

Full wwPDB X-ray Structure Validation Report (i)

Sep 11, 2023 – 11:59 AM EDT

PDB ID	:	8DL1
Title	:	BoGH13ASus-E523Q from Bacteroides ovatus bound to maltoheptaose
Authors	:	Brown, H.A.; DeVeaux, A.L.; Koropatkin, N.M.
Deposited on	:	2022-07-06
Resolution	:	2.09 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.09 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	5197 (2.10-2.10)
Clashscore	141614	5710 (2.10-2.10)
Ramachandran outliers	138981	5647 (2.10-2.10)
Sidechain outliers	138945	5648 (2.10-2.10)
RSRZ outliers	127900	5083 (2.10-2.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	738	88%	7% ••
1	В	738	% 89%	7% •
1	С	738	2% 87 %	8% • •
1	D	738	2% 87 %	8% • •
2	G	5	100%	

Mol	Chain	Length		Quality of chain					
2	Н	5	20%	80%					
2	Ι	5	20%	80%					
2	J	5	20%	20% 80%					
2	K	5		80%	20%				
3	L	3		67%	33%				
3	М	3		100%					
4	Ν	4		75%	25%				
5	0	7		86%	14%				
6	Р	7		100%					
7	Q	6	17%	83%					
8	R	5	20%	80%					

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
10	ACT	D	805	-	-	Х	-
13	1PE	С	2301	-	-	Х	-
9	EDO	А	2316	-	-	Х	-

2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 25543 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	1 Δ	713	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	Л	715	5726	3652	943	1108	23	0	L	0
1	В	708	Total	С	Ν	Ο	\mathbf{S}	0	9	0
1	D	100	5664	3613	932	1096	23	0	2	0
1	C	719	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	U	112	5698	3635	940	1101	22	0	0	0
1	Л	706	Total	С	Ν	Ο	S	0	1	0
		100	5613	3586	925	1080	22			U

• Molecule 1 is a protein called Alpha amylase, catalytic domain protein.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	21	GLY	-	expression tag	UNP A7M087
А	523	GLN	GLU	engineered mutation	UNP A7M087
В	21	GLY	-	expression tag	UNP A7M087
В	523	GLN	GLU	engineered mutation	UNP A7M087
С	21	GLY	-	expression tag	UNP A7M087
С	523	GLN	GLU	engineered mutation	UNP A7M087
D	21	GLY	-	expression tag	UNP A7M087
D	523	GLN	GLU	engineered mutation	UNP A7M087

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
2	G	5	Total 56	C 30	O 26	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	Н	5	Total C O 56 30 26	0	0	0
2	Ι	5	Total C O 56 30 26	0	0	0
2	J	5	Total C O 56 30 26	0	0	0
2	K	5	Total C O 56 30 26	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace
3	L	3	Total 0 34 1	C O 8 16	0	0	0
3	М	3	Total 0 34 1	C O 8 16	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
4	Ν	4	Total 45	C 24	O 21	0	0	0

• Molecule 5 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-[alpha-D-glucopyranose -(1-6)]alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
5	О	7	Total 78	C 42	O 36	0	0	0

• Molecule 6 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-6)-[alpha-D-glucopyranose-(1-4)]alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
6	Р	7	Total 78	C 42	O 36	0	0	0

• Molecule 7 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-6)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranoye-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyr

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
7	Q	6	Total 67	C 36	0 31	0	0	0

• Molecule 8 is an oligosaccharide called alpha-D-glucopyranose-(1-6)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
8	R	5	Total 56	C 30	O 26	0	0	0

• Molecule 9 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
9	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 10 is ACETATE ION (three-letter code: ACT) (formula: $C_2H_3O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 11 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	А	1	Total Ca 1 1	0	0
11	В	1	Total Ca 1 1	0	0
11	С	1	Total Ca 1 1	0	0
11	D	1	Total Ca 1 1	0	0

• Molecule 12 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
12	А	1	Total Mn 1 1	0	0
12	В	1	Total Mn 1 1	0	0
12	С	1	Total Mn 1 1	0	0
12	D	1	Total Mn 1 1	0	0

• Molecule 13 is PENTAETHYLENE GLYCOL (three-letter code: 1PE) (formula: $C_{10}H_{22}O_6$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
13	С	1	Total 16	C 10	O 6	0	0

• Molecule 14 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula: $C_6H_{14}O_4$).

Mol	Chain	Residues	Aton	ıs	ZeroOcc	AltConf
14	С	1	Total C 10 6	C O 4	0	0

• Molecule 15 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	С	1	Total Na 1 1	0	0

• Molecule 16 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
16	С	1	Total 7	$\begin{array}{c} \mathrm{C} \\ 4 \end{array}$	O 3	0	0

• Molecule 17 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
17	D	1	Total Cl 1 1	0	0

• Molecule 18 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
18	А	587	Total O 587 587	0	0
18	В	488	Total O 488 488	0	0
18	С	462	Total O 462 462	0	0
18	D	350	Total O 350 350	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Alpha amylase, catalytic domain protein

M577 M623 L624 L624 W649 E650 S673 S673 V688 W7688 M7688 M703 M703 M703 M703 M703 M703 M716 S7117	1726 1726 1726 1728 1728 1728 1728 1728 1738 010 010 010 011 1743 1743 1743 1743 1743 1743 1745 1745 1745 1746	
• Molecule 1: Alpha amylase, catal	lytic domain protein	
Chain D:	87%	8% ••
GLY SER ASP ASP ASP ASP ASP ASP AC CLY CLY ALA ALA ALA ALA ALA ALU CLU CLU CLU	N51 081 92 492 110 112 112 112 8121 8121 8121 8121 81	P.13.0 8132 138 1138 1138 1138 1138 1138 1138
L175 P176 B177 B177 B180 C17 C175 C195 F216 F216 F216 F216 F216 F216 F216 F216	1332 (1233 1233 1233 1234 1235 1235 1235 1235 1235 1235 1235 1235	0.1.1 0.1.1 0.1.1 0.1.1 0.3.5 0.3.5 0.3.5 0.3.5 0.3.5 0.3.5 0.3.5 0.4.6 0.4.6 0.4.6 0.4.6 0.4.6 0.4.6 0.4.6 0.4.6 0.4.7 0.4.6 0.4.70
E516 E516 H524 F526 F526 N528 N528 N528 N528 F527 F527 F601 F601 F604 F603 F633 F633 F633 F633 F633 F633 F633	4697 1726 1726 1726 1726 1726 1726 1729 1736 1736 1736 1736 1736 1736 1736 1736 1736 1736 1729	dtu dtu

 \bullet Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain G: 100%

 \bullet Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain H:	20%	80%	
9101 6102 6104 6104 6105			

 \bullet Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain I:	20%	80%	
GLC1 GLC2 GLC3 GLC4 GLC5			

 \bullet Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain J: 20%

80%

GLC1 GLC2 GLC3 GLC5 GLC5

 \bullet Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain K:	80%	20%	
GLC1 GLC2 GLC3 GLC4 GLC5			
• Molecule 3: a e	lpha-D-glucopyranose-(1-4)-alpha-	D-glucopyranose-(1-4)-a	alpha-D-glucopyranos
Chain L:	67%	33%	
GL01 GLC3 GLC3			
• Molecule 3: a e	lpha-D-glucopyranose-(1-4)-alpha-	D-glucopyranose-(1-4)-a	alpha-D-glucopyranos
Chain M:	100%		
GLC1 GLC2 GLC3			
• Molecule 4: a 1-4)-alpha-D-glu	lpha-D-glucopyranose-(1-4)-alpha-I ucopyranose)-glucopyranose-(1-4)-alp	bha-D-glucopyranose-(
Chain N:	75%	25%	
GLC1 GLC2 GLC3 GLC4			
• Molecule 5: al	pha-D-glucopyranose-(1-4)-[alpha-I	D-glucopyranose-(1-6)]alp	oha-D-glucopyranose-(

• Molecule 5: alpha-D-glucopyranose-(1-4)-lapha-D-glucopyranose-(1-4)-alpha-D-glucopyr

Chain O:	86%	14%
GLC1 GLC2 GLC3 GLC4 GLC5 GLC5 GLC5 GLC5 GLC7		

 $\label{eq:model} \bullet \mbox{ Molecule 6: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-6)-[alpha-D-glucopyranose-(1-4)-alpha-D-glucopyra$

C	Ch	la	ir	1	Ρ	:
5	3	g	5	CB	C6	C7

100%

• Molecule 7: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-6)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

83%

Chain Q: 17%

GLC1 GLC2 GLC3 GLC4 GLC5 GLC5 GLC5 GLC5

• Molecule 8: alpha-D-glucopyranose-(1-6)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain R:	20%	80%
6LC1 6LC2 6LC3 6LC5 6LC5		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	99.68Å 128.64Å 149.76Å	Depositor
a, b, c, α , β , γ	90.00° 105.37° 90.00°	Depositor
Bosolution (Å)	47.93 - 2.09	Depositor
Resolution (A)	47.89 - 2.09	EDS
% Data completeness	98.8(47.93-2.09)	Depositor
(in resolution range)	98.8 (47.89-2.09)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.43 (at 2.08 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
P. P.	0.177 , 0.223	Depositor
n, n_{free}	0.185 , 0.227	DCC
R_{free} test set	10581 reflections (4.98%)	wwPDB-VP
Wilson B-factor $(Å^2)$	20.8	Xtriage
Anisotropy	0.054	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 53.0	EDS
L-test for $twinning^2$	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	25543	wwPDB-VP
Average B, all atoms $(Å^2)$	28.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.58% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, GLC, PEG, EDO, 1PE, NA, MN, PGE, CL, ACT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
WIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.70	0/5895	0.84	1/8021~(0.0%)	
1	В	0.69	0/5832	0.84	0/7939	
1	С	0.68	0/5864	0.83	1/7986~(0.0%)	
1	D	0.68	0/5779	0.80	0/7875	
All	All	0.69	0/23370	0.83	2/31821~(0.0%)	

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	A	475	ARG	NE-CZ-NH1	7.24	123.92	120.30
1	С	295	THR	N-CA-CB	-5.08	100.65	110.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5726	0	5357	37	0
1	В	5664	0	5266	38	0
1	С	5698	0	5310	55	0
1	D	5613	0	5186	36	0
2	G	56	0	48	0	0

