

# Full wwPDB X-ray Structure Validation Report (i)

### Oct 17, 2024 – 06:24 PM EDT

| PDB ID       | : | 9DZM                                                             |
|--------------|---|------------------------------------------------------------------|
| Title        | : | Dimeric human OCT2 (POU2F2) POU domain bound to palindromic MORE |
|              |   | DNA                                                              |
| Authors      | : | Terrell, J.R.; Poon, G.M.K.                                      |
| Deposited on | : | 2024-10-16                                                       |
| Resolution   | : | 2.54  Å(reported)                                                |
|              |   |                                                                  |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Xtriage (Phenix)               | : | 1.20.1                                                             |
| EDS                            | : | 3.0                                                                |
| Percentile statistics          | : | 20231227.v01 (using entries in the PDB archive December 27th 2023) |
| CCP4                           | : | 9.0.003 (Gargrove)                                                 |
| Density-Fitness                | : | 1.0.11                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.39                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.54 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $\begin{array}{c} {\rm Whole \ archive} \\ {\rm (\#Entries)} \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 164625                                                                    | $1004 \ (2.54-2.54)$                                                      |
| Clashscore            | 180529                                                                    | 1055 (2.54-2.54)                                                          |
| Ramachandran outliers | 177936                                                                    | 1048 (2.54-2.54)                                                          |
| Sidechain outliers    | 177891                                                                    | 1048 (2.54-2.54)                                                          |
| RSRZ outliers         | 164620                                                                    | $1004 \ (2.54-2.54)$                                                      |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length |               | Quality of cl | hain |      |    |
|-----|-------|--------|---------------|---------------|------|------|----|
| 1   | А     | 21     | 5%            | 81%           |      | 10%  |    |
|     |       |        | 5%            | 0178          |      | 1376 |    |
| 2   | В     | 22     | 3%            | 77%           |      | 18%  | 5% |
| 3   | С     | 167    | 40%           | 7% •          | 51%  |      |    |
| 3   | D     | 167    | %<br>•<br>44% |               | 53%  |      |    |
| 9   | Б     | 167    | %<br>•        |               |      |      |    |
| 3   | Ľ     | 107    | 31%           | •             | 65%  |      |    |



| Mol | Chain | Length |     | Quality of chain |    |     |     |  |  |
|-----|-------|--------|-----|------------------|----|-----|-----|--|--|
|     |       |        | 11% |                  |    |     |     |  |  |
| 3   | F     | 167    | 26' | i% -             | 7% | ••• | 65% |  |  |



#### 9DZM

# 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 5823 atoms, of which 2696 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called DNA (5'-D(\*TP\*CP\*CP\*TP\*CP\*AP\*TP\*GP\*CP\*AP\* TP\*AP\*TP\*GP\*CP\*AP\*TP\*GP\*AP\*GP\*G)-3').

| Mol | Chain | Residues | Atoms        |          |          |         | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|----------|---------|----------|---------|-------|---|---|
| 1   | А     | 21       | Total<br>666 | C<br>205 | Н<br>239 | N<br>77 | 0<br>125 | Р<br>20 | 0     | 0 | 0 |

• Molecule 2 is a DNA chain called DNA (5'-D(\*TP\*CP\*CP\*TP\*CP\*AP\*TP\*GP\*CP\*AP\* TP\*AP\*TP\*GP\*CP\*AP\*TP\*GP\*AP\*GP\*AP\*GP\*A)-3').

| Mol | Chain | Residues | Atoms        |          |          |         | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|----------|---------|----------|---------|-------|---|---|
| 2   | В     | 22       | Total<br>698 | C<br>215 | Н<br>250 | N<br>82 | O<br>130 | Р<br>21 | 0     | 0 | 0 |

• Molecule 3 is a protein called POU domain, class 2, transcription factor 2.

