

Nov 8, 2022 – 01:08 AM EST

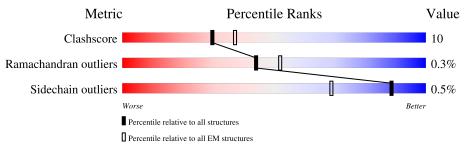
PDB ID	:	6E11
EMDB ID	:	EMD-8952
Title	:	PTEX Core Complex in the Resetting (Compact) State
Authors	:	Ho, C.; Lai, M.; Zhou, Z.H.
Deposited on		
Resolution	:	4.23 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity buster-report Percentile statistics MapQ Ideal geometry (proteins)	: : : :	20191225.v01 (using entries in the PDB archive December 25th 2019) FAILED Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996) 2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.23 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures			
	$(\# { m Entries})$	$(\# { m Entries})$			
Clashscore	158937	4297			
Ramachandran outliers	154571	4023			
Sidechain outliers	154315	3826			

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain							
1	h	60	78%	22%						
1	i	60	75% •	23%						
1	j	60	92%	8%						
1	k	60	100%							
1	1	60	88%	12%						
1	m	60	97%	•						
1	n	60	60% 40%							
2	1	906	60% 19% ·	21%						
2	2	906	62% 17% •	21%						

Mol	Chain	Length		Quality of chain								
2	3	906		60%	19%	21%						
2	4	906		59%	19%	21%						
2	5	906		60%	19%	21%						
2	6	906		65%	13%	• 21%						
3	А	287	54	%	13%	33%						
3	В	287	5	7%	15%	27%						
3	С	287		60%	13%	27%						
3	D	287		59%	14%	27%						
3	Е	287	5	7%	16%	27%						
3	F	287		59%	13% •	27%						
3	G	287	56	5%	11%	33%						
4	0	6		83%		17%						
5	a	993	16%		84%							
5	b	993	16%		84%							
5	с	993	16%		84%							
5	d	993	16%		84%							
5	е	993	16%		84%							
5	f	993	16%		84%							
5	g	993	16%		84%							

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	AGS	1	1003	-	-	Х	-

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 57401 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
1	i	46	Total	С	Ν	0	0	0
	1	40	230	138	46	46	0	0
1	j	55	Total	С	Ν	0	0	0
	т ј		275	165	55	55	0	0
1	k	60	Total	С	Ν	0	0	0
	ĸ	00	300	180	60	60	0	0
1		n 36	Total	С	Ν	0	0	0
	11		180	108	36	36	0	0
1	h	47	Total	С	Ν	Ο	0	0
	11	41	235	141	47	47	0	0
1	1	53	Total	С	Ν	Ο	0	0
		55	265	159	53	53	0	U
1	1 m	m 58		С	Ν	0	0	0
		58	290	174	58	58	0	U

• Molecule 1 is a protein called Unknown (Claw).

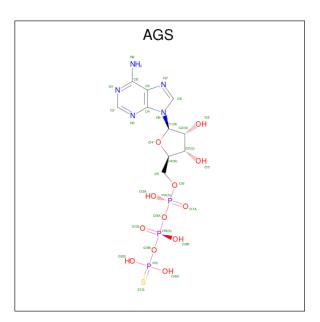
• Molecule 2 is a protein called Heat shock protein 101.

Mol	Chain	Residues		A	toms			AltConf	Trace	
2	1	717	Total	С	Ν	Ο	\mathbf{S}	0	0	
	1	111	5752	3687	964	1086	15	0	0	
2	2	717	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	2	111	5752	3687	964	1086	15	0	0	
2	3	717	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	5		5752	3687	964	1086	15	0	0	
2	4	717	Total	С	Ν	Ο	\mathbf{S}	0	0	
	4	111	5752	3687	964	1086	15	0		
2	5	716	Total	С	Ν	Ο	\mathbf{S}	0	0	
2	5	710	5744	3681	963	1085	15	0	U	
2	2 6	716	Total	С	Ν	Ο	\mathbf{S}	0	0	
		110	5744	3681	963	1085	15	0	U	

• Molecule 3 is a protein called Exported protein 2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace	
3	С	209	Total	С	Ν	0	S	0	0	
5	U	209	1715	1107	293	309	6	0	0	
3	D	209	Total	С	Ν	0	S	0	0	
5	D	209	1715	1107	293	309	6	0	0	
3	Е	210	Total	С	Ν	0	S	0	0	
5		210	1724	1112	294	312	6	0	0	
3	В	209	Total	С	Ν	0	S	0	0	
5	D	209	1715	1107	293	309	6	0	0	
3	А	191	Total	С	Ν	Ο	\mathbf{S}	0	0	
5	Π	191	1571	1019	271	275	6	0	0	
3	G	191	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
5	9 G	191	1571	1019	271	275	6	0	U	
3	F	209	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	
5	T,	209	1715	1107	293	309	6	0	0	

• Molecule 4 is a protein called Endogenous cargo polypeptide.


Mol	Chain	Residues	Atoms				AltConf	Trace
4	0	6	Total 30	C 18	N 6	O 6	0	0

• Molecule 5 is a protein called Translocon component PTEX150.

Mol	Chain	Residues		At	oms			AltConf	Trace				
5	d	156	Total	С	Ν	0	S	0	0				
5	u	150	1286	809	203	273	1	0	0				
5	0	156	Total	С	Ν	0	S	0	0				
5	с	150	1286	809	203	273	1	0	0				
5	b	156	Total	С	Ν	0	S	0	0				
5	0 0	150	1286	809	203	273	1	0	0				
5	9	a 156	Total	С	Ν	0	S	0	0				
5	a		1286	809	203	273	1	0	0				
5	G	156	Total	С	Ν	0	S	0	0				
5	g	g	g	g	8	150	1286	809	203	273	1	0	0
5	f	156	Total	С	Ν	0	S	0	0				
0	1	150	1286	809	203	273	1	0	0				
5	0	156	Total	С	Ν	0	S	0	0				
5	5 е	100	1286	809	203	273	1		U				

• Molecule 6 is PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER (three-letter code: AGS) (formula: $C_{10}H_{16}N_5O_{12}P_3S$).

Mol	Chain	Residues		A	tom	ıs			AltConf
6	1	1	Total	С	Ν	0	Р	S	0
0	1	1	93	30	15	36	9	3	0
6	1	1	Total	С	Ν	Ο	Р	S	0
0	1	1	93	30	15	36	9	3	0
6	1	1	Total	С	Ν	0	Р	S	0
0	1	1	93	30	15	36	9	3	0
6	2	1	Total	С	Ν	Ο	Р	S	0
0	Δ	1	31	10	5	12	3	1	0
6	3	1	Total	С	Ν	0	Р	S	0
0	5	1	62	20	10	24	6	2	0
6	3	1	Total	С	Ν	0	Р	S	0
0	0	T	62	20	10	24	6	2	0
6	4	1	Total	С	Ν	Ο	Р	\mathbf{S}	0
0	т	1	62	20	10	24	6	2	0
6	4	1	Total	С	Ν	Ο	Р	S	0
0	4	T	62	20	10	24	6	2	0
6	5	1	Total	С	Ν	Ο	Р	S	0
0	5	1	62	20	10	24	6	2	0
6	5	1	Total	С	Ν	Ο	Р	\mathbf{S}	0
0	5	1	62	20	10	24	6	2	0
6	6	1	Total	С	Ν	Ο	Р	S	0
	0	L	62	20	10	24	6	2	0
6	6	1	Total	С	Ν	Ο	Р	\mathbf{S}	0
	U	T	62	20	10	24	6	2	0

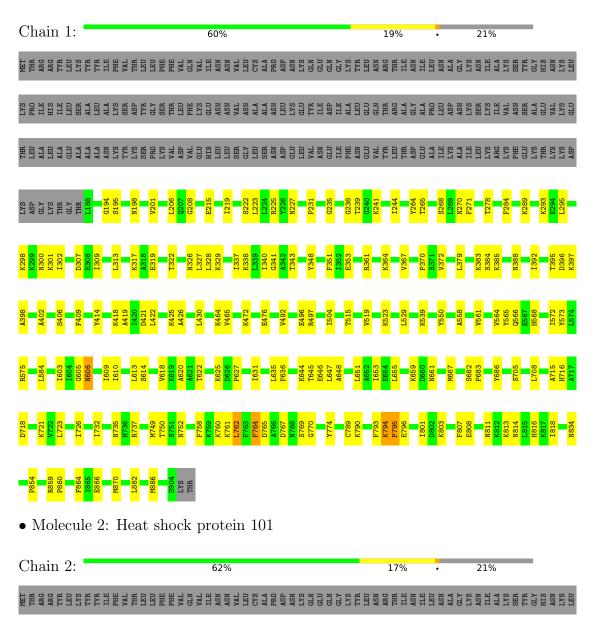
3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

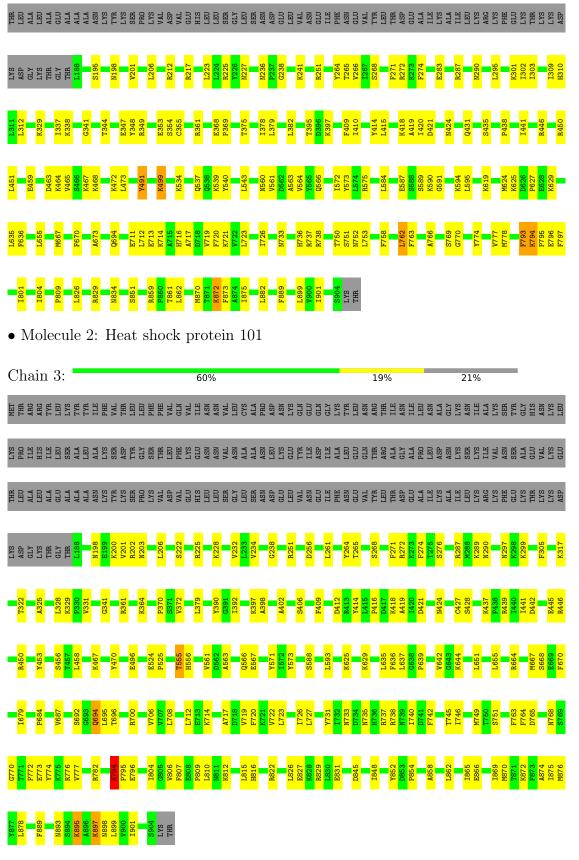
• Molecule 1: Unknown (Claw)

Chain i:	75%	• 23%
X1 X22 VUK UNK UNK	UNK UNK UNK UNK UNK UNK UNK	
• Molecule 1	: Unknown (Claw)	
Chain j:	92%	8%
X1 X1003 UNK UNK UNK UNK UNK		
• Molecule 1	: Unknown (Claw)	
Chain k:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 1	: Unknown (Claw)	
Chain n:	60%	40%
x 4 UNK UNK UNK UNK UNK UNK	лик лик лик лик лик лик лик лик лик лик	
• Molecule 1	: Unknown (Claw)	
Chain h:	78%	22%
X-2 X1003 UNK UNK UNK UNK UNK		
• Molecule 1	: Unknown (Claw)	
Chain l:	88%	12%

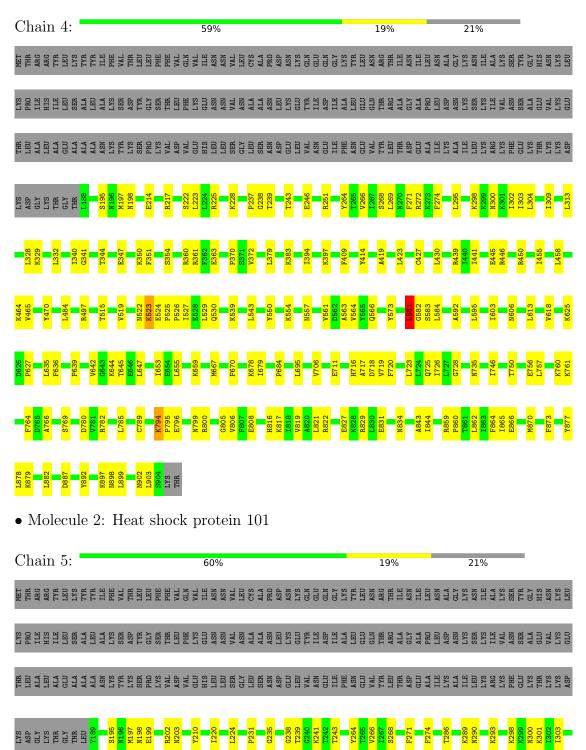
97%



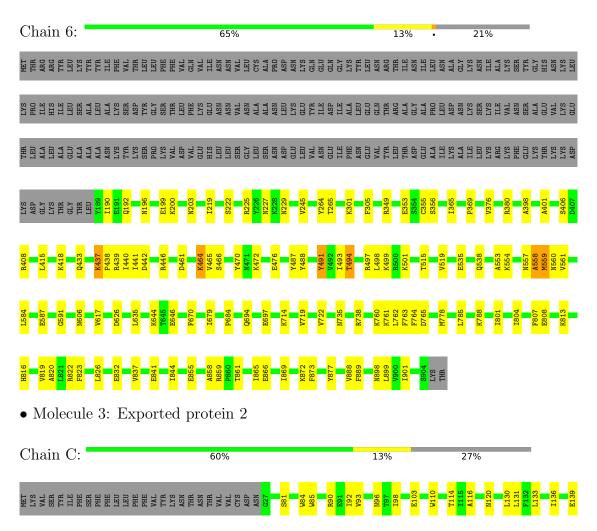
• Molecule 1: Unknown (Claw)


Chain m:

• Molecule 2: Heat shock protein 101



• Molecule 2: Heat shock protein 101

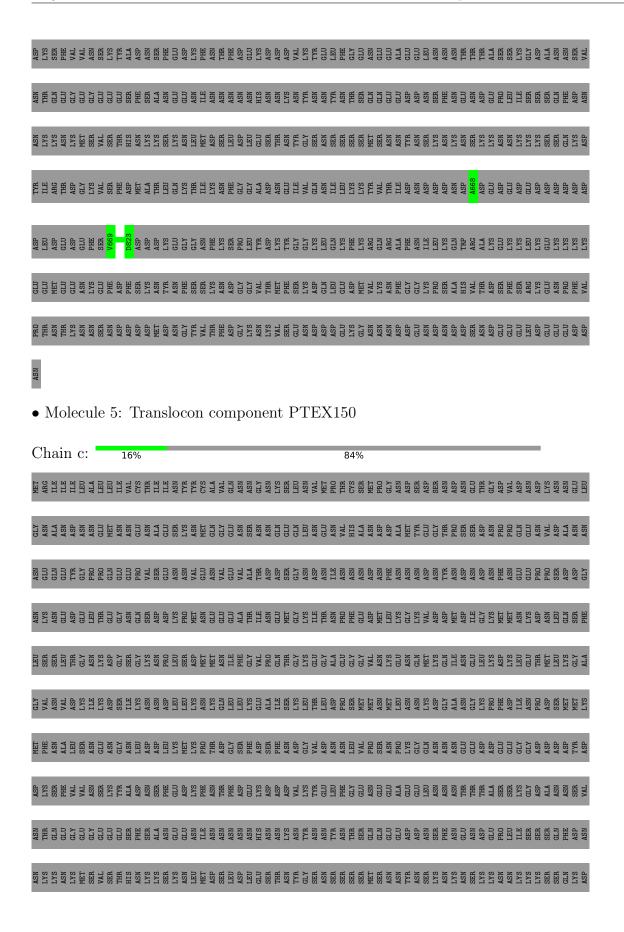


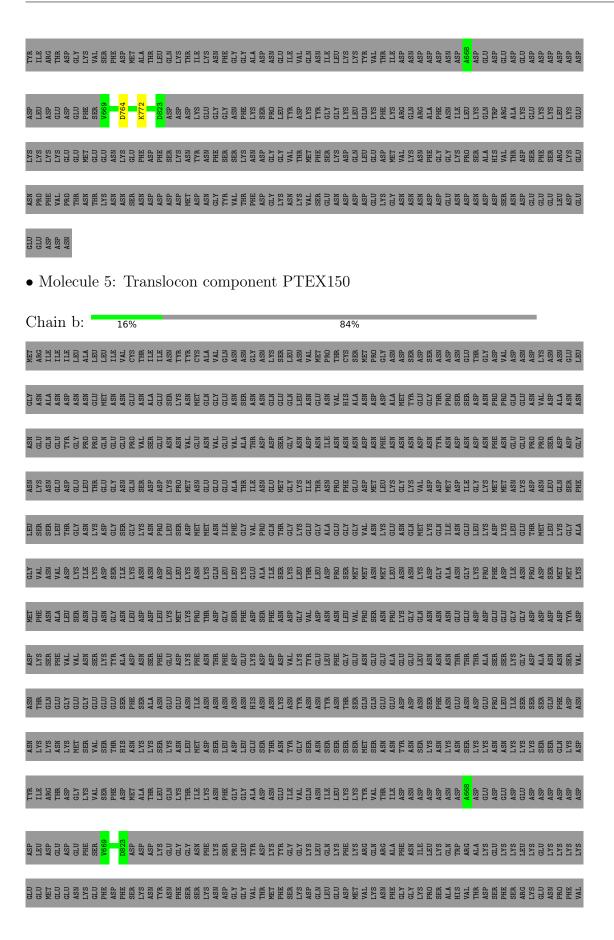
#64 V306 V465 V315 V465 H310 V465 H310 V465 H310 L498 M315 L498 R317 L498 T322 L499 T322 L499 T340 K501 R361 K526 F361 K526 K363 L529 K363 L529 K363 L529 K361 K550 L379 L572 L416 L572 L416 L572 L4140 L572 L4140 L566 L4140 L566 L4140 L583 L4140 L583 L4140 L583 L4140 L

NBSE D765 E823 NB990 7769 1653 NB91 7769 1653 NB92 7769 1653 NB92 1769 1653 NB92 17783 1640 NB92 1781 1640 NB92 1781 1640 NB92 1815 1645 NB15 1815 1656 NB18 1818 1673 NB18 1818 1673 NB18 1818 1706 NB23 1818 1711 NB34 1818 1703 NB33 1818 1713 NB34 1818 1713 NB33 1847 1713 NB34 1714 1713 NB34 1818 1714 NB34 1714 NB45