8DL1	
------	--

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Н	56	0	48	0	0
2	Ι	56	0	48	0	0
2	J	56	0	48	0	0
2	Κ	56	0	48	1	0
3	L	34	0	30	0	0
3	М	34	0	30	0	0
4	Ν	45	0	39	1	0
5	0	78	0	66	1	0
6	Р	78	0	66	0	0
7	Q	67	0	57	0	0
8	R	56	0	48	0	0
9	А	68	0	102	7	0
9	В	80	0	120	10	0
9	С	52	0	78	6	0
9	D	20	0	30	2	0
10	А	16	0	12	0	0
10	D	4	0	3	2	0
11	А	1	0	0	0	0
11	В	1	0	0	0	0
11	С	1	0	0	0	0
11	D	1	0	0	0	0
12	А	1	0	0	0	0
12	В	1	0	0	0	0
12	С	1	0	0	0	0
12	D	1	0	0	0	0
13	С	16	0	22	19	0
14	С	10	0	14	1	0
15	С	1	0	0	0	0
16	С	7	0	10	2	0
17	D	1	0	0	0	0
18	А	587	0	0	4	0
18	В	488	0	0	9	0
18	С	462	0	0	8	0
18	D	350	0	0	2	0
All	All	25543	0	22086	174	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (174) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

AtomP1 AtomP2 distance (Å) overlap (1:C:92:TRP:HE1 13:C:2301:1PE:H162 1.27 0.97 1:B:190:ALA:O 1:B:295:THR:HG21 1.72 0.90	Å)
1:C:92:TRP:HE113:C:2301:1PE:H1621.270.971:B:190:ALA:O1:B:295:THR:HG211.720.90	
1:B:190:ALA:O 1:B:295:THR:HG21 1.72 0.90	
1:C:50:PHE:H 16:C:2312:PEG:H21 1.46 0.79	
1:D:271:GLN:HG3 10:D:805:ACT:H1 1.66 0.77	
1:C:92:TRP:NE1 13:C:2301:1PE:H162 2.00 0.76	
1:A:259:ASP:OD2 18:A:2401:HOH:O 2.05 0.74	
1:D:590:ILE:HD11 1:D:604:ARG:NH1 2.02 0.73	
1:C:650:GLU:OE1 18:C:2401:HOH:O 2.08 0.71	
1:C:92:TRP:HE1 13:C:2301:1PE:C16 2.02 0.70	
9:B:3304:EDO:H11 18:B:3718:HOH:O 1.92 0.70	
1:C:154:TYR:CE2 16:C:2312:PEG:H22 2.30 0.67	
1:A:735:ASN:OD1 1:A:735:ASN:N 2.28 0.66	
1:C:261:GLY:O 13:C:2301:1PE:H121 1.95 0.65	
1:A:598:LYS:NZ 18:A:2404:HOH:O 2.30 0.64	
1:B:391:HIS:ND1 9:B:3316:EDO:C2 2.63 0.62	
1:A:655:ARG:HE 9:A:2316:EDO:H22 1.63 0.62	
1:C:414:ARG:HH12 9:C:2314:EDO:H12 1.64 0.62	
1:D:297:PRO:O 1:D:299:PRO:HD3 2.01 0.60	
1:C:190:ALA:O 1:C:295:THR:HG21 2.02 0.59	
1:A:373:LEU:HD22 1:A:469:TYR:CZ 2.38 0.59	
13:C:2301:1PE:H252 13:C:2301:1PE:H231 1.83 0.59	
1:C:261:GLY:O 13:C:2301:1PE:C12 2.50 0.58	
1:C:373:LEU:HD22 1:C:469:TYR:CZ 2.38 0.58	
1:A:654:GLU:HB3 9:A:2316:EDO:H21 1.85 0.57	
1:C:747:ALA:O 18:C:2402:HOH:O 2.17 0.57	
1:C:190:ALA:O 1:C:295:THR:CG2 2.53 0.57	
1:D:212:VAL:HG12 1:D:216:PHE:HZ 1.69 0.57	
1:B:58:LYS:NZ 18:B:3415:HOH:O 2.38 0.56	
1:D:210:VAL:HG12 1:D:227:MET:HE3 1.86 0.56	
9:B:3304:EDO:C1 18:B:3718:HOH:O 2.50 0.56	
13:C:2301:1PE:H231 13:C:2301:1PE:C14 2.35 0.56	
1:B:391:HIS:ND1 9:B:3316:EDO:H22 2.21 0.56	
1:A:494:ALA:O 1:A:526[A]:CYS:SG 2.65 0.56	
1:B:373:LEU:HD22 1:B:469:TYR:CZ 2.42 0.55	
1:D:212:VAL:HG23 1:D:227:MET:HE2 1.89 0.55	
1:C:708:HIS:HE2 1:C:720:TYR:HH 1.53 0.55	
1:B:208:ASP:OD1 18:B:3401:HOH:O 2.18 0.55	
1:B:591:GLU:HG2 1:B:592:TYR:CE2 2.42 0.55	
1:A:697:LEU:HD12 1:A:697:LEU:C 2.27 0.54	
1:D:210:VAL:HG12 1:D:227:MET:CE 2.38 0.54	
1:C:247:GLU:HG3 1:C:292:VAL:HG13 1.90 0.54	
1:C:107:LEU:HB3 1:C:115:TRP:HB3 1.90 0.54	

Atom 1	Atom 2	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:C:515:LYS:NZ	1:C:517:ASP:OD1	2.40	0.54		
1:A:107:LEU:HB3	1:A:115:TRP:HB3	1.88	0.54		
1:D:486:GLN:OE1	18:D:901:HOH:O	2.19	0.53		
1:C:111:LYS:HB2	1:C:114:VAL:HB	1.90	0.53		
1:B:170:PRO:HG3	1:B:208:ASP:O	2.08	0.53		
1:D:524:HIS:CD2	1:D:526:CYS:HB3	2.44	0.53		
1:C:732:GLU:O	1:C:733:ASN:CB	2.57	0.52		
1:B:524:HIS:CD2	1:B:526[A]:CYS:HB2	2.43	0.52		
1:C:743:ILE:HD13	1:C:753:TYR:OH	2.09	0.52		
1:B:706:GLN:HB2	1:B:755:ASN:ND2	2.25	0.52		
1:D:601:LEU:HD22	1:D:605:LEU:HG	1.92	0.51		
1:B:650:GLU:HG3	18:B:3689:HOH:O	2.10	0.51		
1:D:51:ASN:HA	18:D:1175:HOH:O	2.11	0.51		
1:A:543:ASN:HD22	5:O:1:GLC:H62	1.76	0.50		
13:C:2301:1PE:H141	9:C:2314:EDO:H11	1.93	0.50		
1:B:92:TRP:CZ2	1:B:139:ASN:HB3	2.46	0.50		
1:A:188:HIS:CD2	1:C:246:GLY:HA2	2.46	0.50		
1:A:524:HIS:CD2	1:A:526[B]:CYS:HB2	2.46	0.50		
1:D:107:LEU:HB3	1:D:115:TRP:HB3	1.94	0.50		
1:C:317:ILE:O	1:C:623:MET:HA	2.13	0.49		
1:A:591:GLU:OE1	1:A:592:TYR:CE2	2.66	0.49		
1:B:494:ALA:O	1:B:526[B]:CYS:SG	2.71	0.48		
1:C:683:THR:HA	18:C:2713:HOH:O	2.14	0.48		
1:D:350:GLU:OE1	1:D:475:ARG:HD3	2.14	0.48		
1:C:109:LYS:HE2	1:C:112:ASP:O	2.14	0.48		
1:A:350:GLU:OE2	1:A:475:ARG:HD3	2.13	0.48		
1:B:48:ASP:CG	1:B:70:PRO:HB3	2.35	0.48		
1:A:86:SER:O	1:A:95:ALA:HA	2.14	0.47		
1:C:92:TRP:CZ2	1:C:139:ASN:HB3	2.49	0.47		
1:C:708:HIS:NE2	1:C:720:TYR:OH	2.35	0.47		
1:A:654:GLU:CB	9:A:2316:EDO:H21	2.44	0.47		
1:B:494:ALA:O	9:B:3307:EDO:H22	2.14	0.47		
1:A:92:TRP:CZ2	1:A:139:ASN:HB3	2.50	0.47		
1:B:528:ASN:H	9:B:3307:EDO:H21	1.80	0.47		
1:D:124:ARG:HH22	1:D:160:ASP:CG	2.17	0.47		
13:C:2301:1PE:H231	13:C:2301:1PE:C25	2.45	0.47		
1:C:113:ASN:H	1:C:113:ASN:HD22	1.62	0.46		
1:C:153:ASP:HB3	13:C:2301:1PE:H251	1.95	0.46		
1:B:190:ALA:HA	1:B:295:THR:HG23	1.96	0.46		
1:A:592:TYR:CE1	2:K:2:GLC:H61	2.50	0.46		
1:B:335:MET:CE	1:B:386:PHE:HA	2.45	0.46		