| Mol        | Chain | Residues | Atoms                         | ZeroOcc | AltConf | Trace |
|------------|-------|----------|-------------------------------|---------|---------|-------|
| 3          | 2 C   | 81       | Total C H N O S               | 0       | 1       | Ο     |
| 5          | U     | 01       | 1302  414  646  111  127  4   |         |         | 0     |
| 3          | п     | 78       | Total C H N O S               | 0       | 0       | 0     |
| 5          | 5 D   | 10       | 1242  395  622  106  115  4   | 0       |         | 0     |
| 3          | F     | 58       | Total C H N O S               | 0       | 0       | 0     |
| 5          | 5 E   |          | 965  302  485  90  86  2      | 0       | 0       | 0     |
| 3          | 3 F   | 58       | Total C H N O S               | 0       | 0       | 0     |
| ່ <u>ບ</u> |       |          | 915 $291$ $454$ $84$ $84$ $2$ |         |         | 0     |

There are 16 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| С     | 193     | GLY      | -      | expression tag | UNP P09086 |
| С     | 194     | SER      | -      | expression tag | UNP P09086 |
| С     | 195     | HIS      | -      | expression tag | UNP P09086 |
| С     | 196     | MET      | -      | expression tag | UNP P09086 |
| D     | 193     | GLY      | -      | expression tag | UNP P09086 |
| D     | 194     | SER      | -      | expression tag | UNP P09086 |



| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| D     | 195     | HIS      | -      | expression tag | UNP P09086 |
| D     | 196     | MET      | -      | expression tag | UNP P09086 |
| Е     | 191     | GLY      | -      | expression tag | UNP P09086 |
| Е     | 192     | SER      | -      | expression tag | UNP P09086 |
| E     | 193     | HIS      | -      | expression tag | UNP P09086 |
| E     | 194     | MET      | -      | expression tag | UNP P09086 |
| F     | 191     | GLY      | -      | expression tag | UNP P09086 |
| F     | 192     | SER      | -      | expression tag | UNP P09086 |
| F     | 193     | HIS      | -      | expression tag | UNP P09086 |
| F     | 194     | MET      | -      | expression tag | UNP P09086 |

• Molecule 4 is BROMIDE ION (three-letter code: BR) (formula: Br).

| Mol | Chain | Residues | Atoms      |         | ZeroOcc | AltConf |
|-----|-------|----------|------------|---------|---------|---------|
| 4   | Ε     | 1        | Total<br>1 | Br<br>1 | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 5   | А     | 6        | Total O<br>6 6   | 0       | 0       |
| 5   | В     | 7        | Total O<br>7 7   | 0       | 0       |
| 5   | С     | 11       | Total O<br>11 11 | 0       | 0       |
| 5   | D     | 7        | Total O<br>7 7   | 0       | 0       |
| 5   | Ε     | 2        | Total O<br>2 2   | 0       | 0       |
| 5   | F     | 1        | Total O<br>1 1   | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA (5'-D(\*TP\*CP\*CP\*TP\*CP\*AP\*TP\*GP\*CP\*AP\*TP\*AP\*TP\*GP\*CP\*AP \*TP\*GP\*AP\*GP\*G)-3')



• Molecule 3: POU domain, class 2, transcription factor 2



| Chain E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GLY<br>SER<br>HIS<br>MET<br>MET<br>CLU<br>GLU<br>SER<br>ASP<br>LEU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEU<br>GLU<br>GLN<br>ALA<br>ALA<br>ARG<br>PHE<br>LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALN<br>ARG<br>ARG<br>ARG<br>ARG<br>CLY<br>CLY<br>CLFEU<br>CLY<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHE<br>LYS<br>ASN<br>MET<br>LYS<br>LYS<br>PLO<br>LEU<br>LEU<br>LEU<br>CLEU<br>CLEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LYS<br>TRP<br>LEU<br>ASN<br>ASP<br>ALA<br>CLU<br>THR<br>MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SER<br>ASP<br>ASP<br>SER<br>SER<br>SER<br>SER<br>SER<br>PRO<br>ASN<br>ASN<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| K351<br>1355<br>1355<br>1356<br>1356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Moleculo 2. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Molecule 5: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OU domain,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | class 2, transcription factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Molecule 5. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 domain,<br>26% 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | class 2, transcription factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chain F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26% 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | class 2, transcription factor 2         %       65%         BWWWHSIELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Morecure 3. P     11%     Chain F:     Line control of the second s | 26% 7<br>26% 7 | class 2, transcription factor 2<br>% •• 65%<br>ND W KING A WARD A WAR |