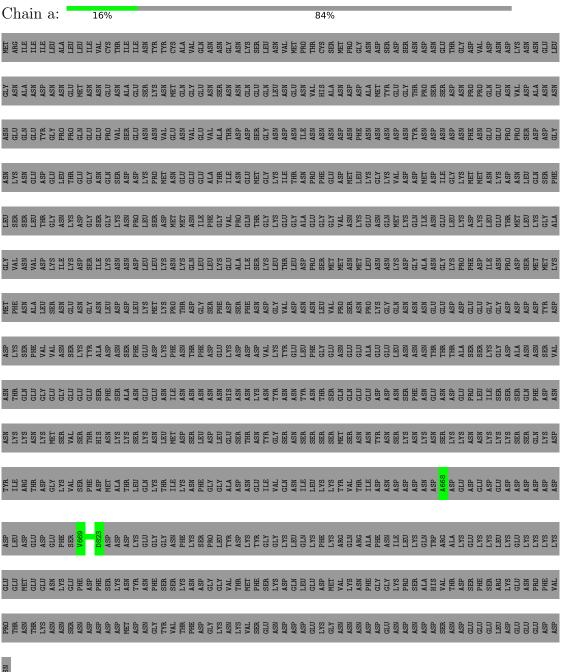
• Molecule 2: Heat shock protein 101

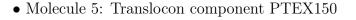
• Molecule 3: Exported protein 2


Chain D: 59% 14% 27%

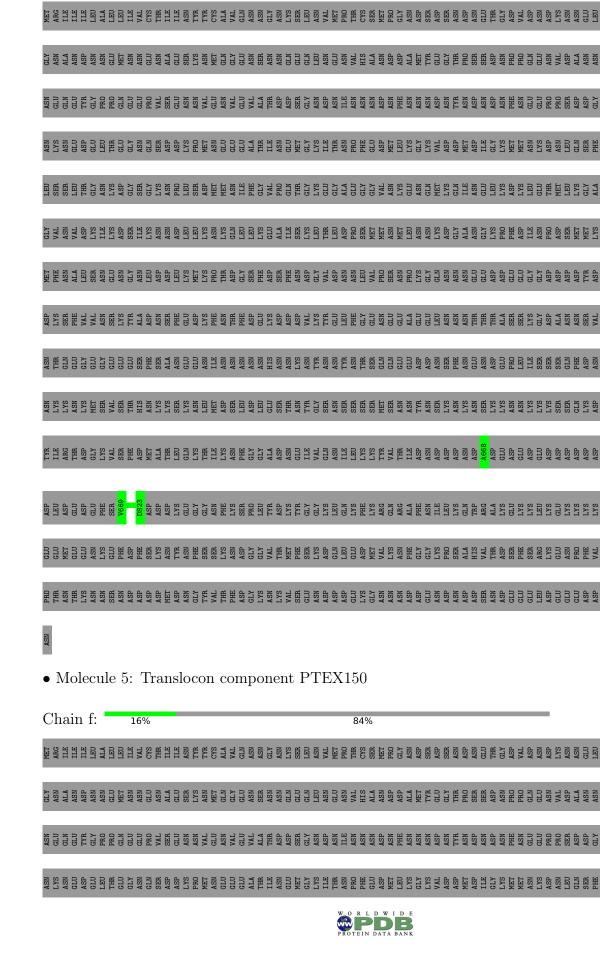

MET LYS VAL SER TYR TYR THE PHE CEU LEU LEU PHE	VAL TYR LYR ASN THR ASN VAL THR VAL VAL CYS ASN ASN ASN	K50 K58 831 W854 W854 W854 W856 W856 W856 W856 W856 W856 W856 W856	197 198 198 198 198 198 198 1114 1114 1114
1136 E139 E139 E139 R141 N142 N143 N143 0150 0150 D151 P155 S153	L154 A157 A157 A157 A156 D160 D160 V168 V171 P175	P195 K213 K213 K213 K213 K215 K215 S235 S235 GU GU GU	ASP SER THR LYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
ASP ASN ASP ASP ASP ASP ASP PHHE ASP ASP ASP ASP ASP VAL	GLU GLU GLU ASP ALA SER ASP CLE CLEU PHE LEU CLEU CLU CLU CLU	ASP GLU ASN LYS GLU	
• Molecule 3: Expo	orted protein 2		
Chain E:	57%	16%	27%
MET LYS VAL SER TYR TYR THE PHE LEU LEU LEU PHE	VAL TYR LYS LYS ASN ASN VAL VAL VAL CYS ASN ASN ASN ASN	L47 D51 881 885 W86 W86 W86 W86 W86 W86 W93	N96 197 198 198 198 198 198 110 1115 1115 1115 1115 1116 1116 1116
L133 1136 E139 C140 R141 N142 N143 R149 R149 R149	L154 A157 K158 K158 1169 Q161 Q161 Q161 V168 W171	P191 P191 P195 P195 F214 K213 S216 S216 S216 S219 S219 K220	N1223 1223 1223 1223 1223 1223 1223 1223
PR() ASP ASP ASP ASP ASP ASP ASP PHE ASP ASP ASP ASP	ASP ASN PHE ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ASP PHE LEU PYS ASN GLU LYS ASP GLU ASN LYS GLU GLU	
• Molecule 3: Expo	orted protein 2		
Chain B:	57%	15%	27%
MET LYS VAL SER TTR TTR PHE PHE PHE PHE	VAL TYR LYR LYR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	148 881 185 192 192 192 192 192 192	198 198 1100 1114 1115 1114 1115 1114 1115 1131 1131
E139 C140 C140 R141 N143 N143 R149 Q150 Q150 Q150 Q154 A157 K158 K157	1159 1160 1160 1161 1161 1176 1171 1176 1176	H206 L206 L206 M210 M210 M223 E224 F223 F228 F229 F229	D231 231 1HR THR THR ASP ASP PRO CUY CUY ASP ASP ASP ASP ASP ASP ASP ASP
ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASP ASP ASP ASP VAL CUU GLU GLU ASP ASP ASP CLY ASP DHE	LYS ASN CLU LYS LYS ASP CLU ASN LYS CLU CYS CLU	
• Molecule 3: Expo	orted protein 2		
Chain A:	54%	13%	33%
MET LIYS VAL SER TTR TTR TTR TTR TTR TTR TTR TTR PHE PHE	VAL TYPR LVPR LVPR ASN THR ASN VAL VAL CVS ASN ASN ASN ASN	153 193 881 881 881 881 881 882 881 880 891 893 893 893 806 806	138 148 158 1416 1416 1416 1416 1416 1416 1418 1418
E139 R141 R141 R141 R143 R149 R149 R149 R151 F155 F155 F155 L154 L154	K158 1159 1160 1160 1160 1151 1159 1171 1175 1175 1175 1175 1175	K213 1214 1214 1214 1215 1215 1215 1215 1215	TYR TYR GLU ASP ASP ASP SER SER ASP SER ASP ASP ASP ASP
GLY LYS PRO ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASP ASP ASP ASP ASP ASP ASP ASP ASP CLU GLU GLU GLU ALA	SER GLY ASP ASP LEU PHE LYS ASN ASN CLU SSP ASP ASP ASP ASP ASN ASN ASN CLU	
• Molecule 3: Expo	orted protein 2		
Chain G:	56%	11%	33%
		WORLDWIDE PROTEIN DATA BANK	

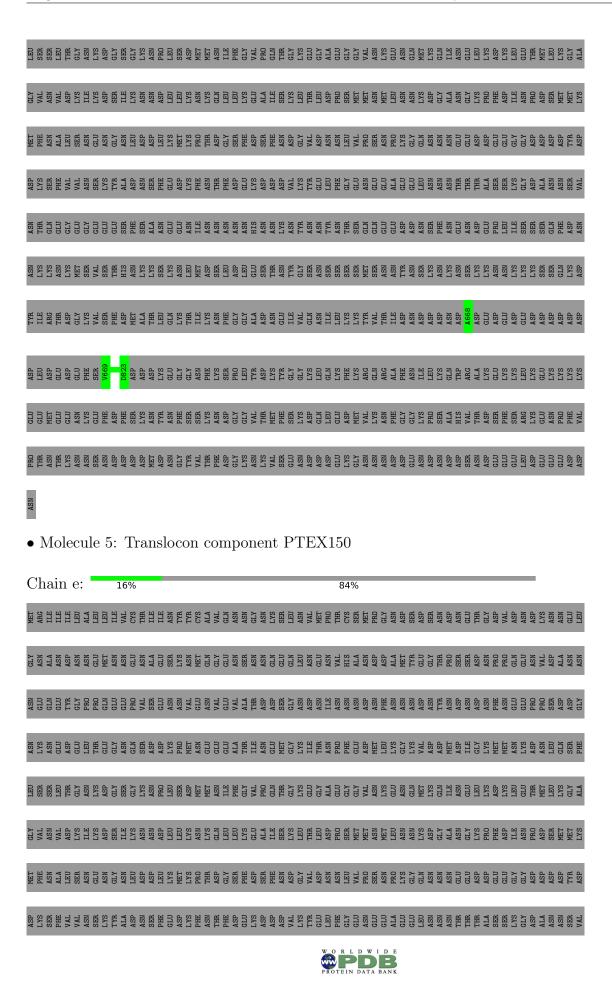
MET LYS VAL SER TYR TYR TLE PHE SER PHE	LEU LEU PHE VAL TTR TTR ASN VAL VAL VAL VAL ASN ASP ASN	881 W84 W85 W85 W85 W85 W85 W85 W85 W110 W110	114 114 115 1115 1130 1130 1133 1136 1133 1136 1133 1136
C140 R141 N142 N143 R149 Q150 C156 L154	A157 X158 1169 D160 P166 P176 P176 P191 P195 P195 P195 P195 SGR	LYS LYS ASN ASN CLV CLV SSR CLV CLV SSR ASP ASP ASP SSR SSR SSR SSR SSR SSR SSR SSR SSR S	SER GLU THR ASP SER SER LYS CLY ASP ASP ASP ASP ASP ASP ASP ASP ASP
ASP ASP ASP PHE ASP ASP ASP ASP ASN	PHE ASP ASP ASP ASP CHL CHL CLU CLU CLU ASP CLV ASP CLY ASP CLY ASP ASV ASN	GLU LYS LYS ASP GLU ASN LYS GLU	
• Molecule 3:	Exported protein 2		
Chain F:	59%	13% •	27%
MET LYS VAL SER TYR TTR THE SER PHE	LEU PHE PHE VAL TTR VAL ASN VAL VAL VAL VAL ASN ASN ASN ASN	831 W84 W85 W85 W85 E30 192 192 192 192 198 198 198 198	W110 W116 T114 T116 A116 L133 L133 L133 E139 C140 C140 R141 N142
N143 R149 Q150 L154 L154 K158 K158 T159	D160 Y168 W171 P175 P191 P195 P195 S208 Y209 Y209 Y209 S208 S208 S208 S208 S208 S208 S208 S208	K213 L214 L214 K221 K221 F230 F231 V232 S234 S234 S234 S234 S234 S234 S234 S	THR ASP SER SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
ASP ASP ASP ASP ASP ASP ASP PHE ASP ASP	ASP ASP VAL VAL VAL CUU CUU CUU CUU CUU CUU SPHE CUY CUV CUV CUV CUV CUV CUV CUV CUV CUV CUV	LYS ASP ASN LYS GLU GLU	
• Molecule 4:	Endogenous cargo polyp	oeptide	
Chain 0:	83%		17%
X15			
• Molecule 5:	Translocon component I	PTEX150	
	Translocon component I	PTEX150 84%	
Chain d:		84%	SER ASN ASN ASN ASN THR GLU THR ASN ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
Chain d:	16%	LEU VAL MRT PRA THR THR CYS SER ASP ASP ASP ASP ASP	
Chain d: We will all all all all all all all all all	VAL CYS THR TLE TLE TLE ASN TYR ASN VAL CYS ALA ASN ASN ASN ASN ASN ASN SER	LEU LEU LEU LEU ASN VAL LEU ASN VAL ASN VAL ASN VAL ASN NAR NAR ASN ASP PRO ASP PRO ASP PRO ASP	CLY TIRR PRO PRO SER SER SER ASN PRO CLU CLU CLU CLU CLU CLU ASN ASN ASN ASN
Chain d: arr	10% ASN VAL ASN VAL CYS ASN VAL CYS ASN VAL CYS ALN TILE ASN TTR ASN TYR ASN TYR ASN TYR ASN ASN TYR ASN	ASY LEU LEU ASY LEU KSY ASY LEU MET ASY GLU MET ASY GLU MET ASY AIL STR ASY AIL STR ASY AIL STR ASY AIL STR ASY AIL ASY ASY AIL ASY ASY AIL ASY ASY AIL ASY ASY AIL ASY ASY AIL ASY	ASN GLY TYR THR ASP SER ASP SER ASP SER ASN ASN ASN ASN ASN ASN ASN ASN CUU GLU PRO GLU GLU ASN ASN ASN ASN ASN ASP ASN ASN ASP ASN ASP ASN ASN ASP ASN
Chain d: arit arit arit arit arit arit arit arit	GLU ASN VAL PRO GLU CYS VAL ASN VAL SER ALA THR SER ALA TLE SER ALA TLE ASN FRO CYS ASN FRO CYS ASN TTR TR ASN TTR TR ASN TYR TR ASN TYR TR ASN TTR TR ASN TTR TR VAL GLU GLN VAL GLU GLN VAL SSR ASN ASN TTR TR ASN GLU GLN ASN ASN CLN SER GLU SSR	GLY GLY GLY GLY GLY LUFS ASP GLU LEU THR ASP GLU MET THR ASN CLU MET ASP GLU MET MET ASN LUN MET MET ASN LUN MET MET ASN LUN MET MET ASN ASN MAL THR PHE ASN HLS CYS ASN ASN ASN MET ASN ASN ASN MET ASN ASN ASN MET VAL ASN ASN MET VAL ASN ASN MET VAL ASN ASN ASN	ASP ASN GLY ASN GLY ASP ASN GLY ASP TTR ASP TTR ASP TTR THR THR MET ASN SER ASN GLY ASP PRO TLYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
Chain d: I and chain all all all all all all all all all al	48% GLU ASN GLU ASN VAL GLN PRO GLU CYS SER YAL ASN TTR ASP GLU CUU CYS LYS ASN CUU CYS PRO GLU CUU TLE LYS ASN TYR MET VAL ASN TYR ASN CUU NET CYS GLU VAL GLY VAL GLU VAL GLY VAL GLU ASN CUU CYS GLU ASN CUU CYS GLU ASN CUN CYS GLU ASN CUN CYS GLU ASN CUN CYS GLU SER ASN TYR MET SER CUU SER ASN CUN SER	GLY GLY GLY GLY GLY GLY LU LYS LYS GLY GLM LEU LSN GLY THR ASP ASN VAL GLY THR ASN GLU MAN GLY THR ASN GLU MAN GLY THR ASN GLU MAL GLY PHE ASN VAL THR GLY PHE ASN HIS CVS GLY GLU ASN MAL THR KSN KSN ASN MAR MAR KSN KSN ASN MAR ASN KSN KSN ASN ASN MAR KSN KSN KSN MAR MAR	LYS ASP ASN GLY ASN GLY LYS ASP TYR THR THR TLE MET ASN SER ASN ASP SER GLU TLE MET ASN SER LYS ASN ASN SER LYS ASN ASN ASN ASN LYS GLU CLY ASP ASN LYS ASN ASN ASN ASN ASN THR ASN CLU



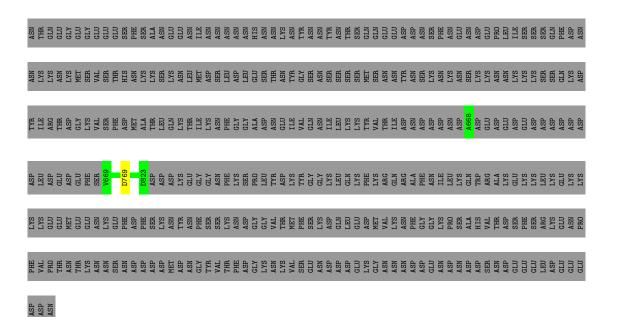


- ASN
- Molecule 5: Translocon component PTEX150


ASN



16%



Page 17

DB

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	78499	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	130000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AGS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
2	1	0.34	0/5843	0.57	0/7848
2	2	0.40	0/5843	0.61	0/7848
2	3	0.42	0/5843	0.65	0/7848
2	4	0.39	0/5843	0.61	0/7848
2	5	0.36	0/5835	0.58	1/7837~(0.0%)
2	6	0.32	0/5835	0.59	1/7837~(0.0%)
3	А	0.32	0/1607	0.57	0/2175
3	В	0.35	0/1753	0.60	0/2369
3	С	0.32	0/1753	0.57	0/2369
3	D	0.33	0/1753	0.56	0/2369
3	Е	0.33	0/1762	0.59	0/2381
3	F	0.33	0/1753	0.61	0/2369
3	G	0.32	0/1607	0.56	0/2175
5	а	0.29	0/1309	0.52	0/1760
5	b	0.29	0/1309	0.52	0/1760
5	с	0.29	0/1309	0.52	0/1760
5	d	0.29	0/1309	0.52	0/1760
5	е	0.28	0/1309	0.52	0/1760
5	f	0.28	0/1309	0.51	0/1760
5	g	0.29	0/1309	0.53	0/1760
All	All	0.35	0/56193	0.58	2/75593~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	i	0	1
2	1	0	3
2	2	0	3

Mol	Chain	#Chirality outliers	#Planarity outliers
2	3	0	7
2	4	0	4
2	5	0	3
3	А	0	1
3	В	0	3
3	С	0	1
3	D	0	1
3	Е	0	2
3	F	0	3
3	G	0	1
All	All	0	33

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	6	765	ASP	N-CA-CB	6.78	122.80	110.60
2	5	317	LYS	O-C-N	-6.19	112.80	122.70

There are no chirality outliers.

