

Full wwPDB X-ray Structure Validation Report (i)

Nov 20, 2023 – 11:50 PM JST

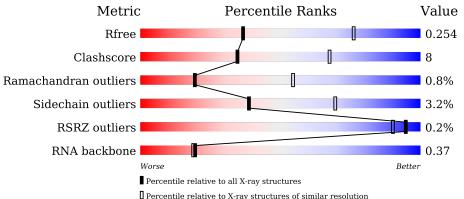
PDB ID	:	7DWH
Title	:	Complex structure of SAM-dependent methyltransferase ribozyme
Authors	:	Jiang, H.Y.; Gao, Y.Q.; Chen, D.R.; Murchie, A.
Deposited on		
Resolution	:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


Xtriage (Phenix) EDS buster-report Percentile statistics	: : :	20191225.v01 (using entries in the PDB archive December 25th 2019)
-	:	
CCP4 Ideal geometry (proteins)		7.0.044 (Gargrove) Engh & Huber (2001)
Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)		

Overall quality at a glance (i) 1

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

]	Percentile	relative	to	X-ray	structures	of	similar	resolution	
]	Percentile	relative	to	X-ray	structures	of	similar	resolution	

Metric	Whole archive	Similar resolution
Metric	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1094 (3.10-3.10)
Clashscore	141614	1184 (3.10-3.10)
Ramachandran outliers	138981	1141 (3.10-3.10)
Sidechain outliers	138945	1141 (3.10-3.10)
RSRZ outliers	127900	1067 (3.10-3.10)
RNA backbone	3102	1116 (3.40-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	102	72%		22%	7%
1	В	102	67%	16%	•	17%
1	С	102	76%		18%	• 5%
1	D	102	84%		1	.1% 5%

Mol	Chain	Length	Quali	ty of chain	
2	Х	45	49%	33%	18%
2	Y	45	^{2%}	49%	7%

7DWH

2 Entry composition (i)

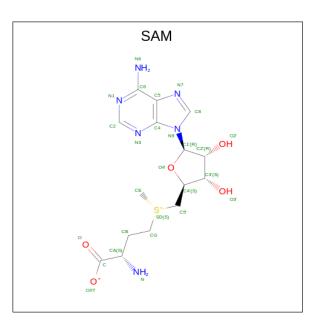
There are 5 unique types of molecules in this entry. The entry contains 4902 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	95	Total	С	Ν	0	S	0	0	0
	А	90	748	481	127	136	4	0	0	0
1	В	85	Total	С	Ν	Ο	S	0	0	0
	D	00	684	442	116	123	3	0		
1	C	97	Total	С	Ν	0	S	0	0	0
	U	91	759	489	125	141	4	0	0	0
1	Л	07	Total	С	Ν	0	S	0	0	0
		97	738	474	121	140	3	0	0	U

• Molecule 1 is a protein called U1 small nuclear ribonucleoprotein A.

• Molecule 2 is a RNA chain called RNA (45-MER).


Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
2	v	45	Total	С	Ν	0	Р	0	0	0
	Λ	40	960	427	173	315	45	0	0	0
2	V	45	Total	С	Ν	0	Р	0	0	0
	I	40	960	427	173	315	45	0	0 0	0

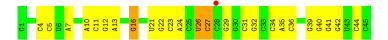
• Molecule 3 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Х	1	Total Cu 1 1	0	0
3	Y	1	Total Cu 1 1	0	0

• Molecule 4 is S-ADENOSYLMETHIONINE (three-letter code: SAM) (formula: $C_{15}H_{22}N_6O_5S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf
4	v	1	Total	С	Ν	0	\mathbf{S}	0	0
4	Λ	1	26	14	6	5	1	0	0
4	V	1	Total	С	Ν	Ο	S	0	0
4	I		19	10	5	3	1	0	U

• Molecule 5 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	1	Total O 1 1	0	0
5	С	1	Total O 1 1	0	0
5	D	3	Total O 3 3	0	0
5	Х	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 72% 7% 22% MET ALA VAL PRO GLU • Molecule 1: U1 small nuclear ribonucleoprotein A Chain B: 67% 16% 17% MET ALA VAL PRO GLU GLU THR ARG ILE ILE ALA ALA ALA MET MET CYS 3LY SILY VAL • Molecule 1: U1 small nuclear ribonucleoprotein A Chain C: 76% 18% • 5% MET ALA VAL PRO GLU GLU R7 R7 • Molecule 1: U1 small nuclear ribonucleoprotein A Chain D: 84% 11% 5% • Molecule 2: RNA (45-MER) Chain X: 49% 18% 33% • Molecule 2: RNA (45-MER) Chain Y: 44% 49% 7%
- Molecule 1: U1 small nuclear ribonucleoprotein A