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:262:THR:HG23	13:C:2301:1PE:H232	1.96	0.46
1:C:313:GLU:OE2	9:C:2318:EDO:O1	2.27	0.46
1:C:286:GLN:HG2	1:C:287:ALA:O	2.15	0.46
1:A:729:LEU:HD11	9:A:2315:EDO:H22	1.97	0.46
1:A:120:SER:HB3	18:A:2888:HOH:O	2.16	0.46
1:B:107:LEU:HG	1:B:117:ILE:HB	1.97	0.46
1:C:624:LEU:HD23	1:C:624:LEU:H	1.81	0.46
1:A:655:ARG:HE	9:A:2316:EDO:C2	2.27	0.46
1:A:262:THR:HG21	18:A:2641:HOH:O	2.16	0.45
13:C:2301:1PE:H221	18:C:2431:HOH:O	2.15	0.45
1:A:195:LEU:O	1:A:237:TRP:HA	2.16	0.45
1:B:391:HIS:ND1	9:B:3316:EDO:H21	2.30	0.45
1:B:516:GLU:HG2	18:B:3546:HOH:O	2.16	0.45
1:D:127:TYR:OH	1:D:138:ILE:HD11	2.16	0.45
1:A:138:ILE:HD12	1:A:140:LEU:HD21	1.98	0.45
1:C:438:GLN:HG3	18:C:2857:HOH:O	2.16	0.45
1:B:120:SER:HB2	1:B:121:SER:HA	1.99	0.45
9:C:2318:EDO:H22	18:C:2781:HOH:O	2.17	0.45
1:D:124:ARG:HD3	1:D:131:PRO:HA	1.99	0.45
1:D:92:TRP:CZ2	1:D:139:ASN:HB3	2.52	0.45
1:D:190:ALA:HA	1:D:295:THR:HB	1.98	0.45
1:D:195:LEU:O	1:D:237:TRP:HA	2.17	0.45
1:C:68:LYS:HA	1:C:113:ASN:O	2.17	0.45
1:B:273:LEU:HB2	1:B:290:VAL:HG22	1.99	0.44
1:C:262:THR:OG1	13:C:2301:1PE:H232	2.16	0.44
1:D:139:ASN:OD1	1:D:155:ALA:HB2	2.17	0.44
1:B:48:ASP:OD2	1:B:70:PRO:HB3	2.17	0.44
1:D:590:ILE:HD11	1:D:604:ARG:CZ	2.48	0.44
1:B:252:TYR:O	1:B:263:TYR:HA	2.17	0.44
1:A:131:PRO:O	1:A:162:GLN:NE2	2.48	0.44
1:A:138:ILE:CG2	1:A:156:THR:HG22	2.47	0.44
1:C:171:GLN:HB3	1:C:228:LYS:HG2	2.00	0.44
1:C:200:LYS:HB2	1:C:234:HIS:HB3	2.00	0.44
1:C:556:LYS:HG2	1:C:688:TYR:CE1	2.52	0.44
1:D:729:LEU:HB3	1:D:732:GLU:HG3	1.98	0.44
1:D:634:ILE:HA	9:D:804:EDO:H12	1.98	0.44
1:D:210:VAL:CG1	1:D:227:MET:HE3	2.47	0.43
1:C:417:TRP:HB3	13:C:2301:1PE:H132	2.00	0.43
1:D:375:ALA:HB2	10:D:805:ACT:H3	1.99	0.43
1:B:315:PRO:HD2	1:B:621:PRO:HB3	2.00	0.43
1:C:343:GLU:HG3	9:C:2315:EDO:C2	2.48	0.43

Atom 1	Atom 2	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:D:475:ARG:HD2	1:D:541:TRP:CZ2	2.52	0.43		
1:B:335:MET:CE	18:B:3777:HOH:O	2.66	0.43		
1:B:708:HIS:NE2	1:B:720:TYR:OH	2.45	0.43		
1:A:654:GLU:HB3	9:A:2316:EDO:C2	2.49	0.43		
1:A:743:ILE:HG21	9:A:2315:EDO:H11	2.01	0.43		
1:B:178:SER:HB3	9:B:3320:EDO:H12	2.01	0.43		
1:D:627:PHE:HB3	1:D:632:TYR:HB2	2.01	0.43		
1:C:286:GLN:HE22	13:C:2301:1PE:H261	1.83	0.43		
1:C:717:SER:N	18:C:2450:HOH:O	2.52	0.43		
1:C:530:GLU:HG2	1:C:540:PHE:CD2	2.54	0.43		
13:C:2301:1PE:C22	18:C:2431:HOH:O	2.66	0.43		
1:B:335:MET:HE3	18:B:3777:HOH:O	2.19	0.42		
1:B:337:LYS:HE3	1:B:649:TRP:CE2	2.54	0.42		
1:C:56:ILE:HG23	1:C:167:TRP:CH2	2.54	0.42		
1:C:153:ASP:HB2	13:C:2301:1PE:C14	2.49	0.42		
1:A:684:TRP:CE3	1:A:686:VAL:HG11	2.54	0.42		
1:C:337:LYS:HG3	1:C:649:TRP:CZ2	2.54	0.42		
1:B:455:LYS:HE2	18:B:3520:HOH:O	2.19	0.42		
1:A:127:TYR:OH	1:A:138:ILE:HD11	2.20	0.42		
1:D:213[B]:THR:OG1	1:D:219:TRP:HA	2.19	0.42		
1:C:268:TYR:HB3	14:C:2302:PGE:H4	2.00	0.42		
1:C:86:SER:O	1:C:95:ALA:HA	2.19	0.42		
13:C:2301:1PE:H121	13:C:2301:1PE:H252	2.02	0.42		
1:C:343:GLU:HG3	9:C:2315:EDO:H22	2.01	0.42		
1:B:591:GLU:CG	1:B:592:TYR:CE2	3.03	0.41		
1:A:674:ASP:OD2	1:A:703:ASN:ND2	2.51	0.41		
1:C:337:LYS:HA	1:C:337:LYS:HD2	1.79	0.41		
1:D:475:ARG:HD2	1:D:541:TRP:CE2	2.55	0.41		
1:A:201:ASP:HB2	1:A:427:LYS:HB3	2.03	0.41		
1:D:81:ASP:OD2	1:D:106:ARG:HD3	2.20	0.41		
1:D:634:ILE:HA	9:D:804:EDO:C1	2.49	0.41		
1:A:380:GLN:HG3	1:A:469:TYR:OH	2.21	0.41		
1:A:738:GLU:O	1:A:741:LYS:HB3	2.21	0.41		
1:B:524:HIS:CD2	1:B:526[B]:CYS:HB3	2.55	0.41		
1:D:175:LEU:HD23	1:D:175:LEU:HA	1.93	0.41		
1:B:99:GLY:HA2	1:B:143:ARG:CZ	2.51	0.41		
1:A:475:ARG:HD2	1:A:541:TRP:CE2	2.55	0.41		
1:B:149:GLN:HB3	9:B:3313:EDO:H11	2.02	0.41		
1:B:526[B]:CYS:SG	9:B:3307:EDO:H22	2.61	0.41		
1:D:172:LYS:HA	1:D:229:TYR:O	2.20	0.41		
1:C:703:ASN:OD1	1:C:703:ASN:C	2.59	0.41		

8DL1

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:173:ALA:HB2	1:C:301:GLN:HG3	2.02	0.40
1:A:138:ILE:HD12	1:A:140:LEU:CD2	2.50	0.40
1:C:542:ARG:NH1	1:C:563:GLY:O	2.45	0.40
1:C:262:THR:CG2	13:C:2301:1PE:H232	2.51	0.40
1:B:86:SER:HA	1:B:139:ASN:O	2.22	0.40
1:C:545:ASN:HA	1:C:577:MET:O	2.22	0.40
1:D:697:LEU:HD12	1:D:697:LEU:C	2.41	0.40
1:D:592:TYR:CE1	4:N:1:GLC:H2	2.56	0.40
1:D:732:GLU:O	1:D:734:GLY:N	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	710/738~(96%)	681~(96%)	27~(4%)	2~(0%)	41	41
1	В	702/738~(95%)	664 (95%)	38~(5%)	0	100	100
1	С	708/738~(96%)	678~(96%)	29~(4%)	1 (0%)	51	54
1	D	697/738~(94%)	658~(94%)	36~(5%)	3~(0%)	34	32
All	All	2817/2952~(95%)	2681 (95%)	130 (5%)	6 (0%)	47	49

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	733	ASN
1	А	306	GLU
1	А	121	SER
1	D	298	GLN
1	D	245	ALA
1	D	121	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	611/639~(96%)	592~(97%)	19 (3%)	40 43
1	В	601/639~(94%)	593~(99%)	8 (1%)	69 75
1	С	605/639~(95%)	594 (98%)	11 (2%)	59 65
1	D	589/639~(92%)	574 (98%)	15 (2%)	47 52
All	All	2406/2556~(94%)	2353~(98%)	53~(2%)	52 57

All (53) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	103	ASN
1	А	106	ARG
1	А	111	LYS
1	А	112	ASP
1	А	138	ILE
1	А	175	LEU
1	А	193	ILE
1	А	262	THR
1	А	283	THR
1	А	312	LYS
1	А	328	SER
1	А	373	LEU
1	А	475	ARG
1	А	516	GLU
1	А	601	LEU
1	А	638	GLU
1	А	684	TRP
1	А	697	LEU
1	А	735	ASN
1	В	51	ASN
1	В	119	LEU
1	В	156	THR
1	В	295	THR
1	B	373	LEU

Mol	Chain	Res	Type
1	В	475	ARG
1	В	673	SER
1	В	684	TRP
1	С	47	HIS
1	С	112	ASP
1	С	113	ASN
1	С	171	GLN
1	С	295	THR
1	С	298	GLN
1	С	373	LEU
1	С	673	SER
1	С	684	TRP
1	С	717	SER
1	С	732	GLU
1	D	112	ASP
1	D	132	SER
1	D	138	ILE
1	D	178	SER
1	D	223	SER
1	D	239	THR
1	D	244	THR
1	D	335	MET
1	D	475	ARG
1	D	516	GLU
1	D	528	ASN
1	D	601	LEU
1	D	684	TRP
1	D	732	GLU
1	D	741	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	546	HIS
1	С	113	ASN
1	С	286	GLN
1	С	298	GLN
1	С	408	ASN
1	D	408	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

60 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	GLC	G	1	2	12,12,12	0.71	0	$17,\!17,\!17$	1.84	4 (23%)
2	GLC	G	2	2	11,11,12	0.80	0	$15,\!15,\!17$	1.34	3 (20%)
2	GLC	G	3	2	11,11,12	0.79	0	$15,\!15,\!17$	1.00	1 (6%)
2	GLC	G	4	2	11,11,12	0.60	0	$15,\!15,\!17$	1.34	2 (13%)
2	GLC	G	5	2	11,11,12	0.55	0	$15,\!15,\!17$	1.35	1 (6%)
2	GLC	Н	1	2	12,12,12	0.72	0	17,17,17	1.47	4 (23%)
2	GLC	Н	2	2	11,11,12	0.65	0	$15,\!15,\!17$	1.49	4 (26%)
2	GLC	Н	3	2	11,11,12	0.73	0	$15,\!15,\!17$	0.90	0
2	GLC	Н	4	2	11,11,12	0.70	0	$15,\!15,\!17$	1.36	2 (13%)
2	GLC	Н	5	2	11,11,12	0.87	1 (9%)	$15,\!15,\!17$	2.31	9 (60%)
2	GLC	Ι	1	2	12,12,12	0.63	0	$17,\!17,\!17$	1.81	5 (29%)
2	GLC	Ι	2	2	11,11,12	0.64	0	$15,\!15,\!17$	1.15	1 (6%)
2	GLC	Ι	3	2	11,11,12	0.74	0	$15,\!15,\!17$	0.75	0
2	GLC	Ι	4	2	11,11,12	0.64	0	$15,\!15,\!17$	1.05	1 (6%)
2	GLC	Ι	5	2	11,11,12	0.49	0	$15,\!15,\!17$	1.20	1 (6%)
2	GLC	J	1	2	12,12,12	0.63	0	17,17,17	1.38	3 (17%)
2	GLC	J	2	2	11,11,12	1.03	1 (9%)	$15,\!15,\!17$	1.65	3 (20%)
2	GLC	J	3	2	11,11,12	0.86	0	$15,\!15,\!17$	1.30	2 (13%)
2	GLC	J	4	2	11,11,12	0.50	0	$15,\!15,\!17$	0.79	0