All (33) planarity outliers are listed below	All (
--	-------

Mol	Chain	Res	Type	Group
2	1	464	LYS	Peptide
2	1	758	PHE	Peptide
2	1	794	LYS	Peptide
2	2	793	PHE	Peptide
2	2	794	LYS	Peptide
2	2	872	LYS	Peptide
2	3	412	ASP	Peptide
2	3	555	THR	Peptide
2	3	694	GLN	Peptide
2	3	731	TYR	Peptide
2	3	794	LYS	Peptide
2	3	895	LYS	Peptide
2	3	897	LYS	Peptide
2	4	464	LYS	Peptide
2	4	581	LEU	Peptide
2	4	794	LYS	Peptide
2	4	897	LYS	Peptide
2	5	317	LYS	Mainchain

Mol	Chain	Res	Type	Group
2	5	464	LYS	Peptide
2	5	524	GLU	Peptide
3	А	96	ASN	Peptide
3	В	222	ASN	Peptide
3	В	229	GLU	Peptide
3	В	96	ASN	Peptide
3	С	96	ASN	Peptide
3	D	96	ASN	Peptide
3	Е	231	ASP	Peptide
3	Е	96	ASN	Peptide
3	F	221	LYS	Peptide
3	F	233	ASP	Peptide
3	F	96	ASN	Peptide
3	G	96	ASN	Peptide
1	i	22	UNK	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	h	235	0	53	0	0
1	i	230	0	50	0	0
1	j	275	0	63	0	0
1	k	300	0	67	0	0
1	1	265	0	57	0	0
1	m	290	0	62	0	0
1	n	180	0	38	0	0
2	1	5752	0	5955	130	0
2	2	5752	0	5956	131	0
2	3	5752	0	5957	130	0
2	4	5752	0	5957	127	0
2	5	5744	0	5945	113	0
2	6	5744	0	5946	92	0
3	А	1571	0	1635	25	0
3	В	1715	0	1767	29	0
3	С	1715	0	1767	32	0
3	D	1715	0	1767	42	0
3	Е	1724	0	1773	37	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	F	1715	0	1767	26	0
3	G	1571	0	1635	19	0
4	0	30	0	9	1	0
5	a	1286	0	1212	0	0
5	b	1286	0	1212	0	0
5	с	1286	0	1212	0	0
5	d	1286	0	1212	0	0
5	е	1286	0	1212	0	0
5	f	1286	0	1212	0	0
5	g	1286	0	1212	0	0
6	1	93	0	36	16	0
6	2	31	0	12	1	0
6	3	62	0	24	2	0
6	4	62	0	24	8	0
6	5	62	0	24	7	0
6	6	62	0	24	4	0
All	All	57401	0	56854	816	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (816) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:3:764:PHE:CE1	3:C:213:LYS:HD3	1.97	0.99
2:3:764:PHE:CZ	3:C:213:LYS:CD	2.46	0.98
2:3:764:PHE:CZ	3:C:213:LYS:HD3	1.99	0.96
2:1:859:ARG:NH2	6:1:1003:AGS:O3A	1.98	0.95
2:6:437:LYS:HB3	2:6:437:LYS:HZ2	1.29	0.94
2:2:438:PRO:HG3	2:2:491:TYR:CE2	2.04	0.91
2:6:763:PHE:CE2	2:6:855:GLU:HA	2.07	0.90
2:1:859:ARG:NH2	6:1:1003:AGS:PB	2.44	0.89
2:1:859:ARG:NH2	6:1:1003:AGS:O1B	2.05	0.89
2:3:764:PHE:CZ	3:C:213:LYS:HD2	2.08	0.87
2:5:765:ASP:CG	3:E:213:LYS:HZ1	1.78	0.87
3:F:207:SER:O	3:F:211:GLU:HG2	1.74	0.87
2:6:760:LYS:HA	2:6:763:PHE:HB2	1.57	0.86
2:4:760:LYS:NZ	3:D:213:LYS:NZ	2.24	0.86
2:5:765:ASP:OD1	3:E:213:LYS:NZ	2.07	0.86
2:4:760:LYS:CE	3:D:213:LYS:HZ3	1.90	0.85
2:6:762:LEU:HD21	2:6:778:MET:HG2	1.59	0.85

Continued from prev Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:4:760:LYS:HE3	3:D:213:LYS:NZ	1.91	0.84
2:4:780:ASP:OD1	3:E:215:LYS:NZ	2.10	0.84
2:6:438:PRO:HB3	2:6:559:MET:HE3	1.58	0.84
2:4:760:LYS:HE3	3:D:213:LYS:HZ3	1.42	0.83
2:2:441:ILE:CD1	2:2:491:TYR:HD2	1.90	0.83
2:2:862:LEU:HD11	6:2:1001:AGS:H1'	1.60	0.82
2:2:763:PHE:HA	2:2:766:ALA:HB2	1.62	0.81
2:4:760:LYS:CE	3:D:213:LYS:NZ	2.45	0.78
2:2:499:LYS:HE2	2:2:499:LYS:H	1.50	0.77
2:1:603:ILE:HA	6:1:1003:AGS:HN62	1.49	0.77
2:1:603:ILE:O	2:1:603:ILE:HG23	1.83	0.77
2:2:499:LYS:H	2:2:499:LYS:CD	1.96	0.77
2:6:497:ARG:O	2:6:501:LYS:N	2.17	0.77
2:6:553:ALA:O	2:6:554:LYS:HG2	1.84	0.76
2:6:763:PHE:CZ	2:6:855:GLU:HA	2.20	0.76
2:6:433:GLN:OE1	2:6:559:MET:HA	1.86	0.75
2:6:497:ARG:O	2:6:501:LYS:HG3	1.86	0.75
2:5:783:LEU:HD11	3:F:218:GLU:HB3	1.65	0.75
2:2:499:LYS:H	2:2:499:LYS:CE	2.00	0.75
2:1:770:GLY:N	2:1:774:TYR:HD2	1.86	0.74
2:2:441:ILE:HD12	2:2:491:TYR:HD2	1.53	0.74
3:A:152:PRO:HB2	3:G:131:LEU:HB3	1.69	0.74
2:5:440:ILE:HD11	2:5:557:ASN:HB3	1.71	0.73
2:5:765:ASP:CG	3:E:213:LYS:NZ	2.43	0.72
2:1:859:ARG:HH22	6:1:1003:AGS:PB	2.09	0.72
2:2:499:LYS:HE2	2:2:499:LYS:N	2.03	0.72
2:6:841:GLU:HG2	2:6:844:ILE:HD12	1.71	0.72
2:1:603:ILE:CG2	2:1:610:ILE:HD11	2.20	0.71
2:1:752:ASN:OD1	6:1:1003:AGS:S1G	2.49	0.71
2:1:606:ASN:HD21	2:1:808:GLU:H	1.37	0.71
2:6:440:ILE:HG21	2:6:487:TYR:HB3	1.74	0.70
2:1:225:ARG:HD3	2:2:424:ASN:HB3	1.73	0.69
2:6:437:LYS:HB3	2:6:437:LYS:NZ	2.06	0.69
6:1:1003:AGS:N3	6:1:1003:AGS:H2'	2.07	0.69
3:E:213:LYS:O	3:E:217:MET:N	2.24	0.69
2:1:646:GLU:HG2	6:1:1003:AGS:C2	2.22	0.69
2:1:769:SER:C	2:1:774:TYR:HD2	1.96	0.69
2:3:854:PRO:HG3	3:C:217:MET:HE1	1.74	0.68
2:4:899:LEU:HB3	3:D:231:ASP:HB2	1.73	0.68
2:5:455:ILE:HG12	2:5:458:LEU:HD12	1.74	0.68
2:3:764:PHE:HZ	3:C:213:LYS:HD2	1.53	0.68

Continued from prev		Interatomic Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:3:256:ASP:OD2	2:4:446:ARG:NH2	2.26	0.68	
2:4:760:LYS:NZ	3:D:213:LYS:HZ3	1.87	0.68	
2:2:763:PHE:HE1	2:2:809:PRO:HG3	1.59	0.68	
2:2:441:ILE:HD12	2:2:491:TYR:CD2	2.29	0.68	
2:4:584:LEU:HD11	2:4:655:LEU:HD22	1.77	0.67	
2:6:225:ARG:HB2	2:6:229:ASN:HD21	1.59	0.67	
2:2:737:ARG:HE	2:3:694:GLN:HB3	1.60	0.67	
2:3:854:PRO:HG3	3:C:217:MET:CE	2.25	0.66	
2:2:670:PHE:HB3	2:2:719:VAL:HG21	1.79	0.65	
2:1:645:THR:HG22	2:1:750:THR:HG21	1.79	0.65	
3:C:131:LEU:HB3	3:D:152:PRO:HB2	1.79	0.65	
2:4:859:ARG:HH21	6:4:1002:AGS:H4'	1.60	0.65	
2:2:236:ASN:O	2:2:241:LYS:NZ	2.30	0.65	
2:5:859:ARG:NH2	6:5:1002:AGS:O2B	2.30	0.65	
2:2:349:ARG:HH12	2:3:700:ARG:HE	1.45	0.64	
2:3:898:ASN:HB3	3:C:230:PHE:HA	1.79	0.64	
2:3:289:LYS:HE2	2:4:272:ARG:HH21	1.63	0.64	
2:6:498:LEU:HD12	2:6:499:LYS:N	2.12	0.64	
2:6:869:ILE:HA	2:6:872:LYS:HE3	1.80	0.64	
2:1:770:GLY:HA3	2:1:774:TYR:CD2	2.32	0.64	
2:2:491:TYR:HD1	2:2:491:TYR:O	1.80	0.64	
2:4:760:LYS:NZ	3:D:213:LYS:HZ1	1.96	0.64	
2:1:635:LEU:HB2	2:1:801:ILE:HD13	1.80	0.63	
2:5:197:MET:HG2	2:5:266:VAL:HB	1.79	0.63	
2:3:421:ASP:HA	2:3:424:ASN:HB2	1.81	0.63	
2:5:660:ASP:O	2:5:702:LYS:NZ	2.31	0.63	
2:2:762:LEU:HD11	2:2:778:MET:SD	2.39	0.63	
2:2:438:PRO:CG	2:2:491:TYR:CE2	2.82	0.63	
2:1:603:ILE:HG23	2:1:610:ILE:HD11	1.81	0.62	
2:5:210:TYR:HB3	6:5:1001:AGS:H2	1.81	0.62	
2:5:498:LEU:HD23	2:5:501:LYS:HD2	1.81	0.62	
2:3:406:SER:HB2	2:3:418:LYS:HB3	1.80	0.62	
2:1:329:LYS:O	2:1:361:ARG:NH1	2.32	0.62	
2:3:854:PRO:CG	3:C:217:MET:CE	2.78	0.62	
2:6:406:SER:HB2	2:6:418:LYS:HB3	1.82	0.62	
2:1:682:SER:O	2:1:735:ASN:ND2	2.33	0.62	
2:1:811:ASN:H	2:1:814:ASN:HD22	1.46	0.62	
2:2:499:LYS:H	2:2:499:LYS:HD2	1.62	0.62	
2:3:782:ARG:NH1	3:D:222:ASN:OD1	2.33	0.62	
2:4:706:VAL:HG12	2:4:746:ILE:HB	1.81	0.62	
2:5:765:ASP:HB2	3:E:213:LYS:NZ	2.15	0.62	

Continued from prev		Interatomic Cla	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:E:218:GLU:HA	3:E:221:LYS:HG2	1.81	0.62
2:1:201:VAL:HG22	2:1:206:LEU:HB2	1.82	0.62
2:6:644:LYS:HA	2:6:807:PHE:CZ	2.35	0.62
2:1:322:THR:HA	2:1:326:ASN:HD22	1.65	0.61
2:5:619:LYS:NZ	2:6:866:GLU:O	2.31	0.61
6:1:1001:AGS:O1B	2:2:241:LYS:N	2.33	0.61
2:1:723:LEU:HD23	2:1:726:ILE:HD12	1.82	0.61
2:1:613:LEU:CD1	2:1:647:LEU:HD11	2.30	0.61
2:1:770:GLY:HA3	2:1:774:TYR:HB2	1.83	0.61
2:1:647:LEU:O	2:1:651:LEU:HG	2.00	0.61
2:4:796:GLU:OE2	2:5:752:ASN:ND2	2.32	0.61
2:5:852:TYR:O	3:E:220:LYS:NZ	2.34	0.61
2:4:887:ASP:HB2	2:4:903:LEU:HB2	1.83	0.61
2:6:265:THR:H	2:6:301:LYS:HB3	1.66	0.61
2:3:770:GLY:HA2	2:3:774:TYR:HB2	1.82	0.61
3:A:81:SER:HB2	3:A:114:THR:HG21	1.83	0.61
2:2:635:LEU:HB2	2:2:801:ILE:HD13	1.83	0.61
3:D:90:ARG:NH2	3:D:191:PRO:O	2.34	0.61
3:B:81:SER:HB2	3:B:114:THR:HG21	1.83	0.61
3:A:90:ARG:NH2	3:A:191:PRO:O	2.34	0.60
2:1:515:THR:HA	2:1:519:VAL:HB	1.83	0.60
3:D:81:SER:HB2	3:D:114:THR:HG21	1.83	0.60
2:2:763:PHE:CE1	2:2:809:PRO:HG3	2.36	0.60
3:C:81:SER:HB2	3:C:114:THR:HG21	1.83	0.60
3:G:90:ARG:NH2	3:G:191:PRO:O	2.34	0.60
2:3:198:ASN:HD21	2:3:265:THR:HA	1.67	0.60
2:2:627:PRO:HG2	2:2:629:LYS:HB2	1.82	0.60
2:4:625:LYS:HG3	2:5:829:ARG:HG3	1.83	0.60
3:G:81:SER:HB2	3:G:114:THR:HG21	1.83	0.60
2:3:664:ARG:HA	2:3:708:LEU:HB2	1.83	0.60
2:4:653:ILE:HG12	2:4:659:LYS:HG2	1.83	0.60
2:2:539:LYS:O	2:2:543:LEU:N	2.34	0.60
3:C:90:ARG:NH2	3:C:191:PRO:O	2.34	0.60
3:F:90:ARG:NH2	3:F:191:PRO:O	2.34	0.60
3:E:81:SER:HB2	3:E:114:THR:HG21	1.83	0.60
3:E:90:ARG:NH2	3:E:191:PRO:O	2.34	0.60
2:2:198:ASN:HD22	2:2:265:THR:HG22	1.67	0.59
2:3:225:ARG:HE	2:3:228:LYS:HB2	1.66	0.59
2:4:309:ILE:HD11	2:4:341:GLY:HA3	1.83	0.59
3:F:81:SER:HB2	3:F:114:THR:HG21	1.83	0.59
2:1:770:GLY:N	2:1:774:TYR:CD2	2.70	0.59