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	62.92Å 77.31Å 101.47Å	Depositor
a, b, c, α , β , γ	90.00° 93.24° 90.00°	Depositor
Resolution (Å)	29.53 - 3.10	Depositor
Resolution (A)	29.53 - 3.10	EDS
% Data completeness	83.8 (29.53-3.10)	Depositor
(in resolution range)	83.8 (29.53-3.10)	EDS
R _{merge}	0.10	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$5.37 (at 3.11 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.12_2829	Depositor
R, R_{free}	0.209 , 0.258	Depositor
II, II, <i>free</i>	0.210 , 0.254	DCC
R_{free} test set	728 reflections $(4.88%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	62.5	Xtriage
Anisotropy	0.110	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29 , 42.7	EDS
L-test for twinning ²	$ \langle L \rangle = 0.46, \langle L^2 \rangle = 0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	4902	wwPDB-VP
Average B, all atoms $(Å^2)$	72.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.15% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SAM, CU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles	
	Unam	RMSZ $\# Z > 5$		RMSZ	# Z > 5
1	А	0.48	0/761	0.56	0/1022
1	В	0.51	0/697	0.59	0/934
1	С	0.53	0/773	0.58	0/1040
1	D	0.35	0/751	0.50	0/1015
2	Х	0.60	3/1071~(0.3%)	0.84	0/1666
2	Y	0.28	0/1071	0.83	0/1666
All	All	0.47	3/5124~(0.1%)	0.70	0/7343

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	Х	12	G	O3'-P	-5.50	1.54	1.61
2	Х	33	С	O3'-P	-5.49	1.54	1.61
2	Х	11	С	O3'-P	-5.07	1.55	1.61

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	748	0	748	12	0
1	В	684	0	694	20	0

Mol	Chain	Non-H		H(added)	Clashes	Symm-Clashes
1	С	759	0	747	9	0
1	D	738	0	706	8	0
2	Х	960	0	490	15	0
2	Y	960	0	490	12	0
3	Х	1	0	0	0	0
3	Y	1	0	0	0	0
4	Х	26	0	18	1	0
4	Y	19	0	12	0	0
5	В	1	0	0	0	0
5	С	1	0	0	0	0
5	D	3	0	0	0	0
5	Х	1	0	0	0	0
All	All	4902	0	3905	64	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (64) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:51:MET:HA	1:B:54:GLN:NE2	1.59	1.16
1:B:51:MET:HA	1:B:54:GLN:HE22	1.21	0.94
1:B:51:MET:CA	1:B:54:GLN:NE2	2.43	0.79
1:C:92:ASP:N	1:C:92:ASP:OD1	2.11	0.79
1:B:50:LYS:NZ	2:Y:24:A:H5"	2.01	0.76
1:B:50:LYS:HZ3	2:Y:24:A:H5"	1.52	0.69
1:C:18:ASN:HD22	1:C:78:TYR:HB3	1.57	0.68
2:Y:16:G:H1	2:Y:31:C:H42	1.43	0.66
1:C:49:LEU:O	1:C:52:ARG:NH2	2.25	0.66
1:A:9:ASN:OD1	1:A:10:HIS:N	2.32	0.62
1:A:11:THR:HG1	1:A:91:SER:HG	1.48	0.61
2:X:12:G:C6	2:X:13:A:C5	2.89	0.60
1:B:50:LYS:NZ	2:Y:24:A:C5'	2.66	0.58
1:A:9:ASN:ND2	1:A:89:THR:O	2.37	0.57
1:B:33:ILE:HG23	1:D:75:PHE:HZ	1.69	0.56
1:D:33:ILE:HG13	1:D:34:PHE:CD1	2.42	0.55
1:A:67:ASN:OD1	1:A:70:ARG:NH1	2.39	0.55
1:C:6:THR:HG22	1:C:7:ARG:H	1.70	0.55
1:B:51:MET:HA	1:B:54:GLN:HE21	1.67	0.55
1:C:33:ILE:HD11	1:C:77:PHE:CE1	2.42	0.55
2:X:20:U:O2	2:X:22:G:N2	2.39	0.55