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	ths	В	ond ang	les
	туре	Chain	res		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GLC	J	5	2	11,11,12	0.72	0	$15,\!15,\!17$	1.28	2 (13%)
2	GLC	Κ	1	2	$12,\!12,\!12$	0.73	0	$17,\!17,\!17$	1.27	2 (11%)
2	GLC	К	2	2	11,11,12	0.90	0	$15,\!15,\!17$	1.57	3 (20%)
2	GLC	К	3	2	11,11,12	0.57	0	$15,\!15,\!17$	1.63	5 (33%)
2	GLC	К	4	2	11,11,12	0.57	0	$15,\!15,\!17$	1.52	2 (13%)
2	GLC	K	5	2	11,11,12	0.68	0	$15,\!15,\!17$	1.36	3 (20%)
3	GLC	L	1	3	12,12,12	0.37	0	$17,\!17,\!17$	1.12	0
3	GLC	L	2	3	11,11,12	0.94	1 (9%)	$15,\!15,\!17$	1.59	3 (20%)
3	GLC	L	3	3	11,11,12	0.65	0	$15,\!15,\!17$	0.85	0
3	GLC	М	1	3	12,12,12	0.66	0	$17,\!17,\!17$	1.22	2 (11%)
3	GLC	М	2	3	11,11,12	0.28	0	$15,\!15,\!17$	1.24	2 (13%)
3	GLC	М	3	3	11,11,12	0.47	0	$15,\!15,\!17$	1.16	1 (6%)
4	GLC	Ν	1	4	12,12,12	0.77	0	17,17,17	1.16	2 (11%)
4	GLC	Ν	2	4	11,11,12	0.63	0	$15,\!15,\!17$	1.47	3 (20%)
4	GLC	N	3	4	11,11,12	0.71	0	15, 15, 17	1.01	1 (6%)
4	GLC	N	4	4	11,11,12	0.50	0	15,15,17	1.49	2 (13%)
5	GLC	Ο	1	5	12,12,12	0.94	0	17,17,17	1.17	3 (17%)
5	GLC	0	2	5	11,11,12	0.83	1 (9%)	15,15,17	1.81	5 (33%)
5	GLC	0	3	5	11,11,12	0.98	0	15,15,17	1.30	1 (6%)
5	GLC	0	4	5	11,11,12	0.85	0	15,15,17	1.85	3 (20%)
5	GLC	0	5	5	11,11,12	0.92	0	15,15,17	1.65	5 (33%)
5	GLC	0	6	5	11,11,12	0.46	0	15,15,17	2.26	5 (33%)
5	GLC	0	7	5	11,11,12	1.32	2 (18%)	15,15,17	1.89	4 (26%)
6	GLC	Р	1	6	12,12,12	0.70	0	17,17,17	2.23	5 (29%)
6	GLC	Р	2	6	11,11,12	0.92	1 (9%)	15,15,17	1.29	2 (13%)
6	GLC	Р	3	6	11,11,12	0.94	0	15,15,17	2.08	7 (46%)
6	GLC	Р	4	6	11,11,12	0.65	0	15,15,17	1.60	3 (20%)
6	GLC	Р	5	6	11,11,12	1.03	0	15,15,17	1.63	3 (20%)
6	GLC	Р	6	6	11,11,12	0.60	0	15,15,17	1.39	2 (13%)
6	GLC	Р	7	6	11,11.12	0.86	0	15,15,17	2.20	4 (26%)
7	GLC	Q	1	7	12,12,12	0.78	0	17,17,17	1.79	3 (17%)
7	GLC	Q	2	7	11,11,12	0.46	0	15,15,17	0.82	0
7	GLC	Q	3	7	11,11,12	0.94	0	15,15,17	1.95	4 (26%)
7	GLC	Q	4	7	11,11,12	0.85	0	15,15,17	1.86	3 (20%)
7	GLC	Q	5	7	11,11,12	1.33	2 (18%)	15,15,17	1.38	2 (13%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	Bond angles												
WIOI	туре	Unam	1105	ries	nes	nes	nes	nes	nes	nes	nes	nes	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
7	GLC	Q	6	7	11,11,12	0.94	1 (9%)	$15,\!15,\!17$	2.06	3 (20%)										
8	GLC	R	1	8	12,12,12	0.73	0	17,17,17	0.72	0										
8	GLC	R	2	8	11,11,12	0.83	0	15,15,17	1.21	1 (6%)										
8	GLC	R	3	8	11,11,12	0.57	0	15,15,17	1.96	3 (20%)										
8	GLC	R	4	8	11,11,12	0.99	0	15,15,17	1.23	2 (13%)										
8	GLC	R	5	8	11,11,12	1.43	2 (18%)	15,15,17	1.67	4 (26%)										

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals Torsions		Rings
2	GLC	G	1	2	-	2/2/22/22	0/1/1/1
2	GLC	G	2	2	-	0/2/19/22	0/1/1/1
2	GLC	G	3	2	-	0/2/19/22	0/1/1/1
2	GLC	G	4	2	-	0/2/19/22	0/1/1/1
2	GLC	G	5	2	-	0/2/19/22	0/1/1/1
2	GLC	Н	1	2	-	0/2/22/22	0/1/1/1
2	GLC	Н	2	2	-	0/2/19/22	0/1/1/1
2	GLC	Н	3	2	-	0/2/19/22	0/1/1/1
2	GLC	Н	4	2	-	0/2/19/22	0/1/1/1
2	GLC	Н	5	2	-	0/2/19/22	0/1/1/1
2	GLC	Ι	1	2	-	0/2/22/22	0/1/1/1
2	GLC	Ι	2	2	-	0/2/19/22	0/1/1/1
2	GLC	Ι	3	2	-	0/2/19/22	0/1/1/1
2	GLC	Ι	4	2	-	0/2/19/22	0/1/1/1
2	GLC	Ι	5	2	-	0/2/19/22	0/1/1/1
2	GLC	J	1	2	-	2/2/22/22	0/1/1/1
2	GLC	J	2	2	-	0/2/19/22	0/1/1/1
2	GLC	J	3	2	-	0/2/19/22	0/1/1/1
2	GLC	J	4	2	-	0/2/19/22	0/1/1/1
2	GLC	J	5	2	-	2/2/19/22	0/1/1/1
2	GLC	K	1	2	-	0/2/22/22	0/1/1/1
2	GLC	K	2	2	-	2/2/19/22	0/1/1/1
2	GLC	K	3	2	-	0/2/19/22	0/1/1/1
2	GLC	К	4	2	-	0/2/19/22	0/1/1/1
2	GLC	K	5	2	-	2/2/19/22	0/1/1/1
3	GLC	L	1	3	-	2/2/22/22	0/1/1/1
3	GLC	L	2	3	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GLC	L	3	3	-	0/2/19/22	0/1/1/1
3	GLC	М	1	3	-	2/2/22/22	0/1/1/1
3	GLC	М	2	3	_	0/2/19/22	0/1/1/1
3	GLC	М	3	3	_	0/2/19/22	0/1/1/1
4	GLC	N	1	4	-	0/2/22/22	0/1/1/1
4	GLC	N	2	4	-	0/2/19/22	0/1/1/1
4	GLC	Ν	3	4	-	2/2/19/22	0/1/1/1
4	GLC	N	4	4	-	0/2/19/22	0/1/1/1
5	GLC	0	1	5	-	0/2/22/22	0/1/1/1
5	GLC	0	2	5	-	0/2/19/22	0/1/1/1
5	GLC	0	3	5	-	0/2/19/22	0/1/1/1
5	GLC	Ο	4	5	-	2/2/19/22	0/1/1/1
5	GLC	0	5	5	-	0/2/19/22	0/1/1/1
5	GLC	0	6	5	-	2/2/19/22	0/1/1/1
5	GLC	0	7	5	-	0/2/19/22	0/1/1/1
6	GLC	Р	1	6	-	2/2/22/22	0/1/1/1
6	GLC	Р	2	6	-	0/2/19/22	0/1/1/1
6	GLC	Р	3	6	-	2/2/19/22	0/1/1/1
6	GLC	Р	4	6	-	0/2/19/22	0/1/1/1
6	GLC	Р	5	6	-	0/2/19/22	0/1/1/1
6	GLC	Р	6	6	-	2/2/19/22	0/1/1/1
6	GLC	Р	7	6	-	2/2/19/22	0/1/1/1
7	GLC	Q	1	7	-	2/2/22/22	0/1/1/1
7	GLC	Q	2	7	-	0/2/19/22	0/1/1/1
7	GLC	Q	3	7	-	1/2/19/22	0/1/1/1
7	GLC	Q	4	7	-	0/2/19/22	0/1/1/1
7	GLC	Q	5	7	-	0/2/19/22	0/1/1/1
7	GLC	Q	6	7	-	0/2/19/22	0/1/1/1
8	GLC	R	1	8	-	0/2/22/22	0/1/1/1
8	GLC	R	2	8	-	1/2/19/22	0/1/1/1
8	GLC	R	3	8	-	1/2/19/22	0/1/1/1
8	GLC	R	4	8	-	$0/2/\overline{19/22}$	0/1/1/1
8	GLC	R	5	8	-	0/2/19/22	0/1/1/1

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	L	2	GLC	O5-C1	-2.55	1.39	1.43
7	Q	5	GLC	C2-C3	2.39	1.56	1.52
5	0	7	GLC	O5-C5	2.23	1.48	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
8	R	5	GLC	O5-C1	2.17	1.47	1.43
6	Р	2	GLC	O5-C1	-2.15	1.40	1.43
8	R	5	GLC	C2-C3	2.14	1.55	1.52
5	0	2	GLC	C2-C3	2.13	1.55	1.52
7	Q	6	GLC	C2-C3	2.11	1.55	1.52
5	0	7	GLC	C4-C5	2.09	1.57	1.53
2	Н	5	GLC	O5-C5	2.05	1.47	1.43
7	Q	5	GLC	O5-C1	2.02	1.46	1.43
2	J	2	GLC	C2-C3	-2.01	1.49	1.52

