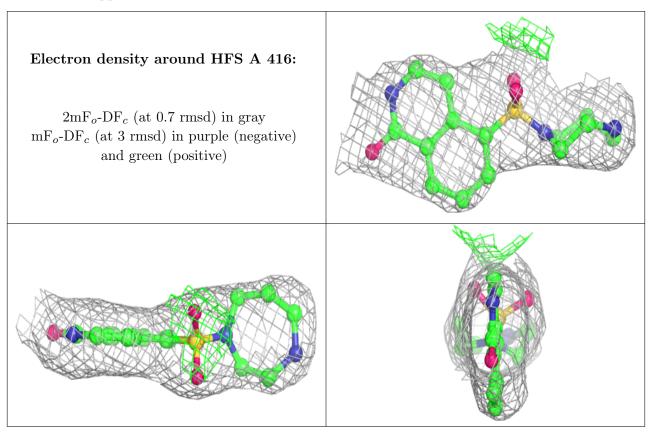
Mol	$\frac{1}{2} \frac{1}{2} \frac{1}$		Type	RSRZ	
1	A	250	GLY	2.7	
1	A	252	ASP	2.7	
1	A	301	ASP	2.6	
1	В	358	ASP	2.6	
1	A	117	ASP	2.6	
1	В	259	CYS	2.6	
1	A	304	ASP	2.5	
1	В	74	GLU	2.4	
1	В	115	ARG	2.4	
1	A	119	ALA	2.4	
1	A	225	LYS	2.4	
1	В	342	GLN	2.4	
1	В	360	SER	2.3	
1	A	249	GLN	2.3	
1	В	73	ALA	2.3	
1	A	371	LEU	2.2	
1	A	360	SER	2.2	
1	В	301	ASP	2.2	
1	В	371	LEU	2.2	
1	A	370	ASP	2.1	
1	В	104	MET	2.1	
1	В	279	TYR	2.1	
1	В	60	LYS	2.1	
1	В	232	ASP	2.0	
1	A	11	PHE	2.0	
1	A	254	TYR	2.0	
1	A	50	LYS	2.0	
1	A	86	ALA	2.0	
1	В	281	ASP	2.0	

6.2 Non-standard residues in protein, DNA, RNA chains (i)

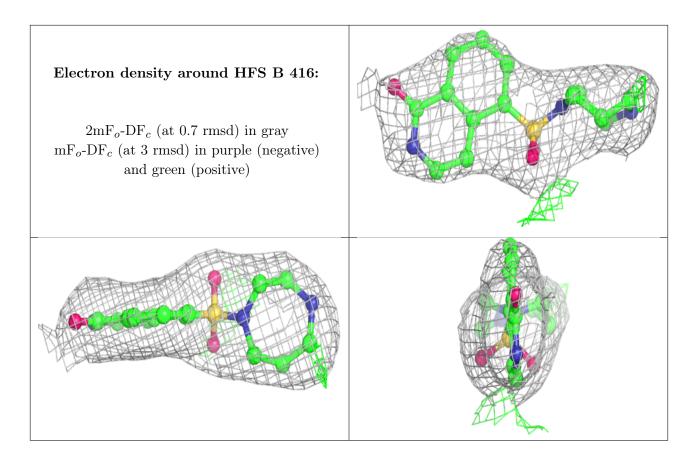
There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.



6.4 Ligands (i)


In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
2	HFS	A	416	21/21	0.94	0.20	58,59,61,64	0
2	HFS	В	416	21/21	0.96	0.19	61,67,70,70	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