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:2:619:LYS:NZ	2:3:866:GLU:O	2.36	0.59
2:4:379:LEU:HD11	2:4:419:ALA:HB1	1.83	0.59
2:4:636:PHE:HB2	2:4:750:THR:HG22	1.84	0.59
2:2:723:LEU:HD23	2:2:726:ILE:HD12	1.83	0.59
2:3:629:LYS:NZ	2:3:727:LEU:O	2.34	0.59
2:4:223:LEU:HD11	2:4:340:ILE:HD11	1.85	0.59
2:5:439:ARG:NH2	2:5:557:ASN:OD1	2.36	0.59
2:6:901:ILE:HA	3:F:233:ASP:HB2	1.83	0.59
3:B:90:ARG:NH2	3:B:191:PRO:O	2.34	0.59
2:3:639:PRO:O	2:3:644:LYS:NZ	2.35	0.59
2:5:606:ASN:HD21	2:5:808:GLU:H	1.49	0.59
2:5:783:LEU:HD11	3:F:218:GLU:CB	2.32	0.59
2:3:684:PRO:HD3	2:3:735:ASN:HB3	1.85	0.59
2:4:264:TYR:HD1	2:4:302:ILE:H	1.51	0.59
3:A:210:MET:O	3:A:214:LEU:HG	2.03	0.59
2:1:504:ILE:HD13	2:1:539:LYS:HD3	1.84	0.58
2:3:712:LEU:HD11	2:3:749:MET:HB3	1.84	0.58
2:5:425:LYS:HB3	2:5:572:ILE:HG21	1.84	0.58
2:1:603:ILE:HG13	6:1:1003:AGS:N6	2.18	0.58
2:1:620:ALA:HB2	2:1:631:ILE:HG21	1.86	0.58
2:2:223:LEU:O	2:2:338:LYS:NZ	2.35	0.58
2:5:799:ASN:HB3	2:6:859:ARG:HD2	1.85	0.58
2:3:696:THR:HB	2:3:740:ILE:HD13	1.85	0.58
2:4:606:ASN:HD21	2:4:808:GLU:H	1.51	0.58
2:1:194:GLY:O	2:1:270:ASN:ND2	2.37	0.58
2:1:317:LYS:HG3	2:1:319:GLU:H	1.68	0.58
2:4:645:THR:OG1	6:4:1002:AGS:O2A	2.22	0.58
2:1:796:GLU:OE2	2:2:752:ASN:ND2	2.37	0.57
3:B:209:TYR:CD2	3:B:210:MET:CE	2.87	0.57
2:2:225:ARG:HH12	2:3:427:CYS:HB2	1.69	0.57
2:3:695:LEU:HD23	2:3:696:THR:HG23	1.86	0.57
2:2:309:ILE:HD11	2:2:341:GLY:HA3	1.85	0.57
2:5:271:PHE:HA	2:5:274:PHE:HD2	1.68	0.57
2:2:379:LEU:HD11	2:2:419:ALA:HB1	1.86	0.57
2:5:379:LEU:HD11	2:5:419:ALA:HB1	1.86	0.57
2:6:264:TYR:HD1	2:6:301:LYS:HA	1.70	0.57
2:3:379:LEU:HD11	2:3:419:ALA:HB1	1.86	0.57
2:4:237:PRO:HG3	2:4:344:THR:HB	1.87	0.57
2:1:653:ILE:HG12	2:1:659:LYS:HG2	1.86	0.57
2:1:803:LYS:HE2	3:B:223:ILE:H	1.70	0.57
2:3:872:LYS:HA	2:3:875:ILE:HB	1.86	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:667:MET:HB2	2:2:711:GLU:H	1.70	0.57
2:6:493:ILE:O	2:6:497:ARG:HG3	2.05	0.57
2:1:625:LYS:HE3	2:2:829:ARG:HD2	1.86	0.57
2:2:636:PHE:HB2	2:2:750:THR:HG22	1.87	0.57
2:2:712:LEU:HB2	2:2:751:SER:HB3	1.87	0.57
2:4:760:LYS:HZ1	3:D:213:LYS:NZ	2.01	0.57
2:5:721:LYS:HD3	2:6:714:LYS:HB3	1.87	0.57
2:5:883:VAL:HG12	2:5:885:ASP:H	1.70	0.57
2:6:898:ASN:HB3	3:F:230:PHE:HA	1.87	0.57
2:2:851:SER:HB2	2:2:861:THR:HA	1.87	0.56
2:3:667:MET:HG3	2:3:714:LYS:HB2	1.87	0.56
2:4:766:ALA:O	2:4:769:SER:OG	2.22	0.56
2:5:238:GLY:HA3	2:5:414:TYR:HB2	1.87	0.56
2:2:238:GLY:HA3	2:2:414:TYR:HB2	1.87	0.56
2:2:271:PHE:HA	2:2:274:PHE:HD2	1.70	0.56
2:2:899:LEU:HD23	3:B:231:ASP:HB2	1.87	0.56
2:2:624:MET:HG3	2:3:874:ALA:HB2	1.88	0.56
2:5:370:PRO:HG3	2:5:416:PRO:HD3	1.86	0.56
2:5:519:VAL:HG12	2:5:525:PRO:HD3	1.86	0.56
2:1:264:TYR:HD1	2:1:302:ILE:H	1.54	0.56
3:B:205:HIS:O	3:B:209:TYR:N	2.39	0.56
2:3:458:LEU:O	2:3:470:TYR:OH	2.20	0.56
2:6:763:PHE:CD2	2:6:855:GLU:HG2	2.41	0.56
2:3:642:VAL:O	6:3:1002:AGS:O1A	2.24	0.56
2:4:243:THR:HG21	6:4:1001:AGS:H2'	1.88	0.56
2:3:687:VAL:HG23	4:0:10:UNK:H2	1.71	0.55
2:1:231:PRO:HG2	2:1:340:ILE:HG13	1.88	0.55
2:2:329:LYS:O	2:2:361:ARG:NH1	2.38	0.55
2:3:706:VAL:HG12	2:3:746:ILE:HB	1.88	0.55
2:3:776:ARG:NH2	3:D:215:LYS:NZ	2.53	0.55
3:C:152:PRO:HB2	3:B:131:LEU:HB3	1.89	0.55
2:2:587:GLU:HB3	2:2:591:GLY:HA3	1.88	0.55
2:3:441:ILE:O	2:3:445:GLU:N	2.40	0.55
2:4:329:LYS:O	2:4:361:ARG:NH1	2.39	0.55
2:1:223:LEU:O	2:1:338:LYS:NZ	2.39	0.55
2:4:383:LYS:NZ	2:4:394:ILE:O	2.37	0.55
2:5:635:LEU:HB2	2:5:801:ILE:HD13	1.89	0.55
2:6:488:TYR:HA	2:6:491:TYR:HD2	1.72	0.55
2:1:765:ASP:C	2:1:767:ASP:H	2.10	0.55
2:2:870:MET:HA	2:2:873:PHE:HD2	1.71	0.55
2:3:272:ARG:O	2:3:276:SER:OG	2.25	0.55

Continued from preve		Interatomic (Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:1:613:LEU:HD11	2:1:647:LEU:HD11	1.89	0.55
2:4:760:LYS:HZ1	3:D:213:LYS:HZ3	1.55	0.55
2:1:348:TYR:HE2	2:1:364:LYS:HE2	1.72	0.55
2:3:329:LYS:O	2:3:361:ARG:NH1	2.40	0.55
2:4:757:LEU:HD11	2:4:785:LEU:HD21	1.88	0.55
2:2:717:ALA:HA	2:2:720:PHE:HD2	1.72	0.54
2:3:635:LEU:HB3	2:3:804:ILE:HG12	1.89	0.54
2:4:409:PHE:HB3	2:4:573:TYR:CZ	2.42	0.54
2:5:765:ASP:CB	3:E:213:LYS:NZ	2.70	0.54
2:2:441:ILE:CD1	2:2:491:TYR:CD2	2.81	0.54
2:2:794:LYS:O	2:2:796:GLU:N	2.39	0.54
2:1:397:LYS:HE2	2:2:465:VAL:HG21	1.88	0.54
2:3:238:GLY:HA3	2:3:414:TYR:HB3	1.89	0.54
2:1:603:ILE:O	2:1:603:ILE:CG2	2.53	0.54
2:1:605:GLY:O	2:1:606:ASN:HB2	2.07	0.54
2:4:684:PRO:HD3	2:4:735:ASN:HB3	1.89	0.54
2:3:692:SER:OG	2:3:738:ARG:NH1	2.38	0.54
2:2:859:ARG:O	2:2:862:LEU:HB2	2.08	0.54
2:3:895:LYS:HB2	2:3:897:LYS:HB2	1.89	0.54
2:4:423:LEU:O	2:4:427:CYS:N	2.37	0.54
2:5:195:SER:HG	2:5:268:SER:HG	1.44	0.54
3:B:206:LEU:HA	3:B:209:TYR:HB3	1.90	0.54
2:1:293:LYS:HG3	2:2:272:ARG:HH22	1.72	0.54
2:5:642:VAL:HG11	2:5:809:PRO:HA	1.90	0.54
2:5:723:LEU:HD23	2:5:726:ILE:HD12	1.90	0.54
3:C:141:ARG:NE	3:C:160:ASP:OD1	2.41	0.54
2:2:625:LYS:HD2	2:3:826:LEU:HG	1.89	0.54
3:D:141:ARG:NE	3:D:160:ASP:OD1	2.41	0.54
2:1:603:ILE:HG12	2:1:605:GLY:O	2.07	0.53
6:1:1001:AGS:H2	2:2:382:LEU:HD11	1.91	0.53
2:4:592:ALA:HB1	2:4:618:VAL:HG22	1.90	0.53
2:5:235:GLY:HA3	2:5:367:VAL:HB	1.90	0.53
2:2:753:LEU:HD11	2:2:793:PHE:HE2	1.74	0.53
2:3:717:ALA:HA	2:3:720:PHE:HD2	1.74	0.53
2:3:765:ASP:OD1	2:3:768:ASN:ND2	2.41	0.53
2:4:525:PRO:HG3	2:4:529:LEU:HD12	1.91	0.53
2:4:625:LYS:HG2	2:4:627:PRO:HD3	1.91	0.53
3:B:141:ARG:NE	3:B:160:ASP:OD1	2.41	0.53
2:1:635:LEU:HA	2:1:749:MET:HB2	1.90	0.53
2:6:196:ASN:HB2	2:6:200:LYS:HE3	1.89	0.53
2:3:222:SER:O	2:3:225:ARG:NH1	2.42	0.53

Continued from prev	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:3:297:ASN:HD22	2:3:299:LYS:HE2	1.74	0.53
2:5:298:LYS:HD3	2:5:300:ASN:HD22	1.73	0.53
2:6:225:ARG:HD3	2:6:227:ASN:HD22	1.73	0.53
2:1:395:THR:HG23	2:1:564:VAL:H	1.73	0.53
2:2:217:ARG:NH2	2:3:442:ASP:OD2	2.41	0.53
2:6:442:ASP:O	2:6:446:ARG:NH1	2.41	0.53
2:6:553:ALA:O	2:6:554:LYS:CG	2.54	0.53
2:1:241:LYS:NZ	2:1:343:THR:O	2.40	0.53
3:G:141:ARG:NE	3:G:160:ASP:OD1	2.41	0.53
2:5:819:VAL:HG13	2:5:865:ILE:HD11	1.91	0.53
3:E:141:ARG:NE	3:E:160:ASP:OD1	2.41	0.53
2:4:239:THR:HG22	2:4:370:PRO:HD3	1.91	0.53
2:4:214:GLU:O	2:5:575:ARG:NH2	2.43	0.52
2:1:238:GLY:HA3	2:1:414:TYR:HB2	1.90	0.52
2:5:735:ASN:O	2:5:737:ARG:NH1	2.42	0.52
3:A:141:ARG:NE	3:A:160:ASP:OD1	2.41	0.52
2:1:289:LYS:HA	2:2:272:ARG:HH21	1.73	0.52
2:2:589:SER:HA	2:3:878:LEU:HD22	1.91	0.52
2:2:590:LYS:O	2:2:594:LYS:NZ	2.39	0.52
2:3:854:PRO:CD	3:C:217:MET:HE2	2.40	0.52
3:F:141:ARG:NE	3:F:160:ASP:OD1	2.41	0.52
2:5:370:PRO:HG3	2:5:415:LEU:HB2	1.92	0.52
2:5:410:ILE:O	2:5:418:LYS:NZ	2.42	0.52
3:C:149:ARG:HG3	3:C:150:GLN:HG3	1.92	0.52
2:6:684:PRO:HD3	2:6:735:ASN:HB3	1.91	0.52
2:2:295:LEU:HD22	2:2:302:ILE:HB	1.92	0.52
3:D:149:ARG:HG3	3:D:150:GLN:HG3	1.92	0.52
2:4:455:ILE:HA	2:4:458:LEU:HB2	1.91	0.52
2:5:264:TYR:HA	2:5:301:LYS:HB3	1.92	0.52
2:4:397:LYS:HB3	2:4:566:GLN:HE21	1.75	0.52
2:4:760:LYS:HE3	3:D:213:LYS:HZ2	1.75	0.52
2:5:856:LEU:HD11	3:E:221:LYS:HB2	1.91	0.52
2:3:261:LEU:HA	2:3:264:TYR:HE2	1.75	0.52
2:4:239:THR:O	6:4:1001:AGS:O1A	2.28	0.52
2:5:505:GLU:O	2:5:509:ASN:ND2	2.43	0.52
2:6:222:SER:O	2:6:229:ASN:ND2	2.43	0.52
3:B:149:ARG:HG3	3:B:150:GLN:HG3	1.92	0.52
2:1:627:PRO:HB3	2:2:829:ARG:HH12	1.74	0.51
2:4:760:LYS:HZ2	3:D:213:LYS:HZ1	1.57	0.51
2:5:726:ILE:HA	2:5:732:ILE:HD11	1.93	0.51
2:5:383:LYS:HD2	2:5:399:LEU:HD11	1.93	0.51

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:3:555:THR:HG21	2:3:588:SER:HB2	1.91	0.51
2:4:760:LYS:HZ2	3:D:213:LYS:NZ	2.08	0.51
2:5:561:VAL:HG12	2:5:563:ALA:H	1.76	0.51
6:6:1001:AGS:O1A	6:6:1001:AGS:O1B	2.26	0.51
2:2:353:GLU:OE2	2:3:738:ARG:NH2	2.43	0.51
2:5:765:ASP:HB2	3:E:213:LYS:HZ3	1.74	0.51
2:5:675:SER:HB2	2:5:678:LYS:HE2	1.91	0.51
2:5:712:LEU:HB2	2:5:751:SER:HB3	1.93	0.51
2:1:195:SER:OG	2:1:268:SER:OG	2.28	0.51
2:1:379:LEU:HD11	2:1:419:ALA:HB1	1.93	0.51
2:6:464:LYS:NZ	2:6:832:GLU:O	2.43	0.51
3:B:48:THR:HA	3:A:53:TYR:OH	2.11	0.51
2:1:737:ARG:NH1	2:2:694:GLN:HA	2.26	0.51
3:B:35:SER:HB2	3:A:42:LYS:HG3	1.92	0.51
3:E:149:ARG:HG3	3:E:150:GLN:HG3	1.92	0.51
3:A:149:ARG:HG3	3:A:150:GLN:HG3	1.92	0.51
3:G:149:ARG:HG3	3:G:150:GLN:HG3	1.92	0.51
2:1:760:LYS:HZ3	2:1:762:LEU:HD11	1.75	0.50
2:1:764:PHE:HE2	3:A:213:LYS:HB3	1.76	0.50
2:4:539:LYS:O	2:4:543:LEU:N	2.37	0.50
2:5:760:LYS:HE3	2:5:765:ASP:HB3	1.92	0.50
2:1:859:ARG:HH21	6:1:1003:AGS:PB	2.25	0.50
2:3:271:PHE:HA	2:3:274:PHE:HD2	1.75	0.50
2:3:670:PHE:HB3	2:3:719:VAL:HG21	1.93	0.50
2:4:679:ILE:HG23	2:4:695:LEU:HD12	1.93	0.50
2:6:584:LEU:HD11	2:6:617:VAL:HG12	1.92	0.50
2:1:770:GLY:CA	2:1:774:TYR:CD2	2.94	0.50
2:5:455:ILE:HA	2:5:458:LEU:HB2	1.94	0.50
2:6:606:ASN:ND2	2:6:808:GLU:OE1	2.43	0.50
3:D:139:GLU:O	3:D:143:ASN:N	2.42	0.50
3:F:149:ARG:HG3	3:F:150:GLN:HG3	1.92	0.50
2:3:637:LEU:HB2	2:3:806:VAL:HG22	1.91	0.50
2:3:639:PRO:HG2	2:3:809:PRO:HG3	1.94	0.50
2:4:613:LEU:HD21	2:4:636:PHE:HZ	1.77	0.50
2:1:208:GLY:O	2:1:385:LYS:NZ	2.45	0.50
2:1:295:LEU:HB3	2:1:337:ILE:HG12	1.94	0.50
2:2:770:GLY:HA3	2:2:774:TYR:HB2	1.92	0.50
2:3:816:HIS:NE2	2:3:845:ASP:OD1	2.44	0.50
2:4:870:MET:HA	2:4:873:PHE:HD2	1.76	0.50
3:C:139:GLU:O	3:C:143:ASN:N	2.42	0.50
2:6:437:LYS:HE3	2:6:441:ILE:HG21	1.92	0.50

Continued from previous page				
Atom-1	Atom-2	Interatomic Clash	0	
2:6:491:TYR:CD1	2:6:491:TYR:C	$\frac{\text{distance (Å)}}{2.85}$	$\begin{array}{c} \mathbf{overlap} \ \mathbf{(A)} \\ 0.50 \end{array}$	
2:0:491:14 R:CD1 2:4:561:VAL:HG12	2:0:491:1 Y K:C 2:4:563:ALA:H	2.85	0.50	
2:5:422:LEU:HD23				
	2:5:425:LYS:HD2	1.92	0.50	
2:1:661:ASN:HB3	2:1:705:SER:HA	1.93	0.50	
2:2:212:ARG:HH12	2:2:368:GLU:H	1.60	0.50	
2:4:197:MET:HB3	2:4:266:VAL:HB	1.94	0.50	
2:5:239:THR:O	6:5:1001:AGS:O1B	2.30	0.50	
2:5:627:PRO:HG2	2:5:629:LYS:HB2	1.94	0.50	
2:5:815:LEU:HA	2:5:818:ILE:HB	1.94	0.50	
2:3:467:LYS:HA	2:3:470:TYR:HD2	1.77	0.50	
2:4:225:ARG:HH21	2:5:425:LYS:HA	1.77	0.50	
2:1:422:LEU:O	2:1:426:ALA:N	2.45	0.49	
2:1:646:GLU:OE1	6:1:1003:AGS:H3'	2.12	0.49	
2:4:313:LEU:HB2	2:4:351:PHE:HE1	1.76	0.49	
2:4:328:LEU:HB3	2:4:332:LEU:HG	1.93	0.49	
2:5:679:ILE:HG23	2:5:695:LEU:HD12	1.93	0.49	
2:1:558:ALA:HB1	2:1:561:VAL:HB	1.94	0.49	
2:1:770:GLY:CA	2:1:774:TYR:HB2	2.41	0.49	
2:3:812:LYS:O	2:3:816:HIS:ND1	2.45	0.49	
2:3:390:TYR:HE2	2:3:392:ILE:HB	1.77	0.49	
2:4:716:HIS:CD2	2:4:718:ASP:H	2.30	0.49	
2:1:644:LYS:HE2	6:1:1003:AGS:O3G	2.12	0.49	
2:4:228:LYS:HD2	2:4:363:GLU:HG3	1.95	0.49	
2:4:441:ILE:O	2:4:445:GLU:N	2.43	0.49	
2:5:760:LYS:HE2	2:5:762:LEU:HA	1.93	0.49	
2:5:766:ALA:HB1	2:5:769:SER:HA	1.93	0.49	
2:6:873:PHE:O	2:6:877:TYR:N	2.46	0.49	
3:B:139:GLU:O	3:B:143:ASN:N	2.42	0.49	
2:2:195:SER:OG	2:2:268:SER:OG	2.28	0.49	
2:1:584:LEU:HD21	2:1:655:LEU:HD13	1.94	0.49	
2:2:397:LYS:HB3	2:2:566:GLN:HE21	1.77	0.49	
2:4:238:GLY:HA3	2:4:414:TYR:HB2	1.93	0.49	
2:6:439:ARG:HH21	2:6:557:ASN:HB2	1.78	0.49	
2:4:526:PRO:HG2	2:4:527:ILE:HD12	1.94	0.49	
2:4:794:LYS:O	2:4:796:GLU:N	2.45	0.49	
2:4:816:HIS:HA	2:4:844:ILE:HG21	1.95	0.49	
3:E:168:TYR:HA	3:E:171:TRP:CD1	2.48	0.49	
3:F:168:TYR:HA	3:F:171:TRP:CD1	2.48	0.49	
2:4:298:LYS:HE2	2:4:300:ASN:HB2	1.95	0.49	
2:5:581:LEU:O	2:5:583:SER:N	2.46	0.49	
2:6:199:GLU:O	2:6:203:ASN:ND2	2.46	0.49	