All (156) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Q	6	GLC	C1-O5-C5	5.95	120.25	112.19
6	Р	7	GLC	O5-C5-C6	5.47	115.78	107.20
7	Q	4	GLC	O5-C1-C2	-5.34	102.53	110.77
6	Р	1	GLC	C1-O5-C5	4.64	122.42	113.66
6	Р	1	GLC	O1-C1-C2	4.62	122.05	109.03
2	G	1	GLC	C1-O5-C5	4.53	122.20	113.66
7	Q	3	GLC	C1-O5-C5	4.49	118.27	112.19
5	0	6	GLC	O5-C1-C2	-4.47	103.87	110.77
5	0	2	GLC	O5-C5-C6	4.18	113.76	107.20
8	R	3	GLC	C1-O5-C5	4.16	117.82	112.19
2	K	4	GLC	C1-O5-C5	4.07	117.70	112.19
8	R	5	GLC	C1-O5-C5	4.04	117.67	112.19
6	Р	5	GLC	C1-O5-C5	4.01	117.63	112.19
2	Ι	1	GLC	C1-O5-C5	3.93	121.08	113.66
7	Q	1	GLC	O5-C5-C4	3.93	116.82	109.69
6	Р	4	GLC	O3-C3-C2	-3.90	102.52	109.99
2	G	5	GLC	C1-O5-C5	3.90	117.47	112.19
5	0	4	GLC	C1-O5-C5	3.87	117.43	112.19
5	0	7	GLC	O2-C2-C1	3.76	116.85	109.15
6	Р	3	GLC	C1-O5-C5	3.75	117.28	112.19
5	0	6	GLC	C1-C2-C3	-3.70	105.12	109.67
8	R	3	GLC	O5-C1-C2	-3.68	105.09	110.77
2	J	2	GLC	O5-C5-C6	3.65	112.92	107.20
6	Р	1	GLC	O5-C5-C4	3.61	116.25	109.69
6	Р	7	GLC	C1-C2-C3	3.55	114.03	109.67
3	L	2	GLC	C1-O5-C5	3.54	116.99	112.19
5	0	6	GLC	O2-C2-C1	3.53	116.37	109.15
5	0	7	GLC	O2-C2-C3	3.49	117.13	110.14
4	N	4	GLC	C1-O5-C5	3.48	116.91	112.19

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
2	Н	4	GLC	O5-C1-C2	-3.39	105.53	110.77
6	Р	6	GLC	C1-O5-C5	3.36	116.74	112.19
2	Н	5	GLC	C1-O5-C5	3.34	116.71	112.19
7	Q	1	GLC	C1-O5-C5	3.31	119.91	113.66
2	Н	5	GLC	C1-C2-C3	3.28	113.70	109.67
5	0	6	GLC	C2-C3-C4	-3.27	105.23	110.89
6	Р	3	GLC	O5-C1-C2	-3.23	105.79	110.77
2	J	1	GLC	C1-O5-C5	3.23	119.75	113.66
2	Н	5	GLC	O5-C5-C4	3.20	118.61	110.83
2	Н	5	GLC	O4-C4-C5	3.15	117.11	109.30
2	Н	1	GLC	C1-O5-C5	3.13	119.57	113.66
2	K	2	GLC	O5-C1-C2	-3.13	105.94	110.77
4	Ν	2	GLC	C1-O5-C5	-3.13	107.95	112.19
2	Н	5	GLC	O2-C2-C3	-3.12	103.89	110.14
4	Ν	4	GLC	O5-C1-C2	-3.10	105.98	110.77
7	Q	5	GLC	C1-O5-C5	3.08	116.36	112.19
2	G	1	GLC	O6-C6-C5	3.06	121.79	111.29
5	0	4	GLC	C3-C4-C5	3.06	115.70	110.24
2	K	2	GLC	C2-C3-C4	-3.05	105.61	110.89
7	Q	3	GLC	C1-C2-C3	-3.01	105.97	109.67
5	0	6	GLC	O5-C5-C6	3.01	111.92	107.20
7	Q	6	GLC	O5-C1-C2	-3.00	106.15	110.77
2	J	2	GLC	O2-C2-C3	-2.99	104.14	110.14
2	Ι	4	GLC	C1-O5-C5	2.94	116.17	112.19
6	Р	3	GLC	C1-C2-C3	-2.93	106.06	109.67
2	K	2	GLC	O5-C5-C6	-2.91	102.64	107.20
2	G	4	GLC	O5-C1-C2	-2.91	106.29	110.77
3	М	1	GLC	O5-C1-C2	-2.90	105.11	110.28
6	Р	4	GLC	O2-C2-C3	-2.89	104.34	110.14
6	Р	7	GLC	O3-C3-C2	-2.86	104.51	109.99
2	Ι	1	GLC	O4-C4-C3	-2.86	103.75	110.35
8	R	5	GLC	O3-C3-C2	2.82	115.39	109.99
2	Н	2	GLC	O5-C5-C6	2.81	111.61	107.20
3	М	1	GLC	O1-C1-C2	2.81	116.94	109.03
2	Ι	1	GLC	O2-C2-C1	-2.81	102.65	109.16
4	Ν	2	GLC	C6-C5-C4	2.80	119.56	113.00
2	J	1	GLC	O4-C4-C3	-2.79	103.89	110.35
7	Q	1	GLC	C6-C5-C4	-2.78	106.50	113.00
5	0	1	GLC	C1-C2-C3	2.75	116.02	110.31
7	Q	5	GLC	O5-C1-C2	-2.75	106.52	110.77
5	0	5	GLC	C1-O5-C5	2.75	115.91	112.19
2	Н	1	GLC	O6-C6-C5	2.74	120.68	111.29

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
5	0	2	GLC	O2-C2-C3	-2.73	104.66	110.14
6	Р	7	GLC	O5-C5-C4	-2.73	104.18	110.83
6	Р	3	GLC	C3-C4-C5	2.73	115.11	110.24
7	Q	3	GLC	O2-C2-C1	2.73	114.73	109.15
4	N	1	GLC	O1-C1-C2	2.73	116.71	109.03
2	Н	2	GLC	C2-C3-C4	-2.72	106.19	110.89
7	Q	4	GLC	O3-C3-C2	-2.72	104.79	109.99
2	Κ	5	GLC	C1-C2-C3	2.71	112.99	109.67
8	R	5	GLC	O2-C2-C3	2.69	115.54	110.14
6	Р	3	GLC	O2-C2-C3	2.69	115.53	110.14
3	М	2	GLC	O5-C5-C6	2.69	111.42	107.20
5	0	2	GLC	O5-C1-C2	-2.68	106.63	110.77
7	Q	3	GLC	O2-C2-C3	2.67	115.49	110.14
8	R	3	GLC	C1-C2-C3	-2.64	106.43	109.67
5	0	7	GLC	C1-C2-C3	-2.62	106.45	109.67
8	R	4	GLC	C1-O5-C5	2.60	115.72	112.19
2	J	2	GLC	O6-C6-C5	-2.60	102.38	111.29
5	0	5	GLC	O3-C3-C2	-2.58	105.05	109.99
2	Ι	5	GLC	C1-C2-C3	2.58	112.84	109.67
7	Q	6	GLC	C1-C2-C3	2.58	112.84	109.67
2	G	2	GLC	C1-C2-C3	2.58	112.84	109.67
6	Р	6	GLC	C3-C4-C5	2.56	114.80	110.24
6	Р	5	GLC	O3-C3-C2	2.55	114.87	109.99
2	Κ	3	GLC	O5-C1-C2	-2.54	106.84	110.77
2	Κ	3	GLC	C6-C5-C4	-2.53	107.08	113.00
2	Κ	1	GLC	O5-C5-C4	2.52	114.28	109.69
6	Р	1	GLC	O5-C1-C2	-2.52	105.80	110.28
4	Ν	3	GLC	C1-O5-C5	2.51	115.59	112.19
2	G	2	GLC	C1-O5-C5	2.48	115.56	112.19
2	Н	5	GLC	O2-C2-C1	2.48	114.22	109.15
6	Р	1	GLC	O6-C6-C5	-2.44	102.92	111.29
2	J	3	GLC	O5-C1-C2	-2.42	107.03	110.77
2	J	5	GLC	C2-C3-C4	-2.42	106.70	110.89
2	K	3	GLC	O3-C3-C4	-2.42	104.75	110.35
3	М	3	GLC	C1-C2-C3	-2.42	106.69	109.67
4	Ν	2	GLC	O4-C4-C3	-2.41	104.77	110.35
2	G	1	GLC	O4-C4-C3	-2.41	104.78	110.35
2	G	1	GLC	C4-C3-C2	-2.37	106.69	110.82
2	Ι	1	GLC	C3-C4-C5	2.34	114.41	110.24
2	K	3	GLC	O6-C6-C5	-2.33	103.28	111.29
2	Н	1	GLC	O4-C4-C3	-2.31	105.01	110.35
2	Н	1	GLC	O5-C5-C6	2.30	112.16	106.44