# 4 Data and refinement statistics (i)

| Property                                    | Value                                           | Source    |
|---------------------------------------------|-------------------------------------------------|-----------|
| Space group                                 | P 1                                             | Depositor |
| Cell constants                              | 38.03Å $54.92$ Å $69.16$ Å                      | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $82.37^{\circ}$ $79.66^{\circ}$ $71.77^{\circ}$ | Depositor |
| Bosolution (Å)                              | 33.91 - 2.54                                    | Depositor |
| Itesolution (A)                             | 33.91 - 2.54                                    | EDS       |
| % Data completeness                         | 95.5(33.91-2.54)                                | Depositor |
| (in resolution range)                       | 95.4(33.91-2.54)                                | EDS       |
| $R_{merge}$                                 | 0.06                                            | Depositor |
| $R_{sym}$                                   | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                         | $1.40 (at 2.54 \text{\AA})$                     | Xtriage   |
| Refinement program                          | PHENIX 1.19.2_4158                              | Depositor |
| P. P.                                       | 0.217 , $0.242$                                 | Depositor |
| $n, n_{free}$                               | 0.216 , $0.240$                                 | DCC       |
| $R_{free}$ test set                         | 15517 reflections $(10.01%)$                    | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 51.5                                            | Xtriage   |
| Anisotropy                                  | 0.787                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$ | 0.35 , $48.1$                                   | EDS       |
| L-test for $twinning^2$                     | $ < L >=0.51, < L^2>=0.34$                      | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                      | 0.94                                            | EDS       |
| Total number of atoms                       | 5823                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 73.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.21% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bond lengths |          | Bond angles |               |  |
|------|-------|--------------|----------|-------------|---------------|--|
| MIOI | Unain | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5      |  |
| 1    | А     | 0.62         | 0/478    | 0.97        | 0/736         |  |
| 2    | В     | 0.61         | 0/502    | 0.97        | 1/773~(0.1%)  |  |
| 3    | С     | 0.31         | 0/669    | 0.53        | 0/896         |  |
| 3    | D     | 0.30         | 0/630    | 0.55        | 0/843         |  |
| 3    | Е     | 0.30         | 0/487    | 0.60        | 0/653         |  |
| 3    | F     | 0.32         | 0/467    | 0.59        | 0/629         |  |
| All  | All   | 0.42         | 0/3233   | 0.73        | 1/4530~(0.0%) |  |

There are no bond length outliers.

All (1) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|------|------------------|---------------|
| 2   | В     | 202 | DC   | O4'-C1'-N1 | 5.64 | 111.95           | 108.00        |