Continued from prev	lous puye	Interatomic Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:2:295:LEU:HB3	2:2:302:ILE:HD12	1.95	0.49
3:C:168:TYR:HA	3:C:171:TRP:CD1	2.48	0.49
2:1:770:GLY:O	2:1:774:TYR:HB2	2.13	0.48
2:2:410:ILE:O	2:2:418:LYS:NZ	2.45	0.48
2:2:762:LEU:CD1	2:2:778:MET:SD	3.01	0.48
2:6:440:ILE:HG12	2:6:557:ASN:HD21	1.77	0.48
2:1:327:LEU:HD12	2:1:328:LEU:HG	1.95	0.48
2:6:785:LEU:HD23	2:6:788:LYS:HD2	1.94	0.48
3:F:209:TYR:CD2	3:F:209:TYR:C	2.86	0.48
2:1:645:THR:CG2	2:1:750:THR:HG21	2.41	0.48
2:2:561:VAL:HG12	2:2:563:ALA:H	1.78	0.48
2:3:625:LYS:HE3	2:4:866:GLU:HG2	1.94	0.48
2:3:700:ARG:HH11	2:3:740:ILE:HG12	1.78	0.48
2:4:613:LEU:HD11	2:4:647:LEU:HD13	1.95	0.48
2:5:555:THR:O	2:5:557:ASN:N	2.45	0.48
3:B:116:ALA:O	3:B:120:ASN:ND2	2.46	0.48
3:G:168:TYR:HA	3:G:171:TRP:CD1	2.48	0.48
2:1:721:LYS:HB3	2:2:714:LYS:HD3	1.96	0.48
2:1:770:GLY:HA3	2:1:774:TYR:CG	2.49	0.48
2:2:758:PHE:HB3	2:2:763:PHE:CE2	2.47	0.48
2:3:763:PHE:HB3	2:3:854:PRO:HB2	1.95	0.48
3:G:116:ALA:O	3:G:120:ASN:ND2	2.46	0.48
2:1:222:SER:HA	2:1:225:ARG:HH21	1.78	0.48
2:3:225:ARG:HH21	2:3:228:LYS:HB3	1.79	0.48
2:4:725:GLN:NE2	2:5:668:SER:OG	2.46	0.48
2:4:898:ASN:O	3:D:231:ASP:N	2.42	0.48
2:6:635:LEU:HB2	2:6:801:ILE:HD13	1.95	0.48
3:A:168:TYR:HA	3:A:171:TRP:CD1	2.48	0.48
3:F:116:ALA:O	3:F:120:ASN:ND2	2.47	0.48
2:2:766:ALA:O	2:2:769:SER:OG	2.31	0.48
2:3:370:PRO:HG3	2:3:416:PRO:HB3	1.95	0.48
2:3:398:ALA:O	2:3:402:ALA:N	2.46	0.48
3:B:168:TYR:HA	3:B:171:TRP:CD1	2.48	0.48
3:B:209:TYR:HD2	3:B:210:MET:HE3	1.79	0.48
2:5:241:LYS:N	6:5:1001:AGS:O1B	2.40	0.48
2:6:498:LEU:HD12	2:6:498:LEU:C	2.33	0.48
3:E:116:ALA:O	3:E:120:ASN:ND2	2.46	0.48
3:A:116:ALA:O	3:A:120:ASN:ND2	2.47	0.48
2:2:889:PHE:HD2	2:2:901:ILE:HD12	1.78	0.48
2:4:271:PHE:HA	2:4:274:PHE:HD2	1.79	0.48
3:C:116:ALA:O	3:C:120:ASN:ND2	2.46	0.48

Continued from previous page				
Atom-1	Atom-2		Clash	
	A D 100 A CNI NDO	distance (Å)	overlap (Å)	
3:D:116:ALA:O	3:D:120:ASN:ND2	2.46	0.48	
2:6:762:LEU:HD21	2:6:778:MET:CG	2.39	0.48	
2:6:819:VAL:HG13	2:6:865:ILE:HD11	1.96	0.48	
2:1:298:LYS:HG2	2:1:300:ASN:HB2	1.95	0.48	
2:1:309:ILE:HD11	2:1:341:GLY:HA3	1.95	0.48	
2:2:302:ILE:HD11	2:2:337:ILE:HA	1.95	0.48	
3:D:168:TYR:HA	3:D:171:TRP:CD1	2.48	0.48	
2:6:559:MET:C	2:6:561:VAL:H	2.17	0.47	
3:B:209:TYR:HD2	3:B:210:MET:CE	2.27	0.47	
3:A:139:GLU:O	3:A:143:ASN:N	2.42	0.47	
2:3:496:GLU:HG3	2:3:496:GLU:O	2.14	0.47	
2:6:355:CYS:SG	2:6:356:SER:N	2.87	0.47	
2:6:437:LYS:NZ	2:6:437:LYS:CB	2.73	0.47	
2:1:198:ASN:HD22	2:1:265:THR:HG22	1.79	0.47	
2:5:526:PRO:HD2	2:5:529:LEU:HD12	1.95	0.47	
2:6:587:GLU:HB3	2:6:591:GLY:HA3	1.96	0.47	
2:6:670:PHE:HB3	2:6:719:VAL:HG21	1.95	0.47	
2:1:215:GLU:HG2	2:1:244:ILE:HD13	1.96	0.47	
2:6:408:ARG:NH1	2:6:626:ASP:O	2.48	0.47	
2:3:567:GLU:O	2:3:571:TYR:N	2.44	0.47	
2:3:776:ARG:HH21	3:D:215:LYS:NZ	2.13	0.47	
2:5:865:ILE:HA	2:5:869:ILE:HG12	1.96	0.47	
2:2:344:THR:O	2:2:348:TYR:N	2.47	0.47	
2:1:397:LYS:HB3	2:1:566:GLN:HE21	1.80	0.47	
2:1:625:LYS:HD2	2:2:826:LEU:HG	1.97	0.47	
2:1:636:PHE:HB3	2:1:807:PHE:HE2	1.77	0.47	
2:3:200:LYS:HA	2:3:203:ASN:HB2	1.96	0.47	
2:3:876:MET:HG3	3:C:232:VAL:HG21	1.97	0.47	
2:4:799:ASN:ND2	2:5:640:THR:OG1	2.48	0.47	
2:2:265:THR:H	2:2:301:LYS:HB3	1.79	0.47	
2:2:446:ARG:O	2:2:450:ARG:N	2.44	0.47	
2:4:635:LEU:O	2:4:805:GLY:N	2.45	0.47	
2:5:349:ARG:HH21	2:6:738:ARG:HD3	1.79	0.47	
2:1:794:LYS:O	2:1:796:GLU:N	2.47	0.47	
3:G:93:VAL:HG11	3:G:98:ILE:HG13	1.97	0.47	
2:2:534:LYS:HA	2:2:537:GLN:HB2	1.96	0.47	
2:3:815:LEU:HD21	2:3:858:ALA:HB2	1.97	0.47	
2:6:635:LEU:HD23	2:6:804:ILE:HG23	1.97	0.47	
3:A:92:ILE:HG21	3:G:122:LEU:HD12	1.97	0.47	
2:1:472:LYS:O	2:1:476:GLU:N	2.42	0.46	
2:3:232:VAL:HG22	2:3:341:GLY:HA3	1.96	0.46	

Continued from previous page Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:4:756:GLU:HA	2:4:761:LYS:HD2	1.97	0.46	
2:5:271:PHE:HZ	2:5:315:ALA:HB3	1.81	0.40	
2:2:464:LYS:H	2:2:467:LYS:HE2	1.81	0.46	
2:4:523:LYS:HB2	2:4:530:GLN:HE22	1.80	0.40	
2:4:550:TYR:CZ	2:4:554:LYS:HG3	2.50	0.40	
2:2:225:ARG:NE	2:3:424:ASN:O	2.30	0.40	
2:6:899:LEU:HA	3:F:231:ASP:HB2	1.96	0.40	
3:G:139:GLU:O	3:G:143:ASN:N	2.42	0.40	
2:4:639:PRO:O	2:4:644:LYS:NZ	2.42	0.40	
2:6:644:LYS:HA	2:6:807:PHE:CE2	2.40	0.40	
	3:E:98:ILE:HG13			
3:E:93:VAL:HG11		1.97	0.46	
3:B:93:VAL:HG11	3:B:98:ILE:HG13	1.97	0.46	
3:A:93:VAL:HG11	3:A:98:ILE:HG13	1.97	0.46	
2:1:271:PHE:HE2	2:1:307:ASP:HB2	1.80	0.46	
2:1:515:THR:HG21	2:1:529:LEU:HD21	1.96	0.46	
2:1:726:ILE:HG12	2:1:732:ILE:HD11	1.98	0.46	
2:2:804:ILE:HB	3:C:222:ASN:HD21	1.80	0.46	
2:1:194:GLY:HA2	2:1:270:ASN:H	1.80	0.46	
2:2:369:PRO:HB2	2:2:415:LEU:HD12	1.98	0.46	
2:3:776:ARG:HH21	3:D:215:LYS:HZ1	1.63	0.46	
2:4:645:THR:N	6:4:1002:AGS:O1A	2.45	0.46	
2:6:644:LYS:HG2	2:6:807:PHE:CD2	2.50	0.46	
3:D:50:LYS:HG2	3:E:47:LEU:HD11	1.98	0.46	
2:2:309:ILE:HG23	2:2:312:LEU:HD12	1.97	0.46	
2:2:733:ASN:HB3	2:2:737:ARG:HA	1.97	0.46	
2:4:877:TYR:HB2	2:4:882:LEU:HD12	1.98	0.46	
2:5:243:THR:HG21	6:5:1001:AGS:H2'	1.98	0.46	
2:5:496:GLU:HB3	2:5:500:ARG:HH12	1.81	0.46	
2:6:764:PHE:HZ	3:F:213:LYS:HZ2	1.62	0.46	
3:F:93:VAL:HG11	3:F:98:ILE:HG13	1.97	0.46	
2:1:789:CYS:HA	2:1:793:PHE:HD2	1.81	0.46	
2:4:723:LEU:HD23	2:4:726:ILE:HD12	1.97	0.46	
2:4:827:GLU:O	2:4:831:GLU:N	2.49	0.46	
2:1:814:ASN:HB3	2:1:818:ILE:HD12	1.97	0.46	
2:3:679:ILE:HG23	2:3:695:LEU:HD22	1.98	0.46	
2:4:800:ARG:HD3	2:5:859:ARG:HH12	1.80	0.46	
2:5:464:LYS:O	2:5:466:SER:N	2.49	0.46	
3:C:93:VAL:HG11	3:C:98:ILE:HG13	1.97	0.46	
2:1:392:ILE:HG21	2:1:430:LEU:HD13	1.98	0.46	
2:2:468:LYS:HG2	2:2:472:LYS:HE3	1.98	0.46	
2:2:673:ALA:HB2	2:2:716:HIS:CE1	2.51	0.46	

Continued from prev	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:3:322:THR:HB	2:3:325:ALA:HB3	1.96	0.46
2:6:820:ALA:HA	2:6:823:PHE:HD2	1.81	0.46
3:D:93:VAL:HG11	3:D:98:ILE:HG13	1.97	0.46
2:1:353:GLU:OE2	2:2:738:ARG:NH2	2.49	0.45
2:4:603:ILE:HG23	6:4:1002:AGS:HN62	1.81	0.45
2:6:559:MET:H	2:6:559:MET:HG3	1.53	0.45
2:3:679:ILE:HG21	2:3:722:VAL:HG11	1.97	0.45
2:3:733:ASN:HB3	2:3:737:ARG:HA	1.97	0.45
2:4:817:LYS:O	2:4:821:LEU:N	2.48	0.45
2:5:870:MET:HA	2:5:873:PHE:HD2	1.81	0.45
2:6:822:ARG:O	2:6:826:LEU:N	2.49	0.45
2:2:872:LYS:HA	2:2:875:ILE:H	1.82	0.45
2:3:764:PHE:CE1	3:C:213:LYS:CD	2.80	0.45
2:3:827:GLU:O	2:3:831:GLU:N	2.49	0.45
2:4:581:LEU:O	2:4:583:SER:N	2.49	0.45
2:5:703:PRO:HG2	2:5:704:HIS:CD2	2.51	0.45
2:2:713:GLU:OE2	2:2:752:ASN:ND2	2.42	0.45
2:4:725:GLN:NE2	2:5:666:ASN:HB3	2.32	0.45
2:6:858:ALA:O	2:6:861:THR:OG1	2.31	0.45
2:1:572:ILE:HG23	2:1:575:ARG:HH21	1.81	0.45
2:2:625:LYS:HE3	2:3:829:ARG:HD2	1.97	0.45
2:3:561:VAL:HG12	2:3:563:ALA:H	1.82	0.45
2:4:347:GLU:HB3	2:4:350:LYS:HE2	1.99	0.45
3:D:49:ILE:HG21	3:E:44:PRO:HG3	1.98	0.45
2:1:606:ASN:HB3	2:1:609:ILE:HD12	1.99	0.45
2:1:866:GLU:HA	2:1:870:MET:HB2	1.98	0.45
2:2:225:ARG:NH2	2:3:428:SER:H	2.15	0.45
2:3:446:ARG:O	2:3:450:ARG:N	2.43	0.45
2:5:898:ASN:HD21	2:5:900:VAL:HG23	1.82	0.45
2:6:763:PHE:CE2	2:6:855:GLU:HG2	2.51	0.45
3:D:154:LEU:HB3	3:D:157:ALA:HB3	1.99	0.45
2:2:595:LEU:HD23	2:2:595:LEU:HA	1.80	0.45
2:3:397:LYS:HB3	2:3:566:GLN:HE21	1.81	0.45
2:5:289:LYS:HG2	2:5:293:LYS:HD2	1.99	0.45
2:5:357:ALA:O	2:5:361:ARG:NH1	2.49	0.45
3:C:154:LEU:HB3	3:C:157:ALA:HB3	1.99	0.45
2:2:537:GLN:HA	2:2:540:TYR:HD2	1.81	0.45
2:2:463:ASP:HB3	2:2:467:LYS:HE2	1.99	0.45
2:5:310:HIS:CE1	2:5:351:PHE:HB2	2.51	0.45
2:5:733:ASN:HB3	2:5:737:ARG:HA	1.99	0.45
2:1:398:ALA:O	2:1:402:ALA:N	2.49	0.45

Continued from preva	ious puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:5:266:VAL:HA	2:5:303:ILE:HB	1.99	0.45
2:6:889:PHE:HB3	2:6:901:ILE:HB	1.98	0.45
3:B:154:LEU:HB3	3:B:157:ALA:HB3	1.99	0.45
2:1:409:PHE:HB3	2:1:573:TYR:CZ	2.51	0.44
2:2:421:ASP:HA	2:2:424:ASN:HD22	1.81	0.44
2:2:438:PRO:CG	2:2:491:TYR:HE2	2.30	0.44
2:5:618:VAL:O	2:5:622:THR:OG1	2.31	0.44
2:5:902:ASN:O	3:E:235:SER:OG	2.33	0.44
2:1:618:VAL:O	2:1:622:THR:OG1	2.23	0.44
2:3:872:LYS:HE2	3:C:230:PHE:H	1.81	0.44
3:D:92:ILE:HG23	3:D:158:LYS:HD2	1.99	0.44
2:1:492:VAL:O	2:1:496:GLU:N	2.46	0.44
2:1:716:HIS:CD2	2:1:430:010:10 2:1:718:ASP:H	2.35	0.44
2:3:776:ARG:CZ	3:D:215:LYS:HZ3	2.30	0.44
2:4:243:THR:HA	2:4:246:GLU:HB2	1.99	0.44
2:5:231:PRO:HG2	2:5:340:ILE:HG13	1.98	0.44
3:B:161:GLN:O	3:B:165:SER:OG	2.28	0.44
3:F:154:LEU:HB3	3:F:157:ALA:HB3	1.99	0.44
2:1:219:ILE:O	2:1:222:SER:OG	2.28	0.44
2:3:198:ASN:HB3	2:3:202:ARG:HH12	1.82	0.44
2:3:261:LEU:HA	2:3:261:LEU:HD23	1.82	0.44
2:4:298:LYS:HG2	2:4:300:ASN:HB2	1.99	0.44
2:4:843:ALA:HA	2:4:892:TYR:HD2	1.83	0.44
2:4:902:ASN:HB2	3:D:234:SER:HA	2.00	0.44
2:5:220:ILE:O	2:5:224:LEU:N	2.50	0.44
2:0:220:HE:O	2:1:523:LYS:N	2.46	0.44
2:1:790:LYS:HA	2:1:795:PRO:HB3	1.98	0.44
2:1:854:PRO:HD3	3:A:217:MET:SD	2.57	0.44
2:4:446:ARG:O	2:4:450:ARG:N	2.45	0.44
2:4:603:ILE:HG23	6:4:1002:AGS:N6	2.32	0.44
3:E:154:LEU:HB3	3:E:157:ALA:HB3	1.99	0.44
3:F:139:GLU:O	3:F:143:ASN:N	2.42	0.44
2:5:645:THR:OG1	6:5:1002:AGS:O2A	2.36	0.44
2:5:706:VAL:HG12	2:5:746:ILE:HB	2.00	0.44
2:5:756:GLU:HA	2:5:759:LYS:HD2	2.00	0.44
2:4:728:GLY:HA2	2:4:800:ARG:HD2	2.00	0.44
2:5:546:GLU:O	2:5:550:TYR:N	2.49	0.44
2:6:472:LYS:O	2:6:476:GLU:N	2.51	0.44
3:E:130:LEU:HD23	3:E:130:LEU:HA	1.86	0.44
3:G:92:ILE:HG23	3:G:158:LYS:HD2	1.99	0.44
2:3:328:LEU:HA	2:3:331:VAL:HB	1.99	0.44