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	G	3	GLC	C1-O5-C5	2.30	115.30	112.19
6	Р	5	GLC	C3-C4-C5	2.28	114.30	110.24
2	Н	5	GLC	C6-C5-C4	-2.27	107.69	113.00
5	0	4	GLC	C1-C2-C3	-2.27	106.88	109.67
3	L	2	GLC	O2-C2-C1	-2.26	104.54	109.15
8	R	5	GLC	O4-C4-C5	2.24	114.87	109.30
6	Р	3	GLC	C2-C3-C4	-2.23	107.03	110.89
6	Р	2	GLC	O4-C4-C3	2.22	115.49	110.35
2	Ι	1	GLC	O5-C1-C2	2.22	114.24	110.28
2	J	1	GLC	C4-C3-C2	-2.21	106.96	110.82
6	Р	2	GLC	C1-O5-C5	2.19	115.16	112.19
5	0	5	GLC	C1-C2-C3	2.17	112.34	109.67
2	J	5	GLC	C1-O5-C5	2.16	115.12	112.19
3	М	2	GLC	C1-O5-C5	2.16	115.12	112.19
7	Q	4	GLC	O4-C4-C3	2.15	115.33	110.35
5	0	3	GLC	O5-C5-C6	2.13	110.55	107.20
2	K	1	GLC	O5-C1-C2	-2.12	106.50	110.28
2	G	4	GLC	O4-C4-C5	-2.11	104.05	109.30
5	0	2	GLC	O3-C3-C2	2.11	114.04	109.99
2	K	5	GLC	O5-C1-C2	-2.11	107.52	110.77
2	Н	4	GLC	O4-C4-C5	-2.10	104.07	109.30
2	Н	2	GLC	C3-C4-C5	2.09	113.97	110.24
6	Р	3	GLC	O4-C4-C5	-2.08	104.12	109.30
2	Н	5	GLC	O5-C5-C6	-2.08	103.94	107.20
5	0	5	GLC	O6-C6-C5	-2.06	104.22	111.29
2	J	3	GLC	C1-C2-C3	2.06	112.20	109.67
2	G	2	GLC	C6-C5-C4	-2.06	108.19	113.00
3	L	2	GLC	C1-C2-C3	2.05	112.19	109.67
4	N	1	GLC	C4-C3-C2	-2.05	107.24	110.82
5	0	7	GLC	O4-C4-C3	2.05	115.09	110.35
5	0	2	GLC	C3-C4-C5	-2.05	106.59	110.24
5	0	5	GLC	O3-C3-C4	2.05	115.08	110.35
5	0	1	GLC	C1-O5-C5	2.04	117.52	113.66
2	I	2	GLC	C3-C4-C5	2.04	113.88	110.24
2	K	4	GLC	O4-C4-C5	-2.04	104.24	109.30
2	K	5	GLC	O2-C2-C1	-2.03	104.99	109.15
8	R	2	GLC	O3-C3-C4	2.02	115.02	110.35
5	0	1	GLC	01-C1-C2	2.02	114.71	109.03
6	Р	4	GLC	C3-C4-C5	2.02	113.83	110.24
2	H	2	GLC	O4-C4-C5	-2.01	104.30	109.30
2	K	3	GLC	O3-C3-C2	2.01	113.84	109.99
2	Н	5	GLC	O6-C6-C5	-2.00	104.42	111.29

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
8	R	4	GLC	C1-C2-C3	2.00	112.13	109.67

There are no chirality outliers.

All (33) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	N	3	GLC	O5-C5-C6-O6
2	K	5	GLC	O5-C5-C6-O6
6	Р	6	GLC	C4-C5-C6-O6
6	Р	1	GLC	O5-C5-C6-O6
6	Р	7	GLC	O5-C5-C6-O6
6	Р	7	GLC	C4-C5-C6-O6
6	Р	6	GLC	O5-C5-C6-O6
4	N	3	GLC	C4-C5-C6-O6
7	Q	1	GLC	C4-C5-C6-O6
2	K	5	GLC	C4-C5-C6-O6
3	М	1	GLC	O5-C5-C6-O6
6	Р	1	GLC	C4-C5-C6-O6
5	0	6	GLC	O5-C5-C6-O6
3	М	1	GLC	C4-C5-C6-O6
7	Q	1	GLC	O5-C5-C6-O6
2	K	2	GLC	C4-C5-C6-O6
2	J	5	GLC	C4-C5-C6-O6
5	0	4	GLC	C4-C5-C6-O6
2	J	1	GLC	C4-C5-C6-O6
3	L	1	GLC	C4-C5-C6-O6
6	Р	3	GLC	C4-C5-C6-O6
2	J	1	GLC	O5-C5-C6-O6
5	0	6	GLC	C4-C5-C6-O6
8	R	2	GLC	C4-C5-C6-O6
2	K	2	GLC	O5-C5-C6-O6
2	G	1	GLC	O5-C5-C6-O6
8	R	3	GLC	C4-C5-C6-O6
7	Q	3	GLC	C4-C5-C6-O6
5	0	4	GLC	O5-C5-C6-O6
6	Р	3	GLC	O5-C5-C6-O6
2	J	5	GLC	O5-C5-C6-O6
2	G	1	GLC	C4-C5-C6-O6
3	L	1	GLC	O5-C5-C6-O6

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Κ	2	GLC	1	0
5	0	1	GLC	1	0
4	Ν	1	GLC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 73 ligands modelled in this entry, 10 are monoatomic - leaving 63 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tune	Chain	Res	Tink	Bo	ond leng	ths	В	ond ang	gles
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
9	EDO	А	2307	-	3, 3, 3	0.04	0	2,2,2	0.22	0
9	EDO	В	3318	-	3,3,3	0.12	0	2,2,2	0.30	0
10	ACT	D	805	-	3,3,3	0.85	0	3,3,3	1.03	0
9	EDO	В	3308	-	3,3,3	0.07	0	2,2,2	0.46	0
10	ACT	А	2320	-	3, 3, 3	1.04	0	3,3,3	0.68	0
9	EDO	А	2308	-	3,3,3	0.18	0	2,2,2	0.33	0
9	EDO	С	2303	-	3,3,3	0.24	0	2,2,2	0.52	0
9	EDO	В	3304	-	3,3,3	0.28	0	2,2,2	0.12	0
9	EDO	В	3321	-	3,3,3	0.10	0	2,2,2	0.15	0
9	EDO	С	2313	-	3,3,3	0.40	0	2,2,2	0.67	0

Mal	T	Chain	Dag	T : 1-	Bo	ond leng	ths	Bond angles		
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
9	EDO	С	2306	-	3,3,3	0.18	0	$2,\!2,\!2$	0.12	0
9	EDO	D	806	-	3,3,3	0.05	0	2,2,2	0.13	0
9	EDO	В	3312	-	3,3,3	0.12	0	$2,\!2,\!2$	0.28	0
9	EDO	В	3320	-	3,3,3	0.14	0	2,2,2	0.60	0
9	EDO	В	3306	-	3,3,3	0.07	0	2,2,2	0.34	0
9	EDO	А	2316	-	3,3,3	0.57	0	2,2,2	0.71	0
9	EDO	В	3313	-	3,3,3	0.20	0	2,2,2	0.15	0
9	EDO	С	2305	-	3,3,3	0.17	0	2,2,2	0.28	0
14	PGE	С	2302	-	9,9,9	0.24	0	8,8,8	0.16	0
9	EDO	А	2314	-	3,3,3	0.28	0	2,2,2	0.33	0
9	EDO	А	2318	-	3,3,3	0.14	0	$2,\!2,\!2$	0.30	0
9	EDO	В	3301	-	3,3,3	0.09	0	2,2,2	0.11	0
9	EDO	В	3302	-	3,3,3	0.22	0	2,2,2	0.41	0
16	PEG	С	2312	-	6,6,6	0.62	0	$5,\!5,\!5$	0.48	0
9	EDO	С	2307	-	3,3,3	0.32	0	$2,\!2,\!2$	0.55	0
9	EDO	С	2317	-	3,3,3	0.20	0	$2,\!2,\!2$	0.20	0
9	EDO	С	2311	-	3,3,3	0.07	0	2,2,2	0.18	0
9	EDO	А	2303	-	3,3,3	0.21	0	$2,\!2,\!2$	0.12	0
9	EDO	В	3317	-	3,3,3	0.19	0	2,2,2	0.07	0
9	EDO	В	3303	-	3,3,3	0.13	0	$2,\!2,\!2$	0.28	0
9	EDO	С	2318	-	3,3,3	0.15	0	2,2,2	0.22	0
9	EDO	А	2306	-	3,3,3	0.09	0	$2,\!2,\!2$	0.25	0
10	ACT	А	2302	-	3,3,3	1.23	0	$3,\!3,\!3$	0.50	0
9	EDO	А	2309	-	3,3,3	0.08	0	2,2,2	0.37	0
9	EDO	D	807	-	3,3,3	0.11	0	$2,\!2,\!2$	0.15	0
9	EDO	А	2323	-	3,3,3	0.16	0	$2,\!2,\!2$	0.19	0
9	EDO	D	804	-	3,3,3	0.10	0	$2,\!2,\!2$	0.34	0
9	EDO	В	3307	-	3,3,3	0.30	0	2,2,2	0.58	0
9	EDO	В	3316	-	3,3,3	0.13	0	2,2,2	0.50	0
9	EDO	С	2314	-	3,3,3	0.19	0	$2,\!2,\!2$	0.47	0
9	EDO	В	3315	-	3,3,3	0.11	0	$2,\!2,\!2$	0.34	0
9	EDO	С	2315	-	3,3,3	0.39	0	$2,\!2,\!2$	0.24	0
9	EDO	С	2304	-	3,3,3	0.24	0	$2,\!2,\!2$	0.40	0
9	EDO	А	2301	-	3,3,3	0.16	0	2,2,2	0.18	0
9	EDO	С	2319	-	3,3,3	0.13	0	$2,\!2,\!2$	0.21	0
9	EDO	D	809	-	3,3,3	0.21	0	$2,\!2,\!2$	0.19	0
9	EDO	A	2321	-	3,3,3	0.12	0	2,2,2	0.31	0
9	EDO	A	2305	-	3,3,3	0.29	0	2,2,2	0.53	0
9	EDO	D	808	-	3,3,3	0.18	0	2,2,2	0.13	0
9	EDO	А	2315	-	3,3,3	0.60	0	$2,\!2,\!2$	0.83	0
9	EDO	В	3319	-	3,3,3	0.11	0	$2,\!2,\!2$	0.44	0
13	1PE	С	2301	-	$15,\!15,\!15$	0.35	0	14,14,14	0.35	0
9	EDO	В	3314	-	3,3,3	0.30	0	2,2,2	0.50	0