Continued from pre		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:X:12:G:C6	2:X:13:A:C4	2.95	0.54
1:B:80:LYS:NZ	2:Y:21:U:O4	2.40	0.54
1:B:51:MET:C	1:B:54:GLN:HE21	2.11	0.53
1:B:53:GLY:C	1:B:54:GLN:HG3	2.30	0.52
2:X:36:C:N4	2:X:37:G:N7	2.58	0.52
2:X:37:G:N2	2:X:38:G:H1'	2.24	0.52
1:D:17:LEU:HB2	1:D:53:GLY:HA2	1.92	0.51
1:B:92:ASP:OD2	1:B:92:ASP:N	2.43	0.51
1:A:76:PRO:HA	1:A:81:PRO:HA	1.92	0.51
1:C:71:SER:HA	1:D:69:LEU:HD22	1.93	0.51
1:C:46:SER:HB3	1:C:101:PHE:CZ	2.47	0.50
2:X:12:G:O6	2:X:13:A:C6	2.65	0.50
1:B:87:ALA:HA	2:Y:23:C:N3	2.27	0.49
2:Y:5:C:H42	2:Y:41:G:H1	1.60	0.49
2:X:36:C:C4	2:X:37:G:C8	3.00	0.49
2:Y:26:U:H3'	2:Y:27:C:H5"	1.95	0.48
2:X:36:C:C4	2:X:37:G:N7	2.81	0.48
1:B:51:MET:SD	2:Y:24:A:H4'	2.54	0.48
1:D:92:ASP:N	1:D:92:ASP:OD1	2.40	0.48
2:X:25:C:H5"	2:X:26:U:H5'	1.96	0.47
1:C:44:LEU:HB2	1:C:56:PHE:HB2	1.96	0.47
1:B:18:ASN:HD22	1:B:78:TYR:HB3	1.79	0.47
1:A:51:MET:HA	1:A:54:GLN:NE2	2.29	0.46
1:A:71:SER:HA	1:D:67:ASN:ND2	2.30	0.46
2:Y:39:G:H2'	2:Y:40:G:C8	2.50	0.46
2:X:13:A:C2'	2:X:14:G:H5'	2.45	0.46
1:B:82:MET:HE3	1:B:84:ILE:HD11	1.97	0.45
1:B:46:SER:HB3	1:B:51:MET:HE2	1.97	0.45
1:B:8:PRO:HA	1:B:86:TYR:CD1	2.53	0.44
2:X:34:C:O2'	2:X:35:A:H5"	2.18	0.44
1:A:71:SER:HA	1:D:67:ASN:HD21	1.83	0.44
2:Y:39:G:H2'	2:Y:40:G:H8	1.83	0.43
1:A:88:LYS:HG3	2:X:23:C:N3	2.34	0.42
1:B:46:SER:CB	1:B:51:MET:HE2	2.49	0.42
1:A:92:ASP:N	2:X:25:C:N3	2.65	0.41
2:X:36:C:H3'	2:X:37:G:H5"	2.03	0.41
1:B:88:LYS:HD2	2:Y:23:C:O2'	2.21	0.41
1:C:93:ILE:H	1:C:93:ILE:HG13	1.56	0.40
2:X:12:G:C5	2:X:13:A:C5	3.09	0.40
1:A:16:ASN:ND2	1:A:81:PRO:O	2.52	0.40
1:A:75:PHE:O	1:A:82:MET:HG2	2.22	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:10:HIS:HB3	1:D:62:VAL:HG22	2.03	0.40
4:X:102:SAM:H8	4:X:102:SAM:H2'	1.94	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	А	93/102~(91%)	90~(97%)	2(2%)	1 (1%)	14	46
1	В	83/102 (81%)	81 (98%)	2(2%)	0	100	100
1	С	95/102~(93%)	92~(97%)	2(2%)	1 (1%)	14	46
1	D	95/102~(93%)	90~(95%)	4 (4%)	1 (1%)	14	46
All	All	366/408~(90%)	353~(96%)	10 (3%)	3 (1%)	19	54