Continued from prev	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:3:642:VAL:HG12	2:3:810:LEU:HG	1.98	0.44
2:4:251:ARG:NE	2:5:446:ARG:HH22	2.16	0.44
2:4:782:ARG:HG3	2:4:806:VAL:HG21	2.10	0.44
2:6:559:MET:O	2:6:561:VAL:N	2.49	0.44
3:G:154:LEU:HB3	3:G:157:ALA:HB3	1.99	0.44
2:5:794:LYS:O	2:5:796:GLU:N	2.50	0.44
2:5:830:LEU:HD22	2:5:833:LYS:HD2	2.00	0.44
3:C:130:LEU:HD23	3:C:130:LEU:HA	1.86	0.44
3:E:84:TRP:CG	3:E:133:LEU:HD21	2.53	0.44
3:B:85:TRP:HB2	3:B:110:TRP:CD1	2.53	0.44
2:2:264:TYR:HD1	2:2:302:ILE:H	1.65	0.43
2:2:266:VAL:HA	2:2:303:ILE:HB	1.99	0.43
2:5:843:ALA:HB2	2:5:891:ASP:HA	1.99	0.43
3:C:85:TRP:HB2	3:C:110:TRP:CD1	2.53	0.43
3:C:92:ILE:HG23	3:C:158:LYS:HD2	1.99	0.43
3:A:150:GLN:OE1	3:G:139:GLU:HB2	2.18	0.43
3:F:84:TRP:CG	3:F:133:LEU:HD21	2.53	0.43
2:1:764:PHE:O	2:1:764:PHE:CD1	2.70	0.43
2:2:762:LEU:O	2:2:763:PHE:HD1	2.01	0.43
2:4:430:LEU:HD12	2:4:564:VAL:HG22	1.99	0.43
2:5:286:THR:O	2:5:290:ASN:ND2	2.52	0.43
2:5:397:LYS:HB3	2:5:566:GLN:HG3	2.00	0.43
3:D:58:LYS:HE2	3:E:51:ASP:OD2	2.18	0.43
3:A:84:TRP:CG	3:A:133:LEU:HD21	2.53	0.43
2:2:491:TYR:HE1	2:2:560:ASN:HD21	1.62	0.43
2:3:865:ILE:HA	2:3:869:ILE:HG12	2.00	0.43
2:4:670:PHE:HE1	2:4:678:LYS:HB2	1.83	0.43
2:6:553:ALA:C	2:6:554:LYS:HG2	2.39	0.43
3:D:85:TRP:HB2	3:D:110:TRP:CD1	2.53	0.43
3:B:92:ILE:HG23	3:B:158:LYS:HD2	2.00	0.43
3:A:154:LEU:HB3	3:A:157:ALA:HB3	1.99	0.43
3:G:84:TRP:CG	3:G:133:LEU:HD21	2.53	0.43
2:2:354:SER:OG	2:2:355:CYS:N	2.51	0.43
2:3:453:TYR:O	2:3:456:SER:OG	2.32	0.43
2:6:497:ARG:HB2	2:6:501:LYS:HE2	2.01	0.43
2:1:395:THR:OG1	2:1:564:VAL:O	2.26	0.43
3:D:84:TRP:CG	3:D:133:LEU:HD21	2.53	0.43
3:E:92:ILE:HG23	3:E:158:LYS:HD2	2.00	0.43
3:A:151:ASP:OD1	3:G:120:ASN:HB3	2.18	0.43
2:1:278:THR:HG22	2:1:284:PHE:HB2	2.01	0.43
2:2:217:ARG:HH11	2:3:439:ARG:HD2	1.82	0.43

Continued from previous page Interatomic Clash				
Atom-1	Atom-2	Interatomic distance (Å)	0	
2:2:584:LEU:HD11	2:2:655:LEU:HB3	()	overlap (Å) 0.42	
2:2:384:LE0:HD11 2:3:409:PHE:O	2:3:573:TYR:OH	$\frac{2.00}{2.32}$	0.43	
2:3:774:TYR:HA	2:3:777:VAL:HB	1.99	0.43	
2:4:760:LYS:HZ2	2:4:764:PHE:HD1	1.66	0.43	
2:6:190:ILE:HG22	2:6:192:GLN:HG2	1.99	0.43	
3:A:92:ILE:HG23	3:A:158:LYS:HD2	2.00	0.43	
2:4:515:THR:HA	2:4:519:VAL:HB	2.01	0.43	
3:F:85:TRP:HB2	3:F:110:TRP:CD1	2.53	0.43	
2:1:383:LYS:NZ	2:1:396:ASP:OD1	2.36	0.43	
2:1:813:LYS:HA	2:1:816:HIS:HD2	1.84	0.43	
2:2:736:HIS:HB3	2:2:738:ARG:NE	2.34	0.43	
2:3:593:LEU:HD13	2:4:879:LYS:HE3	2.00	0.43	
2:3:772:PRO:HB2	2:3:773:GLU:HG3	2.01	0.43	
2:4:667:MET:HB2	2:4:711:GLU:H	1.83	0.43	
2:4:670:PHE:HB3	2:4:719:VAL:HG21	2.01	0.43	
2:5:606:ASN:HB3	2:5:609:ILE:HD12	2.00	0.43	
2:5:839:VAL:HA	2:5:890:VAL:HB	2.01	0.43	
6:5:1001:AGS:O1B	6:5:1001:AGS:O1A	2.36	0.43	
3:E:212:GLU:O	3:E:216:SER:HB3	2.18	0.43	
3:B:102:THR:HG21	3:A:118:TYR:O	2.19	0.43	
3:F:92:ILE:HG23	3:F:158:LYS:HD2	2.00	0.43	
2:3:636:PHE:HB3	2:3:807:PHE:HE2	1.83	0.43	
2:5:822:ARG:O	2:5:826:LEU:N	2.51	0.43	
2:5:873:PHE:HE1	2:5:888:VAL:HG11	1.84	0.43	
3:B:84:TRP:CG	3:B:133:LEU:HD21	2.53	0.43	
2:1:227:ASN:HD22	2:2:424:ASN:HD21	1.65	0.43	
2:1:882:LEU:HA	2:1:886:MET:HG3	2.00	0.43	
2:2:774:TYR:O	2:2:777:VAL:N	2.51	0.43	
2:5:199:GLU:O	2:5:203:ASN:N	2.51	0.43	
3:E:139:GLU:O	3:E:143:ASN:N	2.42	0.43	
3:A:85:TRP:HB2	3:A:110:TRP:CD1	2.53	0.43	
3:G:85:TRP:HB2	3:G:110:TRP:CD1	2.53	0.43	
2:1:860:PRO:O	2:1:864:PHE:N	2.45	0.42	
2:2:225:ARG:HH22	2:3:427:CYS:HB2	1.84	0.42	
2:3:889:PHE:HB3	2:3:901:ILE:HB	2.01	0.42	
2:6:644:LYS:NZ	6:6:1002:AGS:O1B	2.50	0.42	
3:F:214:LEU:HA	3:F:214:LEU:HD13	1.58	0.42	
2:2:375:THR:HG22	2:2:378:ILE:HD12	2.01	0.42	
2:4:642:VAL:HA	6:4:1002:AGS:H8	2.00	0.42	
2:4:785:LEU:O	2:4:789:CYS:N	2.51	0.42	
2:5:713:GLU:HG3	2:5:714:LYS:HG3	2.01	0.42	

Continued from previous page Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:6:369:PRO:HB2	2:6:415:LEU:HD12	2.01	0.42	
2:1:313:LEU:HB2	2:1:351:PHE:HE1	1.84	0.42	
2:3:712:LEU:HB2	2:3:751:SER:HB3	2.02	0.42	
2:3:742:PHE:O	2:3:745:THR:OG1	2.02	0.42	
2:4:217:ARG:HH22	2:5:442:ASP:HB3	1.84	0.42	
3:C:84:TRP:CG	3:C:133:LEU:HD21	2.53	0.42	
2:6:494:THR:HG21	2:6:558:ALA:HA	2.01	0.42	
3:F:85:TRP:NE1	3:F:103:GLU:OE2	2.52	0.42	
2:4:222:SER:HA	2:4:225:ARG:HH12	1.84	0.42	
2:6:515:THR:HG22	2:6:519:VAL:HG11	2.00	0.42	
3:D:118:TYR:CE1	3:E:99:GLU:HG2	2.55	0.42	
2:2:201:VAL:HG22	2:2:206:LEU:HB2	2.01	0.42	
3:B:206:LEU:O	3:B:209:TYR:HB3	2.01	0.42	
3:A:85:TRP:NE1	3:A:103:GLU:OE2	$\frac{2.19}{2.52}$	0.42	
2:1:683:PRO:HG2	2:1:686:TYR:HD2	1.85	0.42	
3:C:85:TRP:NE1	3:C:103:GLU:OE2	2.52	0.42	
3:E:85:TRP:HB2	3:E:110:TRP:CD1	2.52	0.42	
2:1:235:GLY:HA3	2:1:367:VAL:HB	2.03	0.42	
2:1:239:THR:HG22	2:1:307:VAL:HD 2:1:370:PRO:HD3	2.02	0.42	
2:4:439:ARG:NH2	2:4:557:ASN:HD21	2.01	0.42	
2:2:212:ARG:NH2 2:2:212:ARG:HH12	2:2:368:GLU:HB2	1.85	0.42	
2:2:212:ARG:HH12 2:2:287:ARG:HA	2:2:308.GLU.HB2 2:2:290:ASN:HD22	1.85	0.42	
2:2:287:ARG:HA 2:3:268:SER:HA	2:3:305:PHE:HB3	$\frac{1.83}{2.02}$	0.42	
2:3:208:SER:HA 2:3:822:ARG:HH11	2:3:862:LEU:HD13	1.83	0.42	
2:4:782:ARG:HH12 2:5:306:VAL:HB	3:E:223:ILE:HG21 2:5:341:GLY:HA2	$\frac{1.85}{2.01}$	0.42	
2:5:666:ASN:ND2				
	2:5:710:ASP:OD2	2.52	0.42	
2:6:376:VAL:O	2:6:380:ARG:N	2.52	0.42	
2:6:497:ARG:O	2:6:501:LYS:CG	2.63	0.42	
2:2:409:PHE:HB3	2:2:573:TYR:CZ	2.54	0.42	
2:3:251:ARG:NE	2:3:256:ASP:OD2	2.51	0.42	
2:4:860:PRO:O	2:4:864:PHE:N	2.50	0.42	
2:5:858:ALA:O	2:5:861:THR:OG1	2.37	0.42	
2:2:438:PRO:CD	2:2:491:TYR:HE2	2.32	0.42	
2:3:708:LEU:HD23	2:3:708:LEU:HA	1.83	0.42	
2:3:723:LEU:HD23	2:3:726:ILE:HD12	2.02	0.42	
2:6:437:LYS:HE3	2:6:441:ILE:CG2	2.50	0.42	
3:D:85:TRP:NE1	3:D:103:GLU:OE2	2.52	0.42	
2:1:384:SER:O	2:1:388:ASN:ND2	2.53	0.41	
2:1:644:LYS:NZ	6:1:1003:AGS:O2B	2.47	0.41	
2:1:648:ALA:HB1	2:1:708:LEU:HD21	2.02	0.41	

Continued from previous page				
Atom-1	Atom-2	Interatomic distance (Å)	Clash	
9.1.667. MET.HD2	9.1.715. AL A.HD9	()	$\frac{\text{overlap }(\text{\AA})}{0.41}$	
2:1:667:MET:HB3	2:1:715:ALA:HB2 2:3:870:MET:SD	$\frac{2.02}{2.60}$	0.41	
2:3:826:LEU:HD11				
3:F:217:MET:HE3	3:F:217:MET:HB2	1.78	0.41	
2:1:613:LEU:CD1	2:1:647:LEU:HD21	2.49	0.41	
2:3:794:LYS:O	2:3:796:GLU:N	2.53	0.41	
2:6:464:LYS:O	2:6:466:SER:N	2.52	0.41	
3:D:49:ILE:HD13	3:E:44:PRO:HD3	2.03	0.41	
3:E:161:GLN:O	3:E:165:SER:OG	2.28	0.41	
2:1:565:TYR:HB2	2:1:568:HIS:ND1	2.35	0.41	
2:2:420:ILE:HG22	2:2:424:ASN:HD21	1.85	0.41	
2:2:499:LYS:CD	2:2:499:LYS:N	2.73	0.41	
2:2:720:PHE:HB3	2:2:797:PHE:CZ	2.55	0.41	
2:3:524:GLU:HG2	2:3:525:PRO:HD3	2.02	0.41	
2:3:668:SER:HA	2:3:714:LYS:HD3	2.03	0.41	
2:5:847:ILE:HG12	2:5:864:PHE:HE2	1.85	0.41	
2:6:694:GLN:HA	2:6:697:GLU:HB3	2.02	0.41	
2:6:837:VAL:HA	2:6:888:VAL:HB	2.02	0.41	
2:2:310:HIS:NE2	2:2:347:GLU:HB3	2.35	0.41	
2:3:201:VAL:HG22	2:3:206:LEU:HB2	2.01	0.41	
2:3:287:ARG:HA	2:3:290:ASN:HD22	1.85	0.41	
2:3:437:LYS:NZ	2:3:445:GLU:OE2	2.49	0.41	
2:3:651:LEU:O	2:3:655:LEU:N	2.35	0.41	
2:4:195:SER:OG	2:4:268:SER:OG	2.28	0.41	
2:4:269:LEU:HD22	2:4:274:PHE:HZ	1.85	0.41	
2:4:497:ARG:HH12	2:4:550:TYR:HB2	1.86	0.41	
2:6:219:ILE:HG12	2:6:365:ILE:HD13	2.02	0.41	
2:6:498:LEU:HA	2:6:501:LYS:HB2	2.03	0.41	
3:B:224:GLU:HB2	3:B:227:LYS:HB2	2.02	0.41	
2:1:610:ILE:O	2:1:614:SER:N	2.52	0.41	
6:6:1002:AGS:O3A	6:6:1002:AGS:O3G	2.39	0.41	
3:A:133:LEU:HD23	3:A:133:LEU:HA	1.90	0.41	
2:2:251:ARG:CZ	2:3:446:ARG:HH22	2.34	0.41	
2:2:882:LEU:HD23	2:2:882:LEU:HA	1.90	0.41	
2:3:593:LEU:HD11	2:4:878:LEU:HB3	2.03	0.41	
2:4:295:LEU:HD22	2:4:304:LEU:HD11	2.02	0.41	
2:5:199:GLU:HA	2:5:202:ARG:HB2	2.02	0.41	
2:6:679:ILE:HD13	2:6:722:VAL:HG11	2.01	0.41	
2:6:813:LYS:HA	2:6:816:HIS:HD2	1.86	0.41	
2:3:625:LYS:HB3	2:4:829:ARG:HH11	1.86	0.41	
3:G:130:LEU:HD23	3:G:130:LEU:HA	1.86	0.41	
2:2:283:GLU:O	2:2:287:ARG:NH1	2.52	0.41	

Continued from preve Atom-1	Atom-2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
2:3:848:ILE:O	2:3:852:TYR:N	2.54	0.41	
2:5:453:TYR:O	2:5:456:SER:OG	2.33	0.41	
3:B:209:TYR:CD2	3:B:210:MET:HE2	2.56	0.41	
2:1:497:ARG:HH12	2:1:550:TYR:HB2	1.86	0.41	
2:2:395:THR:OG1	2:2:564:VAL:O	2.27	0.41	
2:2:431:GLN:O	2:2:435:SER:OG	2.29	0.41	
2:2:762:LEU:O	2:2:763:PHE:CD1	2.74	0.41	
2:3:782:ARG:HG3	2:3:806:VAL:HG21	2.01	0.41	
2:4:266:VAL:HA	2:4:303:ILE:HB	2.03	0.41	
2:4:484:LEU:HD23	2:4:484:LEU:HA	1.88	0.41	
2:4:819:VAL:HG13	2:4:865:ILE:HD11	2.01	0.41	
2:6:245:VAL:HG21	2:6:305:PHE:CG	2.56	0.41	
3:B:175:PRO:HB2	3:B:195:PRO:HG3	2.03	0.41	
3:G:175:PRO:HB2	3:G:195:PRO:HG3	2.03	0.41	
3:F:114:THR:HG22	3:F:136:ILE:HD13	2.03	0.41	
2:1:770:GLY:HA3	2:1:774:TYR:CB	2.49	0.41	
2:2:572:ILE:HG23	2:2:575:ARG:HH21	1.86	0.41	
2:2:584:LEU:HD11	2:2:655:LEU:HD22	2.03	0.41	
2:2:721:LYS:HD3	2:3:714:LYS:HG2	2.02	0.41	
2:5:481:LYS:HA	2:5:484:LEU:HD12	2.01	0.41	
2:6:461:ASP:OD2	2:6:470:TYR:OH	2.30	0.41	
3:D:114:THR:HG22	3:D:136:ILE:HD13	2.03	0.41	
3:G:114:THR:HG22	3:G:136:ILE:HD13	2.03	0.41	
3:F:175:PRO:HB2	3:F:195:PRO:HG3	2.03	0.41	
2:1:265:THR:HG23	2:1:301:LYS:HD2	2.03	0.40	
2:1:406:SER:HB2	2:1:418:LYS:HD2	2.03	0.40	
2:1:421:ASP:O	2:1:425:LYS:N	2.46	0.40	
2:2:225:ARG:HG3	2:2:227:ASN:H	1.86	0.40	
2:3:893:ASN:ND2	2:3:899:LEU:HD11	2.36	0.40	
2:4:350:LYS:O	2:4:354:SER:N	2.53	0.40	
2:4:595:LEU:HA	2:4:595:LEU:HD23	1.90	0.40	
2:4:717:ALA:HA	2:4:720:PHE:HD2	1.86	0.40	
2:5:667:MET:HB2	2:5:711:GLU:H	1.86	0.40	
3:C:175:PRO:HB2	3:C:195:PRO:HG3	2.03	0.40	
2:6:440:ILE:HD13	2:6:487:TYR:CD1	2.55	0.40	
2:6:535:GLU:HA	2:6:538:GLN:HB2	2.03	0.40	
2:6:646:GLU:N	6:6:1002:AGS:O1A	2.50	0.40	
3:E:85:TRP:NE1	3:E:103:GLU:OE2	2.52	0.40	
2:2:451:LEU:HD22	2:2:473:LEU:HD22	2.03	0.40	
2:4:397:LYS:HZ1	2:5:464:LYS:HG3	1.86	0.40	
2:6:349:ARG:HD3	2:6:353:GLU:HG3	2.04	0.40	