There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 427   | 239      | 239      | 3       | 0            |
| 2   | В     | 448   | 250      | 250      | 5       | 0            |
| 3   | С     | 656   | 646      | 648      | 10      | 0            |
| 3   | D     | 620   | 622      | 622      | 2       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 3   | Е     | 480   | 485      | 485      | 4       | 0            |
| 3   | F     | 461   | 454      | 454      | 9       | 0            |
| 4   | Е     | 1     | 0        | 0        | 0       | 0            |
| 5   | А     | 6     | 0        | 0        | 0       | 0            |
| 5   | В     | 7     | 0        | 0        | 0       | 0            |
| 5   | С     | 11    | 0        | 0        | 0       | 0            |
| 5   | D     | 7     | 0        | 0        | 0       | 0            |
| 5   | Е     | 2     | 0        | 0        | 0       | 0            |
| 5   | F     | 1     | 0        | 0        | 0       | 0            |
| All | All   | 3127  | 2696     | 2698     | 28      | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (28) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:205:DC:O2    | 2:B:218:DG:N2    | 2.17                    | 0.77        |
| 3:F:305:GLU:O    | 3:F:306:THR:OG1  | 2.09                    | 0.69        |
| 3:C:236:ASN:O    | 3:C:236:ASN:ND2  | 2.34                    | 0.60        |
| 3:F:304:ILE:CD1  | 3:F:336:MET:SD   | 2.89                    | 0.60        |
| 3:C:208:PHE:CE1  | 3:C:264:GLU:HG2  | 2.40                    | 0.57        |
| 3:C:201:ASP:O    | 3:C:205:LEU:HD23 | 2.05                    | 0.56        |
| 3:E:312:LEU:HD21 | 3:E:341:ILE:HD12 | 1.88                    | 0.55        |
| 3:D:200:SER:O    | 3:D:201:ASP:HB2  | 2.07                    | 0.54        |
| 1:A:202:DC:H2'   | 1:A:203:DC:C6    | 2.44                    | 0.53        |
| 3:F:326:GLU:O    | 3:F:329:LEU:HG   | 2.11                    | 0.51        |
| 2:B:203:DC:OP2   | 3:E:342:ARG:HD3  | 2.10                    | 0.50        |
| 3:C:232:LYS:HE2  | 3:C:232:LYS:N    | 2.27                    | 0.50        |
| 3:C:230:MET:SD   | 3:C:263:LEU:HD23 | 2.52                    | 0.49        |
| 3:C:256:MET:HG3  | 3:E:355:ILE:HD12 | 1.94                    | 0.49        |
| 1:A:204:DT:OP2   | 3:F:349:ARG:NE   | 2.36                    | 0.49        |
| 3:F:329:LEU:HD12 | 3:F:330:ILE:N    | 2.28                    | 0.48        |
| 3:F:304:ILE:HD13 | 3:F:336:MET:SD   | 2.55                    | 0.47        |
| 3:F:308:VAL:HG13 | 3:F:334:LEU:HD22 | 1.97                    | 0.46        |
| 3:D:215:ARG:CZ   | 3:D:267:LEU:HD13 | 2.45                    | 0.46        |
| 2:B:201:DT:H2"   | 3:E:339:GLU:OE2  | 2.16                    | 0.46        |
| 3:C:272:THR:HA   | 3:C:275:VAL:HG22 | 1.98                    | 0.45        |
| 3:C:237:ASP:OD1  | 3:C:237:ASP:N    | 2.41                    | 0.45        |
| 3:C:208:PHE:CZ   | 3:C:264:GLU:HG2  | 2.53                    | 0.44        |
| 3:F:356:ASN:HB3  | 3:F:357:PRO:HD3  | 1.98                    | 0.44        |



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 3:C:202:LEU:HD13 | 3:C:202:LEU:O    | 2.19                        | 0.42                 |
| 2:B:202:DC:H2"   | 2:B:203:DC:O5'   | 2.20                        | 0.42                 |
| 3:F:328:LEU:C    | 3:F:328:LEU:HD13 | 2.41                        | 0.41                 |
| 2:B:217:DT:H2"   | 2:B:218:DG:C8    | 2.56                        | 0.40                 |

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Pei | rce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-----|-----|--------|
| 3   | С     | 80/167~(48%)  | 79~(99%)  | 1 (1%)  | 0        | 10  | )0  | 100    |
| 3   | D     | 76/167~(46%)  | 73~(96%)  | 2(3%)   | 1 (1%)   | 1   | .0  | 13     |
| 3   | Е     | 56/167~(34%)  | 55~(98%)  | 1 (2%)  | 0        | 10  | )0  | 100    |
| 3   | F     | 56/167~(34%)  | 50 (89%)  | 2(4%)   | 4 (7%)   |     | 1   | 0      |
| All | All   | 268/668~(40%) | 257 (96%) | 6 (2%)  | 5 (2%)   |     | 6   | 7      |

All (5) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | D     | 201 | ASP  |
| 3   | F     | 306 | THR  |
| 3   | F     | 335 | HIS  |
| 3   | F     | 305 | GLU  |
| 3   | F     | 356 | ASN  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.