Mal	Mol Type Chain		Ros	Tink	Bo	ond leng	$_{\rm sths}$	Bond angles		
IVIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	EDO	А	2317	-	3, 3, 3	0.10	0	2,2,2	0.22	0
9	EDO	А	2311	-	3,3,3	0.17	0	2,2,2	0.72	0
9	EDO	В	3322	-	3, 3, 3	0.11	0	2,2,2	0.02	0
9	EDO	В	3305	-	3,3,3	0.09	0	2,2,2	0.18	0
10	ACT	А	2322	-	3, 3, 3	1.02	0	3,3,3	0.84	0
10	ACT	А	2319	-	3,3,3	1.19	0	3,3,3	0.81	0
9	EDO	А	2310	-	3, 3, 3	0.23	0	2,2,2	0.17	0
9	EDO	В	3311	-	3, 3, 3	0.17	0	2,2,2	0.33	0
9	EDO	А	2304	-	3,3,3	0.15	0	2,2,2	0.25	0
9	EDO	С	2316	-	3,3,3	0.08	0	2,2,2	0.22	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	EDO	А	2307	-	-	1/1/1/1	-
9	EDO	В	3318	-	-	0/1/1/1	-
9	EDO	В	3308	-	-	1/1/1/1	-
9	EDO	А	2308	-	-	1/1/1/1	-
9	EDO	С	2303	-	-	1/1/1/1	-
9	EDO	В	3304	-	-	1/1/1/1	-
9	EDO	В	3321	-	-	1/1/1/1	-
9	EDO	С	2313	-	-	1/1/1/1	-
9	EDO	С	2306	-	-	0/1/1/1	-
9	EDO	D	806	-	-	0/1/1/1	-
9	EDO	В	3312	-	-	1/1/1/1	-
9	EDO	В	3320	-	-	1/1/1/1	-
9	EDO	В	3306	-	-	0/1/1/1	-
9	EDO	А	2316	-	-	0/1/1/1	-
9	EDO	В	3313	-	-	1/1/1/1	-
9	EDO	С	2305	-	-	1/1/1/1	-
14	PGE	С	2302	-	-	5/7/7/7	-
9	EDO	А	2314	-	-	0/1/1/1	-
9	EDO	А	2318	-	-	1/1/1/1	-
9	EDO	В	3301	-	-	1/1/1/1	-
9	EDO	В	3302	-	-	0/1/1/1	-
16	PEG	С	2312	-	-	1/4/4/4	-
9	EDO	С	2307	-	-	1/1/1/1	-
9	EDO	С	2317	-	-	1/1/1/1	-
9	EDO	С	2311	-	-	1/1/1/1	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	EDO	А	2303	-	-	1/1/1/1	-
9	EDO	В	3317	-	-	0/1/1/1	-
9	EDO	В	3303	-	-	1/1/1/1	-
9	EDO	С	2318	-	-	1/1/1/1	-
9	EDO	А	2306	-	-	1/1/1/1	-
9	EDO	А	2309	-	-	1/1/1/1	-
9	EDO	D	807	-	-	1/1/1/1	-
9	EDO	А	2323	-	-	0/1/1/1	-
9	EDO	D	804	-	-	0/1/1/1	-
9	EDO	В	3307	-	-	0/1/1/1	-
9	EDO	В	3316	-	-	0/1/1/1	-
9	EDO	С	2314	-	-	1/1/1/1	-
9	EDO	В	3315	-	-	0/1/1/1	-
9	EDO	С	2315	-	-	1/1/1/1	-
9	EDO	С	2304	-	-	0/1/1/1	-
9	EDO	А	2301	-	-	1/1/1/1	-
9	EDO	С	2319	-	-	1/1/1/1	-
9	EDO	D	809	-	-	0/1/1/1	-
9	EDO	А	2321	-	-	0/1/1/1	-
9	EDO	А	2305	-	-	1/1/1/1	-
9	EDO	D	808	-	-	1/1/1/1	-
9	EDO	А	2315	-	-	1/1/1/1	-
9	EDO	В	3319	-	-	1/1/1/1	-
13	1PE	С	2301	-	-	7/13/13/13	-
9	EDO	В	3314	-	-	1/1/1/1	-
9	EDO	А	2317	-	-	0/1/1/1	-
9	EDO	А	2311	-	-	1/1/1/1	-
9	EDO	В	3322	-	-	1/1/1/1	-
9	EDO	В	3305	-	-	1/1/1/1	-
9	EDO	А	2310	-	-	1/1/1/1	-
9	EDO	В	3311	-	-	1/1/1/1	-
9	EDO	А	2304	-	-	1/1/1/1	-
9	EDO	С	2316	-	-	1/1/1/1	-

Continued from previous page...

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (51) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
13	С	2301	1PE	OH4-C13-C23-OH3

Mol	Chain	Res	Type	Atoms
1/	C	2302	PCE	$02_{C3}C4 03$
12		2302		ОН5_С14 С94 ОН4
13	C	2301		OH7 C16 C26 OH6
10	C	2001		017-010-020-0110
10		2312	FEG	01-01-02-02
9	A	2311	EDO	01-01-02-02
9	B	3305	EDO	01-01-02-02
14	C	2302	PGE	01-C1-C2-O2
9	A	2304	EDO	01-C1-C2-O2
9	A	2315	EDO	01-C1-C2-O2
9	A	2318	EDO	O1-C1-C2-O2
9	В	3308	EDO	O1-C1-C2-O2
9	В	3312	EDO	O1-C1-C2-O2
9	В	3313	EDO	O1-C1-C2-O2
9	В	3319	EDO	O1-C1-C2-O2
9	В	3321	EDO	O1-C1-C2-O2
9	С	2303	EDO	O1-C1-C2-O2
9	С	2307	EDO	O1-C1-C2-O2
9	С	2313	EDO	O1-C1-C2-O2
13	С	2301	1PE	OH6-C15-C25-OH5
14	С	2302	PGE	O3-C5-C6-O4
9	А	2308	EDO	O1-C1-C2-O2
9	С	2305	EDO	O1-C1-C2-O2
9	С	2311	EDO	O1-C1-C2-O2
9	С	2318	EDO	O1-C1-C2-O2
9	А	2301	EDO	O1-C1-C2-O2
9	А	2306	EDO	O1-C1-C2-O2
9	С	2314	EDO	O1-C1-C2-O2
9	С	2316	EDO	O1-C1-C2-O2
13	С	2301	1PE	С16-С26-ОН6-С15
9	В	3311	EDO	O1-C1-C2-O2
13	С	2301	1PE	C23-C13-OH4-C24
9	А	2305	EDO	O1-C1-C2-O2
9	В	3301	EDO	O1-C1-C2-O2
9	D	808	EDO	01-C1-C2-O2
14	С	2302	PGE	C1-C2-O2-C3
13	C	2301	1PE	C24-C14-OH5-C25
14	C	2302	PGE	C3-C4-O3-C5
9	C	2315	EDO	01-C1-C2-O2
9	C	2319	EDO	01-C1-C2-O2
9	A	2307	EDO	01-C1-C2-O2
9	R	3303	EDO	01-C1-C2-O2
9	B	3314	EDO	01-C1-C2-O2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
9	С	2317	EDO	O1-C1-C2-O2
9	А	2303	EDO	O1-C1-C2-O2
9	В	3304	EDO	O1-C1-C2-O2
9	В	3320	EDO	O1-C1-C2-O2
9	В	3322	EDO	O1-C1-C2-O2
9	D	807	EDO	O1-C1-C2-O2
9	А	2309	EDO	O1-C1-C2-O2
9	А	2310	EDO	O1-C1-C2-O2

Continued from previous page...

There are no ring outliers.

15 monomers are involved in 48 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
10	D	805	ACT	2	0
9	В	3304	EDO	2	0
9	В	3320	EDO	1	0
9	А	2316	EDO	5	0
9	В	3313	EDO	1	0
14	С	2302	PGE	1	0
16	С	2312	PEG	2	0
9	С	2318	EDO	2	0
9	D	804	EDO	2	0
9	В	3307	EDO	3	0
9	В	3316	EDO	3	0
9	С	2314	EDO	2	0
9	С	2315	EDO	2	0
9	А	2315	EDO	2	0
13	С	2301	1PE	19	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	713/738~(96%)	-0.46	3 (0%) 92 93	10, 19, 43, 62	0
1	В	708/738~(95%)	-0.29	8 (1%) 80 84	11, 22, 48, 64	0
1	С	712/738~(96%)	-0.09	14 (1%) 65 69	11, 26, 52, 84	0
1	D	706/738~(95%)	-0.05	15 (2%) 63 68	18, 34, 59, 80	0
All	All	2839/2952~(96%)	-0.22	40 (1%) 75 78	10, 25, 51, 84	0

All (40) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	D	757	ALA	4.5
1	D	737	VAL	4.1
1	А	167	TRP	3.7
1	С	728	TYR	3.5
1	В	164	GLY	3.5
1	D	728	TYR	3.4
1	D	178	SER	3.4
1	А	304	ALA	3.3
1	D	45	VAL	3.2
1	D	132	SER	3.1
1	В	167	TRP	3.1
1	D	245	ALA	3.0
1	D	726	THR	3.0
1	D	121	SER	2.9
1	D	130	ALA	2.9
1	С	688	TYR	2.8
1	С	735	ASN	2.7
1	В	304	ALA	2.7
1	D	736	PRO	2.6
1	С	757	ALA	2.6
1	D	302	TRP	2.5

Mol	Chain	Res	Type	RSRZ
1	С	732	GLU	2.5
1	В	702	VAL	2.5
1	С	743	ILE	2.5
1	С	726	THR	2.4
1	С	737	VAL	2.4
1	D	177	ILE	2.4
1	С	716	ALA	2.3
1	В	296	ASN	2.3
1	В	165	PHE	2.2
1	А	739	GLY	2.2
1	В	740	GLU	2.2
1	D	232	THR	2.2
1	С	720	TYR	2.2
1	С	489	GLY	2.2
1	В	735	ASN	2.1
1	С	693	ASN	2.1
1	С	745	VAL	2.0
1	D	167	TRP	2.0
1	С	167	TRP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
6	GLC	Р	7	11/12	0.71	0.30	$65,\!75,\!85,\!91$	0
2	GLC	K	1	12/12	0.78	0.25	$35,\!58,\!63,\!65$	0
7	GLC	Q	6	11/12	0.80	0.17	42,56,59,60	0
5	GLC	0	6	11/12	0.83	0.19	$51,\!59,\!65,\!69$	0
2	GLC	Ι	1	12/12	0.84	0.17	$29,\!43,\!53,\!54$	0
4	GLC	N	4	11/12	0.85	0.31	$52,\!55,\!63,\!65$	0
2	GLC	J	1	12/12	0.85	0.15	$38,\!54,\!57,\!67$	0
8	GLC	R	5	11/12	0.86	0.17	34,44,46,47	0
2	GLC	Н	5	11/12	0.87	0.14	34,39,43,56	0