EMD-8952,	6E11
-----------	------

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:E:175:PRO:HB2	3:E:195:PRO:HG3	2.03	0.40
3:A:175:PRO:HB2	3:A:195:PRO:HG3	2.03	0.40
2:3:251:ARG:NE	2:4:446:ARG:HH22	2.20	0.40
2:3:644:LYS:N	6:3:1002:AGS:O1A	2.48	0.40
2:4:217:ARG:NH1	2:5:439:ARG:HG3	2.36	0.40
2:4:458:LEU:O	2:4:470:TYR:OH	2.23	0.40
2:4:522:ASN:HB3	2:4:524:GLU:HG3	2.04	0.40
3:E:133:LEU:HD23	3:E:133:LEU:HA	1.90	0.40
3:B:85:TRP:NE1	3:B:103:GLU:OE2	2.52	0.40
2:1:603:ILE:HG13	6:1:1003:AGS:HN61	1.85	0.40
2:4:864:PHE:HD1	3:D:223:ILE:HG21	1.87	0.40
2:5:266:VAL:HG22	2:5:303:ILE:HG21	2.04	0.40
3:C:114:THR:HG22	3:C:136:ILE:HD13	2.04	0.40
2:6:398:ALA:HA	2:6:401:ALA:HB3	2.04	0.40
3:E:114:THR:HG22	3:E:136:ILE:HD13	2.03	0.40
3:F:207:SER:O	3:F:211:GLU:CG	2.57	0.40
2:2:441:ILE:HD11	2:2:491:TYR:HD2	1.78	0.40
2:3:234:VAL:HG21	2:3:364:LYS:HG3	2.04	0.40
2:4:822:ARG:HG3	2:4:862:LEU:HD22	2.03	0.40
3:D:175:PRO:HB2	3:D:195:PRO:HG3	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	1	715/906~(79%)	650 (91%)	61 (8%)	4 (1%)	25	65
2	2	715/906~(79%)	644 (90%)	69 (10%)	2~(0%)	41	76
2	3	715/906~(79%)	640 (90%)	71 (10%)	4 (1%)	25	65
2	4	715/906~(79%)	635 (89%)	75 (10%)	5 (1%)	22	62

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	5	714/906~(79%)	648~(91%)	63~(9%)	3(0%)	34	72
2	6	714/906~(79%)	639~(90%)	71 (10%)	4 (1%)	25	65
3	А	189/287~(66%)	184 (97%)	5(3%)	0	100	100
3	В	207/287~(72%)	200~(97%)	7 (3%)	0	100	100
3	\mathbf{C}	207/287~(72%)	199~(96%)	8 (4%)	0	100	100
3	D	207/287~(72%)	201~(97%)	6 (3%)	0	100	100
3	Ε	208/287~(72%)	200~(96%)	8 (4%)	0	100	100
3	F	207/287~(72%)	196~(95%)	11 (5%)	0	100	100
3	G	189/287~(66%)	183~(97%)	6 (3%)	0	100	100
5	a	153/993~(15%)	143~(94%)	10 (6%)	0	100	100
5	b	153/993~(15%)	143~(94%)	10 (6%)	0	100	100
5	с	153/993~(15%)	141 (92%)	12 (8%)	0	100	100
5	d	153/993~(15%)	143~(94%)	10 (6%)	0	100	100
5	е	153/993~(15%)	143~(94%)	10 (6%)	0	100	100
5	f	153/993~(15%)	143~(94%)	10 (6%)	0	100	100
5	g	153/993~(15%)	142 (93%)	11 (7%)	0	100	100
All	All	6773/14396~(47%)	6217~(92%)	534 (8%)	22~(0%)	44	76

All (22) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	5	465	VAL
2	6	465	VAL
2	1	606	ASN
2	4	465	VAL
2	1	465	VAL
2	6	560	ASN
2	1	795	PRO
2	2	795	PRO
2	3	556	HIS
2	4	795	PRO
2	1	372	VAL
2	3	372	VAL
2	4	581	LEU
2	4	582	GLY
2	5	464	LYS

Continued from previous page...

Mol	Chain	Res	Type
2	6	464	LYS
2	6	558	ALA
2	2	459	GLU
2	3	795	PRO
2	5	795	PRO
2	4	372	VAL
2	3	794	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	1	641/804~(80%)	637~(99%)	4 (1%)	86	92
2	2	641/804~(80%)	637~(99%)	4 (1%)	86	92
2	3	641/804~(80%)	640 (100%)	1 (0%)	93	96
2	4	641/804~(80%)	637~(99%)	4 (1%)	86	92
2	5	640/804~(80%)	636~(99%)	4 (1%)	86	92
2	6	640/804~(80%)	635~(99%)	5 (1%)	81	89
3	А	176/268~(66%)	176 (100%)	0	100	100
3	В	193/268~(72%)	193 (100%)	0	100	100
3	С	193/268~(72%)	193 (100%)	0	100	100
3	D	193/268~(72%)	193 (100%)	0	100	100
3	Ε	194/268~(72%)	194 (100%)	0	100	100
3	F	193/268~(72%)	190 (98%)	3 (2%)	62	79
3	G	176/268~(66%)	176 (100%)	0	100	100
5	a	143/906~(16%)	143 (100%)	0	100	100
5	b	143/906~(16%)	143 (100%)	0	100	100
5	с	143/906~(16%)	141 (99%)	2 (1%)	67	80
5	d	143/906~(16%)	143 (100%)	0	100	100
5	е	143/906~(16%)	142 (99%)	1 (1%)	84	90

Continued	from	previous	page
Continucu	jiom	previous	puye

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
5	f	143/906~(16%)	143 (100%)	0	100 100
5	g	143/906~(16%)	143 (100%)	0	100 100
All	All	6163/13042~(47%)	6135 (100%)	28~(0%)	89 93

All (28) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	1	761	LYS LEU
2	1	762	LEU
2	1	764	PHE
2	1	834	ASN
2	2	491	TYR
2	2	499	LYS
2	2	762	LEU
2	2	834	ASN
2	3	317	LYS
2	4	198	ASN
2	4	360	ARG
2	4	523	LYS
2	4	834	ASN
2	5	198	ASN
2	5	322	THR
2	5	523	LYS
2	5	834	ASN LYS
2	6	437	LYS
2	6	491	TYR
2	6	494	THR
2	6	559	MET
$ \begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	6	761	LYS
5	с	764	ASP
5	с	772	LYS
3	F	211	GLU
3	F	214	LEU
3	F	217	MET
5	е	769	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (77) such sidechains are listed below:

Mol	Chain	Res	Type
2	1	198	ASN

Mol	Chain	Res	Type
2	1	227	ASN
2	1	290	ASN
2	1	300	ASN
2	1	310	HIS
2	1	560	ASN
2	1	606	ASN
2 2 2	1	716	HIS
2	1	814	ASN
2	2	198	ASN
2	2	229	ASN
2	2	290	ASN ASN
2 2	2	297	ASN
2	2	424	ASN
2	2	560	ASN
	2	566	ASN GLN
2		606	ASN
2	2 2	816	HIS
$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	2	834	ASN
2	3	198	ASN
2	3	270	ASN
	3	290	ASN
2 2	3	297	ASN
2	3	566	GLN
2	3	568	HIS
2	3	704	HIS
2	3	735	ASN
2 2 2 2 2	3	768	ASN
2	4	227	ASN
2	4	530	GLN
2	4	537	GLN
2	4	566	GLN
2	4	606	ASN
2	4	661	ASN
2	4	716	HIS
2	4	725	GLN
$\begin{array}{c} 2 \\ \hline \end{array}$	4	799	ASN
2	4	816	HIS
2	5	262	GLN
2	5	290	ASN
2	5	300	ASN
2	5	424	ASN
2	5	509	ASN

25606ASN3C161GLN26196ASN26203ASN26227ASN26229ASN26816HIS3D59ASN3E59ASN3E161GLN5d700ASN5d724ASN5d786ASN5d786ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5b774ASN5a724ASN5a724ASN5a724ASN5a776ASN5a724ASN5a724ASN5a724ASN5g783ASN3A59ASN3G59ASN3G59ASN3G59ASN3G59ASN3G59ASN3G59ASN3F59ASN	Mol	Chain	Res	Type
26196ASN26203ASN26227ASN26229ASN26816HIS3D59ASN3E59ASN3E161GLN5d700ASN5d724ASN5d776ASN5d783ASN5d786ASN5b724ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5a724ASN5a724ASN5a776ASN5a776ASN5a724ASN5a724ASN5g724ASN5g783ASN3G59ASN3G59ASN3G59ASN3G59ASN3G161GLN5f783ASN3G59ASN3G59ASN3G59ASN3G59ASN3F59 <td>2</td> <td>5</td> <td>606</td> <td>ASN</td>	2	5	606	ASN
26196ASN26203ASN26227ASN26229ASN26816HIS3D59ASN3E59ASN3E161GLN5d700ASN5d724ASN5d776ASN5d783ASN5d786ASN5b724ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5b776ASN5a724ASN5a724ASN5a776ASN5a776ASN5a724ASN5a724ASN5g724ASN5g783ASN3G59ASN3G59ASN3G59ASN3G59ASN3G161GLN5f783ASN3G59ASN3G59ASN3G59ASN3G59ASN3F59 <td>3</td> <td>С</td> <td>161</td> <td>GLN</td>	3	С	161	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	6	196	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	6	203	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	6	227	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	6	229	ASN
3D 59 ASN 3 E 59 ASN 3 E 161 GLN 5 d 700 ASN 5 d 724 ASN 5 d 776 ASN 5 d 776 ASN 5 d 786 ASN 5 d 786 ASN 5 d 724 ASN 5 b 724 ASN 5 b 724 ASN 5 b 776 ASN 5 b 783 ASN 5 b 776 ASN 5 a 724 ASN 5 a 724 ASN 5 a 776 ASN 5 a 724 ASN 5 a 776 ASN 5 g 783 ASN 5 g 783 ASN 5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	2	6	816	HIS
3E161GLN 5 d700ASN 5 d724ASN 5 d776ASN 5 d783ASN 5 d786ASN 5 d786ASN 5 d724ASN 5 b724ASN 5 b776ASN 5 b776ASN 5 b783ASN 5 b783ASN 5 a724ASN 5 a724ASN 5 a776ASN 5 a776ASN 5 a776ASN 5 a776ASN 5 g724ASN 5 g783ASN 5 g783ASN 3 G59ASN 3 G161GLN 5 f783ASN 3 F59ASN	3	D	59	ASN
5 d 700 ASN 5 d 724 ASN 5 d 776 ASN 5 d 776 ASN 5 d 783 ASN 5 d 786 ASN 5 d 786 ASN 5 c 724 ASN 5 b 724 ASN 5 b 776 ASN 5 b 776 ASN 5 b 776 ASN 5 b 783 ASN 5 a 724 ASN 5 a 724 ASN 5 a 776 ASN 5 a 774 ASN 5 a 776 ASN 5 g 724 ASN 5 g 783 ASN 3 G 59 <td>3</td> <td>Е</td> <td>59</td> <td>ASN</td>	3	Е	59	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Е	161	
5 d 776 ASN 5 d 783 ASN 5 d 786 ASN 5 c 724 ASN 5 b 724 ASN 5 b 724 ASN 5 b 776 ASN 5 b 776 ASN 5 b 776 ASN 5 b 776 ASN 5 b 783 ASN 5 b 783 ASN 5 a 724 ASN 5 a 724 ASN 5 a 776 ASN 5 a 776 ASN 5 a 776 ASN 5 g 724 ASN 5 g 783 ASN 5 f 724 ASN 5 f 783 </td <td>5</td> <td>d</td> <td>700</td> <td>ASN</td>	5	d	700	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d	724	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d	783	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	d	786	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	с	724	ASN
5 b 776 ASN 5 b 783 ASN 3 B 59 ASN 5 a 724 ASN 5 a 724 ASN 5 a 724 ASN 5 a 776 ASN 5 g 724 ASN 5 g 783 ASN 5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59	5	b	724	ASN
3 B 59 ASN 5 a 724 ASN 5 a 734 ASN 5 a 734 ASN 5 a 776 ASN 3 A 59 ASN 5 g 724 ASN 5 g 724 ASN 5 g 783 ASN 5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	5	b	776	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	b	783	ASN
5 a 734 ASN 5 a 776 ASN 3 A 59 ASN 3 A 59 ASN 5 g 724 ASN 5 g 783 ASN 3 G 59 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 3 G 161 GLN 5 f 783 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	3	В	59	ASN
5 a 776 ASN 3 A 59 ASN 5 g 724 ASN 5 g 783 ASN 3 G 59 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	5	a	724	ASN
3 A 59 ASN 5 g 724 ASN 5 g 783 ASN 5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	5	a		ASN
3 A 59 ASN 5 g 724 ASN 5 g 783 ASN 5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 3 G 161 GLN 5 f 783 ASN 3 F 59 ASN	5	a		ASN
5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 F 59 ASN	3	А		ASN
5 g 783 ASN 3 G 59 ASN 3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 F 59 ASN	5	g	724	
3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 F 59 ASN	5	g	783	ASN
3 G 161 GLN 5 f 724 ASN 5 f 783 ASN 3 F 59 ASN	3	G	59	
5 f 724 ASN 5 f 783 ASN 3 F 59 ASN	3	G	161	
3 F 59 ASN	5	f	724	ASN
	5	f	783	ASN
3 F 161 GLN	3	F	59	ASN
	3	F	161	GLN
5 e 724 ASN	5	е	724	ASN
5 e 783 ASN	5	е	783	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Res	Link	Bo	ond leng	ths	В	ond ang	les
MOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
6	AGS	4	1001	-	26,33,33	0.91	0	$26,\!52,\!52$	1.29	2 (7%)
6	AGS	1	1001	-	26,33,33	0.91	0	$26,\!52,\!52$	1.30	2 (7%)
6	AGS	1	1002	-	26,33,33	0.91	0	$26,\!52,\!52$	1.30	2(7%)
6	AGS	5	1001	-	26,33,33	0.84	0	$26,\!52,\!52$	1.35	2 (7%)
6	AGS	6	1002	-	26,33,33	0.75	1 (3%)	$26,\!52,\!52$	1.19	3 (11%)
6	AGS	4	1002	-	26,33,33	0.81	0	$26,\!52,\!52$	1.06	3 (11%)
6	AGS	2	1001	-	26,33,33	0.81	0	$26,\!52,\!52$	1.07	3 (11%)
6	AGS	3	1002	-	26,33,33	0.81	0	$26,\!52,\!52$	1.07	3 (11%)
6	AGS	1	1003	-	26,33,33	1.89	4 (15%)	$26,\!52,\!52$	1.57	4 (15%)
6	AGS	6	1001	-	26,33,33	0.79	0	$26,\!52,\!52$	1.43	2 (7%)
6	AGS	5	1002	-	26,33,33	0.80	1 (3%)	$26,\!52,\!52$	0.93	2 (7%)
6	AGS	3	1001	-	26,33,33	0.91	0	$26,\!52,\!52$	1.30	2(7%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	AGS	4	1001	-	-	2/17/38/38	0/3/3/3
6	AGS	1	1001	-	-	2/17/38/38	0/3/3/3
6	AGS	1	1002	-	-	2/17/38/38	0/3/3/3
6	AGS	5	1001	-	-	3/17/38/38	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	AGS	6	1002	-	-	7/17/38/38	0/3/3/3
6	AGS	4	1002	-	-	3/17/38/38	0/3/3/3
6	AGS	2	1001	-	-	3/17/38/38	0/3/3/3
6	AGS	3	1002	-	-	3/17/38/38	0/3/3/3
6	AGS	1	1003	-	-	5/17/38/38	0/3/3/3
6	AGS	6	1001	-	-	3/17/38/38	0/3/3/3
6	AGS	5	1002	-	-	9/17/38/38	0/3/3/3
6	AGS	3	1001	-	-	2/17/38/38	0/3/3/3

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
6	1	1003	AGS	PG-S1G	7.96	2.08	1.90
6	1	1003	AGS	C5-C4	2.50	1.47	1.40
6	6	1002	AGS	PG-S1G	2.03	1.95	1.90
6	1	1003	AGS	PG-O2G	2.03	1.61	1.54
6	5	1002	AGS	PG-S1G	2.01	1.95	1.90
6	1	1003	AGS	PG-O3G	-2.00	1.48	1.54

All (30) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
6	6	1001	AGS	PA-O3A-PB	-5.92	112.52	132.83
6	5	1001	AGS	PA-O3A-PB	-5.47	114.05	132.83
6	1	1001	AGS	PA-O3A-PB	-5.18	115.05	132.83
6	1	1002	AGS	PA-O3A-PB	-5.17	115.08	132.83
6	3	1001	AGS	PA-O3A-PB	-5.17	115.09	132.83
6	4	1001	AGS	PA-O3A-PB	-5.16	115.12	132.83
6	6	1002	AGS	PA-O3A-PB	-3.76	119.94	132.83
6	1	1003	AGS	PA-O3A-PB	-3.50	120.83	132.83
6	1	1003	AGS	C3'-C2'-C1'	3.40	106.09	100.98
6	1	1003	AGS	N3-C2-N1	-3.19	123.69	128.68
6	1	1003	AGS	C4-C5-N7	-2.69	106.59	109.40
6	2	1001	AGS	PA-O3A-PB	-2.47	124.36	132.83
6	4	1002	AGS	PA-O3A-PB	-2.46	124.40	132.83
6	3	1002	AGS	PA-O3A-PB	-2.45	124.41	132.83
6	5	1002	AGS	C3'-C2'-C1'	2.39	104.58	100.98
6	4	1001	AGS	C5-C6-N6	2.30	123.84	120.35
6	1	1002	AGS	C5-C6-N6	2.29	123.83	120.35
6	3	1001	AGS	C5-C6-N6	2.28	123.81	120.35

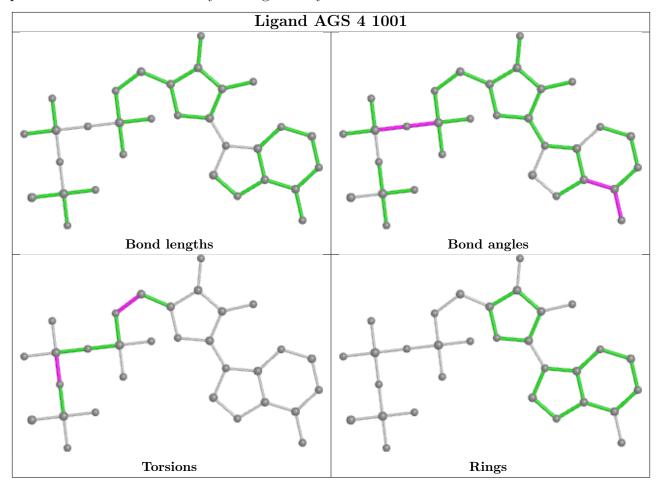
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
6	6	1001	AGS	C5-C6-N6	2.28	123.81	120.35
6	1	1001	AGS	C5-C6-N6	2.27	123.80	120.35
6	5	1001	AGS	C5-C6-N6	2.23	123.74	120.35
6	6	1002	AGS	C5-C6-N6	2.22	123.73	120.35
6	2	1001	AGS	C1'-N9-C4	2.22	130.54	126.64
6	5	1002	AGS	C5-C6-N6	2.22	123.72	120.35
6	4	1002	AGS	C1'-N9-C4	2.21	130.53	126.64
6	3	1002	AGS	C1'-N9-C4	2.18	130.47	126.64
6	3	1002	AGS	C3'-C2'-C1'	2.10	104.14	100.98
6	2	1001	AGS	C3'-C2'-C1'	2.07	104.10	100.98
6	6	1002	AGS	C1'-N9-C4	2.05	130.24	126.64
6	4	1002	AGS	C3'-C2'-C1'	2.04	104.05	100.98

There are no chirality outliers.