| Mol | Chain | Analysed      | Rotameric | Outliers | Percentiles |
|-----|-------|---------------|-----------|----------|-------------|
| 3   | С     | 72/151~(48%)  | 67~(93%)  | 5(7%)    | 13 16       |
| 3   | D     | 67/151~(44%)  | 67~(100%) | 0        | 100 100     |
| 3   | Е     | 52/151~(34%)  | 50~(96%)  | 2(4%)    | 28 41       |
| 3   | F     | 48/151 (32%)  | 46 (96%)  | 2(4%)    | 25 37       |
| All | All   | 239/604~(40%) | 230~(96%) | 9~(4%)   | 28 41       |

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

All (9) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 3   | С     | 198            | GLU  |
| 3   | С     | 201            | ASP  |
| 3   | С     | 232            | LYS  |
| 3   | С     | 236            | ASN  |
| 3   | С     | 255            | ASN  |
| 3   | Е     | 338            | LYS  |
| 3   | Е     | 351            | LYS  |
| 3   | F     | 321            | LYS  |
| 3   | F     | 356            | ASN  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.



## 5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed      | $\langle RSRZ \rangle$ | #RSRZ>2       | $\mathbf{OWAB}(\mathbf{\AA}^2)$ | Q<0.9  |
|-----|-------|---------------|------------------------|---------------|---------------------------------|--------|
| 1   | А     | 21/21~(100%)  | -0.02                  | 1 (4%) 36 42  | 38, 53, 82, 97                  | 0      |
| 2   | В     | 22/22~(100%)  | 0.00                   | 1 (4%) 39 44  | 34, 62, 88, 121                 | 0      |
| 3   | С     | 81/167~(48%)  | 0.37                   | 5 (6%) 28 31  | 22, 56, 111, 125                | 1 (1%) |
| 3   | D     | 78/167~(46%)  | 0.17                   | 1 (1%) 74 77  | 32, 57, 94, 115                 | 0      |
| 3   | Ε     | 58/167~(34%)  | 0.45                   | 2 (3%) 48 53  | 36, 71, 101, 104                | 0      |
| 3   | F     | 58/167~(34%)  | 1.63                   | 18 (31%) 1 1  | 84, 140, 158, 164               | 0      |
| All | All   | 318/711 (44%) | 0.51                   | 28 (8%) 17 20 | 22, 66, 149, 164                | 1 (0%) |

All (28) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 3   | F     | 300 | LYS  | 5.2  |
| 2   | В     | 201 | DT   | 4.3  |
| 3   | С     | 236 | ASN  | 4.0  |
| 3   | F     | 343 | VAL  | 3.7  |
| 3   | F     | 338 | LYS  | 3.5  |
| 3   | F     | 312 | LEU  | 3.4  |
| 3   | F     | 301 | ARG  | 3.1  |
| 3   | F     | 310 | PHE  | 3.0  |
| 3   | С     | 277 | SER  | 2.9  |
| 3   | D     | 199 | PRO  | 2.8  |
| 3   | С     | 234 | TYR  | 2.8  |
| 3   | F     | 339 | GLU  | 2.8  |
| 3   | F     | 335 | HIS  | 2.6  |
| 3   | С     | 271 | GLU  | 2.6  |
| 3   | F     | 316 | PHE  | 2.6  |
| 3   | E     | 300 | LYS  | 2.5  |
| 3   | F     | 340 | VAL  | 2.4  |
| 3   | F     | 336 | MET  | 2.3  |
| 3   | С     | 275 | VAL  | 2.2  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 202 | DC   | 2.2  |
| 3   | F     | 302 | THR  | 2.2  |
| 3   | F     | 304 | ILE  | 2.2  |
| 3   | F     | 317 | LEU  | 2.1  |
| 3   | F     | 308 | VAL  | 2.1  |
| 3   | Е     | 329 | LEU  | 2.1  |
| 3   | F     | 344 | TRP  | 2.1  |
| 3   | F     | 303 | SER  | 2.1  |
| 3   | F     | 347 | ASN  | 2.0  |

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------|-------|
| 4   | BR   | Е     | 401 | 1/1   | 0.84 | 0.11 | 138,138,138,138  | 0     |

### 6.5 Other polymers (i)

There are no such residues in this entry.