8DL1

Conti	nued fro	m previoi	is page.	•••				-
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors (A^2)	Q < 0.9
5	GLC	0	7	11/12	0.87	0.17	$25,\!34,\!38,\!38$	0
8	GLC	R	4	11/12	0.87	0.11	32,36,41,42	0
6	GLC	Р	6	11/12	0.87	0.19	$46,\!51,\!55,\!56$	0
7	GLC	Q	1	12/12	0.89	0.16	$33,\!36,\!43,\!45$	0
2	GLC	G	1	12/12	0.89	0.12	21,35,43,49	0
5	GLC	0	1	12/12	0.90	0.15	$32,\!46,\!55,\!56$	0
2	GLC	Н	1	12/12	0.90	0.14	21,37,41,43	0
7	GLC	Q	4	11/12	0.90	0.10	$28,\!33,\!35,\!36$	0
3	GLC	М	3	11/12	0.91	0.27	$47,\!55,\!58,\!58$	0
2	GLC	J	5	11/12	0.91	0.16	45,49,53,56	0
3	GLC	М	1	12/12	0.91	0.23	43,48,52,58	0
6	GLC	Р	5	11/12	0.92	0.13	21,35,41,43	0
3	GLC	М	2	11/12	0.92	0.18	38,44,46,50	0
2	GLC	J	2	11/12	0.93	0.12	23,26,30,31	0
7	GLC	Q	5	11/12	0.93	0.11	25,33,38,45	0
6	GLC	Р	1	12/12	0.93	0.10	21,24,25,30	0
2	GLC	K	5	11/12	0.93	0.13	33,40,51,58	0
7	GLC	Q	3	11/12	0.93	0.11	24,29,29,32	0
7	GLC	Q	2	11/12	0.94	0.15	30,35,36,42	0
2	GLC	Ι	5	11/12	0.94	0.12	38,44,47,49	0
6	GLC	Р	4	11/12	0.94	0.10	$25,\!29,\!35,\!47$	0
2	GLC	G	5	11/12	0.94	0.11	$26,\!29,\!32,\!37$	0
5	GLC	0	5	11/12	0.94	0.10	20,25,34,37	0
3	GLC	L	3	11/12	0.94	0.18	30,32,38,42	0
4	GLC	N	1	12/12	0.94	0.16	29,33,37,40	0
8	GLC	R	1	12/12	0.95	0.09	27,33,36,36	0
8	GLC	R	2	11/12	0.95	0.09	29,32,38,40	0
2	GLC	J	3	11/12	0.95	0.09	22,29,30,31	0
5	GLC	0	2	11/12	0.95	0.11	20,25,31,31	0
6	GLC	Р	3	11/12	0.96	0.10	16,21,23,24	0
4	GLC	N	3	11/12	0.96	0.16	30,36,44,50	0
3	GLC	L	1	12/12	0.96	0.14	23,28,36,39	0
8	GLC	R	3	11/12	0.96	0.09	20,26,28,32	0
2	GLC	K	2	11/12	0.96	0.10	19,25,30,34	0
2	GLC	J	4	11/12	0.96	0.08	31,33,35,37	0
3	GLC	L	2	11/12	0.97	0.11	21,23,26,27	0
2	GLC	Ι	2	11/12	0.97	0.07	17,18,22,25	0
2	GLC	Ι	4	11/12	0.97	0.08	20,22,24,29	0
4	GLC	N	2	11/12	0.97	0.14	22,29,36,42	0
5	GLC	Ο	3	11/12	0.97	0.08	18,20,21,22	0
2	GLC	G	4	11/12	0.98	0.07	16,17,18,21	0
6	GLC	Р	2	11/12	0.98	0.08	18,20,22,23	0

Continu d fr onic

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	GLC	Н	2	11/12	0.98	0.08	$13,\!14,\!15,\!17$	0
2	GLC	K	3	11/12	0.98	0.07	13,16,21,22	0
2	GLC	Κ	4	11/12	0.98	0.07	19,21,24,28	0
5	GLC	0	4	11/12	0.98	0.07	$15,\!18,\!19,\!20$	0
2	GLC	Ι	3	11/12	0.98	0.07	$15,\!16,\!17,\!18$	0
2	GLC	Н	4	11/12	0.98	0.07	$20,\!21,\!25,\!26$	0
2	GLC	G	2	11/12	0.98	0.10	$11,\!14,\!15,\!17$	0
2	GLC	G	3	11/12	0.99	0.08	9,11,12,13	0
2	GLC	Н	3	11/12	0.99	0.07	$13,\!15,\!16,\!17$	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
9	EDO	В	3320	4/4	0.60	0.36	$55,\!56,\!60,\!60$	0
9	EDO	В	3321	4/4	0.67	0.29	$65,\!67,\!68,\!69$	0
9	EDO	D	806	4/4	0.67	0.24	$65,\!65,\!66,\!71$	0
9	EDO	С	2304	4/4	0.69	0.36	49,59,62,62	0
9	EDO	А	2303	4/4	0.70	0.35	52,54,57,65	0
9	EDO	В	3301	4/4	0.72	0.27	$60,\!63,\!67,\!68$	0
9	EDO	А	2314	4/4	0.74	0.26	56,57,60,61	0
9	EDO	А	2310	4/4	0.74	0.21	46,55,56,56	0
9	EDO	А	2316	4/4	0.75	0.37	34,37,39,42	0
9	EDO	А	2315	4/4	0.77	0.19	42,46,46,47	0
9	EDO	С	2307	4/4	0.79	0.12	$50,\!50,\!51,\!53$	0
9	EDO	В	3311	4/4	0.79	0.18	$51,\!52,\!53,\!58$	0
14	PGE	С	2302	10/10	0.79	0.29	50,66,68,72	0
16	PEG	С	2312	7/7	0.79	0.26	43,51,54,58	0

8DL1

Continued from previous page											
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9			
9	EDO	В	3307	4/4	0.80	0.22	$45,\!52,\!53,\!55$	0			
9	EDO	А	2305	4/4	0.81	0.18	44,50,51,54	0			
9	EDO	D	808	4/4	0.81	0.34	$62,\!62,\!64,\!65$	0			
9	EDO	С	2311	4/4	0.81	0.16	$51,\!52,\!54,\!55$	0			
9	EDO	С	2314	4/4	0.81	0.20	$49,\!50,\!51,\!51$	0			
17	CL	D	803	1/1	0.81	0.20	68,68,68,68	0			
10	ACT	D	805	4/4	0.82	0.30	58,59,61,63	0			
9	EDO	В	3306	4/4	0.82	0.18	56, 56, 58, 59	0			
9	EDO	С	2316	4/4	0.82	0.26	50,53,53,58	0			
10	ACT	А	2302	4/4	0.82	0.20	43,44,44,47	0			
9	EDO	С	2313	4/4	0.83	0.15	35,38,40,40	0			
9	EDO	D	807	4/4	0.83	0.32	54,65,66,68	0			
9	EDO	С	2318	4/4	0.84	0.17	47,48,48,50	0			
10	ACT	А	2322	4/4	0.84	0.23	49,58,58,62	0			
9	EDO	В	3318	4/4	0.85	0.27	53,55,57,59	0			
15	NA	С	2310	1/1	0.85	0.11	49,49,49,49	0			
9	EDO	А	2308	4/4	0.86	0.41	52,54,54,58	0			
9	EDO	В	3302	4/4	0.86	0.21	50,51,53,53	0			
9	EDO	С	2303	4/4	0.86	0.21	51,52,52,54	0			
9	EDO	А	2317	4/4	0.86	0.18	46,53,55,58	0			
9	EDO	С	2305	4/4	0.86	0.13	40,45,49,49	0			
10	ACT	А	2319	4/4	0.86	0.20	40,41,47,49	0			
9	EDO	В	3303	4/4	0.87	0.22	51,52,53,55	0			
9	EDO	В	3322	4/4	0.88	0.21	52,52,53,54	0			
9	EDO	В	3317	4/4	0.88	0.17	47,51,52,53	0			
9	EDO	С	2315	4/4	0.88	0.21	46,46,47,51	0			
9	EDO	В	3313	4/4	0.88	0.15	44,47,48,49	0			
9	EDO	В	3315	4/4	0.89	0.33	54,57,57,63	0			
9	EDO	В	3305	4/4	0.89	0.26	53,53,54,55	0			
9	EDO	В	3314	4/4	0.89	0.17	39,40,44,45	0			
9	EDO	С	2317	$\frac{1}{4/4}$	0.89	0.13	39,39,40,42	0			
9	EDO	A	2307	4/4	0.90	0.16	53,58,60,62	0			
9	EDO	A	2304	4/4	0.90	0.13	37,43,44,49	0			
9	EDO	A	2321	4/4	0.90	0.19	46,49,50,53	0			
9	EDO	A	2309	4/4	0.90	0.20	42,43,46,46	0			
13	1PE	С	2301	16/16	0.91	0.27	25,43,52.52	0			
9	EDO	С	2306	4/4	0.92	0.17	50,51,54.56	0			
9	EDO	А	2306	4/4	0.92	0.29	47,48,49.53	0			
9	EDO	D	809	4/4	0.92	0.15	47,49,51.51	0			
9	EDO	B	3304	4/4	0.92	0.13	41.44.44.49	0			
9	EDO	A	2323	4/4	0.92	0.15	48,50.53.54	0			
9	EDO	B	3316	4/4	0.92	0.16	41,44,45,47	0			

8DL1

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
9	EDO	D	804	4/4	0.93	0.28	41,47,47,50	0
10	ACT	А	2320	4/4	0.93	0.12	35,36,38,43	0
9	EDO	В	3308	4/4	0.93	0.20	39,46,46,47	0
9	EDO	А	2301	4/4	0.94	0.15	51,53,54,54	0
9	EDO	А	2318	4/4	0.94	0.27	35,43,45,49	0
9	EDO	С	2319	4/4	0.94	0.15	52,58,59,60	0
9	EDO	В	3312	4/4	0.95	0.12	33,42,43,45	0
9	EDO	В	3319	4/4	0.95	0.24	41,47,48,49	0
9	EDO	А	2311	4/4	0.95	0.15	53,55,55,56	0
11	CA	D	801	1/1	0.99	0.05	23,23,23,23	0
12	MN	А	2313	1/1	0.99	0.04	36,36,36,36	0
12	MN	В	3310	1/1	0.99	0.04	33,33,33,33	0
12	MN	С	2309	1/1	0.99	0.04	41,41,41,41	0
12	MN	D	802	1/1	0.99	0.04	47,47,47,47	0
11	CA	В	3309	1/1	1.00	0.08	14,14,14,14	0
11	CA	С	2308	1/1	1.00	0.10	$1\overline{5,}15,15,15$	0
11	CA	A	2312	1/1	1.00	0.09	11,11,11,11	0

6.5 Other polymers (i)

There are no such residues in this entry.