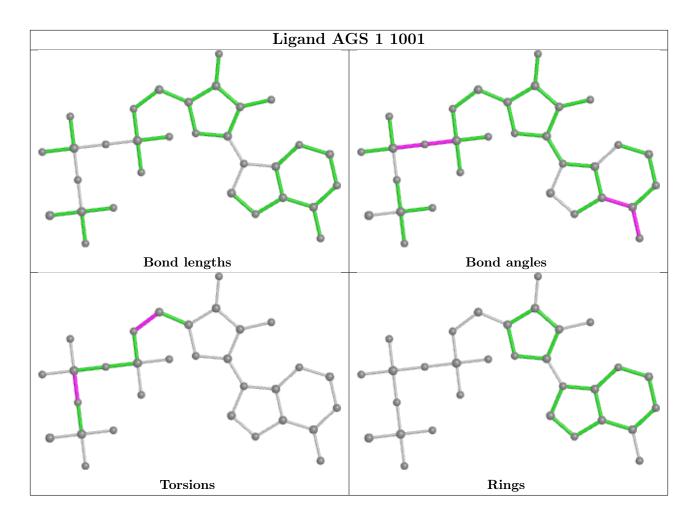
Mol	Chain	Res	Type	Atoms
6	1	1003	AGS	O4'-C4'-C5'-O5'
6	6	1002	AGS	PB-O3B-PG-O2G
6	6	1002	AGS	C5'-O5'-PA-O1A
6	6	1002	AGS	C5'-O5'-PA-O2A
6	6	1002	AGS	C3'-C4'-C5'-O5'
6	1	1003	AGS	C3'-C4'-C5'-O5'
6	6	1001	AGS	O4'-C4'-C5'-O5'
6	6	1001	AGS	C3'-C4'-C5'-O5'
6	6	1002	AGS	O4'-C4'-C5'-O5'
6	5	1002	AGS	PA-O3A-PB-O1B
6	6	1002	AGS	PB-O3A-PA-O5'
6	2	1001	AGS	C5'-O5'-PA-O3A
6	3	1002	AGS	C5'-O5'-PA-O3A
6	4	1002	AGS	C5'-O5'-PA-O3A
6	5	1002	AGS	C5'-O5'-PA-O3A
6	6	1001	AGS	C4'-C5'-O5'-PA
6	1	1001	AGS	PG-O3B-PB-O1B
6	1	1002	AGS	PG-O3B-PB-O1B
6	1	1003	AGS	PG-O3B-PB-O1B
6	3	1001	AGS	PG-O3B-PB-O1B
6	4	1001	AGS	PG-O3B-PB-O1B
6	5	1002	AGS	PB-O3A-PA-O2A
6	1	1001	AGS	C4'-C5'-O5'-PA
6	1	1002	AGS	C4'-C5'-O5'-PA
6	3	1001	AGS	C4'-C5'-O5'-PA

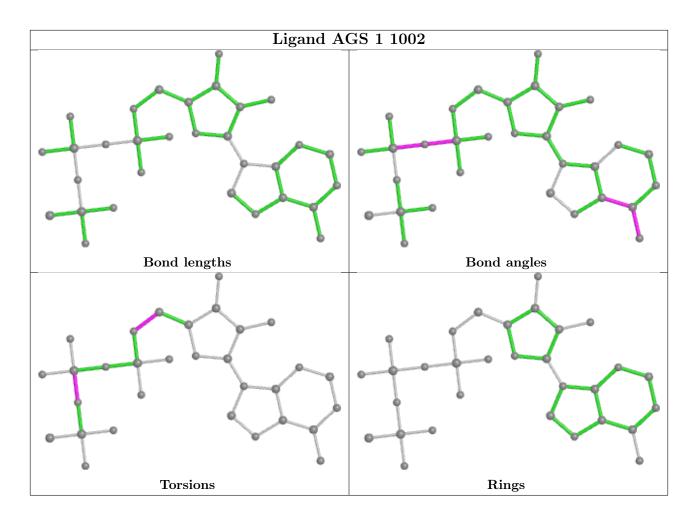
\mathbf{Mol}	Chain	Res	Type	Atoms
6	4	1001	AGS	C4'-C5'-O5'-PA
6	1	1003	AGS	PG-O3B-PB-O2B
6	5	1002	AGS	PB-O3B-PG-O2G
6	5	1002	AGS	PB-O3B-PG-O3G
6	1	1003	AGS	PA-O3A-PB-O1B
6	5	1002	AGS	PB-O3A-PA-O1A
6	5	1002	AGS	PA-O3A-PB-O3B
6	6	1002	AGS	C5'-O5'-PA-O3A
6	2	1001	AGS	O4'-C4'-C5'-O5'
6	3	1002	AGS	O4'-C4'-C5'-O5'
6	4	1002	AGS	O4'-C4'-C5'-O5'
6	5	1002	AGS	O4'-C4'-C5'-O5'
6	5	1001	AGS	PA-O3A-PB-O2B
6	2	1001	AGS	C5'-O5'-PA-O1A
6	3	1002	AGS	C5'-O5'-PA-O1A
6	4	1002	AGS	C5'-O5'-PA-O1A
6	5	1002	AGS	C5'-O5'-PA-O1A
6	5	1001	AGS	O4'-C4'-C5'-O5'
6	5	1001	AGS	C3'-C4'-C5'-O5'

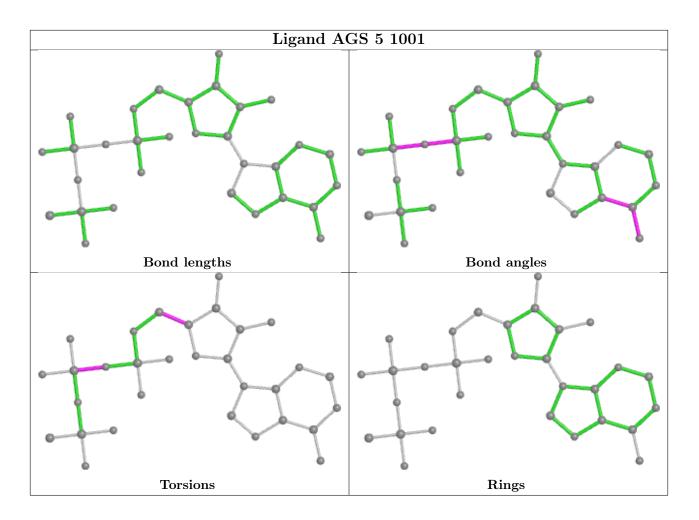
There are no ring outliers.

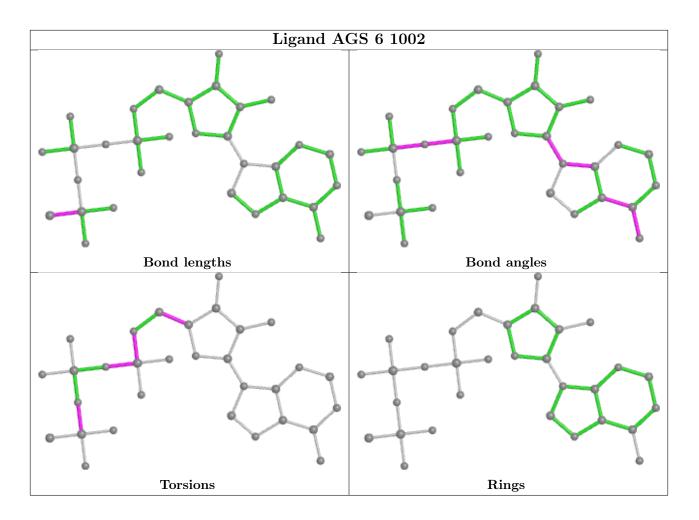

10 monomers are involved in 38 short contacts:

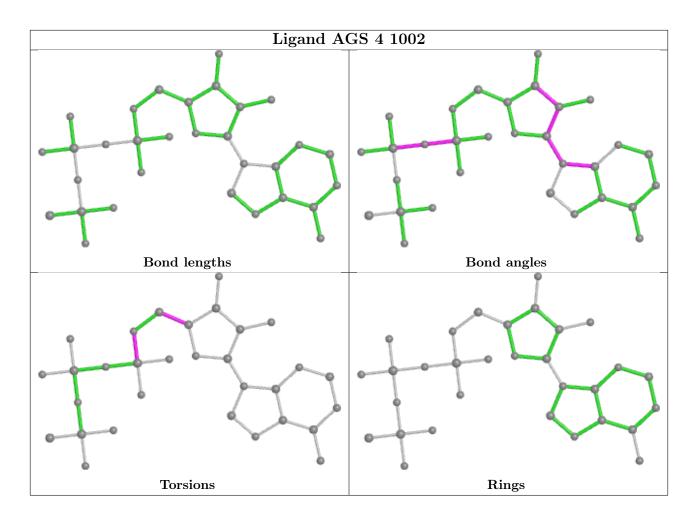
Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	4	1001	AGS	2	0
6	1	1001	AGS	2	0
6	5	1001	AGS	5	0
6	6	1002	AGS	3	0
6	4	1002	AGS	6	0
6	2	1001	AGS	1	0
6	3	1002	AGS	2	0
6	1	1003	AGS	14	0
6	6	1001	AGS	1	0
6	5	1002	AGS	2	0

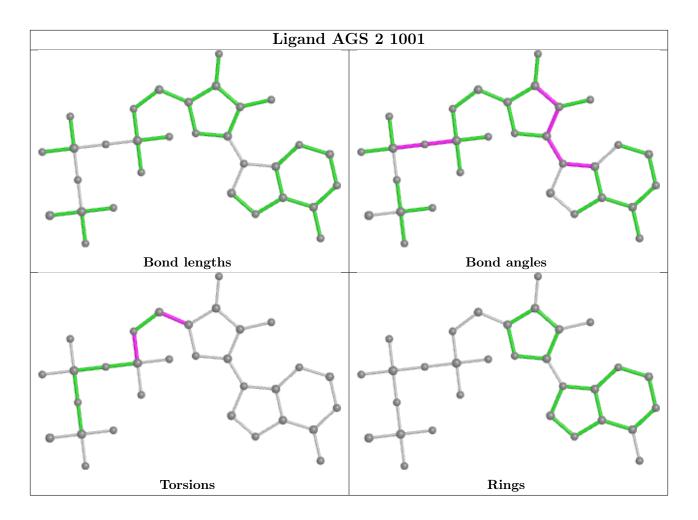

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring

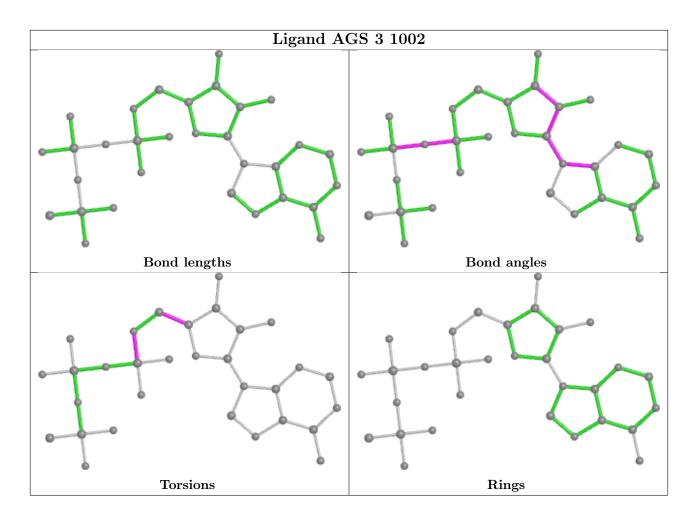

in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

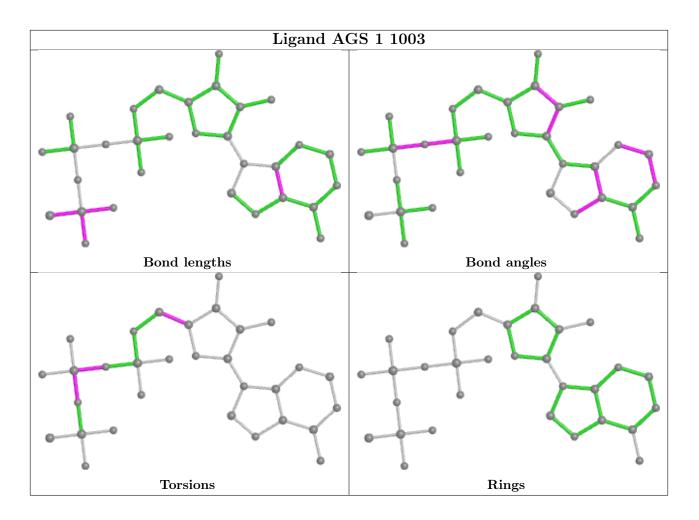


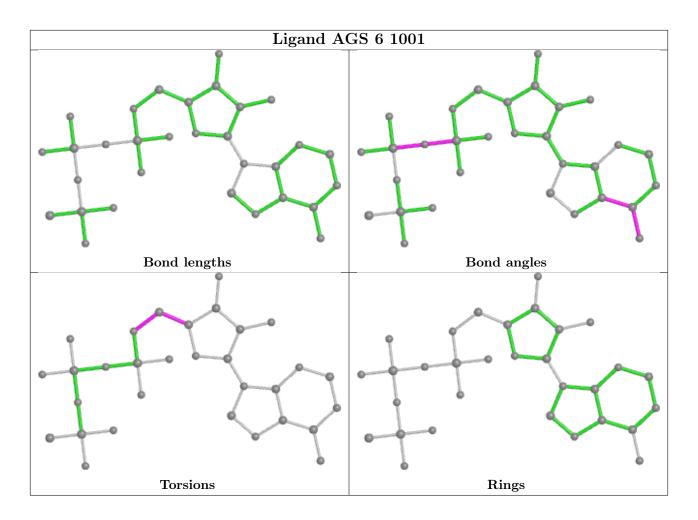


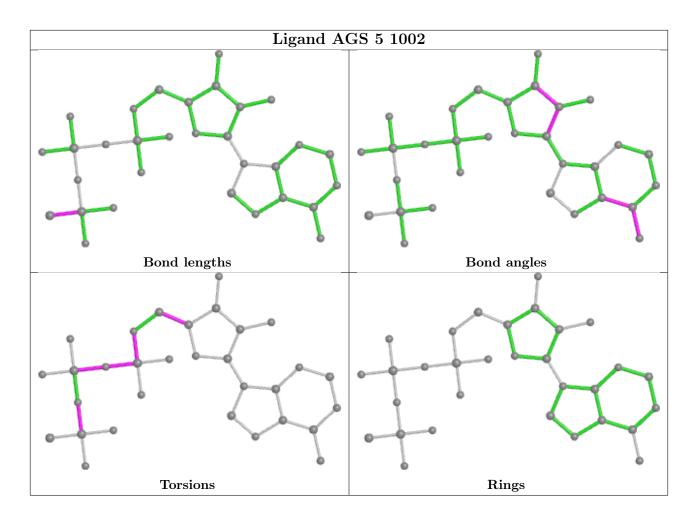


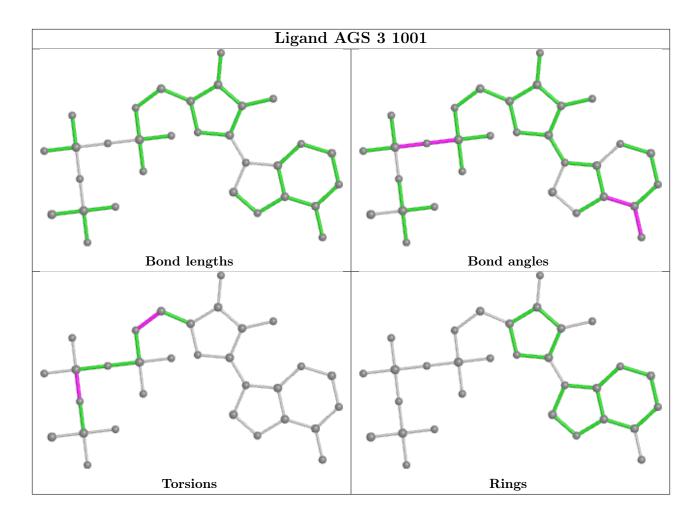












5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	h	1
1	i	1
1	1	1
1	j	1
1	k	1
1	m	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	h	28:UNK	С	988:UNK	Ν	44.65
1	i	29:UNK	С	988:UNK	Ν	43.96
1	l	33:UNK	С	986:UNK	Ν	33.84
1	j	32:UNK	С	981:UNK	Ν	24.35
1	k	33:UNK	С	980:UNK	Ν	19.33
1	m	31:UNK	С	981:UNK	Ν	19.22

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-8952. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal surface views (i)

This section was not generated.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