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	8	PRO
1	С	8	PRO
1	D	8	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	79/91~(87%)	75~(95%)	4(5%)	24	56
1	В	74/91~(81%)	72~(97%)	2(3%)	44	74
1	С	80/91~(88%)	76~(95%)	4(5%)	24	57
1	D	75/91~(82%)	75 (100%)	0	100	100
All	All	308/364~(85%)	298~(97%)	10 (3%)	39	69

All (10) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	47	ARG
1	А	93	ILE
1	А	94	ILE
1	А	97	MET
1	В	47	ARG
1	В	92	ASP
1	С	35	SER
1	С	83	ARG
1	С	88	LYS
1	С	92	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
1	В	54	GLN
1	С	18	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	Х	44/45~(97%)	15 (34%)	2(4%)
2	Y	44/45~(97%)	17 (38%)	0
All	All	88/90~(97%)	32~(36%)	2(2%)

All (32) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	Х	4	С
2	Х	5	С
2	Х	7	А

Mol	Chain	\mathbf{Res}	$\begin{array}{c} \mathbf{Type} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{U} \\ \mathbf{C} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{C} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{C} \\ \mathbf{G} \\$
2	Х	10	А
2	Х	11	С
2	Х	13	А
2	Х	16	G
2	Х	22	G
2	Х	26	U
2	Х	27	С
2	Х	27 29	G
$\frac{2}{2}$	Х	32	G
2	X X X X X X X X X X X X X Y Y Y Y Y Y Y	35	А
2	Х	36	С
2	Х	37	G
2	Y	4	С
2	Y	7	А
2	Y	10 11 12 13	А
2	Y	11	C
2	Y	12	G
2	Y	13	А
$\frac{2}{2}$	Y	16	G
2	Y	22	G
$\frac{2}{2}$	Y	22 26 27 29	U
	Y	27	С
2	Y	29	G
2	Y	32	G
2	Y	34	С
$\frac{2}{2}$	Y	35	А
2	Y	36	С
2 2	Y	42	G
2	Y	44	C

All (2) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	Х	10	А
2	Х	26	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 2 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Iol Type Chain Res		hain Res Link		Bo	Bond lengths			Bond angles		
INIOI	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
4	SAM	Y	102	-	18,21,29	1.29	2 (11%)	18,31,42	1.59	2 (11%)	
4	SAM	Х	102	3	24,28,29	1.46	3 (12%)	25,40,42	1.52	4 (16%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	SAM	Y	102	-	-	2/2/22/33	0/3/3/3
4	SAM	Х	102	3	-	1/11/31/33	0/3/3/3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	Y	102	SAM	C2-N3	3.96	1.38	1.32
4	Х	102	SAM	CG-SD	-3.95	1.66	1.81
4	Х	102	SAM	C5'- SD	-3.56	1.66	1.80
4	Х	102	SAM	C5-C4	2.51	1.47	1.40
4	Y	102	SAM	C2-N1	2.51	1.38	1.33

All (6) bond angle outliers are listed below:

			Atoms			$Ideal(^{o})$
4	Y 102	SAM	N3-C2-N1	-5.34	120.33	128.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Х	102	SAM	C3'-C2'-C1'	3.44	106.15	100.98
4	Х	102	SAM	N3-C2-N1	-3.19	123.70	128.68
4	Y	102	SAM	C3'-C2'-C1'	2.97	105.45	100.98
4	Х	102	SAM	C4-C5-N7	-2.69	106.60	109.40
4	Х	102	SAM	C5'-SD-CG	2.43	109.55	102.27

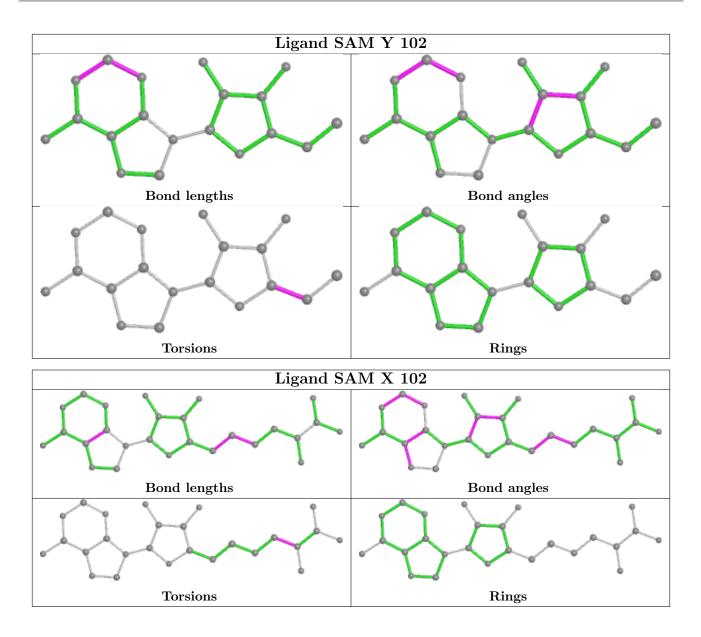
Continued from previous page...

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Х	102	SAM	N-CA-CB-CG
4	Y	102	SAM	O4'-C4'-C5'-SD
4	Y	102	SAM	C3'-C4'-C5'-SD

There are no ring outliers.


1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Х	102	SAM	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	$\mathbf{Q}{<}0.9$
1	А	95/102~(93%)	-0.43	0 100 100	23, 46, 88, 105	0
1	В	85/102 (83%)	-0.05	0 100 100	34, 69, 102, 117	0
1	С	97/102~(95%)	-0.38	0 100 100	25, 50, 92, 99	0
1	D	97/102~(95%)	-0.52	0 100 100	27, 53, 99, 125	0
2	Х	45/45~(100%)	0.03	0 100 100	48, 84, 105, 114	0
2	Y	45/45~(100%)	0.25	1 (2%) 62 41	80, 104, 147, 170	0
All	All	464/498~(93%)	-0.26	1 (0%) 95 90	23, 60, 108, 170	0

All (1) RSRZ outliers are listed below:

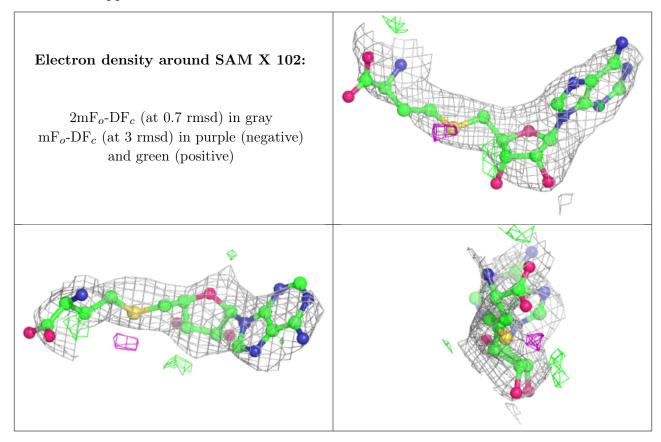
Mol	Chain	Res	Type	RSRZ
2	Y	28	С	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

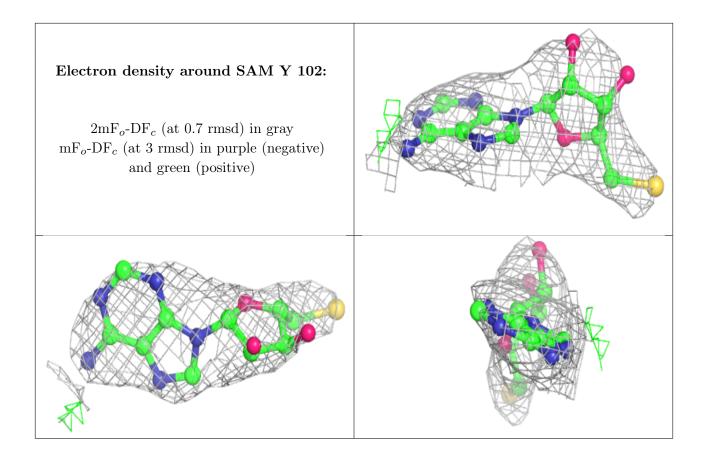
There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.


6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.



Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	CU	Y	101	1/1	0.89	0.13	111,111,111,111	0
4	SAM	Х	102	26/27	0.90	0.29	69,80,110,115	0
3	CU	Х	101	1/1	0.94	0.20	127,127,127,127	0
4	SAM	Y	102	19/27	0.94	0.21	80,92,100,104	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

